Computer Networks 56 (2012) 3531-3547

Contents lists available at SciVerse ScienceDirect

2 |

Mputer
Computer Networks L".-:.»if}rks

journal homepage: www.elsevier.com/locate/comnet

A tool for the generation of realistic network workload for emerging

networking scenarios

Alessio Botta, Alberto Dainotti *, Antonio Pescapé

University of Napoli Federico II, Department of Computer Engineering and Systems, Via Claudio 21, I-80125 Napoli, NA, Italy

ARTICLE INFO

ABSTRACT

Article history:

Received 2 August 2011

Received in revised form 8 December 2011
Accepted 26 February 2012

Available online 24 March 2012

Keywords:

Network workload
Traffic generation
Synthetic network traffic

1. Introduction and motivation

Internet workload is a mix of many and complex sources. Therefore, its accurate and real-
istic replication is a difficult and challenging task. Such difficulties are exacerbated by the
multidimensional heterogeneity and scale of the current Internet combined with its con-
stant evolution. The study and generation of network workload is a moving target, both
in terms of actors (devices, access networks, protocols, applications, services) and in terms
of case studies (the interest expands from performance analysis to topics like network neu-
trality and security). In order to keep up with the new questions that arise and with the
consequent new technical challenges, networking research needs to continuously update
its tools. In this paper, we describe the main properties that a network workload generator
should have today, and we present a tool for the generation of realistic network workload
that can be used for the study of emerging networking scenarios. In particular, we discuss
(i) how it tackles the main issues challenging the representative replication of network
workload, and (ii) our design choices and its advanced features that make it suitable to ana-
lyze complex and emerging network scenarios. To highlight how our tool advances the
state-of-the-art, we finally report some experimental results related to the study of hot
topics like (a) broadband Internet performance and network neutrality violations; (b)
RFC-based security and performance assessment of home network devices; (c) perfor-
mance analysis of multimedia communications.

© 2012 Elsevier B.V. All rights reserved.

ing, modeling, and generating network workload are diffi-
cult and challenging tasks [1].

The Internet is today a network of incredible complex-
ity, connecting systems that are heterogeneous for tech-
nologies and applications. Consequently, multiple types
of objects and data - at different abstraction-levels -
impact network workload, whose inherent complexity is
further increased by its temporal evolution, coherently
with the evolution of topologies, devices, network technol-
ogies, applications, and traffic. Internet workload is there-
fore the result of a complex mix of sources and it is quite
different from the workload that was observed on large
networks in the past years. For these reasons, understand-

* Corresponding author.
E-mail addresses: a.botta@unina.it (A. Botta), alberto@unina.it (A.
Dainotti), pescape@unina.it (A. Pescapé).

1389-1286/$ - see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.comnet.2012.02.019

In this paper, we focus on the generation of realistic
workload at network level. With the term realistic here we
mean synthetic workload able to replicate the main (some-
times all) features of a real workload specifically targeted
to a particular network scenario. Whereas the features
and the configurable parameters described in Fig. 1 and
in Tables 1 and 2 (further discussed in the paper) clarify
the context of workload at network level.

Generation of network workload is a fundamental com-
ponent of several networking research fields: performance
of networks and network devices, including middleboxes
(e.g., performance enhanced proxies, policy charging and
rules function, traffic shapers), security (e.g., firewalls,
intrusion and anomaly detection, background and
malicious workload), quality of service and quality of

http://dx.doi.org/10.1016/j.comnet.2012.02.019
mailto:a.botta@unina.it
mailto:alberto@unina.it
mailto:pescape@unina.it
http://dx.doi.org/10.1016/j.comnet.2012.02.019
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet

3532

A. Botta et al./Computer Networks 56 (2012) 3531-3547

Flow id: 371
Payload: RTP

IPT distribution: Exponential

Flows ids: 100-299
Payload: from traffic trace
IPTs: from traffic trace

CLOSED LOOP
GENERATION

—

Flow id: 302
Payload: Bittorrent
Source port: 6881 (Bittorrent default port)

