
ARTICLE IN PRESS

JID: COMCOM [m5G; December 13, 2016;10:5]

Computer Communications 0 0 0 (2016) 1–14

Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

Challenges and solution for measuring available bandwidth in

software defined networks

Péter Megyesi a , Alessio Botta

b , Giuseppe Aceto

b , Antonio Pescapé b , ∗, Sándor Molnár a

a Budapest University of Technology and Economics, Budapest, Hungary
b University of Napoli Federico II, Naples, Italy and NM2 srl, Italy

a r t i c l e i n f o

Article history:

Received 11 June 2016

Revised 12 October 2016

Accepted 3 December 2016

Available online xxx

Keywords:

SDN

OpenFlow

Floodlight

OpenDaylight

ONOS

a b s t r a c t

Software Defined Networking (SDN) is an emerging paradigm that is expected to revolutionize com-

puter networks. Methods for measuring Quality of Service (QoS) parameters such as bandwidth utiliza-

tion, packet loss, and delay have been recently introduced in literature for SDN-based scenarios, but they

required almost invariably a completely different approach with respect to traditional network environ-

ments, thus facing new challenges and exploiting new opportunities. An important dynamic path char-

acteristic is Available Bandwidth (ABW), that has strong impact on a wide range of applications, but is

a metric very hard to estimate with traditional approaches. In this paper we focus our analysis on ABW

measurement based on messages in the OpenFlow protocol. We present both analytical results and ex-

perimental evaluation (in Mininet emulation and using Floodlight, OpenDaylight and ONOS controllers) of

measurement error due to network delay between the SDN switches and the controller. Based on our re-

sults we propose to extend the OpenFlow protocol with a local timestamping mechanism, providing and

discussing two different implementations of this feature. The presented analysis and the proposed ex-

tension of OpenFlow protocol are not restricted to ABW, and can benefit measurement of other network

metrics in SDN.

© 2016 Elsevier B.V. All rights reserved.

1

w

w

c

d

n

C

a

p

t

n

S

c

v

B

m

s

o

S

l

l

t

c

a

t

i

t

s

p

n

u

h

0

. Introduction

Today computer networks are everywhere. In our everyday life

e are almost always connected to the Internet and, in most cases,

e are also connected in our working hours since many business-

ritical applications also need network connection. The different

emands of heterogeneous networks has led to a situation where

owadays IP networks are very complex to both build and manage.

urrent network architectures are rigid thus it is especially hard to

dd new features to them.

Software Defined Networking (SDN) offers a solution for this

roblem mainly through the following features: (i) data and con-

rol planes are decoupled; (ii) control logic is moved out of the

etwork devices (SDN switches) to an external Network Operating

ystem (also called the SDN controller); (iii) external applications

an program the network using the abstraction mechanisms pro-

ided by the SDN controller. The SDN concept has quickly gained
∗ Corresponding author.

E-mail addresses: megyesi@tmit.bme.hu (P. Megyesi), a.botta@unina.it (A.

otta), giuseppe.aceto@unina.it (G. Aceto), pescape@unina.it (A. Pescapé),

olnar@tmit.bme.hu (S. Molnár).

w

n

m

i

l

n

ttp://dx.doi.org/10.1016/j.comcom.2016.12.004

140-3664/© 2016 Elsevier B.V. All rights reserved.

Please cite this article as: P. Megyesi et al., Challenges and solution fo

Computer Communications (2016), http://dx.doi.org/10.1016/j.comcom.2
ignificant focus by the research community after the introduction

f OpenFlow in 2008 [1] .

In the last few years, several proposals for monitoring Quality of

ervice (QoS) parameters in SDN networks have been presented in

iterature. They mostly tackle problems related to bandwidth uti-

ization [2–6] , packet loss ratio [5] , packet delay [5,7] , and route

racing [8] . All these monitoring solutions are based on approaches

ompletely different from the counterparts in traditional networks,

nd this is mainly due to the abstraction mechanism provided by

he Network Operating System (NOS). However, the new possibil-

ties provided by SDN and its NOS introduce new issues, limita-

ions, and sources of error, which were previously undiscussed in

uch manner.

The main contribution of this paper is four-fold. Firstly, we

resent the state-of-the-art Available Bandwidth monitoring tech-

iques used in Software Defined Networks emphasizing how they

tilize the new features introduced by the architecture. Secondly,

e discuss the limitation of such monitoring approaches and the

ew source of errors they introduce, with analytical calculation of

easurement error due to lack of local timestamping mechanism

n OpenFlow. Thirdly, we validate experimentally in Mininet emu-

ation testbed the analysis and the properties of the proposed tech-

ique (using the controllers Floodlight, OpenDaylight and ONOS).
r measuring available bandwidth in software defined networks,

016.12.004

http://dx.doi.org/10.1016/j.comcom.2016.12.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comcom
mailto:megyesi@tmit.bme.hu
mailto:a.botta@unina.it
mailto:giuseppe.aceto@unina.it
mailto:pescape@unina.it
mailto:molnar@tmit.bme.hu
http://dx.doi.org/10.1016/j.comcom.2016.12.004
http://dx.doi.org/10.1016/j.comcom.2016.12.004

2 P. Megyesi et al. / Computer Communications 0 0 0 (2016) 1–14

ARTICLE IN PRESS

JID: COMCOM [m5G; December 13, 2016;10:5]

Fig. 1. The architecture of Software Defined Networks.

o

p

O

n

t

a

i

P

t

2

t

t

b

f

h

t

O

f

M

f

fl

t

S

t

g

i

t

d

i

r

t

i

a

e

p

m

i

h

t

a

n

p

A

v

d

fl

n

q

t

e

q

a

s

u

a

(

d

p

Finally, we propose an extension to the OpenFlow protocol provid-

ing local timestamping mechanism in order to avoid measurement

errors due to network jitter.

The remainder of this paper is structured as follows.

Section 2 presents the background of Software Defined Networks,

the earlier works in monitoring SDN networks, and Available

Bandwidth measurement in traditional networks. We present our

method for measuring available bandwidth in SDN in Section 3 .

In Section 4 we address the main issues and limitations in SDN

measurements. In Section 5 we discuss the main advantages of-

fered by the newly proposed technique and possible applications

that can benefit from them. In Section 6 we validate our ABW ap-

plication using a Mininet based test configuration and also analyze

the measurement error caused by the network delay. We propose

an efficient and backward compatible extension to the OpenFlow

protocol in Section 7 that adds message timestamping to further

reduce measurement error. Finally, Section 8 ends the paper with

concluding remarks.

2. Background and related work

Software Defined Networking gained significant focus after the

introduction of OpenFlow [1] . However, its main concepts root in

earlier works in the fields of active networks, control and data

plane separation, and network virtualization [9] . In this paper we

follow the definition of SDN as presented in [10] , which is based

on the following four elements: (i) Control and data planes are

separated from each other. Network devices no longer have con-

trol functionalities, they become simple forwarding devices. (ii)

Forwarding rules are made based on a set of fields in the packet

headers. This also guarantees unified behaviors of networking el-

ements such as switches, routes or firewalls. (iii) Control plane is

moved to an external entity called the Network Operating System

(NOS) or SDN controller. NOS is a software platform that runs on

commodity hardware and can communicate the forwarding rules

to the switches via open standards. (iv) Third party applications

can program the network over the NOS. The controller must also

provide the necessary abstractions and interfaces for serving these

applications.

Fig. 1 presents the architecture of Software Defined Networks.

The SDN controller can communicate with the switch via the

southbound API, where the most used standard is OpenFlow,

and there are also other proposals, e.g. OVSDB [11] , P4 [12] or

ROFL [13] . For NOS platform there are many available open soft-

ware such as NOX [14] , POX [14] , Floodlight [15] or Ryu [16] . More-
Please cite this article as: P. Megyesi et al., Challenges and solution fo

Computer Communications (2016), http://dx.doi.org/10.1016/j.comcom.2
ver, there are ongoing industrial consortia projects for controller

latforms specialized for data centers, for e.g. OpenDayLight [17] or

NOS [18] . SDN applications can program the network using the

orthbound API of the NOS. However, these APIs are specific to

he controller thus most of the currently available SDN applications

re only able to operate over one NOS platform. These northbound

nterfaces either uses a specific programing language (e.g. Java or

ython) or a REST based API. We refer to [10] for a comprehensive

axonomy of different elements in Software Defined Networking.

.1. Monitoring in SDN

In the recent years, there has been several proposals for moni-

oring Software Defined Networks. FlowSense authors [2] propose

o use only the mandatory OpenFlow messages to monitor the

andwidth utilization over the network. Although this approach of-

ers bandwidth monitoring with zero extra load to the network, it

as been proven to work inaccurately under dynamic traffic condi-

ions [4] . Other papers propose to use the FlowStatsReq message in

penFlow to poll the interface and flow counters in the switches

or bandwidth measurement [4–6] . Furthermore, PayLess [4] and

onSamp [6] offer adaptive sampling algorithms that can adapt

or the current network load. However, their approaches are con-

icting since PayLess suggests to increase the sampling rate when

he traffic load is high (for increasing the accuracy), whereas Mon-

amp suggests to decrease the sampling rate under high load (so

he higher the network load the lower monitoring load should be

enerated).

OpenNetMon [5] offers a solution for loss and delay monitor-

ng as well. For loss measurement, it polls the flow counters on

he ingress and egress switches for a given flow and calculates the

ifference. For delay measurement, it uses the SDN controller to

nject probe packets into the network along a given path and then

eroute them back to the controller. The tool is able to calculate

he delay for the given path using the round trip time between

ngress and egress switches. Phemius and Bouet [7] use the same

pproach for delay measurement, but observe a constant differ-

nce between the measured and reference time values. They also

resent a method to calculate this value and calibrate the delay

easurement accordingly.

Previous approaches do not rely on explicit time management

n SDN, and on this specific topic we found that very little work

as been published so far. One relevant work presents a varia-

ion on the Precise Time Protocol, named ReversePTP [19] , aimed

t distributing accurate time to SDN switches, allowing synchro-

ized operations. An extension of the OpenFlow protocol has been

roposed in [20] to add support for Synchronized Ethernet in SDN.

nother approach, but focusing on delay, is presented in [21] , pro-

iding bounds on the basis of the estimation of statistical traffic

istribution. In such approach random sampling is performed on

ow counters, in order to efficiently obtain the autocovariance of

etwork flows; the autocovariance is then used to simulate the

ueue behavior of the switches and therefore numerically derive

he bonds on queue length and packet delay. Our method provides

stimates not based on statistical model estimation and subse-

uent simulation, even though we report statistical analysis aimed

t evaluating the theoretical bounds for the estimation error. Be-

ides the difference in the estimated performance metrics, and the

se of statistical models and discrete-events simulation, in [21] the

uthors do not detail the error introduced by lack of time precision

possibly compensated for in the random sampling process).

