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Abstract

With the growing adoption of cloud infrastructures to deliver a variety of IT services, monitoring cloud network performance
has become crucial. However, cloud providers only disclose qualitative information about network performance, at most. This
hinders efficient cloud adoption, resulting in uncertainties about the behavior of hosted services, and sub-optimal deployment
choices. In this work, we focus on cloud-to-user latency, i.e. the latency of network paths interconnecting datacenters to worldwide-
spread cloud users accessing their services. Specifically, we performed a 14-day measurement campaign from 25 vantage points
deployed via the Planetlab infrastructure (emulating spatially-spread users) and considering services running in distinct locations
on the infrastructures of Amazon Web Services and Microsoft Azure. First, our experimentation allows us to provide an in-depth
performance characterization (based on multiple probing methods and fine-grained sampling rate) of such networks as perceived
by users spread worldwide, highlighting both spatial and temporal latency trends. Then, our analysis is exploited with design
purposes to support both cloud customers and providers with the assessment of cloud-network performance (via badness detection
& imputation tools) and the making of deployment decisions (via the evaluation of multi-cloud benefits). The dataset gathered from
the campaign is publicly released to foster reproducibility.

Keywords: public-cloud networks; Amazon Web Services; Microsoft Azure; network measurements; network performance.

1. Introduction

The last years have seen increasing adoption of public clouds
fueled by the remarkable economical and technical benefits
they provide.1 The heterogeneity of applications leveraging
such services has resulted in a wide variety of Quality-of-
Service (QoS) requirements, in turn surfacing the necessity of
fine-grained characterization of cloud performance. Accord-
ingly, a large body of literature has focused on performance
analysis (e.g. by analytical models [1]) of cloud computing
infrastructures, and on the capability of its computational re-
sources to respond to user requests guaranteeing low response
times or providing a certain level of availability.

In this context, both providers and customers showed a grow-
ing interest in measurement activities targeting cloud networks,
a major—and hard-to-analyze—factor in cloud service perfor-
mance. Although cloud networks are the workhorse to both op-
erate and capitalize cloud services [2, 3], cloud providers rarely
are able or willing to provide guarantees or disclose details
on network performance [4]. Therefore, non-cooperative ap-
proaches [5, 6] have emerged in last years. Being methodolog-

Email addresses: fabio.palumbo@unina.it (Fabio Palumbo),
giuseppe.aceto@unina.it (Giuseppe Aceto),
alessio.botta@unina.it (Alessio Botta),
domenico.ciuonzo@unina.it (Domenico Ciuonzo),
valerio.persico@unina.it (Valerio Persico), pescape@unina.it
(Antonio Pescapé)

1https://www.cisco.com/c/en/us/solutions/service-

provider/visual-networking-index-vni/index.html#~mobile-

forecast.

ically independent, these can integrate and expand the knowl-
edge base that a provider is able to gather from inside the data-
center, i.e. only leveraging a privileged view on a limited por-
tion of the whole system. Indeed, non-cooperative approaches
do not rely on any help from the provider to obtain visibility into
the cloud-network performance “building blocks”: (i) intra-
datacenter, (ii) inter-datacenter, and (iii) cloud-to-user net-
works. Among these three components, cloud-to-user (C2U)
network (i.e. the set of paths interconnecting users to the set of
pooled resources composing the cloud) is usually beyond di-
rect control of both cloud providers and customers. As a re-
sult, C2U network is harder to be monitored and accurately
predicted when compared to the intra- and the inter-datacenter
networks [5, 7]. The performance experienced by the users is
also heavily impacted by their location with respect to the cloud
resources. This prompted the providers to reduce the network
distance between users and cloud servers via geographically-
distributed datacenters.

We focus on C2U networks both for its impact on user-
perceived service performance and the scarcity of information
available. Of the different network metrics impacting cloud
performance—whose individual relevance varies with the spe-
cific cloud application—the latency perceived by users is a crit-
ical parameter for several applications that depend on low la-
tency, low latency variation, or both. These include real-time
video processing, cloud gaming [8] or ultra-reliable and low-
latency communications services in 5G [9]. The importance
of this parameter is highlighted by the introduction of edge-
cloud architectures, where additional infrastructure is dedicated

Preprint submitted to Computer Networks November 18, 2020
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to moving computing resources towards the end-users to reduce
the overall latency. This novel paradigm is expected to gain im-
portance, and can benefit from monitoring of C2U network per-
formance. Indeed, edge-cloud architecture can be used to inte-
grate cloud-based services rather than to replace them, and net-
work paths towards cloud datacenter are of critical importance
in this paradigm as well. Several works therefore investigate
the coexistence of both paradigms: since the computational re-
sources available in the edge cloud are limited, it is important to
evaluate when the latency requirements of a given task can be
satisfied by the core cloud alone, and therefore edge resources
can be saved. This further motivates the need to monitor latency
in the core cloud, even when edge cloud architectures will have
a higher deployment, which is not the case yet.

In this paper we investigate the performance of the cloud
services of two most popular public-cloud providers, namely
Amazon Web Services (AWS) and Microsoft Azure. These two
providers currently add up to ≈ 50% of the market share2 and
are often used together for multi-cloud deployments3 that al-
low for using more than one cloud service provider for a sin-
gle application and switching among them based on necessities,
e.g. to optimize performance [10]. We have conducted an ex-
tensive, 14-day long experimental campaign4, monitoring the
C2U latency for both providers at high frequency and with mul-
tiple active methods (i.e. relying on different functions of the
TCP/IP stack and counterparts at cloud side). Our approach is
non-cooperative, since it does not require a privileged point of
view or privileges inside the provider’s infrastructure. Comple-
mentarily, to investigate C2U network performance vs. the ge-
ographical position, we leveraged Planetlab [12] infrastructure
deploying 25 Vantage Points (VPs) to monitor the network la-
tency perceived by cloud users towards cloud services deployed
in 8 distinct datacenters (4 per provider) within different con-
tinents. The study developed from this experimental campaign
represents an unmatched investigation to date, to the best of our
knowledge. Specifically:

• The multiplicity of providers considered, the higher den-
sity of VPs, as well as the higher frequency and diversity
of measurements (cf. Tab. 1), all enable a finer charac-
terization than previous works. We also discuss how these
parameters impact the characterization of latency, and why
our choices can provide a more comprehensive and accu-
rate one.

• We provide an overall view of how latency varies (over
space and time) with the provider, as well as the lo-
cation of cloud services and users. Then, capitalizing
on grounded statistical evaluation methods, we (a) com-
pare systematically (at fine-grain) C2U performance of
the two providers; (b) identify anomalous latency degra-
dation (“badness”) events and assess their persistence and

2https://www.srgresearch.com/articles/leading-cloud-

providers-increase-their-market-share-again-third-quarter.
3https://www.kentik.com/blog/report-multi-cloud-cost-

containment-world/.
4A preliminary version of this paper appears as a conference publication

in [11].

dependence on a given provider; (c) evaluate the impact
of different probing methods on both the observed la-
tency values and the outcomes derived from these observa-
tions. Regarding (a), we leverage rigorous statistical test-
ing, as opposed to previous works [13] mostly relying on
simple statistics for comparison (e.g. minimum, median,
and percentiles). Conversely, for what concerns (b), we
build upon the methodology devised in [14] and tailor it
to our experimental setup. Finally, with reference to (c),
we are able to assess whether different probing methods
lead to different answers in practical scenarios (e.g. which
provider performs the best or how many badness events
are identified), as opposed to previous literature [13].

• We take advantage of the knowledge gained via such char-
acterization to design applications useful to both cloud
customers and providers, aimed at supporting cloud-
network performance assessment (badness detection &

imputation tools, also in a real-time online fashion as
opposed to offline or coarser granularity setups investi-
gated in previous works) and deployment decisions (eval-
uation of the benefits of multi-cloud). These tools, based
on non-cooperative measurement approaches, can help
providers troubleshoot and monitor their infrastructure,
complementing the information they can collect as own-
ers of the infrastructure, for example to locate faults in
a more precise manner compared to a purely-passive ap-
proach [14].

• We publicly release the collected dataset to promote re-
producibility and open research. Remarkably, the rich-
ness of the aforementioned campaign implies a dataset
able to support detailed investigations along different axes
(e.g. the impact of the sampling frequency, the latency
behaviour on different ports and/or according to different
probing methods) and, equally important, matched com-
parisons between providers.