PSAPT: analytical model for bulk traffic with silence

periods - rate adj i depending on

Trace

- Based
synthethic flows

- Timeout/duration - Source port - Round-Trip Time
: - Output Interface - Destination port - Jitter
Analytical Model - - Payload -TTL - Packet loss
__ Based synthethic fiows - Direction (half or full duplex) - TOS - Throughput

Performance Indicators
- One-way Delay

Per-fiow Configurable Parameters

- Start time - Transport Protocol

- Packet Size
- Inter Packet Time

- Source address
- Destination address

Table 1
Features of our generation platform.

Fig. 1. Approaches and parameters for synthetic network workload generation.

Computer architectures
Operating systems

Supported protocols
Control plane
Centralized remote control
Distributed remote control
Sending flows scalability
Receiving flows scalability
Generation models
Interactions with external
devices

Metrics

Storage of results
Bit rate and packet rate

Analytical model-based
workload generation

Trace-based workload
generation

Multiple processor architectures are supported (Strong ARM, Intel XScale, x86 32 bit and 64 bit)

Multiple operating systems are supported (Windows, OSX, FreeBSD, Linux, Montavista Linux, OpenWRT,
snapgear)

Different protocols at different layers are supported (IPv4, IPv6, ICMP, TCP, UDP, SCTP, DCCP)

Traffic generation is driven by TSP (Traffic Specification Protocol) between sender/receivers

Sender/receivers can be remotely controlled (daemon mode) by a central manager using a separate TSP signaling
channel

Sender/receivers can be remotely controlled (daemon mode) by other sender/receivers using a separate TSP
signaling channel

Each traffic sender can generate multiple parallel flows towards different receivers, using a separate thread for
each flow

Each traffic receiver can receive multiple parallel flows from different senders, using a separate thread for each
flow

Packets can be generated with inter departure time and size emulating well known applications or following a
stochastic distribution of choice

Synchronization with external devices (e.g., high precision digital counters) on time of sent and received packets
is possible through the serial ports

Measures of throughput, jitter, losses, one way delay and round trip time with different granularities (from
packet-by-packet to the entire experiment duration) can be collected

Detailed information is logged on sent and received packets on local or remote hosts

High generation bit rate (more than 950 Mbps) and packet rate (more than 850 Kbps) can be reached over low
cost COTS

Application-layer emulation of real applications (using standard Berkeley Sockets) is possible, while allowing, at
the same time, the user to set several parameters at underlying levels (see Table 2)

Generation of realist traffic patterns can also be performed using stored pcap files Possibility to generate/receive
traffic on specific addresses or interfaces

experience, new protocols (e.g., at transport-level), avail-
able bandwidth measurement, etc. Moreover, some recent
networking topics (e.g. network neutrality and perfor-
mance of multimedia communications (see Section 5))
can be studied only through the generation of realistic,
appropriate and configurable network workload.

Since the generation of network workload highly de-
pends on the layer at which the protocol stack is observed,

and the analysis of its impact on networks or systems
(e.g., the determination of performance indexes) often re-
quires the replication of both its static and dynamic prop-
erties, the accurate generation of synthetic but realistic
workload remains a complex and open problem. Both the
literature and the market have seen the proliferation of
specific approaches and tools purposely designed for specific
scenarios: from the study of cluster computing, I/O, and

A. Botta et al./Computer Networks 56 (2012) 3531-3547 3533

Table 2
Configurable parameters of our generation platform.