The issues, goals and contributions considered in such works

iffer from ours and actually can be complementary to our pro-

osal of introducing timestamping for OF messages.
r measuring available bandwidth in software defined networks,

016.12.004

http://dx.doi.org/10.1016/j.comcom.2016.12.004

P. Megyesi et al. / Computer Communications 0 0 0 (2016) 1–14 3

ARTICLE IN PRESS

JID: COMCOM [m5G; December 13, 2016;10:5]

2

a

b

v

p

r

m

o

i

u

u

a

f

l

l

T

l

a

I

u

b

b

p

S

a

s

A

t

a

o

2

n

s

o

n

i

n

a

a

s

a

t

i

P

m

w

b

s

t

Table 1

Notation list.

Notation Description

G (V, E) The directed graph representation of the network topology

with node set V and edge set E

e i i th link in the network topology graph

c i The capacity of e i
b i The current bandwidth load on e i
a i The available bandwidth on e i , a i = c i − b i
P A → B The set of all available paths from A to B

i

s

n

e

t

e

e

h

2

t

r

i

i

m

o

a

t

s

i

p

c

b

o

c

t

a

3

t

i

w

w

r

t

B

t

o

l

f

a

S

b

V

t

a

i

.2. Available bandwidth

Available bandwidth is an important dynamic characteristic of

 network path, being equivalent to the amount of traffic that can

e added to the path without affecting the other flows that tra-

erse part of it, and independently from their bandwidth-sharing

roperties. Such definition tells it apart from other bandwidth-

elated metrics such as bulk transfer capacity and from the maxi-

um achievable throughput [22] .

For a formal definition, the available bandwidth is first defined

n each link of a network path. For each time instant, the i th link

s either inactive or trasmitting at its full capacity, so the average

tilization of the link i in the time interval (t − τ, t) is

¯
 i (t − τ, t) ≡ 1

τ

∫ t

t−τ
u i (x) dx (1)

nd τ is the averaging timescale . The amount of traffic that is trans-

erred over the link during the time interval (t − τ, t) is denoted as

 i (t − τ, t) and is equal to

 i (t − τ, t) = C i · τ · ū i (t − τ, t) (2)

he available bandwidth in the time interval (t − τ, t) for the i th

ink, with capacity C i , is

 i (t − τ, t) ≡ 1

τ

∫ t

t−τ
C i (1 − u i (x)) dx (3)

= C i (1 − ū i (t − τ, t))

= C i −
l i (t − τ, t)

τ
(4)

n other words the available bandwidth of a link is the average of

nused capacity during the considered time interval. The available

andwidth on a path is defined as the minimum value of available

andwidth of the links composing the path.

Available bandwidth measurement can have significant im-

ortance for both service provider and application perspectives.

ervice providers use this parameter for network management

nd traffic engineering purposes. Furthermore, nowadays, video

treaming generates the largest portion of Internet traffic, where

BW measurement techniques play a significant role in adapting

o the current network load. In general, knowledge about the avail-

ble bandwidth over the network would benefit many users and

perators of network applications and infrastructures.

.3. Available bandwidth measurement methods

In traditional networks, available bandwidth estimation tech-

iques are typically classified into active and passive (with the

ame definition provided in [23] for network measurement meth-

ds in general). Active techniques send probe packets into the

etwork and analyze how network traversal affected their spac-

ng/arrival to infer network status. Active ABW estimation tech-

iques in the literature can be referred to two models, probe gap

nd probe rate , according to the hypotheses on the analyzed path

nd on the type of probing procedure adopted. Probe gap tools

uch as Spruce [24] or Traceband [25] use packet pairs as probes,

nd require knowledge of link capacity. Probe rate tools use mul-

iple series of packets, injected at different rates, aimed at caus-

ng a temporary congestion. Examples of probe rate tools include

athLoad [26] and PathChirp [27] .

Passive techniques for estimating the available bandwidth use

ultiple measurement points in the network to monitor band-

idth utilization, packet loss ratio, and packet delay. The available

andwidth can then be estimated if these measures are properly

ynchronized. These techniques are very complex to deploy thus

hey are rarely used in practice.
Please cite this article as: P. Megyesi et al., Challenges and solution fo

Computer Communications (2016), http://dx.doi.org/10.1016/j.comcom.2
A passive technique that leverages analysis methods developed

nitially for active ABW estimation is presented in [28] , and con-

ists in inspecting traffic traces generated by real applications run-

ing at the ends of the measured path, in order to detect the pres-

nce of packet trains similar to ones generated by active ABW es-

imation tools: for each of them the effect of network traversal is

valuated according to active estimation techniques, obtaining an

stimate of the available bandwidth with no measurement over-

ead.

.4. Main issues for traditional available bandwidth estimation

echniques

The performance of most of active ABW estimation tools cur-

ently available is scenario-dependent and require non-trivial cal-

bration [29,30] . The main issue they have in common is the lim-

ted accuracy, and systematic errors around 50% are not uncom-

on. Some of the tools (Diettopp and Pathload, the most accurate

nes) have long convergence time, in the order of 10 s up to 40 s,

nd—depending on configuration settings and traffic conditions—

hey may not converge to an estimation. The approach using pas-

ive measurement with active-like analysis inherits the accuracy

ssues of the active techniques that are adopted in the processing

hase, worsened by the impossibility of dynamically adjusting the

haracteristics of probing traffic (that is independently generated

y the monitored applications). Estimation time is also dependent

n the presence of suitable traffic generated by third party appli-

ations, therefore it is not predictable. These reasons lead the au-

hors to propose it as a complementary method with respect to

ctive tools.

. Measuring available bandwidth in SDN networks

In SDN environments the situation is largely different from the

raditional ones. The centralized control plane provides interest-

ng opportunities for measuring the available bandwidth, which

ere unforeseeable in traditional environments. In the following

e present our approach for the estimation of this important pa-

ameter and discuss the possibilities as well as the new challenges

hat SDN introduces in the ABW measurement field.

We propose the use of a passive technique for the Available

andwidth estimation, taking advantage of the NOS in the archi-

ecture of SDN. We use the northbound API to discover the topol-

gy of the network and to monitor the bandwidth utilization of the

inks. With this information we calculate the available bandwidth

or any path in the network at any given time.

Using the northbound API of the NOS we query the topology

bstraction of the network which is a mandatory feature in every

DN controller [10] . Firstly, our application uses this information to

uild up the network topology graph G (V, E), where the node set

 corresponds to the switches and the edge set E corresponds to

he links (for further notations see Table 1). Due to the topology

bstraction mechanisms the capacity c i of every link is also known

n the network.
r measuring available bandwidth in software defined networks,

016.12.004

http://dx.doi.org/10.1016/j.comcom.2016.12.004

4 P. Megyesi et al. / Computer Communications 0 0 0 (2016) 1–14

ARTICLE IN PRESS

JID: COMCOM [m5G; December 13, 2016;10:5]

s

t

i

o

t

r

d

i

p

T

g

a

E

e

w

l

4

t

f

i

fl

t

t

i

t

q

p

a

s

e

l

c

fi

r

C

δ

a

t

B

w

t

p

C

δ

i

b

t

C

B

G

t

s

1

E

1 OpenFlow Switch Specification Version 1.5.1 Section 7.3.5.2
The application is also able to measure the current load b i of ev-

ery link. For this we use an approach similar to the one previously

presented in [4–6] : we periodically poll the counters in the SDN

switches using the PortStatsReq OpenFlow message. This method

is already proven to be effective in SDN and it provides an easy

solution for measuring the bandwidth utilization over the entire

network. After this step, we calculate the available bandwidth a i on

every link in the network, using (4) . Based on the a i values we

then calculate the available bandwidth on a given path P through

the following equation

ABW P = min

e i ∈ P
a i . (5)

Our method is also able to distinguish between three different

scenarios and calculate the ABW according to them. They are the

following:

1. ABW on fixed paths. In this scenario the routing policies are

fixed. Thus for a given flow, first we have to find out its route

on the network, and then calculate the available bandwidth us-

ing (5) . Our method uses the northbound API of the NOS for

this task, e.g. Floodlight’s REST API provides an interface for re-

porting the route of a flow in the network (for any given header

on a given entry point) according to the policies set up in the

controller.

2. Best available path. In this case we have to find the path P

between two points in the network where the available band-

width is the largest. This can be calculated through the follow-

ing equation:

ABW A → B = max
P∈ P A → B

min

e i ∈ P
a i . (6)

For solving this equation we use a modified Dijkstra algo-

rithm where the metric of a path is not measured by the sum

of the edge capacities (distances) but by (5) . This algorithm

also gives the best possible path for the best AWB solution in

O (| E| + | V | log | V |) (like a standard shortest-path Dijkstra algo-

rithm would do).

3. Multipath scenario. In this case we can use multiple paths be-

tween two points in the network. We consider this as an im-

portant scenario since the SDN architecture can easily enable

solutions for multipath routing, for e.g. using MPTCP in the

transport layer [31] . In this case we face off a classical max-

flow problem over the network topology graph G (V, E) which

can be solved through the Ford–Fulkerson Algorithm in O (| E | f)

complexity (where f is the maximum flow in the graph).

4. Limitations and constraints for available bandwidth

estimation in SDN

Based on our extensive analysis and measurements of the ABW

over SDN networks, we have derived a number of limitations and

constraints in estimating ABW with the technique we have pro-

posed. For each of them we provide an analytical modeling of the

issue, an experimental evaluation in emulated environment, and

possible solutions or mitigations.

4.1. Measurement overhead

In traditional networks the measurement overhead caused by

passive methods has been subject of several studies and propos-

als [4,6] . Due to both the architecture of SDN networks and the dif-

ferent possibilities for monitoring it provides, measurement over-

head can have multiple aspects. We report in Fig. 3 a visual break-

down of such aspects. Regarding traffic , measurement can affect

the SDN control network (for passive methods), data plane net-

work (for active methods), or both. As regards computation over-

head, it can affect the logically centralized controller and the
Please cite this article as: P. Megyesi et al., Challenges and solution fo

Computer Communications (2016), http://dx.doi.org/10.1016/j.comcom.2
witches; for the switches the additional computations can impact

he slow-path (whose primary duty is management, not monitor-

ng), the fast-path (either directly or indirectly), or both.