The rest of the paper is organized as follows. Sec. 2 re-
views the literature on network performance of public-cloud
providers; Sec. 3 describes the methodology underlying our
experimental campaign and the statistical evaluation methods
adopted; Sec. 4 discusses its characterization and provides two
design-oriented applications; Sec. 5 ends with conclusions and
future directions.

2. Background and Related Work

With the increasing popularity of the cloud paradigm and
the resulting adoption of cloud infrastructures, its performance
evaluation has more and more attracted the interest of the sci-
entific community, which aims at quantifying the trade-offs be-
tween cloud benefits and its inherent limitations. While some
studies focused on understanding the implications of deploying
specific (classes of) applications onto the cloud [15] , a num-
ber of works investigated specific aspects of the complex cloud
ecosystem that are related to cloud networks [4] together with
their cost, their evolution, as well as the resulting performance

2

https://www.srgresearch.com/articles/leading-cloud-providers-increase-their-market-share-again-third-quarter
https://www.srgresearch.com/articles/leading-cloud-providers-increase-their-market-share-again-third-quarter
https://www.kentik.com/blog/report-multi-cloud-cost-containment-world/
https://www.kentik.com/blog/report-multi-cloud-cost-containment-world/


and impact on user applications, especially latency-sensitive
ones [16].

In fact, cloud providers generally do not disclose (nei-
ther publicly nor to customers) the proprietary performance-
monitoring information about the state of their infrastructures.
This drove the development of non-cooperative methodologies,
challenging the status quo to investigate cloud networks. These
methodologies often take advantage of active monitoring ap-
proaches and contrast with the more common cooperative ones,
that use privileged information and “insider views” only avail-
able to service providers (or traffic carriers).

Moreover, as cloud deployment is leveraged by applica-
tions with diversified goals and requirements, different portions
of the cloud network may impact the perceived performance.
These correspond to the network paths connecting cloud re-
sources to (i) resources in the same datacenter, (ii) resources
in different far-away datacenters, and (iii) cloud users (i.e. the
intra-datacenter, inter-datacenter, and cloud-to-user network,
respectively).

In the following, we provide an overall view about cloud-
network latency benchmarking and monitoring, supported by a
detailed taxonomy of the corresponding studies that we report
in Tab. 1, including this paper for comparison. We focus in
more depth on studies that adopt non-cooperative approaches
to evaluate the latency experienced by end-users when connect-
ing to public clouds.
Monitoring latency in intra-datacenter networks (intra-
DC). Intra-DC networks have become increasingly complex,
with even limited increases in network latency, loss or non-
optimal bandwidth allocation possibly causing a significant per-
formance degradation, in turn affecting both the user’s cost and
the service provider’s revenues [18]. Today these networks
present unique challenges due to their scale, traffic volume, and
diversity of faults, thus requiring huge effort to debug and trou-
bleshoot as well as tools to monitor metrics at proper gran-
ularity and accuracy. Accordingly, research effort has been
made allowing the provider to evaluate traffic patterns, packet
drops, load imbalance [21], and especially latency [20]. Non-
cooperative approaches have been also investigated, with the
intent of evaluating perceived network throughput [28, 5, 6],
available bandwidth [29], and latency. Concerning latency,
ptpmesh [19] has been purposely designed to continuously
measure the network latency (one-way delay) and packet loss
in datacenters. Leveraging the outcomes of this research, a
characterization of the provider intra-DC networks for different
providers has been also provided [17].

Measuring intra-DC performance faces non-trivial chal-
lenges. Indeed, computer and network virtualization, be-
sides responding to scale and efficiency concerns of the
providers [30], also introduce bias in the results provided by
monitoring tools [29]. In fact, the virtualization layers cause
non-negligible delays and introduce variability in the resulting
performance, which are even emphasized in the case of sub-ms
latency and when proper hardware configuration is not made
available by the providers [17]. Moreover, different kinds of
intra-DC paths may exist, leading to severe performance dis-
crepancies [5]. Unfortunately, network topology information

is usually kept confidential, despite of its great value [31]. Fi-
nally, the impact of the management strategies implemented by
the provider should be taken into account to understand perfor-
mance variability [28].
Monitoring latency in cloud WANs (inter-DC and C2U).
According to both research trends and latest reports [32], the
performance and the QoS of the cloud wide-area networks is
gaining growing interest, for what concerns both inter-DC and
C2U networks. Top players have made huge investments in spe-
cific technologies, cutting-edge solutions to improve availabil-
ity, manageability efficiency, and performance such as propri-
etary WANs deployments [7], advanced CDN solutions [33],
as well as sophisticated overlay services [34].

Several works focused on investigating the performance of
these cutting-edge cloud WANs in terms of throughput [33, 7,
22, 35], availability [36], latency [7, 22, 35, 16], etc. The out-
comes of these studies often resulted in non-trivial and unex-
pected findings, possibly related to the fact that inter-datacenter
connections do not always benefit from proprietary links [7].

Concerning C2U latency, only two works analyze C2U la-
tency via cooperative approaches [14, 27], to the best of our
knowledge. Jin et al. [14] take advantage of data directly
supplied by the provider (Azure) in the form of Transmission
Control Protocol (TCP) handshake Round Trip Times (RTTs).
Based on the information collected in such way, selected active
probing is performed to locate possible issues more precisely.
Conversely, Bermudez et al. [27] explore AWS traffic character-
istics (and also response time) through a passive analysis from
a privileged view at the Point of Presence (PoP).

As data at this refined granularity is not publicly available,
most of the works focusing on C2U latency either exploit
datasets and information not derived from cloud measurement
or collect data via active probing. For instance, some works ap-
ply measurement-oriented approaches to evaluate the deploy-
ment of hypothetical cloud services in different geographical
locations [37]. Others analyze a snapshot of currently available
datacenters and conclude that it is sufficient to provide users
around the globe with the necessary quality of experience in
terms of response times (20–200ms) for interactive, latency-
sensitive applications [16]. Differently, Choy et al. [8] evaluate
latency from 3 AWS datacenters towards thousand users (se-
lected among active BitTorrent clients), considering endpoints
located in the US. The corresponding outcomes highlight the
need to expand the edge infrastructure to satisfy the stringent re-
quirements of the cloud gaming scenario, thus emphasizing the
necessity of real cloud measurements to investigate the charac-
teristics of current infrastructures. Laghari et al. [25] evaluate
RTT values towards endpoints involving ten cloud and service
providers (e.g. Salesforce, Facebook, etc.) from two VPs (lo-
cated in China and Pakistan) but only consider the average re-
sponse time. Tomanek et al. [13] present a platform for collect-
ing latency measurements from distributed VPs, named CLAu-
dit (acronym for Cloud Latency Auditing platform), consider-
ing Azure as provider. RTT is measured at different TCP/IP-
stack layers by adopting different probing methods. The same
authors also present a detection method for suspicious events
using the multi-dimensional data collected [26]. CLAudit was
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Table 1: Works dealing with latency measurements in cloud networks, including this paper.

Net Paper Year Approach Metric Providers Cloud
multiplicity

User/VP
multiplicity

Multiple
probing
methods

Probing
period

Open
Dataset

in
tr

a-
D

C

[17] 2018 NC OWD Azure, AWS, GC
2–10 VMs per CR
per provider - N Var. Y

[18] 2017 NC* RTT Azure, AWS, GC 6 CRs, 4VMs per CR - N 1 min. N
[19] 2017 C; NC† OWD AWS, GC 4 CRs, 4VMs per CR - Y 1 sec. N
[20] 2015 C RTT Microsoft DC 5 CRs - N Var. N
[21] 2015 C RTT Microsoft DC 2 clusters - N - N

in
te

r-
D

C

[22] 2019 NC RTT AWS, Azure 6–8 CRs per provider - N 5 min. N
[7] 2017 NC RTT AWS, Azure 4 CRs per provider - Y 5 min. Y

C
2U

[14] 2019 C RTT Azure -
O(100M)
clients N Var. N

[23] 2018 NC RTT Azure, AWS 4 CRs 6 VPs Y 4 min. Y
[13] 2016 NC RTT Azure 2 CRs 5 VPs Y 3–4 min. Y
[24] 2016 NC RTT Azure, AWS 4 CRs 6 VPs Y 4 min. Y
[25] 2016 NC RTT 10 service provs. 10 hosts overall 2 VPs N - N
[26] 2015 NC RTT Azure 4 CRs 6 VPs Y 3 min. Y
[27] 2013 C‡ RT AWS - 1 VP N Var. N

[8] 2012 NC RTT AWS 3 CRs (US only)
≈2.5k
US users N 30 min. N

this 2020 NC RTT AWS, Azure 4 CRs 25 VPs Y 1 min. Y
Legend:
*: Requires access to Time Stamp Counter register, not always available; Net: intra-DC (intra-datacenter), inter-DC (inter-datacenter); C2U (cloud-to-user);
†: NC adoption results in higher variability due to virtualization layers; Approach: NC (non-cooperative), C (cooperative);
‡: Passive analyses, traffic captured at the PoP. Metric: RTT (round-trip time), OWD (one-way delay); RT (response time).

then expanded to additionally collect measurements towards
AWS; these data are then leveraged by Mulinka et al. [23] to de-
tect anomalies via unsupervised learning and by Uhlir et al. [24]
to evaluate a benchmarking methodology for cloud providers.
The latter methodology allows to compare cloud providers
through user-defined simple metrics (e.g. mean latency, stan-
dard deviation, coefficient of variation). The work, however,
does not provide an in-depth evaluation of the methodology,
but simply applies it to a restricted scenario. Equally important,
data from multiple source points are aggregated, not investigat-
ing per-VP (or per-region) results.