Host level (specified for each sender/receiver)

Log type (sent packets, received packets) and location (local or remote)

Logging information inserted into the packet payload (none, minimum, extended)
Interface/address on which to send/receive signaling packets

Network level (specified for each individual flow of

each sender/receiver) Time To Live

Interface/address on which to send/receive probing packets

Differentiated Services Byte (Type of Service)

Flow level (specified for each flow of each sender/ Duration

receiver)

Time to wait before start

Number of packets/bytes to generate
Type of application to emulate (DNS, Telnet, VoIP with different codecs, Counter Strike,

Quake 3)

Random distribution for the size of the packets (Constant, Uniform, Exponential, Pareto,
Cauchy, Normal, Poisson, Gamma, Weibull)

Random distribution for the inter packet time (Constant, Uniform, Exponential, Pareto,
Cauchy, Normal, Poisson, Gamma, Weibull, On/Off)

Pcap file to generate

Seed of the random number generator

Direction of the traffic (one way, round trip)

Inter packet time recovery mechanism (to sustain the required rate in presence of frequent
context switches or other disturbing factors)

Transport level (specified for each flow Stream ID for
SCTP of each sender/receiver)

Source and destination ports
Transport protocol (TCP, UDP, SCTP, DCCP)

Nagle algorithm for TCP
Congestion Control for DCCP

ICMP message

multimedia, to wireless network devices, web servers and
routers, and transport-level protocols. Oppositely, general
purpose network workload generators — both software-
based and hardware-based - cannot generate realistic net-
work workload in every network scenario. The former usu-
ally run on COTS hardware and are simple in terms of
functionalities and implementation, while the latter are
based on custom hardware, suffer of scarce flexibility be-
cause of a closed-architecture, and are often considerably
expensive. Our work starts from the assumption that ap-
proaches and systems for network workload generation
are useful and effective only when they produce network
workload that is realistic [2-6] and representative as much
as possible of the real workload of the network scenario
under study.

The contribution of this paper is twofold. First, we dis-
cuss the main features needed for, and the difficulties in-
volved in, the generation of realistic network workload
(Section 2). Then, we present a customizable tool for the
generation of realistic network workload targeted to
emerging networking scenarios that is based on D-ITG
and its traffic generation engine [24]. More precisely, we
discuss how our tool tackles the main issues challenging
the representative replication of network workload (Sec-
tion 3) and we illustrate its advanced features, which can
be used to analyze complex and emerging network scenar-
ios (Section 4). We highlight the design choices we made to
integrate in a single and configurable platform (a swiss-
army-knife for network workload generation) the discussed
main properties, and we illustrate how the solutions we
adopted tackle relevant challenges such as the support
for different traffic profiles, configurability at multiple lay-
ers, scalability, repeatability of experiments, etc. Finally, to
highlight how our tool advances the state-of-the-art, we
show experimental results related to hot topics like broad-

band Internet performance and network neutrality viola-
tions, RFC-based security and performance assessment of
home network devices, as well as performance analysis
of multimedia communications (Section 5).

2. Realistic network workload generation

In literature a huge amount of work exists on the char-
acterization, modeling and simulation of network work-
load (e.g., related to e-commerce platforms [7], live
streaming media [8] and YouTube traffic [9], peer-to-peer
file sharing [10], Web [11-14] and web caching [15], mali-
cious and unwanted traffic [16-18]). Unfortunately, we
cannot state the same for the generation of realistic net-
work workload and for the issues associated to this impor-
tant task.

In this work, we focus on the generation of realistic net-
work workload over real networks and using software
platforms [19,20]. Approaches for synthetic network work-
load generation should be able to (i) appropriately capture
the complexity of real workload in different scenarios, (ii)
customly alter specific properties of such workload for
the purpose of the experiment, and (iii) measure indicators
of the performance experienced by such workload at net-
work level. In a novel and broader view of realistic network
workload generation, towards the implementation of a
swiss-army-knife software tool, such objectives could be
achieved by combining features already present in litera-
ture in various less general approaches, plus adding new
specific functionalities. Table 3 shows a (non-exhaustive)
list of the platforms that are most used in literature: sev-
eral powerful platforms exist, each of them with peculiar
characteristics, but none of them includes the flexibility,
configurability and all the features discussed in Section 3
and in Section 4.