In the case of the ABW estimation method we propose, the

verhead in traffic regards the control network, and the computa-

ional overhead regards mainly the controller, as the switches are

equired a standard task (port counters readings). More specifically,

ue to periodic polling of switches counters, the control network

s affected by additional traffic in the size of 80 bytes for every

ort (based on Section 7.3.5.5 in the OpenFlow 1.5.1 specification).

his means that the statistics of 18 ports can be fitted into a sin-

le 1500 byte OpenFlow packet, thus in case of a 48 port switch

 total number of 3 packets will be sent in every polling period.

ven with a very frequent polling rate (e.g. polling the switches

very second) this adds less than 5 Kbps traffic for every switch,

hich in a network with 200 devices makes a traffic overhead of

ess than 1 Mbps.

.2. Accuracy limitation for lack of synchronization

In the simplest set-up with one physically centralized con-

roller, the controller performs polling of measurement reports

rom switches at the parallelism level allowed from the network-

ng infrastructure: if the controller and the switches are on a single

at control LAN, the controller has one single interface connected

o such LAN, and the polling messages are sent as unicast messages

o each of the switches, then requests are necessarily sequentially

ssued, possibly introducing a non-negligible delay among requests

o switches. This delay is due to the relative ordering of the poll re-

uests, and is additionally affected by a degree of randomness de-

ending on the controller activities and LAN conditions. This delay

dds to the transmission delays between the controller and each

witch, whose impact is analyzed in Section 6.3 . An upper bound

stimation of error in the Available Bandwidth estimation due to

ack of synchronization between switches polling times can be cal-

ulated noting that, said δmax the delay between the polling to the

rst switch and the polling to the last one in a single probing

ound, the maximum error on traffic load for links with capacity

 is

L 1 = C · δmax

nd on two subsequent pollings, in the worst case the error on

hroughput estimation is

 err =

δL 2 + δL 1
τ

=

2 · C · δmax

τ

here τ is the polling rate. The maximum delay in polling δmax in

urn depends on the number of switches to be polled N , the ca-

acity of the link connecting the controller to the control network

 ctl and the length of the query packet Len query :

max = (N − 1)
Len query

C ctl

n the hypothesis that all messages are put on the wire back-to-

ack with no additional delay (e.g. due to context-switch). With

he simplifying assumption that all links have the same capacity

 = C ctl , we obtain

 err =

2 · (N − 1) · Len query

τ

iven the size of FlowStatsReq message Len query = 56 Bytes, 1 a con-

roller managing N = 101 switches, with poll rate τ = 0 . 5 s can

uffer up to 44.7 Kbps error on throughput estimation, that on a

Gbps link is a 4 . 4 · 10 −5 relative error on flow rate estimation.

ven in this case, the higher the polling rate, the higher the error.
r measuring available bandwidth in software defined networks,

016.12.004

http://dx.doi.org/10.1016/j.comcom.2016.12.004

P. Megyesi et al. / Computer Communications 0 0 0 (2016) 1–14 5

ARTICLE IN PRESS

JID: COMCOM [m5G; December 13, 2016;10:5]

4

i

a

t

v

t

u

c

w

p

t

r

S

i

c

c

b

n

n

p

t

c

o

i

w

t

4

F

k

i

m

c

c

t

e

t

a

a

w

b

a

t

d

L

t

ε

p

l

t

p

ε

t

b

s

m

m

a

e

a

s

F

t

w

c

c

t

d

s

r

c

E

n

t

p

d

b

r

n

n

o

s

o

v

s

e

5

e

e

i

t

i

m

o

s

l

t

S

c

2 Virtual machine image was downloaded from Mininet website: https://github.

com/mininet/mininet/wiki/Mininet- VM- Images
.3. Critical time-scale dependence of estimation

For its very definition, ABW is a metric that depends on a time

nterval (see Eq. (4)), thus its dependence on the choice of the

veraging timescale τ is self evident. Traditionally such parame-

er has been set according to monitoring needs, using time inter-

als usually in the order of the minutes, down to 30 s [32] , while

echniques provides a snapshot of the status of the whole path

nder measurement, averaging on sub-second time scale: appli-

ation traffic can take more than this time to traverse the path,

hile network conditions change in the meanwhile. In general,

olling delay should be chosen so that traffic entering the con-

rolled SDN network can exit it within a single ABW estimation pe-

iod. Said δingr−egr the maximum delay for a packet to traverse the

DN network, and τ the polling period, this condition translates

n τ � δingr−egr . While in a fully wired setup this is not a strict

onstraint, if the network includes wireless links these can signifi-

ant add to the border-to-border delay thus this constraint has to

e accounted for. If this is not the case, traffic could traverse the

etwork while the controller changes its internal representation of

etwork status, and not even a single packet would experience the

ath available bandwidth as estimated by the controller. According

o the usage of ABW estimation, failing to enforce this constraint

an lead e.g. to the invalidation of routing decisions on the run,

r erroneous granting or denying access to flows, if access control

s applied. Therefore the practical applicability of ABW estimation

ith fine granularity in time is to be checked against both polling

ime and border-to-border transmission time.

.4. Accuracy limitation for lack of timestamp

Due to the lack of a switch-generated timestamp in the Open-

low message, the instant when the reading is performed is un-

nown, and has to be estimated by the receiving controller; this

ntroduces uncertainty associated with the processing and trans-

ission delay between the switch and the controller.

In Fig. 4 we report a message sequence chart depicting the

ommunications between the ABW measuring application, the

ontroller and the switches, during the measurement process; in

he chart we name the time instants associated with notable

vents. With reference to Fig. 4 , as no network delay is implied,

he difference between t-poll 1 and t-req 1 is in the order of μs ,

s well as the difference between t-read 1 and t-meas 1 ; the same

pplies to the each polling. We will therefore approximate t-poll 1

ith t-req 1, t-read 1 with t-meas 1 and focus on the time laps

etween t-gt 1 , when the counter values are read by the switch

nd the ground truth timestamp is extracted, and t-meas 1 , when

he ABW application time-stamped the received the message. By

efining as �L the difference between the counter values L 1 and

 2 in the first and second measurements, respectively, we obtain

he following formula for the error:

=

�L
T 2

GT
−T 1

GT

− �L
T 2 meas −T 1 meas

�L
T 2

GT
−T 1

GT

=

1
T 2

GT
−T 1

GT

− 1
T 2 meas −T 1 meas

1
T 2 meas −T 1 meas

(7)

In case we assume that the counter value extractions happen at

erfect τ rate (∀ i : T i +1
GT

− T i
GT

= τ), and mark δi as the network de-

ay between the application and the ground truth timestamping in

he i th measurement period (δi = T i meas − T i
GT

), Eq. (7) can be sim-

lified as:

=

τ

τ + δ2 − δ1

− 1 = − δ2 − δ1

τ + δ2 − δ1

(8)
Please cite this article as: P. Megyesi et al., Challenges and solution fo

Computer Communications (2016), http://dx.doi.org/10.1016/j.comcom.2
The formula in Eq. (8) suggests that the error due to the times-

amping mechanism is not dependent on the network delay itself

ut rather the difference between the delay in consecutive mea-

urement intervals, hence a jitter like metric. For example, if we

odel the network delay as δ = δmin + x, where δmin is the mini-

al possible delay between the switch and the ABW application

nd x is a positive random variable, δmin will fall out from the

quation. This means that the network distance between a switch

nd the ABW application will not affect the accuracy of the mea-

urements as long as the jitter in the network is under control.

urthermore, the magnitude of the error will be in the range of

he ratio between the network jitter and the polling period.

To confirm the above assumption we introduce a simple case

here the network delay has normal distribution and analytically

alculate the error. Based on Eq. (8) the distribution of the error

an be calculated as the difference of two independently and iden-

ically distributed normal variable. Thus if the distribution of the

elay is N (m, σ 2) , the distribution of the difference of two con-

ecutive values will be N (0 , 2 σ 2) , thus the distribution of the er-

or will be N (0 , 2 σ
2

τ) , if τ � σ . Based on this formula we can

alculate the mean of the absolute error by the following.

(| ε|) =

∫ ∞

−∞

∣∣∣ y

τ − y

∣∣∣ f y (y) dy

=

∫ ∞

0

y

τ − y
f y (y) dy +

∫ ∞

0

y

τ + y
f y (y) dy

=

∫ ∞

0

2 τy

τ 2 − y 2
f y (y) dy

τ�σ=

∫ ∞

0

2 y

τ
f y (y) dy =

√

4

π

σ

τ
(9)

Eq. (9) describes that if the distribution of the network delay is

ormal, than the mean measurement error will be a linear func-

ion of the ratio between the standard deviation of the delay and

olling period. Further, it also tells that the mean error will be in-

ependent on the mean of the network delay. Such scenarios will

e emulated and the results will be evaluated in Section 6.3 . 2

We explicitly notice that, even if affected by said sources of er-

or, ABW estimations provided by our technique is orders of mag-

itude better than the ones provided by active tools in traditional

etworks. Moreover, the time-scale dependence is meaningful in

ur case just because high frequency estimation has become pos-

ible, while is unfeasible in traditional networks. As a counterpart

f said limitations and caveats, our technique presents several ad-

antages and enables new applications of ABW, not previously con-

idered in the traditional scenario: we discuss such advantages and

nabled applications in the following section.

. Advantages and novel applications of available bandwidth

stimation in SDN

The newly presented technique for estimating ABW offers sev-

ral advantages over the active techniques in traditional scenar-

os. First, it is conceptually much simpler, not needing assump-

ions on the statistical properties of cross traffic, neither analyt-

cal models of the devices composing the paths under measure-

ents. This has an impact on both the accuracy of the estimation,

n the applicability of the technique, and on the lack of neces-

ity of a per-scenario tuning. Second, it allows a for a time granu-

arity and estimation accuracy of orders of magnitude better than

he ones reached by active techniques in traditional scenarios (see

ection 6.3 for more details), making several unprecedented appli-

ations possible.
r measuring available bandwidth in software defined networks,

016.12.004

https://github.com/mininet/mininet/wiki/Mininet-VM-Images
http://dx.doi.org/10.1016/j.comcom.2016.12.004

6 P. Megyesi et al. / Computer Communications 0 0 0 (2016) 1–14

ARTICLE IN PRESS

JID: COMCOM [m5G; December 13, 2016;10:5]

Intel Xeon Server
Mininet Virtual MachineSDN Controllers

ABW
Applica�on

Emulated SDN Network

Fig. 2. The assembled test configuration.