From the above analysis, it is evident that all the literature on
C2U latency via non-cooperative approaches is mostly based on
the data collected via CLAudit platform. However, each work
focuses on a peculiar slice of the whole dataset, either consider-
ing different providers, number of probe types, period between
each measurement, number of VPs and Cloud Regions (CRs).
Compared to the works analyzing C2U latency via active prob-
ing, our analysis considers (other than the same number of CRs
and both AWS/Azure providers) a higher number of VPs (i.e. 25
VPs as opposed to only 6 deployed by CLAudit 5 ), covering
a larger geographical area. Secondly, we add to the probing
methods considered in [23, 13, 24, 26] HyperText Transfer Pro-
tocol (HTTP) and TCP measurements over non-standard ports,
thus allowing to investigate the presence of different enforced
policies based on the transport-layer port used for communi-

5Counting the secondary and backup nodes deployed in the platform it
reaches a total of 15 VPs, still less than our campaign.

cation. Thirdly, we measure latency with a finer granularity
(1 min.) w.r.t. previous works.

3. Measurement, Evaluation, and Design
Methodology

This section describes the experimental procedure adopted to
measure C2U-network latency, along with preliminaries needed
for its performance assessment and the design of monitoring
tools. In detail, we first motivate and describe the consid-
ered public-cloud providers, CRs, and geographically-spread
VPs emulating cloud users (Sec. 3.1); secondly, we introduce
and discuss the probing methods employed (Sec. 3.2); finally,
for reproducibility we provide details of the implementation
(Sec. 3.3) and of the statistical evaluation methods employed
(Sec. 3.4).

3.1. Public Cloud Providers, Cloud Regions (CRs)
and Vantage Points (VPs)

Cloud market is currently dominated by few global
providers, with Amazon and Azure being the clear leaders 6

with millions of active customers in hundreds of countries.
Both providers are steadily expanding their global infrastruc-
ture, based on the continual billion investments in sophisticated
technologies. Hence, in this work we considered the IaaS of

6https://www.gartner.com/doc/reprints?id=1-1CMAPXNO&ct=

190709&st=sb.
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these two cloud providers, namely: EC2 for Amazon and Vir-
tual Machines for Azure. Also, to explore spatial diversity, we
have identified R = 4 regions in distinct geographic continents
(hereinafter CRs), where both providers have deployed their
datacenters: Ireland (Europe), Virginia (North America),
Sao Paulo (South America), and Singapore (Asia-Pacific).

To deploy the source nodes for our campaigns, we leveraged
the open platform Planetlab [12] for emulating cloud users
spread worldwide. Since its inception, this platform has sup-
ported the development of new network services (e.g. dis-
tributed storage, network mapping, peer-to-peer systems) and
has been used by thousands researchers from both academia
and industry. For our measurement campaign, we relied on
Vs = 25 Planetlab VPs acting as probing sources. VPs have
been placed in R = 4 regions as the CRs according to node
availability, with the following distribution: 8 in Asia-Pacific
(AP); 6 in Europe (EU); 10 in North-America (NA); 1 in South-
America (SA).

We highlight that we empirically chose the number of VPs
and CRs. While these choices are driven by both VP availabil-
ity and cost of the experimental campaign, we also point out
that our campaign has a finer time granularity and a larger geo-
graphical scope compared to the state of the art.

3.2. Probing Methods and Sampling Rate
In our experimental campaign, we adopted active probing

methods, i.e. that inject probing traffic into the network to esti-
mate the latency in terms of RTT. We remark that the measured
RTT includes processing time at the end-host, as well as queue-
ing, transmission, and propagation delays along the whole net-
work path. The latter term, depending on the geographical
VP–CR distance, imposes a lower-bound on the latency due to
physical constraints. Since cloud resources are addressed lever-
aging numeric IP addresses (rather than symbolic hostnames),
DNS resolution has no impact on the estimated RTT in this pa-
per. We instructed each VP to measure the latency perceived by
users with different probing methods by means of probing bulks
sequentially issued with 1 min sampling rate. This considered
rate is higher than that adopted in similar works [36, 13] and
thus allows a finer-grained analysis (or, alternatively, aggregate
analysis with higher statistical significance).

Furthermore, in line with recent related works [13, 24], in our
campaign we adopted multiple (namely, 4) active probing meth-
ods. Precisely, the adopted probing methods (a) take advantage
of communication mechanisms at different TCP/IP stack lev-
els and (b) possibly rely on different counterparts at cloud side
(i.e. servers).

The probing methods used in our work are (I) Internet
Control Message Protocol (ICMP), (II) TCP, (III) HTTP, and
(IV) HTTP-DB. Before discussing each of them in detail (high-
lighting advantages and implementation requirements), we re-
mark that our experimental methodology was designed to be
independent from the specific application running on the top of
the cloud infrastructure. Indeed, we mainly focused on the la-
tency measured by using lower-layer protocols such as TCP and
ICMP. The sole exception is represented by HTTP that, despite
being an application-layer protocol, is employed for RESTful

applications and HTTP Adaptive Video Streaming, other than
browsing. Therefore our methodology aims at giving a broader
view of cloud networks performance, not tied to a specific ap-
plication.

[I] ICMP probing: This method relies on the
echo request/reply messages. It operates at the net-
work layer and does not require specific instrumentation or
tools at server side (i.e. on the virtual machine running via the
IaaS paradigm).

Still, Hu et al. [36] suggested that ICMP probing should be
used carefully as it may be unsuitable for measurements in-
volving cloud environments since it can lead to either under-
or over-estimating service availability.

[II] TCP probing: Differently from ICMP probing, TCP
probing exploits SYN/SYN ACK messages which provide RTT
measurements as perceived by data-transfer protocols (instead
of being related to ICMP control messages). Notably, (interme-
diate) network devices may treat TCP (data) traffic differently
than ICMP (control) traffic. It however requires a TCP server
running on the cloud host.

[III] HTTP probing: This method uses HTTP GET/200 OK

messages. It evaluates the download time of a few-byte re-
source from the cloud. While the transmission delay is neg-
ligible also in this case (due to the small size of the transferred
contents), HTTP probing requires a TCP connection to be es-
tablished, resulting in at least 2×RTT. Also, a processing time
on the end-host is implied to serve each request. However, since
we request a fixed, small-sized resource from the web server,
this processing time is negligible.

[IV] HTTP-DB probing: This method similarly uses
HTTP GET/200 OK messages as HTTP probing. However, dif-
ferently from the latter, it relies on a web server that interacts
with a database running onto another cloud VM (i.e. an aux-
iliary server), thus emulating a three-tier application, with la-
tency impacted also by intra-DC contribution (between the web
server and the database). In this scenario users have direct inter-
action with the web-server alone, while the latter is responsible
of communicating with external databases, transparently to the
final users. Unlike the aforementioned HTTP probe, process-
ing time here has a non-negligible impact, due to the database
query. In view of this consideration, the latency in this case is
expected to be considerably higher than 2×RTT.

Further, to evaluate the potential impact of preferential traffic
policies by both cloud and network providers, TCP and HTTP
probing (methods [II] and [III], respectively) have been tested
on both well-known (80) and non-standard (54321) destination
ports, for a total of 6 probing configurations. No method imple-
ments application-level retransmission.