Table 3
Other generation platforms.

vese

OSTINATO [22]
SEAGULL [23]
Tmix [4]
RUDE/CRUDE [25]
TG [26]
MGEN [27]
KUTE [28]
BRUTE [29]
LiTGen [30]
Network traffic
generator [31]
NetSpec [32]
Netperf [33]
Iperf [34]
TCPivo [35]
TCPreplay [36]
TCPopera [37]
ParaSynTG [38]

UniLoG [39]
Swing [40]

SURGE [41]
MACE [42]

Ostinato is an open-source, cross-platform network packet crafter/traffic generator and analyzer with a friendly GUI. It crafts and sends packets of several streams with
different protocols at different rates.

Seagull is an open-source multi-protocol traffic generator test tool. Primarily aimed at IMS (3GPP, TISPAN, CableLabs) protocols, it is conceived for functional, load, endurance,
stress and performance/benchmark tests.

Tmix is a traffic generator for ns-2 that reads a packet header trace, derives a source-level characterization of each TCP connection, and then emulates in ns-2 the application
that created the TCP connections in the trace.

Rude/crude are two programs that can generate and collect UDP traffic. RUDE (Real-time UDP Data Emitter) is a small and flexible program that generates traffic to the
network, which can be received and logged on the other side of the network with the CRUDE (Collector for RUDE).

TG generates and receives one-way packet traffic streams transmitted from the UNIX user level process between traffic source and traffic sink nodes in a network. In the
current implementation, the TCP and UDP transport protocols, with unicast and multicast addressing (UDP only), are supported.

MGEN is a script-based tool that generates, receives and logs real-time traffic patterns. The script files can be used to emulate the traffic patterns of unicast and/or multicast
UDP and TCP IP applications. MGEN currently runs on various Unix-based (including MacOS X) and Win32 platforms.

KUTE is aimed at being a maximum performance traffic generator and receiver mainly for use with Gigabit Ethernet. It is composed of Linux kernel modules (tested up to
2.6.16) which send/receive packets directly to the hardware driver (tested only with Ethernet hardware) bypassing the stack.

BRUTE is a user space Linux application designed to produce high load of customizable IPv4 and IPv6 Ethernet traffic. The software has been designed to achieve high
precision and performance in the traffic generation.

LiTGen is on open-loop packet-level traffic generator, which statistically models IP traffic (resulting from Web requests) on a per user and application basis.

Network traffic generator generates massive amounts of traffic of certain type to test network devices such as routers and firewalls.

NetSpec provides a fairly generic framework that can be used by a user to control multiple processes across multiple hosts from a central point of control for doing network
testing. NetSpec consists of daemons that implement traffic sources/sinks and various passive measurement tools.

Netperf is a benchmark that can be use to measure various aspect of networking performance. The primary foci are unidirectional data transfer and request/response
performance using either TCP or UDP and the Berkeley Sockets interface.

Iperf is a tool for measuring maximum TCP and UDP bandwidth performance. Iperf allows the user to tune various parameters and UDP characteristics and it reports
bandwidth, delay jitter, datagram loss.

TCPivo is a tool that provides high-speed packet replay from a trace file using standard PC hardware and freely available open-source software

TCPreplay has the ability to use previously captured traffic in libpcap format to test a variety of network devices.

TCPopera has been conceived to evaluate the performance of IDSs by replaying background traffic that mimics real-world behavior.

ParaSynTG is a synthetic trace generator for source-level representation of Web traffic with different characteristics such as document size and type, popularity (in terms of
frequency of reference) as well as temporal locality of requests.

UniLoG is a flexible tool to generate realistic and representative server and network loads, in terms of access requests to Web servers and creation of typical Web traffic.
Swing is a closed-loop traffic generator that observes traffic on the network and extracts distributions for user, application, and network behavior. It then generates traffic
corresponding to the underlying models in the ModelNet network emulation environment.

SURGE is a tool to generate Web requests according to measured statistical properties.

MACE is an environment for recreating a wide range of malicious packet traffic in a laboratory testbed.