Fig. 3. The impact of measurement in SDN networks.

Fig. 4. The measurement process.

Table 2

Configuration hardware and software.

Host CPU Intel Xeon E5-2640 v2 @ 2.00GHz

Host Memory 32 GB

Host OS Ubuntu 14 .04, Linux kernel 3.13.0–24

Virtualization VirtualBox 4.3.20

Guest OS Ubuntu 14.04 64-bit

VM configuration 4 CPU cores, 2 GB memory

Mininet version 2.2.0

OVS version 2.0.2

Floodlight version 1.0

OpenDaylight version 0.4.3 Beryllium SR3

ONOS version 1.6.0 Goldeneye

F

F

e

S

t

f

S

ware and software versions in Table 2 .
Based on such unprecedented characteristics in terms of ac-

curacy and high frequency of estimation, we believe that sev-

eral novel applications based on ABW knowledge provided by our

method are possible:

• Highly-dynamic routing [33,34] .

• No-resv admission control – instead of checking availability of

resources per-request like a RSVP, controller already has the

knowledge to admit/refuse a new flow based on ABW [35] .

• Traffic consolidation – like in NFV, where processing is consol-

idated on busy servers, to shut down unused ones and save

costs, the same can be done for network (virtualized) devices

and links: as long as there is available bandwidth, traffic can

be routed so as to minimize the number of links and devices

needed. This also results in the reduction of probing/control

overhead, as sleeping switches do not cause/require control

[36] .

• Adaptive video – as today’s killer application is video stream-

ing, and DASH is expected to be the future standard for adap-

tive video transfer. A video player could ask for the current

ABW conditions from the controller to set up the best available

resolution which will not congest the network (instead of us-

ing very poor ABW estimation), or the controller could manage

DASH traffic and its competing traffic according to the available

bandwidth and monitored QoE [37] .

6. Experiments over mininet testbed

In order to evaluate our available bandwidth measurement ap-

plication presented in Section 3 and also, to validate our state-

ments in Section 4 , we conducted extensive network emulation

scenarios using Mininet [38] . Fig. 2 presents the schematics of our

testbed. During the emulation scenarios SDN switches are repre-

sented as running Open vSwitch entries and they can be con-

nected to three different SDN controllers. Mininet emulation runs

the switches inside a separate virtual machine 3 on the host server

using VirtualBox. Virtualizing the SDN environment is the sug-

gested approach by the developers of Mininet since it makes re-

search results easier to reproduce and build upon [39] . However,

we chose to run the controllers directly in the host server since we
often faced load issues when we run it inside the virtual machine.

3 Virtual machine image was downloaded from Mininet website: https://github.

com/mininet/mininet/wiki/Mininet- VM- Images i

Please cite this article as: P. Megyesi et al., Challenges and solution fo

Computer Communications (2016), http://dx.doi.org/10.1016/j.comcom.2
or the proof-of-concept application in Section 6.2 and 6.3 we used

loodlight [15] as NOS since it is easy to use and provides the

xact features we needed to validate the theoretical results. 4 In

ection 6.4 we created the same application for industrial con-

roller platforms OpenDaylight [17] and ONOS [18] and we found

undamental differences on how they collect the statistics from the

DN switches. For further reference, we collected the used hard-
4 Preliminary results in the same framework of this paper have been published

n [40]

r measuring available bandwidth in software defined networks,

016.12.004

https://github.com/mininet/mininet/wiki/Mininet-VM-Images
http://dx.doi.org/10.1016/j.comcom.2016.12.004

P. Megyesi et al. / Computer Communications 0 0 0 (2016) 1–14 7

ARTICLE IN PRESS

JID: COMCOM [m5G; December 13, 2016;10:5]

Fig. 5. The test topology in Mininet.

m

a

a

t

r

b

s

6

o

q

i

t

e

h

e

A

c

a

l

p

i

r

c

r

w

6

g

t

l

c

e

m

v

t

w

m

c

6

t

s

d

l

p

v

r

c

d

t

m

a

r

m

a

g
During the emulation scenarios concurrently with the measure-

ent application, we used a kernel polling mechanism for gener-

ting reference values for the measurements. Mininet creates sep-

rate virtual Ethernet interfaces in the Linux system for every in-

erface of the emulated SDN switches. We use IPtables to obtain

eference measures regarding the traffic on the interfaces. Packets

etween the ABW application and the SDN controllers can (and in

ome of our test cases will intentionally) suffer variable delays.

.1. Test configuration

Fig. 5 sketches the network topology we created in Mininet for

ur tests. S1, S2, and S3 create a classical Y topology which is fre-

uently used as a testbed for testing ABW applications [29] . The

dea is to set up the link between S1 and S2 to serve as the bot-

leneck link (lowest capacity on the path) and then use H3 to gen-

rate cross traffic on link between S2 and S3. If this cross traffic is

igh enough, the bottleneck link and tight link will become differ-

nt, which is an important test case for the calculations of current

BW tools [29] . To realize such scenario, we use TrafficControl to

ontrol the capacities of the links and also, (in some scenarios) to

dd variable delay between the polling application and the Flood-

ight controller.

We avoided sending any traffic through S4, as the default route

olicy in all the three controllers do. This was to use the feature

n our application which can predict the best possible alternative

oute even if such route is not the default one. If the volume of

ross traffic from H3 to H4 is larger than 10 Mbps, the alternative

oute through S4 would provide path with larger available band-

idth.

.2. Validation of available bandwidth application

During the validation process we use D-ITG [41,42] for traffic

eneration, since it was proven to work much reliably than other

raffic generation platforms [43] . Using D-ITG, we defined the fol-

owing three traffic scenarios in order validate the our ABW appli-

ation in different circumstances:

1. CBR traffic. In this scenario we generate three flows with con-

stant bit rate with the following timing. At the beginning of the

measurement, H1 starts to send 4 Mbps of UDP traffic to H5

for 100 s, than the host sleeps for 100 s (generating no traffic)

and restarts sending with 8 Mbps rate. Parallel to this, H3 starts

to send 10 Mbps of UDP traffic to H4 for 100 s after the start

of the measurement until the end. Fig. 6 a shows the ABW on

the best route from H1 to H5 (the path offering the maximum

ABW). Reported values are the estimated ABW, the reference

ABW (as derived from packet capture), and the relative error.

Although the bandwidth measured by the Floodlight controller

is varying due to the variable latency introduced between the

controller and switches, in some cases the measured ABW is

constant. This can happen when the alternative route through
Please cite this article as: P. Megyesi et al., Challenges and solution fo

Computer Communications (2016), http://dx.doi.org/10.1016/j.comcom.2
S4 provides a better ABW solution: e.g. in the last 100 s of the

measurement, the bandwidth between S1 and S2 is 8 Mbps

thus the best route is S1 → S4 → S3 with 5 Mbps available

bandwidth (and no traffic). After one measurement period (1 s

long, at second 200 and second 300) affected by transitory er-

ror, the estimated ABW stabilizes to the (constant) actual ABW,

with no error.

2. VBR traffic is generated by D-ITG using Pareto distribution for

the inter-departure times of packets. We generated two flows,

one from H1 to H5 and the other one from H3 to H4. We tested

different values of shape and scale parameters and report the

most interesting cases in the following. Fig. 6 b plots the ABW

of the best path from H1 to H5 (estimated by Floodlight, ref-

erence value, and relative error). In this case we used λ = 1 . 75

as shape parameter for both flows, whereas for scale parameter

we used X H1 = 1 ms and X H3 = 0 . 5 ms for H1 and H3, respec-

tively. As shown, the error of the ABW measurement is larger

than in case of CBR traffic using frequent polling rates. On the

other hand, since the inter-departure times of packets are iden-

tically and independently distributed on larger time scales, the

traffic becomes smoother making the error rate similar to CBR

results.

3. Real traffic. We collected real traffic measurements from the

campus network of the Budapest University of Technology and

Economics. We used a Cisco 6500 Layer-3 switch that aggre-

gates the traffic of two buildings and linked them to the core

layer of the network. A 10-minute-long trace was used for this

purpose. The trace was recorded in No. 2013 and contains about

12 million packets, 10 GB total data, 30 0 0 individual users and

170k flows. We extracted the inter-packet times and packet

sizes from the trace and set up D-ITG to send the same traf-

fic from H3 to H4. Since this traffic rate is much higher than

the one we used for the previous cases, we also increased the

capacity of the links tenfold. Fig. 6 c presents the ABW measure-

ment in this scenario. In this case the throughput also varies in

larger time scales, thus we expect to measure higher ABW error

rates using larger polling frequency.

As it can be observed on the left axis the three plots in Fig. 6 , in

very scenario there is some slight deviation between the imple-

ented REST API polling based measurements and the reference

alues. This is due to fact that the timestamp value is created at

he ABW application rater than being provided by the switches

hen reading the counters (i.e. taking the measurements). The

onitoring packets suffer variable delay on the network, which

auses the error that we described in Section 4.4 .

.3. Analysis of measurement error

In order to fully understand the measurement error caused by

he lack of local timestamping at the SDN switches, we conducted

everal Mininet emulation scenarios using a wide range of network

elay and polling rate setups. Firstly, we set up no delay extra de-

ay on the which can be considered as an ideal case. Table 3 re-

orts the mean and the standard deviation of the measured error

alues for such cases. However, we notice that the average error

ate with 0.5 sec polling is under 1%, and the error is further de-

reasing with the increase of the polling period. The reason for this

ecrease is that with larger polling interval we average on a larger

ime scale while the difference in the timestamp approximation re-

ains the same, thus having a smaller relative effect. Note that we

lways use the polling period in the denominator during the er-

or calculation in Eq. (8) thus a more frequent polling generates

ore reference values but with a slightly larger error. One could

verage the values from a more frequent measurement in order to

et a more precise on a larger timescale but we found that the er-
r measuring available bandwidth in software defined networks,

016.12.004

http://dx.doi.org/10.1016/j.comcom.2016.12.004

8 P. Megyesi et al. / Computer Communications 0 0 0 (2016) 1–14

ARTICLE IN PRESS

JID: COMCOM [m5G; December 13, 2016;10:5]

Fig. 6. Measuring bandwidth on the link between S2 and S3 and the available bandwidth over the Mininet test network.

Table 3

Error rate of ABW measurements using real traffic replayed by D-ITG with no added delay.