3.3. Reproducibility and Open Research

To summarize, in our campaigns we measured the latency
in C2U networks from Vs = 25 VPs at 1 min granularity for
14 days. Measurements were run towards cloud datacenters lo-
cated in R = 4 distinct continents and operated by two different
providers, for a total of 200 measured (VP, CR) pairs. Each
pair is monitored via 6 probing configurations for AWS, and
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Figure 1: Average latency [ms] (14-day span, TCP probing method, port 80). (a) and (b) report detailed results at (VP, CR) pair granularity for
AWS and Azure, respectively. (c) and (d) report results aggregated (average) by VP region for AWS and Azure, respectively. AVG reports the
CR-average. While in general VPs experience lower latency toward the CR in the same geographic zone, Virginia reports the lowest latency
from a VP-global perspective.

via 5 configurations for Azure, due to traffic-filtering policies
implemented by the provider at the time of collection. There-
fore, our dataset results in 1100 distinct time series, with ≈ 14k
samples each. Further, we highlight that the difference in length
among time series is due to different factors. Indeed, all the
probing methods considered are subject to different kinds of er-
rors (e.g., connection reset, port unreachable, timeout), possibly
originated by the VP, the cloud service, or the network infras-
tructure connecting them. We remark that errors in the probing
process (such as those listed above) result into missing values
(None) in the collected dataset. Moreover, retransmissions are
implemented only for HTTP and HTTP-DB probing (leverag-
ing HTTP all the features of the lower layers in the stack) and
not for TCP probing. Regarding the implementation aspects,
we employed HPing3 for ICMP and TCP probing methods ([I]
and [II], respectively). Differently, we resorted to HTTPing
for HTTP and HTTP-DB ([III] and [IV], respectively) prob-
ing methods. Also, we ran MySQL database on the auxiliary
server for HTTP-DB. Finally, to support open research via re-
producibility [38] of our study and fostering further advances
on public cloud services assessment, the dataset is publicly re-
leased at: http://traffic.comics.unina.it/cloud.

We remark that when performing active measurements lever-
aging distributed measurement infrastructures, (a) the num-
ber and the location of the VPs, (b) the probing mechanisms
adopted and (c) the probing rate are all critical aspects that can
potentially impact the collected data. In order to improve the
richness of the dataset, in the experimental plan supporting our
measurement campaign we have set these aspects so as to im-
prove the data collection available in similar past work.

Beyond the numerical improvement, in order to wisely de-
fine the configuration of our campaign, we have selected them
guided by both past research experience in the field and em-
pirical evidences (e.g. differential treatment observed for ICMP
and TCP packets [36] or the existence of proxies possibly im-
plementing management strategies such as TCP splitting based
on L4 port numbers) and opted for distributing the VPs across

different continents (avoiding placing nodes in the same cities),
according to the node availability granted by infrastructure.
Since the number of VPs and their geographical position reflect
the distribution of the final users that the VPs are intended to
emulate, we claim that a higher number of well-separated VPs
brings a more comprehensive and complete characterization.

Also, concerning the sampling rate, our goal was to be able to
catch sudden spikes and transient behaviors. Hence we consid-
ered 60-second between subsequent measurements. We report
that our results exhibited intermittent spikes for several (VP,
CR) couples, which do not appear to follow a specific pattern.
A lower sampling rate increases the chance of missing these
events (that are frequently observed and are possibly related
to the bursty nature of Internet and datacenter traffic [30, 19]),
therefore leading to an underestimation of latency variability
(we recall that low latency variability on short timescales is im-
portant for several applications, such as real-time video stream-
ing or cloud gaming [16]).

Considering the mentioned aspects, the proposed experimen-
tal campaign results in an unmatched measurement analysis
when compared to studies leveraging similar approaches. In
these terms, we claim that the above described dataset enables
a better characterization of latency over space and time. The
above fine-grained experimental campaign allowed us to obtain
and release publicly a dataset whose richness can foster com-
parisons to investigate the impact of the sampling frequency, the
behaviour on different ports and with different probing methods
and, last but not least, a matched provider comparison.

3.4. Statistical Evaluation Methods

In order to provide a statistically-sound analysis of the la-
tency gap between the two providers, we use the Wilcoxon
signed-rank test [39]. It is a non-parametric hypothesis test
used to compare whether the mean ranks of two populations
({xi}

N
i=1 and {yi}

N
i=1, respectively) differ. The statistic is calcu-

lated as follows: (a) let N̄ ≤ N be the number of pairs s.t.
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|yi − xi| , 0; (b) the non-zero pairs are given a rank Ri accord-
ing to the increasing order of |yi − xi| (i.e. the smallest |yi − xi|

gets Ri = 1); (c) pairs with the same |yi − xi| are given the aver-
age of the ranks they span. The statistic is evaluated as:

Wwil ,
N̄∑

i=1

[
sign(yi − xi) · Ri

]
(1)

Wwil is then compared to a suitable threshold (defined to en-
force the desired p-value). In Sec. 4.3, we use Wwil to com-
pare whether statistically-significant different latency values be-
tween Azure and AWS time series are observed on a given pair.
In affirmative case, the sign of Wwil is considered to discern
which provider experiences lower latency. The use of Wwil con-
fers robustness to such comparison (as opposed to Student’s t-
test), accommodating deviations of the measured latency from
Gaussianity and, also, to outliers (e.g. very-short events with
much-higher latency).

To assess a statistically-significant different latency-
variability of either provider we adopt Levene’s test [40]. It
is a hypothesis test used to assess the equality of variances
among K populations. Let Ni be the number of samples of ith
population and let N ,

∑K
i=1 Ni. Also, define the score of jth

sample within ith group Zi j, as the unsigned residual of the
mean, the median or the trimmed mean (this choice is arbi-
trary). Further, define the per-group and overall score means
as Z̄i , 1

Ni

∑Ni
j=1 Zi j and Z̄ , 1

N
∑K

i=1
∑Ni

j=1 Zi j, respectively. The
statistic is:

Wlev ,
(N − K)
K − 1

∑K
i=1 Ni (Z̄i − Z̄)2∑K

i=1
∑Ni

j=1(Zi j − Z̄i)2
(2)

Wlev is then compared to a threshold (defined as to enforce
the desired p-value). In Sec. 4.3, we use Wlev to assess a
statistically-significant lower latency-variability of either Azure
or AWS time series on a given pair. As for Wwil, the use of Wlev
confers robustness (as opposed to Bartlett’s test) in the consid-
ered latency-variability comparison.

Finally, in what follows, to evaluate badness events (i.e.
abrupt, but appreciably-persistent latency increments in a time
series), we split each (VP, CR) time series in “buckets”, taking
inspiration from [14]. More specifically, we denote the duration
of a bucket as Tbu, the number of corresponding samples as Nbu,
and the vector of latency values associated to the bucket as xbu.

Each bucket is marked as “bad” if the statistic

λ(xbu) > γbu, (3)

namely the summarizing function λ(·) exceeds the “badness
baseline”, representing the threshold between bad and normal
latency levels. Although many choices could be investigated,
we opt for the following: (i) we adopt the median as a robust
indicator of typical within-bucket latency values, while (ii) we
resort to the 75th percentile of the time series values for the
badness baseline, since it represents a reasonable data-driven
threshold for abnormal latency values. Still, we highlight that
the principles in this work may be applied whenever a differ-
ent summarizing function λ(·) or (adaptive) baseline γbu are

adopted, including the case of provider-specified (i.e. fixed)
values [14].

Finally, we remark that in this work the data-driven calcula-
tion of γbu is performed in two different fashions, representa-
tive of two different applicative scenarios. On the one hand, in
Sec. 4.4 (related to characterization), the badness threshold is
obtained in an offline fashion from all the samples within the
series. On the other hand, in Sec. 4.6 we calculate it in an on-
line fashion to emulate a realistic setup for the investigation of
the proposed badness dashboard. This online calculation in-
volves (a) initializing the badness baseline by the observations
of the first two days for each (VP, CR) pair to learn the normal
behaviour and then (b) updating γbu as more recent latency sam-
ples are observed while (c) discarding all the samples contained
in the buckets flagged as bad so far. Finally, as a good trade-
off between detecting bad events at fine granularity and a suf-
ficient number of samples to draw out statistically-meaningful
outcomes, we choose Tbu = 30 min (hence Nbu = 48) in our
experimental analysis.
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Figure 2: Variability in terms of D95−5 = 95th pctl − 5th pctl. Markers
highlight the average of each distribution.
On average, Virginia shows lower variability, while AWS in Singapore
reports a constantly-worse variability compared to the other CRs.