2bSE-L1ESE (Z10T) 9S SALomaN Landuwio) /v 13 pljog 'y

A. Botta et al./Computer Networks 56 (2012) 3531-3547 3535

Two main alternative approaches exist in literature for
the generation of network workload: (i) trace-based gener-
ation (TCPReplay, TCPivo, TCPopera, etc.), in which flows
exactly replicate the content and the timings of traffic
traces previously collected in real scenarios; (ii) analytical
model-based generation (TG, MGEN, RUDE/CRUDE, D-ITG,
etc.), in which flow and packet generation processes are
based on statistical models. Generation of realistic network
workload needs both approaches (as stated in [21] too, in
which a simple approach is proposed), depending on the
characteristics of the traffic scenario to be replicated. A tool
should be able to even combine trace-based and analytical
model-based techniques, that is, to generate flows with
timings from a trace while filling their packets with config-
urable content or, viceversa, using content from the trace
while inter packet times follow a custom statistical model.
Fig. 1 shows the joint use of trace-based and analytical-
based techniques for different traffic flows.

Most workload generators in literature work at either
flow level (e.g., [20]) or packet level (e.g., [29,28]), while
few of them operate instead at application level (e.g.,
[41]). Accurate replication of network workload requires
the support of both flow-level and packet-level traffic pro-
files, with the additional ability to replicate specific traffic
properties that are typically chosen by the application,
such as, TOS fields (e.g., for experimenting with QoS), pro-
tocol ports, and transport-level payload (e.g., for experi-
menting with security policies, network neutrality, traffic
classification). The realistic replication of some scenarios
also requires the ability to manipulate headers at a higher
protocol level (e.g., support to SIP, RTP). Fig. 1 shows a
workload generator able to operate distributedly and to
exchange between each source-sink pair several sets of
traffic flows with different properties. Moreover, each
source or sink is also able to measure performance indica-
tors and to store them locally or remotely. Indeed, besides
specifying the characteristics of the traffic to generate, it
should be possible to collect measures on the performance
experienced by the injected workload. This allows the
operator to perform experiments using workload from real
applications (i.e. using a pcap trace) and without relying on
some external software (e.g., tcpdump + tcptrace) to evalu-
ate network performance parameters such as throughput,
latency, jitter, and losses. Fig. 1 contains a list of configura-
ble parameters that it should be possible to separately set
for each flow and a set of network-level performance indi-
cators to be measured.

A workload generator should be able to operate in
both open-loop and closed-loop mode [43]. In the former
mode the tool works independently from the observations
of the network that are carried out during the generation.
In closed-loop mode, instead, the tool changes its behav-
ior at run time according to these observations, which
drive modifications to the parameters of the traffic to be
generated. Automated changes range from parameters of
the statistical distribution of the inter-packet time (IPT)
and payload size (PS) of the packets, to the content of
the packet payloads, from device (e.g., servers) log files
to higher level information. Fig. 1 schematically shows
how a single source may be able to generate traffic
according to both trace-based and analytical model-based

generation and using open-loop and closed-loop
generation.

There are other requirements relevant to the realistic
and accurate replication of scenarios with complex work-
load that should also be taken into account. Difficulties
grow in - and some approaches and techniques are not
applicable to - the study of large scale networks and plan-
etary-scale testbeds (e.g., PlanetLab), while in controlled
testbeds the analysis and testing phases are typically sim-
pler [44]. Real networks have often a very large scale today,
and tests have to be performed also on large scale in order
to be representative of the reality. Large scale experiments
require software architectures (hardware-based genera-
tors cannot be deployed on a large number of nodes) that
are scalable and able to run on hosts that are very different,
and possibly located far from each other. The support for
automated and configurable experiments is greatly needed
in such context. In large-scale networks, tests have to be
performed automatically because the size of the system
under test (SUT) may prevent to manually perform activi-
ties on each and every host involved in the experiment.
Heterogeneous scenarios also require high configurability,
because, as said, hosts may be very different from each
other and may operate in significantly different conditions.
Finally, the network scenarios have to be tested in the very
same conditions, and therefore the workload generated
needs to be repeatable and the obtained results comparable.
While repeatability and comparability may be easier to
achieve in the case of trace-based approaches, things
change with approaches based on analytical models. In
facts, the statistical distributions generated by pseudo-ran-
dom number generators may be quite different from each
other, especially for short time periods.