Polling period in seconds

0 .5 1 2 5 10 20 30 40 60

Error Mean 7 . 2 · 10 −3 3 . 9 · 10 −3 1 . 8 · 10 −3 8 . 5 · 10 −4 5 . 5 · 10 −4 2 . 1 · 10 −4 1 . 3 · 10 −4 1 . 0 · 10 −4 6 . 5 · 10 −5

STD 9 . 4 · 10 −3 5 . 1 · 10 −3 2 . 3 · 10 −3 1 . 0 · 10 −3 7 . 4 · 10 −4 2 . 4 · 10 −4 1 . 6 · 10 −4 1 . 3 · 10 −4 6 . 9 · 10 −5

Fig. 7. The CCDF of the relative errors of the ABW measurements using the Flood-

light controller compared to reference values (range is limited to [0.05, 0.95] quan-

tiles).

t

s

t

t
ror is similar to using a larger polling period which generates less

overhead. If we consider the minute time scale, where typically the

current ABW tools operate [30] , the average error rate is less than

10 −5 which can be considered as very accurate.

Hereafter, we present the cases were we introduced artificial

delay between the SDN switches and the Floodlight controller to

investigate its effect over the error rate. Fig. 7 presents the CCDF

of the error for different delay values using frequent polling rates.

In Fig. 7 a we fixed the polling period to 1 sec and used different

delay values between the switches and the Floodlight controller.

In details, we added delay values following a normal distribution,

with mean values of 5 ms, 10 ms, 25 ms and 100 ms and standard

deviation of 5 ms, 5 ms, 10 ms and 25 ms, respectively.

In Fig. 7 b we show only one delay value (25 ms mean with

5 ms standard deviation) and used the following polling rates to

calculate the available bandwidth: 0.5 s, 1 s, 2 s, 5 s and 10 s.

The results confirm our previous calculation in that increasing the

polling period the measurement error decreases linearly. This phe-

nomenon can also be justified as the uncertainty on the time re-

mains the same while the measurement interval increases, thus

the relative effect of delay will be smaller. As a consequence, in-

creasing the polling period we can achieve more precise ABW val-

ues in case we do not need very frequent results. This leads to

the conclusion that the proper value for polling rate and maximum

network jitter acceptable is a function of the application that is in

need of the ABW estimation. Some applications (e.g. for streaming

server selection) may require infrequent but accurate estimations.

Others (e.g. for routing) may require frequent estimation, tolerating

a lower accuracy.

In Fig. 8 we plotted the result of every measurement with

real traffic. We used fifteen different mean-std delay setups for all

the five polling periods and emulated every scenario four differ-

ent times. The measured mean delays in all the 300 measurement

cases are depicted against the mean and the standard deviation

of the delay in Fig. 8 a and b, respectively. The results in Fig. 8 a

confirms our statement in Section 4.4 and shows that there is no

correlation between the mean error of the ABW measurement and

the mean of the delay introduced to the system. However, Fig. 8 b

is a clear indication that there is a linear dependence between the

standard deviation of the monitoring packet delay and the mean

error of the available bandwidth measurement which confirms the

calculations in Eq. (5) .

c

Please cite this article as: P. Megyesi et al., Challenges and solution fo

Computer Communications (2016), http://dx.doi.org/10.1016/j.comcom.2
Table 4 summarizes the mean and the standard deviation of

he measurement result in the most interesting cases. These re-

ults clearly show the trade-off constrains between the error rate,

he polling frequency, and the monitoring packet delay. Applica-

ions working with SDN networks and in need of ABW estimations

an be properly devised looking at these results.
r measuring available bandwidth in software defined networks,

016.12.004

http://dx.doi.org/10.1016/j.comcom.2016.12.004

P. Megyesi et al. / Computer Communications 0 0 0 (2016) 1–14 9

ARTICLE IN PRESS

JID: COMCOM [m5G; December 13, 2016;10:5]

Fig. 8. The average error measured during real traffic replay using different mean delay and standard deviation setups.

Table 4

Error rate of ABW measurements using real traffic replayed by D-ITG.

Polling period in seconds

0 .5 1 2 5 10

μ σ μ σ μ σ μ σ μ σ

Switches → NOS delay no 0 .72% 0 .94% 0 .39% 0 .51% 0 .19% 0 .23% 0 .09% 0 .11% 0 .05% 0 .06%

delay

μ = 5 ms 1 .29% 1 .62% 0 .6% 0 .75% 0 .3% 0 .37% 0 .13% 0 .16% 0 .06% 0 .07%

σ = 5 ms

μ = 10 ms 1 .34% 1 .67% 0 .73% 0 .93% 0 .36% 0 .45% 0 .19% 0 .28% 0 .07% 0 .09%

σ = 5 ms

μ = 25 ms 2 .5% 3 .11% 1 .12% 1 .43% 0 .62% 0 .78% 0 .24% 0 .29% 0 .14% 0 .16%

σ = 10 ms

μ = 100 ms 5 .6% 7 .04% 2 .28% 3 .59% 1 .47% 1 .85% 0 .54% 0 .66% 0 .3% 0 .37%

σ = 25 ms

6

a

(

u

c

c

t

A

a

W

t

S

p

m

m

i

e

m

T

b

v

t

t

(

r

l

r

t

v

t

O

e

s

A

r

o

r

t

t

w

e

s

a

i

a

o

t

7

m

i

O

t

a
.4. Measurements with industrial controller platforms

In order to test out application in a wider spectrum we

lso prepared the same ABW application over OpenDaylight

ODL) [17] and ONOS [18] , that are among the most commonly

sed SDN controllers in industrial environment. Since both of these

ontrollers provide an API access for querying the switch port

ounters we only had to modify the API URL in the request and

he JSON parser module for processing the replay. However, the

PIs of both ODL and ONOS work very differently than what we

ssumed for our ABW application and what we presented in Fig. 4 .

hen we initiate an API request for the port counters these con-

rollers do not send an OpenFlow PortsStatsRequest message to the

DN switch but rather sends back the latest measured value. The

ort counter values are collected by a separate statistics collector

odule which has to be installed via the controllers CLI. These

odules have a default polling period (3 sec in ODL and 5 sec

n ONOS), but there is the possibility to modify this rate. How-

ver, both ODL and ONOS do not provide a timestamp value for the

easured port counter values when we query them via the APIs.

his phenomenon made our application to estimate the available

andwidth very poorly since our measurement (with the reference

alue generation) was out of phase from the collection of the con-

rollers. Fig. 9 a present the CDF of the measured error rate with

he two controller in two setups, i) using the default polling rates

3 sec in ODL and 5 sec in ONOS), and ii) using 1 sec polling

ate in both our application and end the controllers’ statistics col-

ector module. We also conducted measurement when the polling

ate in our application was not the multiple of the polling rate in

he controller, but those result were completely missing the real

t

Please cite this article as: P. Megyesi et al., Challenges and solution fo

Computer Communications (2016), http://dx.doi.org/10.1016/j.comcom.2
alues on the network. Based on these result we suggest to ex-

end the API and the statistics collector module of both ODL and

NOS with a timestamping mechanism in order to have a refer-

nce when the given values were measured. We expect that using

uch timestamping would significantly decrease the error for an

BW application over both ODL and ONOS.

Another interesting result of these measurements is that the

est API of OpenDaylight has a very slow response time, in fact

n average we measured almost two orders of magnitude larger

esponse times than in case of Floodlight and ONOS. We reported

he CDF of the API response times for the three considered con-

rollers in Fig. 9 b. Since ODL is a very complex software platform

e couldn’t find the reason for this problem but several forum

ntries suggested that other technicians also experienced similar

lowness. The average response time of ONOS and Floodlight is

round 5 ms and 7 ms, respectively. The slightly slower response

n Floodlight compared to ONOS is expected since Floodlight sends

n OpenFlow PortsStatsRequest message after every API request and

nly sends back the response after getting the counter values from

he SDN switch.

. Novel features for OpenFlow

While the access to switches counters highly simplifies most

onitoring tasks, we have theoretically (Section 4.4) and exper-

mentally (Section 6.3) verified that the lack of a timestamp in

penFlow (OF) messages introduces a source of uncertainty and

hus a measurement error for the estimation of the traffic rate and

vailable bandwidth. The introduction of a switch-based times-

amp would further reduce or completely remove the source of
r measuring available bandwidth in software defined networks,

016.12.004

http://dx.doi.org/10.1016/j.comcom.2016.12.004

10 P. Megyesi et al. / Computer Communications 0 0 0 (2016) 1–14

ARTICLE IN PRESS

JID: COMCOM [m5G; December 13, 2016;10:5]

Fig. 9. The CDF of ABW measurement error and API response time generated by

our application over OpenDaylight, ONOS and Floodlight.

7

s

s

S

w

F

c

i

t

t

e

S

u

v

w

d

t

s

7

F

d

a

w

s

i

p

t

s

t

b

t

s

a

j

c

d

t

m

t

l

t

o

l

fl

q

t

fi

b

t

t

t

fi

a

s

p

v

t
uncertainty in the estimation of ABW, therefore we advocate for

an extension to the OpenFlow standard, adding timestamping of

OF messages, and propose requirements and different implemen-

tation possibilities for it in the following.

The timestamp should be generated as close as possible in

time to the counter readings. Moreover the sequence (timestamp-

ing, reading) should be atomic with regards to packet processing,

i.e. no intervening packet should be accounted for until all the

counters are read, in order to provide a consistent snapshot in time

of flow statistics. If those two conditions are met, and in addition

the clock resolution for timestamping does not introduce further

uncertainty (e.g. 1 μs resolution will allow for 125 bytes counter

resolution on 1 Gbps links), and between the timestamp and the

reading of all counters no packets are completely received, the er-

ror on ABW estimation will be zero.

For the implementation of the timestamp extension, a specific

request and reply format has to be defined, and the reply has to

carry a representation of a time instant. The timestamp could be

represented as a 64 bit structure such as POSIX timespec speci-

fication , 5 representing UNIX epoch time (seconds from January 1st

1970) reserving 32 bits for seconds (truncated to integer) and 32

bits for remaining nanoseconds (approximated to the nearest inte-

ger, with resolution dependent on the implementation). This for-

mat is the same adopted for the standard Network Time Protocol

(NTP) timestamps [44] . For the message formats we propose dif-

ferent implementations, described hereafter.
5 http://pubs.opengroup.org/onlinepubs/007908799/xsh/time.h.html

Please cite this article as: P. Megyesi et al., Challenges and solution fo

Computer Communications (2016), http://dx.doi.org/10.1016/j.comcom.2
.1. Experimenter-based implementation.