4. Experimental Results

In this section we provide a statistical characterization of
our experimental campaign. Specifically, Sec. 4.1 provides an
overall performance assessment, whereas Sec. 4.2 performs a
pointly AWS-Azure joint analysis. Section 4.3 compares the
performance observed for the two providers leveraging the pre-
viously introduced statistic methodology. Then, Sec. 4.4 ana-
lyzes badness events over space, time and between providers.
Sec. 4.5 delves into latency dependence on different probing
methods considered.

After that, we capitalize on the previous characterization for
design purposes. In detail, Sec. 4.6 derives a dashboard for
the online detection and imputation of badness events. Finally,
Sec. 4.7 investigates the benefits of multi-cloud deployments.

4.1. Overall view

We first provide a high-level view of the C2U latency consid-
ering each (VP, CR) pair separately. Differently from previous
works [13], where minimum and median values are used for
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an high-level characterization, we provide a more detailed and
comprehensive view of the results. Note that herein we aim
at proving a comprehensive view and do not filter out latency
samples related to badness events according to the methodol-
ogy introduced in Sec. 4.4. Figs. 1a and 1b report the average
latency (over the 14-day campaign) experienced from each VP
when targeting the four CRs for AWS and Azure, respectively,
and considering TCP probing (port 80) without loss of gener-
ality (the impact of the probing method is investigated in later
Sec. 4.5). Also, VPs located in the same geographical region
are grouped together. First, results show that latency values
(intuitively) grow with the distance between the VP and the
CR (lower values are observed for paths connecting VPs and
datacenters within the same geographic region). Interestingly,
this finding does not always hold in inter-DC networks [7] or
with other network metrics in analogous contexts (e.g., network
throughput [33]). From these results it is also evident that VPs
belonging to the same geographical region can exhibit differ-
ent behavior, thus showing the benefits of the finer spatial VP
displacement provided by our study.

Secondly, Figs. 1c and 1d report the previous results after
aggregating (by averaging) VP results by geographic zones
matched to the four CRs, with last row (“AVG”) representing
the CR-average. The figures (beyond expected lower values on
the main diagonal, corresponding to latencies measured within
the same region) show how the Singapore CR is the one with
highest average latency for both providers, with the VPs in SA

representing the worst case. Differently, the deployments in
Virginia offer, for both providers, the lowest latency on av-
erage, namely considering all the VPs across the world (with
VPs in AP being the more penalized). Hence, by supposing a
cloud customer wants to deploy an application leveraging a sin-
gle CR (e.g. for budget constraints), and considering potential
users scattered around the globe, using Virginia datacenters
would be the most suitable choice. This result aligns to those
about network throughput in [33].

Moving from a time-averaged analysis to a tail-based one, in
Figs. 2a and 2b we provide a quantification of the variability
of the latency over time for AWS and Azure, respectively, as it
is experienced by geographically-spread VPs when connecting
to the considered CRs. We adopt as the relevant metric the dif-
ference between the 95th and the 5th percentile of the latency
distribution for each (VP, CR) pair (denoted as D95−5). This
metric does not focus on latency time-evolution, but simply ac-
counts for the spread between high levels (possibly induced by
congestion, suboptimal routing, etc.) and low ones, observed
in the 14-day analysis. Adopting the 95th and 5th percentiles
(rather than max(·) and min(·), respectively) allows to filter-out
outliers and provide observations not related to network spot
conditions. For conciseness, both figures depict the empirical
CDFs (ECDF) of D95−5 values corresponding to the four CRs.

This analysis allows to draw the following observations:
(i) taking into account the per-CR breakdown, D95−5 is lower
than 25 ms (resp. lower than 50 ms), on median (resp. on aver-
age); (ii) this notwithstanding, the distribution of D95−5 shows
long tails, with values higher than 100 ms for both providers;
(iii) in more detail, Ireland and Virginia CRs result in

lower variability than Singapore and Sao Paulo, on aver-
age, for both providers; however, while this discrepancy is al-
most negligible for Azure (e.g. +7.5% D95−5 for Singapore,
w.r.t. Virginia, on average), this phenomenon is more evident
for AWS (e.g. +175% D95−5 for Singapore, w.r.t. Virginia,
on average). To conclude, for most of the (VP, CR) pairs the
variability is limited. However, some cases exist (with ev-
idences of dependence from the CRs and the providers) for
which higher D95−5 values are observed. Results about tail la-
tency and variability are in line with those found by Tomanek
et al. [13]. A detailed analysis has also revealed that part of
the discussed variability comes from intermittent spikes that are
observed for several (VP, CR) pairs, not appearing to follow a
specific pattern. We underline that a lower measurement fre-
quency reduces the possibility of capturing those spikes, and
therefore we claim that higher sampling frequency contributes
to a better characterization.

Finally, we highlight that the proposed analysis is not suited
to evaluate the trade-off between cloud costs and performance
in terms of latency, since differently than for other network per-
formance metrics (e.g. bandwidth [28, 7]) or cloud services
(e.g. CDNs [33]), cloud customers are not expected to expe-
rience better latency for higher costs for the IaaS under test;
indeed, the results of this kind of analysis are dependent on the
mutual location of VP and CR, rather than on the specific rented
service.

4.2. Joint Analysis

To provide a first comparison of the performance of the two
providers at fine-time granularity (1 min) and from a qualitative
standpoint, in Fig. 3 we report the joint and marginal empir-
ical distributions of latency values for the two providers, for
selected (VP, CR) pairs. Each plot is obtained by means of
Kernel Density Estimation with Gaussian kernel, highlighting
the frequency of occurrence of quasi-contemporary (less than
1 min apart) probing results towards the two providers (central
plots), and the marginal distributions of values related to the
single provider (side plots). Dashed lines correspond to the 75th

percentile. The scale for density is intentionally omitted as this
section aims at a qualitative report (differently than Secs. 4.3
and 4.4). The selected plots exemplify the variety of the joint
behaviors observed, corresponding to the main categories de-
scribed hereinafter.

[a] Unimodal-Unimodal, Peaked, Symmetric. This case,
depicted in Fig. 3a, (38% of pairs, i.e. the relative majority over
the measurement campaign) presents very similar results for
both providers with low variance. In such cases in a multi-cloud
scenario there would be no reason to prefer any of the providers,
and the multi-cloud setup could be motivated by availability
guarantees (or reduction of business risks associated with a sin-
gle provider).

[b] Unimodal-Unimodal, Peaked, Asymmetric. Repre-
sented by the case in Fig. 3b (12% of pairs), it is similar to the
previous behavior as the results are stable on the observation
period for both providers. For this case, instead, the 75th per-
centiles are consistently and non-negligibly different: a multi-
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(a) Unimodal-Unimodal, Peaked,
Symmetrical (EU04, Ireland).

(b) Unimodal-Unimodal, Peaked,
Asymmetrical (NA10, Singapore).

(c) Multimodal-Multimodal
(SA01, Virginia).

(d) Spread-Spread
(EU06, Virginia).

Figure 3: Joint and marginal empirical distribution (by Kernel Density Estimation) of quasi-contemporary measurements. Dotted lines indicate
75th percentile. Different common behaviors are reported with a representative example case of (VP,CR) pair.

cloud scenario would leverage this measured difference to pre-
fer the quick-responding provider.

[c] Multimodal-Multimodal. A more complex case (6% of
pairs) is exemplified in Fig. 3c, in which each provider ex-
hibits a multimodal latency distribution, with evident peaks
showing different but relatively-coherent alternative path con-
ditions. Multimodal distributions for C2U latency were also
observed in previous works (e.g. [13]), and we can thus confirm
this trend. Similarly to the aforementioned asymmetric case, a
multi-cloud environment can benefit from the consistent differ-
ence of performance between the two providers. Differently,
in this case the consistency of measurements has a lower time
scale, implying the need for either a finer granularity of mon-
itoring timescale, or a statistical approach, to reap the benefits
from C2U network monitoring.

[d] Spread-Spread. Differently from previous cases, in this
one (11% of pairs), exemplified in Fig. 3d, the higher variance
highlights a less consistent behavior. This suggests the oppor-
tunity for a statistical approach to benefit from C2U network
monitoring beyond the simple availability enhancement.

[e] Different characteristics. While previous cases regarded
similar behaviors for the two providers, the remaining num-
ber of pairs (33%) showed different characteristics between
them. Combinations with a multimodal vs. unimodal, or peaked
vs. wide-variance cases, were observed. For these heteroge-
neous cases, a multi-cloud environment would allow to prefer
one provider to the other in terms of performance based either
on long-term stability or short-term improvement.