3. A synthetic workload generator

In Section 2 we reviewed the problem of the realistic
replication of network workload providing our view to
overcome some of the current limitations. In this section
we describe the main architectural principles we adopt in
the design of a network workload generator having the
desirable features described in Section 2 and conceived
to move a few steps towards the generation of realistic net-
work workload.

Our synthetic network workload generator is based on
D-ITG [24] and its traffic generation engine. The distrib-
uted (logical) architecture of our synthetic network work-
load generator is reported in Fig. 2. It is composed of four
main modules, which can run on different hosts: sender/
receiver, logger, controller, analyzer.

The core functionalities are provided by the module
called sender/receiver. It can act as a traffic sender, recei-
ver, or both, and it takes into account the aspects discussed
in Section 2 (it is worth noticing that our platform can
work with multiple sender/receiver instances and/or
multiple senders can send to a single receiver as well as
a single sender can send to multiple receivers). The mea-
surement information can be saved directly by the sen-
der/receivers, or it can be sent - through the network - to
a module called logger (useful to collect all the measures

3536 A. Botta et al./Computer Networks 56 (2012) 3531-3547

—

Control data

Logger < —+=»| Controller

>
=) Realistic workload

Log data to
be stored
N, B Log data to be
N, <> analyzed
A
c—

" Sender/Receiver] } Sender/Receiver,
\
" A <.
\«. H ‘} T

N < J
NN Analyzer <« -
7

Fig. 2. Architecture of our synthetic workload generator.

in a single point or in the case of hosts with limited storage
capabilities - e.g., sensors, smartphones, etc.). To cope with
large scale experiments, the sender/receiver modules can
be controlled directly by the user, or by another module
called controller, which receives input from the user and
interacts with the senders/receivers in order to orchestrate
the measurements. This way, the user can completely con-
trol a large-scale distributed experiment from a single van-
tage point. A signaling channel between the main modules
of the architecture (controller, sender/receiver, and logger)
is used for the configuration, management and synchroni-
zation of the experiments. A module called analyzer is in
charge of analyzing the results of the experiments — both
on-line and off-line - extracting performance measures
experienced by the probing traffic.

The platform is written in C and it is available at [24].
All the modules of the platform make use of multithread-
ing. The logger and the workload senders/receivers use a
single thread for the communication with the other enti-
ties (a custom protocol called Traffic Specification Protocol
(TSP) has been designed for this aim) and a number of
threads for their specific activities (i.e. logging or sending
and receiving the workload). In more detail, they start with
a single thread, which handles the communication with
the other entities. Each time a request is received from
the command line or from the network (e.g., the workload
sender receives a request to generate a new flow from the
controller), a new thread is created, which performs all the
operations related to the new request (e.g., sending the
packets of the flow). Workload senders and receivers use
both standard and raw sockets,! depending on the kind of
activity performed. Standard sockets are used for the com-
munication with the other entities (i.e. the signaling), for
the analytical-based generation of TCP and UDP flows, and
for trace-based generation of UDP flows; raw sockets are
used for ICMP flows and trace-based TCP generation. Stan-
dard sockets are used for signaling in order to take full

! When using standard sockets the payload of the packets is automat-
ically encapsulated according to the transport-layer protocol in use. Raw
sockets usually receive raw packets, including the transport-layer header.

advantage of TCP services (reliability, in order delivery,
etc.) for this important task. In the case of analytical-based
generation of TCP and UDP flows, standard sockets are used
to experiment the same operating conditions of real net-
work applications. For the same reason we use standard
sockets to generate trace-based TCP flows. In the case of
trace-based UDP flows, we use raw sockets to have full con-
trol of all the information carried by the packets at all the
protocol layers. This is to accurately replicate the trace
and, at the same time, to insert information required for col-
lecting performance measures, as explained in the following.
To prevent the kernel of the receiving host from generating
Destination Unreachable ICMP messages, as instead happens
in workload generators such as TCPReplay, we open stan-
dard UDP sockets also at the receiver side. However, the
packets are received using raw sockets, in order to recover
all the information inserted by the workload sender.