Possible implementations of timestamp extension on flow

tatistics can leverage the “experimenter” messages (“vendor” mes-

ages in OFv1.0) to define same format and function of a Flow-

tats reply with a timestamp field added. This implementation

ould provide possibly the benefit of reusing all the code of

lowStats message generation (in the switch) and parsing (in the

ontroller), and not modifying the OF standard, being compat-

ble with OF versions since 1 on. The protocol overhead for

he reply message would be, besides the aforementioned 64 bit

imestamp, an experimenter_header adding two 32 bit fields

xperimenter and exp_type as defined by the “OpenFlow

witch Specification Version 1.5.1 Section7.5.5” and valid for OFv1.1

p to OFv1.5.1 (in OFv1.0 only 32 bits are required for a single

endor_id field). For the request message the protocol overhead

ould be just the 64 bits of the experimenter_header in ad-

ition to the standard OF header (see Fig. 10 for the format of

he proposed implementation for the generic Experimenter mes-

age with the addition of a Timestamp).

.2. Protocol-wide modification.

The implementation proposed in the previous section for the

lowStats messages can be applied also to other messages, by

efining an experimenter message type for each of the timestamp-

ugmented version of the standard OF message. Wrapper code,

ith reuse of the related non-timestamped OF message for con-

truction (in the switch) and parsing (in the controller), would be

mplied for each of the considered messages. Moreover, an high-

recision timestamp on all switch messages can be useful for mul-

iple uses, such as performance evaluation, troubleshooting, and

ecurity. These considerations suggest to include the timestamp in

he OF header, common to all OF messages. On the other hand,

oth the implementation and computational cost of the times-

amping operations, and the additional space required in the mes-

ages generated by the switch, suggest to have the timestamp as

n optional field. Moreover, a variation in the OF header is a ma-

or change in the protocol, thus compatibility issues have to be

arefully accounted for. We propose an implementation that intro-

uces the optional request for timestamped reply in the OF pro-

ocol, while retaining backward compatibility for the header for-

at, by means of a change in the definition of the OF header field

ype , that is common to all OF messages. In OFv1.5.1 type is al-

ocated 1 byte in the header, and values from 0 to 35 are assigned

o OF messages . 6 We propose to reserve the most significant bit

f type to manage the timestamping option, as a Timestamp Flag ,

eaving 128 possible values for OF message types. Setting to 1 the

ag will signify “Timestamp Required” for messages carrying re-

uests, and “Timestamp Provided” for replies; when such flag is set

o 0 the format, meaning, and associated functions of already de-

ned OF messages remain the same as per OFv1.5.1, retaining full

ackward compatibility.

In request messages with Timestamp Flag set there is no pro-

ocol overhead; in reply messages with Timestamp Flag set, addi-

ional 64 bits will be appended to the OF header, changing the

otal length of the header, and containing the timestamp as de-

ned previously (Fig. 11). Parsing a “Timestamp Required” request

 switch will mask the Timestamp Flag as 0 and process the mes-

age as a standard OF message, generate the timestamp, and ap-

end it to the reply header, that will have the “Timestamp Pro-

ided” flag set. This will avoid message-specific wrapper defini-

ions, and for standard (non-timestamped) OF messages will imply
6 OpenFlow Switch Specification Version 1.5.1 Section 7.1.1

r measuring available bandwidth in software defined networks,

016.12.004

http://pubs.opengroup.org/onlinepubs/007908799/xsh/time.h.html
http://dx.doi.org/10.1016/j.comcom.2016.12.004

P. Megyesi et al. / Computer Communications 0 0 0 (2016) 1–14 11

ARTICLE IN PRESS

JID: COMCOM [m5G; December 13, 2016;10:5]

Fig. 10. Format of OpenFlow Experimenter message with Timestamp. ∗ type header field is set to value OFPT_EXPERIMENTER .

Fig. 11. Format of OpenFlow reply packet with Timestamp Flag set. Changes against

OFv1.5.1 are highlighted in bold.

j

g

b

d

t

m

O

o

7

s

f

d

i

t

m

p

b

s

q

p

t

1

t

p

a

c

v

i

p

o

t

b

s

l

s

e

r

t

w

a

o

u

p

q

i

w

w

p

t

d

tion)
ust a bit check in addition to the current processing flow. Analo-

ous mechanism is adopted to parse a “Timestamp Provided” reply

y a controller: the Timestamp Flag is checked, and if set the ad-

itional timestamp field is extracted from the header and stored,

hen the Timestamp Flag is masked to 0 and the body part of the

essage is processed according to the standard (non-timestamped)

F message type. Also in this case, for standard OF messages the

nly additional processing is a single bit check.

.3. Discussion

An extension similar to the one we described has been pre-

ented in [45] in a more general framework, with the aim of en-

orcing synchronization of OF configuration updates. Besides the

ifferent goal, the structure proposed in [45] differs from ours as

t includes a Type-Length-Value (TLV) generic experimenter header,

hat would precede at least one time TLV, which in turn adds

ore fields to time values alone (namely: type, length, flags, and

adding). Moreover the time representation chosen in [45] uses 64

its for seconds, while we adopted 32 bits. As the Time-TLV exten-

ion format is intended both for requests and reply, even if the re-

uest does not carry a time stamp (that would be useless for our
Please cite this article as: P. Megyesi et al., Challenges and solution fo

Computer Communications (2016), http://dx.doi.org/10.1016/j.comcom.2
urposes anyway), an overhead is present for both messages: for

he request message the difference is of 256 bits and for the reply

92bits leading to a total of 448 bits (300% additional overhead on

he original message) with respect to our experimenter-based pro-

osal, and 704 bits in addition to our bit-based extension (1,100%

dditional overhead), while offering no additional features for what

oncerns our aims.

The Scheduled Bundle OF extension, adopted in the OF standard

ersion 1.5, can be used to enforce the atomic execution at a spec-

fied time of a group of commands. In our case we could in princi-

le exploit it to let the Controller enforce the precise polling time

n the switch. By enforcing the reading of counters at a given time,

he errors due to timing as analyzed in Section 4.2 and 4.4 would

e significantly reduced (at least in principle, still depending on

ynchronization accuracy and on precision in meeting the dead-

ine). However, due to the original intended usage for the exten-

ion, there is significant overhead compared with our proposed

xtension, both in term of messages (minimum 3 to require the

eading), time (at least one additional RTT) and of data (1,100%

he overhead over the standard OF message that is timestamped,

ith respect to our proposed implementation). Being this reiter-

ted for every poll request, for every switch, we think that such

verhead should be taken into account, and the implementation

sing Scheduled Bundles should be considered unfit for our pur-

oses. Other minor aspects add to this, e.g. synchronization is re-

uired among all involved switches and the Controller. In our case

f such constraint is relaxed, our proposed Timestamp extension

ould be affected by the error considered in Section 4.2 , but still

ould allow to remove the error discussed in Section 4.4 .

Given the different layers of SDN, ABW estimation can be im-

lemented as an SDN application or as SDN metric, according to

he support from the controller and the switch, using in order of

ecreasing accuracy:

1. protocol-wide timestamping (OF protocol modification: change

in standard definition, switch, and controller)

2. experimenter-based timestamping (Experimenter messages def-

inition: change in switch and controller)

3. controller-based timestamping (controller extension: change in

controller only)

4. application-based timestamping (implemented as SDN applica-
r measuring available bandwidth in software defined networks,

016.12.004

http://dx.doi.org/10.1016/j.comcom.2016.12.004

12 P. Megyesi et al. / Computer Communications 0 0 0 (2016) 1–14

ARTICLE IN PRESS

JID: COMCOM [m5G; December 13, 2016;10:5]

t

p

R

If the controller supports the implementations from 1 to 3, the

best method can be adopted on a per-switch basis thanks to the

negotiation phase, when the switch can advertise supported capa-

bilities.

8. Conclusion

In this paper we tackled the problem of Available Bandwidth

estimation and monitoring in Software Defined Networks. We pre-

sented the state-of-the-art techniques for this emerging architec-

ture, emphasizing how they utilize the new features available and

what are their limitations. We also analyzed the source of errors

introduced by SDN and openflow, analytically deriving the mea-

surement error due to lack of local timestamping mechanism in

OpenFlow. The analytical results have also been validated on a

testbed implemented in Mininet using different kinds of traffic,

also comprising real traffic traces collected on a real network. Our

results show that our approach provides accurate results if com-

pared with the ground truth. These results also constitute a refer-

ence for ABW applications willing to operate in SDN environments,

which require a proper trade-off between accuracy, polling rate,

and jitter.

We also implemented our ABW application over the two

most commonly used industrial SDN controllers: OpenDaylight and

ONOS. We showed that these controllers do not provide the nec-

essary features in order to accurately measure the available band-

width. Due to the different mechanism in ODL and ONOS the re-

ported measurement errors were more than one order of mag-

nitude worse compared to our proof of concept implementation

over Floodlight. Given these results we suggested to extend the API

and the statistics collector modules of both ODL and ONOS with a

timestamp providing mechanism.

We finally proposed an extension to the OpenFlow protocol

providing local timestamping mechanism in order to avoid mea-

surement errors due to network jitter. In particular, we proposed

two implementations of such feature. One implementation lever-

ages the “experimenter” message type, provided by the OF stan-

dard purposely for extending the base OF capabilities. Due to the

general potential of the proposed extension, and the inefficient im-

plementation through “experimenter” messages, we also propose

an amendment to the OF standard by re-purposing one bit of the

current protocol as a flag to signal the request or presence of

a timestamp. By reducing the maximum number of different OF

message types from 256 to 128 (up to 35 are used in OFv1.5.1) we

can efficiently extend the capability of the OF protocol in a fully

backward-compatible way and no additional protocol overhead.

In our ongoing work we are investigating the possible impact

of the specific implementation of the NOS and the proposed im-

plementations of timestamp capability on the accuracy and time-

liness of other measurement activities, as well as applications of

our technique to hybrid scenarios mixing SDN and traditional net-

works. We are also considering expanding the possible implemen-

tations of ABW estimation based on meter statistics (leveraging

duration fields in meter stats introduced in OFv1.3), and the use

of approaches based on In-Network-Telemetry [46] .

Acknowledgments

This work is partially funded by the Ministry of Research of

Italy (MIUR) under the Art. 11 DM 593/20 0 0 for NM2 srl (Italy)

and, for the University of Napoli, by the SOMETIME project, part of

the MONROE EU Project funded by the European Union’s Horizon

2020 research and innovation programme under grant agreement

No. 64439.