Overall, the cases in which a behavior difference between
the two providers could be exploited to optimize performance
amount to 51% of (VP,CR) pairs (namely, the cases [b], [c],
and [e]). This validates the actual possibility for performance
optimization in a real-world multi-cloud environment, based
on measurements in-the-wild, and motivates the following in-
depth quantitative analysis.

4.3. Comparison between Providers

The results provided in the previous section highlight that
neither provider always outperforms the other, as the outcomes
of the analyses vary with the specific (VP, CR) pair. Indeed,

from results shown in Fig. 1, we can see that even VPs located
in the same geographical region may disagree in terms of which
provider reports lower latency, on average. To report a few ex-
amples, on average AWS performs slightly worse than Azure
for AP03 towards Singapore; however, its latency is far lower
considering AP04 and AP06 and the Singapore CR. Similarly
in Europe, where on average EU01 reports a 4 ms lower latency
for AWS towards Ireland, while EU02 reports a 22 ms lower
value for Azure. In this sense, we believe that the higher num-
ber of VPs employed has led to a more comprehensive charac-
terization, and these results are already an indication that even
differences within the same region need to be taken into account
when assessing user QoS.

To perform a grounded comparison, we leverage the mea-
sured latency for AWS and Azure over time by means of the
statistical tests introduced in Sec. 3.4. We highlight that, differ-
ently from previous works [24], our analysis does not rely on
heuristics (e.g. the vector magnitude of the series) to compare
the providers, but capitalizes solid hypothesis testing. In fact,
we use the outcome of the Wilcoxon signed-rank test (Wwil) to
assess a statistically-significant difference (the p-value is set to
0.01) in latency time series for any (VP, CR) pair. Fig. 4 re-
ports the outcome based on Wwil with a per-CR barchart, high-
lighting with blue (resp. orange) color for how many VPs each
provider performed better on the 14-day span. We highlight that
our analysis did not highlight cases where the relative compar-
ison was non statistically-significant (i.e. under the considered
p-value).

Then, statistically-significant comparisons are broken down
by (i) intra-region cases (VP and cloud datacenter in the same
region, “◦” texture) and (ii) inter-region cases (VP and cloud
datacenter in different regions, “\\” texture). Results show that
the best-performing provider changes with the CR considered.
For instance, for services delivered via Ireland and Virginia
CRs, AWS reports better performance for more VPs (13 and 14
VPs out of 25, respectively). Differently, Azure performs bet-
ter when targeting Sao Paulo and Singapore CRs (17 and 19
VPs out of 25, respectively). Also, by limiting the analysis to
intra-region cases, AWS always outperforms Azure, especially
in Virginia CR (e.g., 9 out of 10 VPs deployed in NA expe-
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Figure 4: Comparison of the two providers in terms of latency, based
on Wwil (14-day span, TCP probing method, port 80). Most VPs re-
port better performance for Azure towards Singapore and Sao Paulo,
while towards Ireland and Virginia there is an opposite trend (al-
though the difference is not significant).

rienced lower latency towards AWS). Lastly, an opposite trend
is seen for inter-region cases with Azure (except for Ireland
CR).

Beyond desirable low latency values, a wide range of appli-
cations also demand its small variability over time [13, 8, 41,
42]. Hence, we used the Levene test (Wlev) to assess whether
there is a statistically-significant difference (the p-value is set
to 0.01) in the latency variability of the two providers for a
given (VP, CR) pair, i.e. to test the equal-variance hypothesis
for the two time series. Hence, Fig. 5 reports the comparison
(over the 14-day span) of latency variability expressed as the
variance, with a row for each CR and a column for each VP.
Precisely, blue (resp. orange) color boxes highlight (VP, CR)
pairs where Azure (resp. AWS) exhibited a lower variability in
latency (based on Wlev). Differently, black boxes highlight non
statistically-significant difference cases. First, a non-negligible
amount of (VP, CR) pairs with no significant difference in la-
tency variability between providers is observed, with up to 4
VPs out of 25 toward Ireland and Virginia CRs, in contrast
with Fig. 4. Interestingly, this implies that in a number of cases
lower latency does not imply also reduced variability. Focus-
ing on statistically-significant comparisons, the result is also in
this case influenced by the specific CR, with Singapore (resp.
Sao Paulo) leading to a lower variance for Azure (resp. AWS)
in most cases. For other CRs, the comparison is more balanced
and depends on the VP. Conversely, for only three VPs (AP03,
EU05, NA03) a lower variability towards all the CRs is guaran-
teed by the same provider.

Finally, we have also used the proposed methods to perform
a statistical comparison focusing on temporal patterns. In more
detail, we have looked for daily, weekly, and hourly patterns
(i.e., comparing measurements for the two providers limiting
the attention on each of the 14 days of our campaign, compar-
ing data coming from the same day of the week, and consid-
ering measurements performed during 4-hour ranges, respec-
tively). For all the (VP, CR) pairs where the better performing
provider changes over time, none of these analyses (whose de-
tails are omitted for brevity) reported evidences of a clear de-
pendence upon the specific time frame at any of the considered
scale. These results further witness the need for online moni-
toring activities to support decisions, that cannot be replaced by
simpler time-based assumptions.
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Figure 5: Comparison in terms of latency variability, based on Wlev

(14-day span, TCP probing method, port 80). Orange and blue color
report cases where AWS and Azure show lower variability, respec-
tively. Black color highlights no significant difference between them.
Lower variability is experienced from most VPs by Azure (resp. AWS)
on Singapore (resp. Sao Paulo).
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Figure 6: Badness [%] in 30 min buckets (14-day span, TCP probing
method, port 80). (a) and (b) report detailed results at (VP, CR) pair
granularity for AWS and Azure, respectively. Differently, (c) reports
the [%] difference heatmap. AVG reports either the CR- or VP-average.
Average badness may differ depending on the VP or CR. However, no
clear patterns emerge.

4.4. Badness Analysis

First, we provide an assessment of badness events as de-
fined in Sec. 3.4 for each (VP, CR) pair. We highlight that
our methodology for badness events is inspired by Jin et al.
[14], although Tomanek et al. [13] have also proposed their
methodology for anomaly detection and interpretation. Both
methodologies rely on the tuning of some parameters (window
size, threshold for detecting events), but we deemed the first
one more flexible and suitable for our scenario. To discuss the
evaluation, Figs. 6a and 6b report the percentage of bad buck-
ets over the 14-day campaign from each VP when targeting the
four CRs for AWS and Azure, respectively, and considering
TCP probing (port 80). VPs located in the same geographi-
cal region are grouped together. Although the overall badness
quantities for the two providers are quite similar (i.e. 7.9% vs.
8.2%, see bottom-right entry of the heatmap, “AVG-AVG”), re-
sults highlight different peculiar patterns along VP- and/or CR-
dimensions. This is also confirmed by a more detailed ECDF-
based analysis, omitted for brevity. Such result shows that bad-
ness events are mostly related to either the VP or the destination
area (or both), rather than to the provider infrastructure.
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(a) Persistence of badness events for AWS. (b) Persistence of badness events for Azure.

Figure 7: Persistence of badness events for both providers. Each empirical PMF shows the number of consecutive buckets reporting a badness
event considering the whole 14-day measurements campaign and all VPs (Vs = 25) towards a specific CR. For both providers, badness events
tend to be short-lived (less than 1.5 hours), save from few event cases lasting more than 15 hours, especially for AWS (a).

Table 2: Empirical conditional probability [%] of badness events.

(a) AWS.

X =

BAZ ¬BAZ

Pr(BAWS|X) 11.45 8.24
Pr(¬BAWS|X) 88.55 91.76

(b) Azure.

X =

BAWS ¬BAWS

Pr(BAZ|X) 11.83 8.51
Pr(¬BAZ|X) 88.17 91.49

By aggregating in terms of CRs (i.e. in a per-VP view), for
example, higher badness percentages are observed from EU01

and EU06 for both providers toward all the four CRs. Differ-
ently, an analogous behaviour is seen for NA03 (having the high-
est overall average percentage toward all the CRs) and NA05 for
the sole Azure. Differently, by aggregating in terms of VPs
(i.e. in a per-CR view), we observe a slightly different behav-
ior for different CRs, with the same relative ranking observed
for both providers (Singapore→ Sao Paulo→ Ireland→

Virginia). Interestingly, the highest badness percentage is ex-
perienced by NA10 when targeting AWS Ireland CR; how-
ever, such result is scattered as it corresponds to neither aggre-
gations over VPs nor over CRs.