Table 1 reports the main features of our generation plat-
form. Firstly, the platform has been developed to run on
multiple hardware architectures and operating systems,
which brings large flexibility and the possibility to deploy
it in complex and heterogeneous scenarios (e.g., adopting
also mobile platforms). This is accompanied by the support
of several communication protocols at different layers,
including new generation transport-level protocols as SCTP
and DCCP. There are also several features particularly rele-
vant to the orchestration and management of the experi-
ments: (i) senders and receivers can be remotely
controlled both in a centralized or distributed fashion;
(ii) the data collected by these entities can be stored either
locally or on a remote logger (this is particularly useful
when terminals have a small amount of storage space);
(iii) time synchronization with external devices is possible
through serial port connections. With regard to the gener-
ation process, each sender can generate multiple parallel
flows towards different receivers using a separate thread
for each flow (and viceversa). The generation can either fol-
low simple stochastic models for packet size and inter
departure time, or more complex analytical models that
mimic application-level protocol behavior, or instead it
can follow real traffic patterns captured in traffic traces.

A. Botta et al./Computer Networks 56 (2012) 3531-3547 3537

During generation, several metrics can also be collected -
often with packet-level granularity - as for example
throughput, jitter, packet loss, one-way delay and round-
trip time. Our generation platform is able to generate
traffic at very high packet rates (>850Kbps) and bit
rates (>950 Mbps) using COTS Hardware (Intel Xeon
E5540@2.53 GHz) and without any performance optimiza-
tion; moreover, through novel software approaches as the
Direct NIC Access Technology [45] that reduce packet cop-
ies in the system it is expected to make it able to operate at
even higher line speeds (e.g., 10 Gbps) as done with Osti-
nato [22].

The configurable parameters reported in Table 2 show
how the platform is highly configurable at different levels
of the protocol stack. Host-level configurable parameters
are specified for each sender/receiver and are mostly re-
lated to the configuration of the experiment, e.g. logging
and network interfaces to be used for signaling. The inter-
face to be used for probing/emulated traffic can also be
configured, together with other parameters at network le-
vel, as Time To Live and Type Of Service. At flow level there
is a rich set of parameters that can be configured: some are
macro-properties of the flow (e.g., duration, time offset be-
fore start, number of packets/bytes), other parameters
specify the typology of traffic to be emulated, either
through statistical properties or with the pcap trace to be
used as a reference, or by simply indicating the application
to emulate (e.g., DNS, Telnet, VoIP and network games like
Counter Strike and Quake 3). Other properties definable for
each single flow include the direction of the traffic (one
way or round trip) and enabling the inter packet time
recovery mechanism. Finally, transport-level header fields
(e.g., source and destination ports, stream ID for SCTP)
and operating modes (e.g., Congestion Control for DCCP)
can be configured.

The features and the related configurable parameters of
our workload generator can be used to properly study cur-
rent research questions. For example, the ability to collect
performance measures while generating traffic that emu-
lates real applications (e.g., in terms of IPT and PS and/or
replicating portions of real traffic traces) can be used to
check possible network neutrality violations (see Section
5). Also, by using various transport protocols, both tradi-
tional (UDP and TCP) and novel (SCTP and DCCP), we can
test how different kinds of traffic are transported by differ-
ent (and novel) network technologies, thus following the
technological evolution of the networking field.