P. Megyesi and S. Molnár are working in the High Speed Net-

works Laboratory which is supported by Ericsson.
Please cite this article as: P. Megyesi et al., Challenges and solution fo

Computer Communications (2016), http://dx.doi.org/10.1016/j.comcom.2
The authors also want to thank the anonymous reviewers for

heir insightful and helpful comments on an earlier version of this

aper.

eferences

[1] N. McKeown , T. Anderson , H. Balakrishnan , G. Parulkar , L. Peterson , J. Rexford ,

S. Shenker , J. Turner , Openflow: enabling innovation in campus networks, SIG-
COMM Comput. Communn. Rev. 38 (2) (2008) 69–74 .

[2] C. Yu , C. Lumezanu , Y. Zhang , V. Singh , G. Jiang , H. Madhyastha , Flowsense:
Monitoring Network Utilization with Zero Measurement Cost, in: Passive and

Active Measurement, in: Lecture Notes in Computer Science, 7799, 2013,

pp. 31–41 .
[3] M. Jarschel , T. Zinner , T. Hohn , P. Tran-Gia , On the accuracy of leveraging sdn

for passive network measurements, in: Australasian Telecommunication Net-
works and Applications Conference 2013 (ATNAC ’13), 2013, pp. 41–46 .

[4] S. Chowdhury , M. Bari , R. Ahmed , R. Boutaba , Payless: a low cost network
monitoring framework for software defined networks, in: Network Operations

and Management Symposium (NOMS), 2014, pp. 1–9 .

[5] N. van Adrichem , C. Doerr , F. Kuipers , Opennetmon: Network monitoring in
openflow software-defined networks, in: Network Operations and Manage-

ment Symposium (NOMS), 2014 IEEE, 2014, pp. 1–8 .
[6] D. Raumer , L. Schwaighofer , G. Carle , Monsamp: a distributed sdn application

for qos monitoring, in: Federated Conference on Computer Science and Infor-
mation Systems (FedCSIS), 2014 .

[7] K. Phemius , M. Bouet , monitoring latency with openflow, in: 9th International

Conference on Network and Service Management (CNSM), 2013, pp. 122–125 .
[8] K. Agarwal , E. Rozner , C. Dixon , J. Carter , Sdn traceroute: Tracing sdn forward-

ing without changing network behavior, in: Proceedings of the Third Work-
shop on Hot Topics in Software Defined Networking, 2014, pp. 145–150 .

[9] N. Feamster , J. Rexford , E. Zegura , The road to sdn: an intellectual history
of programmable networks, SIGCOMM Comput. Commun. Rev. 44 (2) (2014)

87–98 .
[10] D. Kreutz , F. Ramos , P. Esteves Verissimo , C. Esteve Rothenberg , S. Azodol-

molky , S. Uhlig , Software-defined networking: a comprehensive survey, Proc.

IEEE 103 (1) (2015) 14–76 .
[11] B. Pfaff, B. Davie , The Open vSwitch Database Management Protocol, RFC, 7047,

Internet Engineering Task Force, 2013 .
[12] H. Song , Protocol-oblivious forwarding: Unleash the power of sdn through a

future-proof forwarding plane, in: Proc. of the Second ACM SIGCOMM Work-
shop on Hot Topics in Software Defined Networking, in: HotSDN ’13, 2013,

pp. 127–132 .

[13] M. Sune , V. Alvarez , T. Jungel , U. Toseef , K. Pentikousis , An openflow imple-
mentation for network processors, in: Third European Workshop on Software

Defined Networks (EWSDN), 2014, pp. 123–124 .
[14] NOX and POX SDN Controllers, [Online]. Available: http://www.noxrepo.org/ .

[15] Floodlight, Available: http://www.projectfloodlight.org/ .
[16] RYU Network Operating System, [Online]. Available: http://osrg.github.com/

ryu/ .

[17] The OpenDayLight Project, Available: http://www.opendaylight.org .
[18] The Open Network Operating System (ONOS), [Online]. Available: http://

onosproject.org/ .
[19] T. Mizrahi , Y. Moses , Using reverseptp to distribute time in software defined

networks, in: Precision Clock Synchronization for Measurement, Control, and
Communication (ISPCS), 2014 IEEE International Symposium on, IEEE, 2014,

pp. 112–117 .

[20] R. Surez, D. Rincn, S. Sallent, Extending openflow for sdn-enabled synchronous
ethernet networks, in: Network Softwarization (NetSoft), 2015 1st IEEE Confer-

ence on, 2015, pp. 1–6, doi: 10.1109/NETSOFT.2015.7116183 .
[21] Z. Bozakov, A. Rizk, D. Bhat, M. Zink, Measurement-based flow characterization

in centrally controlled networks (2016).
[22] R. Prasad , C. Dovrolis , M. Murray , K. Claffy , Bandwidth estimation: metrics,

measurement techniques, and tools, Netw., IEEE 17 (6) (2003) 27–35 .

[23] A. Morton , Active and Passive Metrics and Methods (with Hybrid Types In-Be-
tween), RFC, 7799, Internet Engineering Task Force, 2016 .

[24] J. Strauss , D. Katabi , F. Kaashoek , A measurement study of available bandwidth
estimation tools, in: Proceedings of ACM SIGCOMM Conference on Internet

Measurements, 2003, pp. 39–44 .
[25] C.D. Guerrero , M.A. Labrador , Traceband: a fast, low overhead and accurate

tool for available bandwidth estimation and monitoring, Comput. Netw. 54 (6)

(2010) 977–990 .
[26] M. Jain , C. Dovrolis , End-to-end available bandwidth: measurement methodol-

ogy, dynamics, and relation with tcp throughput, IEEE/ACM Trans. Netw. 11 (4)
(2003) 537–549 .

[27] V. Ribeiro , R. Riedi , R. Baraniuk , J. Navratil , L. Cottrell , Pathchirp: Efficient avail-
able bandwidth estimation for network paths, in: Proc. Passive and active mea-

surements workshop, 2003 .
[28] M. Zangrilli, B. Lowekamp, Using passive traces of application traffic in a net-

work monitoring system, in: High performance Distributed Computing, 2004.

Proceedings. 13th IEEE International Symposium on, 2004, pp. 77–86, doi: 10.
1109/HPDC.2004.1323495 .

[29] A . Botta , A . Davy , B. Meskill , G. Aceto , Active Techniques for Available Band-
width Estimation: Comparison and Application, in: Data Traffic Monitoring and

Analysis, in: Lecture Notes in Computer Science, 7754, 2013, pp. 28–43 .
r measuring available bandwidth in software defined networks,

016.12.004

http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0001
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0001
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0001
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0001
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0001
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0001
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0001
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0001
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0001
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0002
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0002
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0002
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0002
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0002
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0002
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0002
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0003
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0003
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0003
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0003
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0003
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0004
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0004
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0004
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0004
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0004
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0005
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0005
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0005
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0005
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0006
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0006
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0006
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0006
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0007
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0007
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0007
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0008
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0008
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0008
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0008
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0008
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0009
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0009
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0009
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0009
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0010
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0010
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0010
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0010
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0010
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0010
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0010
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0011
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0011
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0011
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0012
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0012
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0013
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0013
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0013
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0013
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0013
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0013
http://www.noxrepo.org/
http://www.projectfloodlight.org/
http://osrg.github.com/ryu/
http://www.opendaylight.org
http://http://onosproject.org/
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0014
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0014
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0014
http://dx.doi.org/10.1109/NETSOFT.2015.7116183
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0016
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0016
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0016
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0016
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0016
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0017
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0017
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0018
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0018
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0018
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0018
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0019
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0019
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0019
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0020
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0020
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0020
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0021
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0021
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0021
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0021
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0021
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0021
http://dx.doi.org/10.1109/HPDC.2004.1323495
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0023
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0023
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0023
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0023
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0023
http://dx.doi.org/10.1016/j.comcom.2016.12.004

P. Megyesi et al. / Computer Communications 0 0 0 (2016) 1–14 13

ARTICLE IN PRESS

JID: COMCOM [m5G; December 13, 2016;10:5]

[

[

[

[

[

[

[

[

[

[

[

[

30] G. Aceto, A. Botta, A. Pescapè, M. D’Arienzo, Unified architecture for network
measurement: the case of available bandwidth, J. Netw. Comput. Appl. 35 (5)

(2012) 1402–1414, doi: 10.1016/j.jnca.2011.10.010 .
[31] B. Sonkoly , et al. , Sdn based testbeds for evaluating and promoting multipath

tcp, in: Proc. IEEE International Conference on Communications (ICC 2014),
2014, pp. 3044–3050 .

32] M. Hegde, M.K. Narana, A. Kumar, Netmon: an snmp based network perfor-
mance monitoring tool for packet data networks, IETE J. Res. 46 (1–2) (20 0 0)

15–25, doi: 10.1080/03772063.20 0 0.11416131 .

[33] A. Al-Jawad, R. Trestian, P. Shah, O. Gemikonakli, Baprobsdn: a probabilistic-
based qos routing mechanism for software defined networks (2015).

34] A.R. Curtis , J.C. Mogul , J. Tourrilhes , P. Yalagandula , P. Sharma , S. Banerjee , De-
voflow: Scaling flow management for high-performance networks, in: ACM

SIGCOMM Computer Communication Review, 41, ACM, 2011, pp. 254–265 .
[35] I. Bueno , J.I. Aznar , E. Escalona , J. Ferrer , J. Antoni Garcia-Espin , An opennaas

based sdn framework for dynamic qos control, in: Future Networks and Ser-

vices (SDN4FNS), 2013 IEEE SDN for, IEEE, 2013, pp. 1–7 .
36] I.F. Akyildiz, A. Lee, P. Wang, M. Luo, W. Chou, A roadmap for traffic en-

gineering in sdn-openflow networks, Comput. Netw. 71 (2014) 1–30. http:
//dx.doi.org/10.1016/j.comnet.2014.06.002 .

[37] C. Cetinkaya , Y. Ozveren , M. Sayit , An sdn-assisted system design for improv-
ing performance of svc-dash, in: Computer Science and Information Systems

(FedCSIS), 2015 Federated Conference on, IEEE, 2015, pp. 819–826 .

38] B. Lantz , et al. , A network in a laptop: Rapid prototyping for software-defined
networks, in: Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics

in Networks, 2010, pp. 19:1–19:6 .
Please cite this article as: P. Megyesi et al., Challenges and solution fo

Computer Communications (2016), http://dx.doi.org/10.1016/j.comcom.2
39] N. Handigol , B. Heller , V. Jeyakumar , B. Lantz , N. McKeown , Reproducible net-
work experiments using container-based emulation, in: Proceedings of the 8th

International Conference on Emerging Networking Experiments and Technolo-
gies (CoNEXT ’12), 2012, pp. 253–264 .