Finally, a direct comparison of badness percentage between
the two providers, on a (VP, CR) basis, is given in Fig. 6c,
where the difference heatmap is depicted. Results highlight no
structured pattern, with relative badness performance depend-
ing on the specific (VP, CR) pair. For example, the highest
badness increase incurred by Azure (w.r.t. AWS) is observed
for NA10 and AP06 toward Ireland and Singapore CRs, re-
spectively. Differently, the highest badness increase incurred by
AWS (w.r.t. Azure) is observed for NA03 toward both Ireland

and Sao Paulo.
In order to evaluate the severity of these badness events, we

analyze how much badness events are correlated over time, i.e.
we analyze the incidence of consecutive badness events in la-
tency time series. To this end, in Figs. 7a and 7b, we report

the empirical probability mass function (EPMF) of the badness
persistence (namely, the duration of a badness event in multi-
ples of Tbu = 30 min buckets), for AWS and Azure, respec-
tively. For each figure we show four EPMFs, corresponding
to the considered CRs, obtained by aggregating badness persis-
tence samples over the VPs. Results show that the EPMF of bad
buckets persistence is qualitatively similar when varying CR
and the provider, showing a (reasonable) decreasing trend with
the increasing persistence. Most of badness events (≈ 60%) last
for one single bucket (i.e. they are bounded in a 30 min interval)
and the 95th percentile is always constrained within 3 h, with
the sole exception of Sao Paulo for AWS, being ≈ 4 h. Simi-
lar findings about the short-lived duration of anomalous events
were also discussed in previous works [13, 14]. Interestingly,
sporadic badness events with high persistence (∈ (12, 20) h) ap-
pear for some specific cases involving all AWS CRs and Azure
Virginia CR.

Finally, we analyze how much badness events are correlated
between providers, i.e. we analyze the incidence of a bad-
ness event of one provider on the other considering the same
(VP, CR) pair and the same time span. Taking into account a
given (VP, CR) pair, we denote with BAWS and BAZ the binary
(i.e. ∈ {0, 1}) badness event for AWS and Azure, respectively,
for the same 30 min time span for this pair. Then, we con-
sider the two empirical conditional probabilities Pr(BAZ|BAWS)
and Pr(BAWS|BAZ), to investigate how much a badness event ex-
perienced by one provider reflects into a similar badness event
for the other provider.

The results in Tabs. 2a and 2b report these conditional prob-
abilities averaged over all the (VP, CR) pairs: when a badness
event is observed for one provider, the probability that a bad-
ness event is observed also for the other is lower than 12%; Dif-
ferently, when a badness event is not observed for one provider,
the probability that a badness event is observed for the other
one is ≈ 8%. Being these two close values, we can conclude
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Figure 8: ECDF of agreement [%] in detecting badness events between
probing-methods pairs. Each value of the ECDF reports the agreement
related to a (VP, CR) pair, considering all the related time series. For
all the cases, the agreement is above 67%. Still, the median agreement
between TCP and ICMP is the lowest.

that BAWS and BAZ are loosely correlated.

4.5. Impact of probing methods

As discussed in Sec. 3.2, C2U latency can be measured via
a plethora of active-probing methods, which possibly require
different configurations at server side. Our results report that
probing methods adopting mechanisms implemented at differ-
ent levels of the TCP/IP stack may lead to different latency es-
timates. On the other hand, the analyses that leverage these
measures (e.g., provider comparison as in Sec. 4.3 or badness
analysis as in Sec. 4.4) provide the same outcomes in most of
the cases, independently of the probing method. Details are
provided in the following.

First, we aim at assessing whether distinct probing methods,
evaluating the latency for the same (VP, CR) pair at the same
time, highlight any of them reporting systematically-lower la-
tency values. The Wilcoxon signed-rank test Wwil, used to
compare 14-day time series, reports the following outcomes.
Considering the latency comparison between (a) TCP 80 vs.
54321, (b) HTTP 80 vs. 54321, (c) HTTP vs HTTP DB and
(d) ICMP vs TCP 80 for any (VP, CR) pair and both providers
(when applicable), we observed statistically-significant differ-
ences between the considered time series. Still, while for (c)
this discrepancy corresponds to a systematic relative order be-
tween the probing methods (i.e. a higher latency was found for
HTTP DB, with ≈ 9 ms higher latency than HTTP averaging all
over the pairs, due to the latency of the intra-DC network and
the processing time at the auxiliary server), in the other cases
((a),(b), and (d)) there is no clear pattern stemming out from
the analysis: while there is always a probing method measur-
ing a consistently-higher latency for each (VP, CR) pair, such
method is not always the same.

While investigating the root cause of these discrepancies is
out of the scope of this work, results suggest that these as-
pects should be taken into consideration when designing non-
cooperative methodologies for monitoring public-cloud net-
works. Indeed, in our case different probing methods returned
measurements that differ up to 198 ms, on average. For in-
stance, this is evident for the AP01 VP, where the TCP proxy
presence along the path towards the cloud causes the monitored
latency to be heavily underestimated when using TCP probing

with port 80. Indeed, referring to the results for this VP, latency
measured using TCP over port 80 consistently reported RTT
values around 1 ms, irrespective of the CR—thus highlighting
the presence of a network proxy interfering with the measure-
ment process. On the other hand, measures leveraging the non-
standard port appeared more realistic, being variable depending
on the destination region and compatible with expected VP-to-
CR RTTs. Moreover, HTTP did not report relevant differences
between the two ports. This can be explained considering that,
in this case, latency measures the response time of a specific
page, which is sent from the web-server at the intended desti-
nation.

Concerning ICMP, our results are in line with what observed
in [36] for service availability measurements: though ICMP is
widely adopted—as it does not require particular instrumenta-
tion at the targeted cloud node—its results can differ from la-
tency experienced by upper-layer protocols, possibly leading to
either an underestimated or (more often) an overestimated ob-
served value.

Secondly, we evaluate whether different probing methods
agree in identifying badness events (cf. Sec. 3.4), and to what
extent. The results of this analysis are shown in Fig. 8, where
the ECDF of percentage agreement in detecting badness events
between probing methods is shown.7 In general, we observe
an agreement ∈ (78, 97) %. Differently, higher levels of agree-
ment between TCP and HTTP are visible (mostly not depend-
ing on the specific provider) with an average agreement around
93–94%. Concerning the agreement between TCP and ICMP,
the average agreement is around 82%. Interestingly, looking
at detailed agreement percentages (i.e. per (VP, CR) pairs, not
shown for brevity), the level of agreement appears to (slightly)
vary with the VP but it is not impacted by the specific CR (with
the exception of a few cases related to TCP vs. ICMP compari-
son).

Finally, we investigate what is the impact of the probing
method adopted in defining which provider achieves better per-
formance. The results are shown in Fig. 9, reporting the number
of agreements/disagreements (between probing-method pairs)
of the outcomes provided by the Wilcoxon signed-rank test
(Fig. 9a) and Levene test (Fig. 9b), aggregated by CR. The for-
mer test is used as an intermediate outcome to compare the
punctual latency of providers (for each probing method) on
each (VP, CR) pair as in Sec. 4.3. Similarly, the latter test is
employed to compare the standard deviation (viz. latency vari-
ability) of the two providers. We highlight that some bars do
not sum to 25 VPs for each CR, because in some instances the
test itself returns that the discrepancy between providers is not
statistically-significant. Notably, we can observe that the dis-
agreement cases are limited to 13/400 (i.e. ≈ 3%) in Fig. 9a.
Differently, in Fig. 9b, a larger number of cases report a non-
statistically significant difference, and more disagreements ap-
pear (50/400 cases, corresponding to 12.5%); the highest num-

7Note that the analysis takes into account the agreement between TCP and
HTTP (port 80) for both providers while the one between TCP and ICMP only
for AWS, based on measure availability. Results for non-standard ports are
omitted for brevity.
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(a) No. of (dis)agreements considering punctual latency. Disagreements
are observed only in about 3% of the cases.

(b) No. of (dis)agreements in terms of standard deviation. We observe
more disagreements (12.5% of the cases) compared to (a).

Figure 9: No. of (dis)agreements between probing methods pairs about best provider across different protocols in the four CRs, considering (a)
punctual latency or (b) latency variability as the relevant metric.

ber of disagreements (13 cases) is reported between TCP80 and
HTTP80 and between HTTP80 and HTTP DB.

To summarize, the above analyses witness that, notwith-
standing the observed discrepancies in the observed values, the
outcomes of both badness analysis and provider comparison are
not impacted by changing the probing method.