40] P. Megyesi , A. Botta , G. Aceto , A. Pescapè, S. Molnár , Available Bandwidth mea-
surement in Software Defined Networks, in: Proceedings of the ACM/SIGAPP

Symposium on Applied Computing, ACM, Pisa, Italy, 2016 .
[41] A . Botta , A . Dainotti , A . Pescapé, A tool for the generation of realistic network

workload for emerging networking scenarios, Comput. Netw. 56 (15) (2012)

3531–3547 .
42] D. Emma, A. Pescape, G. Ventre, Analysis and experimentation of an open dis-

tributed platform for synthetic traffic generation, in: Proceedings of the 10th
IEEE International Workshop on Future Trends of Distributed Computing Sys-

tems (FTDCS), 2004, doi: 10.1109/ftdcs.2004.1316627 .
43] A . Botta , A . Dainotti , A . Pescapé, Do you trust your software-based traffic gen-

erator? IEEE Commun. Mag. 48 (9) (2010) 158–165 .

44] D. Mills , U. Delaware , J. Martin , J. Burbank , W. Kash , Network Time Protocol
Version 4: Protocol and Algorithms Specification., RFC, 5905, Internet Engineer-

ing Task Force, 2010 .
45] T. Mizrahi , Y. Moses , Time-based Updates in OpenFlow: A Proposed Extension

to the OpenFlow Protocol, Technical Report, 835, Technion–Israel Institute of
Technology, CCIT, 2013 .

46] C. Kim , A. Sivaraman , N. Katta , A. Bas , A. Dixit , L.J. Wobker , In-band network

telemetry via programmable dataplanes, ACM SIGCOMM Symposium on SDN
Research (SOSR), 2015 .
r measuring available bandwidth in software defined networks,

016.12.004

http://dx.doi.org/10.1016/j.jnca.2011.10.010
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0025
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0025
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0025
http://dx.doi.org/10.1080/03772063.2000.11416131
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0027
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0027
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0027
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0027
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0027
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0027
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0027
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0028
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0028
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0028
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0028
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0028
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0028
http://dx.doi.org/10.1016/j.comnet.2014.06.002
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0030
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0030
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0030
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0030
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0031
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0031
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0031
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0032
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0032
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0032
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0032
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0032
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0032
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0033
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0033
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0033
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0033
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0033
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0033
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0034
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0034
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0034
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0034
http://dx.doi.org/10.1109/ftdcs.2004.1316627
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0036
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0036
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0036
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0036
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0037
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0037
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0037
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0037
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0037
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0037
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0038
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0038
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0038
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0039
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0039
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0039
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0039
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0039
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0039
http://refhub.elsevier.com/S0140-3664(16)30648-X/sbref0039
http://dx.doi.org/10.1016/j.comcom.2016.12.004

14 P. Megyesi et al. / Computer Communications 0 0 0 (2016) 1–14

ARTICLE IN PRESS

JID: COMCOM [m5G; December 13, 2016;10:5]

gineering from the Budapest University of Technology and Economics (BME), Budapest,

s a PhD student at the High Speed Networks Laboratory at the Department of Telecom-
ch is focused on synthetic network traffic generation. His research interests also include

affic identification. Since 2013, Péter is also enrolled in the Doctoral School on Innovation

European Institute of Innovation and Technology. In 2014 Péter spend six months as a
ederico II. Since then his main research is focused on Software Defined Networking and

ng in the 5GEx H2020 EU project at BME.

tions engineering and the Ph.D. degree in computer engineering and systems from the

tly holds a post-doctoral position with the Department of Computer Engineering and
hored over 50 international journal (the IEEE COMMUNICATIONS MAGAZINE, the IEEE

S, and Elsevier Computer Networks) and conference [the IEEE Global Communications
unications (ICC), and the IEEE Symposium on Computers and Communications (ISCC)]

orking, and, in particular, network performance measurement and improvement, with

ta has served and serves as an independent reviewer of research and implementation
 a recipient of the Best Local Paper Award at the IEEE ISCC 2010. In the research area

nd workshops, served and serves several technical program committees of international
s a reviewer for different international conferences (the IEEE Conference on Computer

N MOBILE COMPUTING, the IEEE NETWORK MAGAZINE, and the IEEE TRANSACTIONS ON

ical Engineering and Information Technology of University of Napoli Federico II. Giuseppe

MS in telecommunications engineering from the University of Napoli Federico II, Naples,
etwork performance and security, with focus on censorship. Giuseppe is the recipient of

 Rotary International Prize for PhD Thesis on Ethics and ICT. He acted as a reviewer for
l Conference on Computer Communications, the IEEE International Conference on Com-

n Computers, Future Generation Computer Systems, Journal of Network and Computer

f Electrical Engineering and Information Technology of the University of Napoli Federico
ks, Computer Architectures, Programming, and Multimedia and he has also supervised

tudents. His research interests are in the networking field with focus on Internet Mon-
 Security. Antonio Pescapé has co-authored over 180 journal (IEEE ACM Transaction on

ications Magazine, JSAC, IEEE Wireless Communications Magazine, IEEE Networks, etc.)

AM, Globecom, ICC, etc.) publications and he is co-author of a patent. He has served and
E ICC (NGN symposium)) and on more than 190 technical program committees of IEEE

received several awards, comprising a Google Faculty Award, several best paper awards
ied Networking Research Prize). Antonio Pescapé has served and serves as independent

cts and project proposals co-funded by the EU Commission, Sweden government, sev-
ity and Research (MIUR) and Italian Ministry of Economic Development (MISE). Antonio

Electrical Engineering and Computer Science from the Budapest University of Technology
 and 2013, respectively. In 1995 he joined the Department of Telecommunications and

or and the principal investigator of the teletraffic research program of the High Speed
l European research projects COST 242, COST 257, COST 279 and recently in COST IC0703

tools and applications for the future networks”. He was the BME project leader of the
easurements and Models in Multi-Service networks (TRAMMS)”. He is a member of the

ems”. He is a participant in the review process of several top journals and serves on the

s journal. He is active as a guest editor of several international journals such as the ACM

 Applications (MONET). Dr. Molnár served on numerous technical program committees

m Chair. He was the General Chair of SIMUTOOLS 2008. He is a member of the IEEE
blications in international journals and conferences (see http://hsnlab.tmit.bme.hu/molnar

ffic analysis and performance evaluation of modern communication networks.
Péter Megyesi received his BSc and MSc in Electrical En

Hungary, in 2010 and 2012, respectively. Since 2012, he i
munications and Media Informatics, BME. His PhD resear

traffic measurements, traffic modeling and analysis and tr

& Entrepreneurship organized by the EIT Digital of the
visiting researcher at Traffic Group, University of Naples F

Network Function Virtualization. He is now also paricipati

Alessio Botta received the M.S. degree in telecommunica

University of Naples Federico II, Naples, Italy. He curren
Systems, University of Naples Federico II. He has co-aut

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEM
(Globecom), the IEEE International Conference on Comm

publications. His current research interests include netw

a focus on wireless and heterogeneous systems. Dr. Bot
project proposals for the Romanian government. He was

of networking, he has chaired international conferences a
conferences (IEEE Globecom and IEEE ICC), and acted a

Communications) and journals (the IEEE TRANSACTIONS O
VEHICULAR TECHNOLOGY).

Giuseppe Aceto is a Post Doc at the Department of Electr

received a PhD in telecommunications engineering and a
Italy. His work falls in measurement and monitoring of n

a best paper award at IEEE ISCC 2010, and of ETIC AICA &
different international conferences (the IEEE Internationa

munications, etc.) and journals (the IEEE Transactions o
Applications, Computer Networks, etc).

Antonio Pescapé is a Full Professor at the Department o
II (Italy) where he teaches courses in Computer Networ

and graduated more than 180 among BS, MS, and PhD s
itoring, Measurements and Management and on Network

Networking, Communications of the ACM, IEEE Commun

and conference (SIGCOMM, NSDI, Infocom, Conext, IMC, P
serves as workshops and conferences Chair (including IEE

and ACM conferences. For his research activities he has
and two IRTF (Internet Research Task Force) ANRP (Appl

reviewer/evaluator of research and implementation proje
eral Italian local governments, Italian Ministry for Univers

Pescapé is a Senior Member of the IEEE.

Sándor Molnár received his MSc, PhD and Habilitation in
and Economics (BME), Budapest, Hungary, in 1991, 1996

Media Informatics, BME. He is now an Associate Profess
Networks Laboratory. Dr. Molnr has participated in severa

on “Traffic Monitoring and Analysis: theory, techniques,
Gold Award winner 2009 CELTIC project titled “Traffic M

IFIP TC6 WG 6.3 on “Performance on Communication Syst

Editorial Board of the Springer Telecommunication System
Kluwer Journal on Special Topics in Mobile Networks and

of IEEE, ITC and IFIP conferences working also as Progra
Communications Society. Dr Molnár has more than 170 pu

for recent publications). His main interests include teletra
Please cite this article as: P. Megyesi et al., Challenges and solution for measuring available bandwidth in software defined networks,

Computer Communications (2016), http://dx.doi.org/10.1016/j.comcom.2016.12.004

http://hsnlab.tmit.bme.hu/molnar
http://dx.doi.org/10.1016/j.comcom.2016.12.004

	Challenges and solution for measuring available bandwidth in software defined networks
	1 Introduction
	2 Background and related work
	2.1 Monitoring in SDN
	2.2 Available bandwidth
	2.3 Available bandwidth measurement methods
	2.4 Main issues for traditional available bandwidth estimation techniques

	3 Measuring available bandwidth in SDN networks
	4 Limitations and constraints for available bandwidth estimation in SDN
	4.1 Measurement overhead
	4.2 Accuracy limitation for lack of synchronization
	4.3 Critical time-scale dependence of estimation
	4.4 Accuracy limitation for lack of timestamp

	5 Advantages and novel applications of available bandwidth estimation in SDN
	6 Experiments over mininet testbed
	6.1 Test configuration
	6.2 Validation of available bandwidth application
	6.3 Analysis of measurement error
	6.4 Measurements with industrial controller platforms

	7 Novel features for OpenFlow
	7.1 Experimenter-based implementation.
	7.2 Protocol-wide modification.
	7.3 Discussion

	8 Conclusion
	 Acknowledgments
	 References