4.6. Online badness detection and imputation
Leveraging the rationale behind the results of Sec. 4.4, here-

inafter we design and analyze the outcome of the online detec-
tion and imputation of badness events. Here we take advan-
tage of the online calculation of the badness threshold as de-
tailed in Sec. 3.4, whose resulting information is used to com-
pose what we call badness dashboard which highlights bad-
ness events and allows to correlate them based on the (VP, CR)
pairs. This tool can effectively aid the providers, giving a
basic tool to enable badness imputation, i.e. to provide early
warnings of root causes when performance degradation is ob-
served. Although we have limited the badness analysis to one
protocol (TCP on standard port), providers can also benefit of
multi-protocol measurements to precisely pinpoint the cause
of degradation. We stress that our non-cooperative approach
complements server-side information that can be collected by
providers. By integrating measurements about user-perceived
Quality of Service and information collected directly on the in-
frastructure, providers obtain a global view about the C2U net-
work.

In the following, we detail two different views provided by
the proposed dashboard shown in Figs. 10a and 10b, where the
blue and orange vertical bars report badness events (i.e. bad
buckets) for (Azure and AWS) single paths. Differently, the
bottom box with black bars shows a summary view obtained by
averaging their info, i.e. performing a “decision fusion”. In the
same box, a dashed line is reported, representing the outcome
of a “majority voting” imputation statistic. Note that this dash-
board is intended to provide early hints to troubleshoot cloud
networks in case of performance degradation and not to perform
definitive root-cause analysis, as additional context information
should be integrated to enrich the provided view [14].

In Fig. 10a the dashboard highlights the correlation of bad-
ness events related to the (VP, CR) paths from all the Vs = 25
sources towards the Azure Sao Paulo CR. According to the
selected view, high values (spikes) in the black box report bad-
ness events observed by (almost) all the distributed VPs (e.g. on

7–9th June) and witness degradation events that can be ascribed
on the specific provider CR (e.g., possibly due to overhead on
either the specific datacenter or on the related access network).
On the other hand, Fig. 10b reports a VP-based view, show-
ing the badness events of the paths from EU06 towards the four
CRs of both providers. The high (and long-lasting) values in
the summary view witness degradation involving all the paths
departing from this VP, i.e. for which neither provider can be
blamed. That is, in this case the access network of the user is
supposed to be the cause of the performance issue.

The above results show that the dashboard provides an effec-
tive real-time view onto C2U network performance as perceived
from distributed VPs and towards multiple CRs and providers.
Also, the effectiveness of the proposed badness (i.e. its accu-
racy in highlighting root causes) is expected to increase in case
of capillary VP deployments (e.g., deploying VPs at higher den-
sity in specific ISPs).

Finally, the outcome provided by the dashboard (regardless
the specific root cause of the performance degradation) can be
leveraged to evaluate the effectiveness of performing specific
actions to improve the performance, e.g., the effectiveness of
multi-cloud solutions (discussed in Sec. 4.7).

4.7. Evaluating the benefits of multi-cloud deployments

Multi-cloud architectures (based on the concomitant use
of services of two or more cloud providers) are increasingly
adopted by enterprises, so as to exploit the flexibility deriv-
ing from multiple cloud offerings, thus achieving cost reduction
and increased reliability3. Hereinafter we focus on the poten-
tial gains customers could achieve when adopting multi-cloud
architectures in terms of improved network performance [10].
To this goal we evaluate the upper-bound of the C2U latency
reduction w.r.t. two baseline cases: (i) the adoption of a sin-
gle cloud provider for all the users (in this case we consider
the adoption of the provider with better performance, on av-
erage, on a global scale, i.e. Azure according to previously
shown results), denoted with Lsingle; (ii) the adoption of the
best-performing provider on a (VP, CR) basis (i.e. for each
(VP, CR) pair we consider to statically adopt the provider with
better performance on average, based on previously-discussed
results, denoted with Lbest). These two baselines are compared
to the ideal performance obtained with a multi-cloud architec-
ture, i.e. at each instant in time the user is served by the provider
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(a) Online badness events from all the 25 VPs towards Azure in Sao

Paulo (blue lines). On July 8th, all VPs report badness events towards
this CR, highlighting a possible issue in the datacenter or in its proximity.

(b) Online badness events from VP EU05 towards the 4 CRs for both Azure
(blue lines) and AWS (orange lines). Since July 8th, this VP reports bad-
ness events towards all CRs and for both providers, highlighting a possible
problem in the VP or in its proximity.

Figure 10: Different views for online badness events. The last row reports the average of all the above bars. Dashed lines are set at 0.5, providing
a visual majority-voting check.

reporting the best performance (say LMC). Notably, this ideal
case is representative of an architecture either (a) leveraging a
system predicting which provider offers better performance at
each time, or (b) duplicating the resources and properly manag-
ing the redundancy.

The results when considering the two baselines, focusing on
TCP probing (port 80), are reported in Figs. 11a and 11b. The
former reports for each (VP, CR) the relative improvement with
respect to Lsingle, (i.e. Lsingle−LMC

Lsingle
× 100, while the latter the rel-

ative improvement with respect to Lbest, (i.e. Lbest−LMC
Lbest

× 100).
Our results show how multi-cloud deployments achieve better
performance both when compared to the locally-better provider
(performance improves more than 5% in 7% of the cases and
up to 21.3%, cf. Fig. 11b) and when compared against a de-
ployment relying on the provider performing better on a global
scale (performance improves more than 5% in 29% of the cases
and up to 70.8%, cf. Fig. 11a).

5. Conclusions and Future Directions

This work assessed C2U latency performance for the lead-
ing providers AWS and Azure, due to the poor visibility both
customers and providers may suffer in these networks. To this
goal, we used a variety of probing methods and geographically
distributed VPs and CRs. Overall, these results can be help-
ful to both cloud customers serving final users (for deployment
choices according to requirements and costs) and providers (to
locate problems or bottlenecks their infrastructure could be sub-
jected to). The adopted approach and methods led to the follow-
ing take-home messages.

As expected, we found that globally-distributed users expe-
rience better C2U latency for intra-region paths, on average
(with a few significant exceptions). Concerning the latency
variability, we observed that low values are experienced in

most cases, although we identified a few cases with higher vari-
ability for some (VP, CR) pairs. Also, analyzing at 1 min time
scale the joint (AWS-Azure) behavior of latency distributions,
we found that for 51/100 (VP, CR) pairs the behavior differ-
ence between the two providers could be exploited to optimize
performance, paving the way to multi-cloud optimization.

Then, aiming at an in-depth characterization, we compared
the performance of the two providers for each (VP, CR) pair.
Best performance was achieved by AWS and Azure in 50%
CR cases each, with intra- and inter-region cases giving clearer
(but opposite) outcomes. Differently, analyzing variability over
time, we found that usually lower latency does not imply lower
variability.

Concerning badness analysis, results have highlighted that
the frequency of such events is quite similar for both providers
(and weakly-dependent between them), but different peculiar
patterns along VP- and/or CR-dimensions are present. This
result shows that badness events are mostly related to either
the VP or the destination area (or both), rather than to the in-
frastructure provider. Focusing on the persistence of badness
events, such occurrences have been observed to have a decreas-
ing trend with the duration (60% of events last for 30 min), with
sporadic long events appearing for all AWS CRs and the sole
Azure Virginia.

Concerning the adoption of different probing methods, our
results have witnessed that, despite some discrepancies in the
observed latency values, they marginally impact the outcomes
of both badness analysis and provider comparison.

Finally, our experimental characterization has been exploited
to support cloud network design. In detail, we implemented a
prototype for the online detection and imputation (to CRs,
VPs, or provider) of badness events, whose appeal was high-
lighted with an aggregated-view analysis. Also, non-negligible
latency gains were guaranteed in 7% of the cases with an ideal
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Figure 11: Gains achievable with multi-cloud deployments w.r.t. the
globally-better provider (a) and the locally-better provider (b). Up to
70% (resp. 10%) relative improvement can be achieved over baseline
in (a) (resp. baseline in (b)).

multi-cloud deployment, with a relative improvement up to
21.3%, also w.r.t. the (locally-better) single-cloud deployment.

Future works will include capitalization of collected data to
develop prediction techniques, leveraging the spatial diversity
of our dataset to possibly combine different probing methods
and/or different VPs to enhance performance. This task enables
a proactive management of the cloud infrastructure, and can
optimize the probing process itself, for instance using adaptive
probing techniques (e.g. via reinforcement learning) to have a
less-invasive and cheaper probing process. Evaluation of edge-
cloud infrastructures already deployed by the considered cloud
providers from the latency perspective is also an interesting next
step.
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