4. Advanced features introduced in the synthetic
workload generator

According to the view proposed in Section 2, different
issues have to be faced when actually building a software
platform generating realistic workload, running on com-
mon operating systems and on COTS hardware. Our tool
has been conceived and implemented carefully considering
each of the issues of Section 2: it implements both trace-
based and analytical-based approaches as well as their com-
bination; it can replicate workload at different layers (e.g.,
packet, flow, application, etc.) and each flow is completely

configurable at different layers; it works in both open-loop
and closed-loop; it works distributedly (e.g., large set of in-
stances cooperate to generate the workload) on large scale
scenarios; it is configurable in an automated fashion; it
guarantees repeatable and comparable experiments (see
Fig. 1). In this section we describe in more detail some of
the issues we coped with when building our tool, selecting
those not previously considered in literature.

4.1. Synchronization among the involved entities

Often workload generators (e.g., MGEN, TCPReplay) are
only able to generate traffic in one direction, i.e. from a
sender to a receiver. Some others can generate traffic in
both directions, but they do not synchronize the two par-
ties (e.g., TrafGen). Real traffic is normally bidirectional,
with each side of the communication affecting the other
one depending on protocol interactions at different layers
(e.g., packet retransmissions in TCP, or request-response
communication in application-level protocols, etc.). The
workload sender/receiver module of our architecture has
been conceived to reproduce workload in bidirectional
synchronized mode. In more detail, as regards trace-based
generation, once two entities are provided with the same
bidirectional pcap trace, each of them generates the pack-
ets that are related to one of the two sides of the flows in-
side the trace. The synchronization can be achieved in two
ways: by byte-stream or timestamp. In the first case, the
two entities get synchronized by looking at the sent/re-
ceived bytes: each entity waits for the reception of a cer-
tain amount of data before sending its data. The amount
of data to be received and sent is extracted from the packet
trace. Looking at the sequence number of the TCP header, it
is also possible to avoid re-injecting duplicate bytes. Using
byte-stream based synchronization, the bidirectional byte-
stream in the trace is exactly replicated on the network.
This operating mode is therefore typically used for TCP or
SCTP flows. On the other hand, the timestamp synchroni-
zation can be used for the reproducibility of non-interac-
tive applications, as the synchronization is obtained
looking at the IPT of the packets: each side sends its pack-
ets according to the timestamps in the trace. This mode is
typically used for UDP or DCCP flows, and it is used in the
last experiment of Section 5.

4.2. Replication of real but fully configurable packet traces

Besides the bidirectional traffic generation discussed
before, trace-based workload generation requires the con-
sideration of three other important aspects: how to put
the data from the trace into the packets (trace manage-
ment), how to preserve the possibility to collect measures
related to the performance experienced (measure manage-
ment), how to configure the information contained in the
payload to fit the current networking scenario (payload
management), and how to manage the timing of the packet
sending (timing management).

Trace management must support filling the packets with
the data in the pcap trace file while guaranteeing the re-
quired performance. To obtain high-performance (i.e. high
generation rates), our workload generator can optionally

3538 A. Botta et al./Computer Networks 56 (2012) 3531-3547

pre-load the whole trace in RAM before the actual genera-
tion, which avoids reading the trace from disk at genera-
tion-time (this operation obviously requires a sufficient
amount of RAM on the host). The information that is actu-
ally loaded in RAM depends on the kind of generation re-
quested. In the case of TCP, only the application layer
payload is necessary, while for UDP, also the IP and UDP
headers are stored in RAM. This is because for TCP we
use standard sockets, while for UDP we use raw sockets,
as described before. It is also worth noting that a few fields
of the packet have to be modified at generation time: the
identification field of the IP header and, therefore, the
checksum of the transport layer header. The reason for this
is described in the following.

Measure management is necessary because the genera-
tion of packets from a trace makes it difficult to collect per-
formance measures. When performing analytical-based
generations, our tool inserts some custom fields into the
packet payload: flow id, packet id, sending and receiving
timestamps, and size. These fields are dumped in the log
files during the generation, in order to calculate the perfor-
mance indicators for packets sent and received. In trace-
based generation, the packet payload is taken from the
trace and the custom fields cannot be inserted anymore.
To cope with this issue, different actions are performed
by our workload generator.

Firstly, most of the information (timestamps, size of the
packet of UDP flows, id of packets of TCP flows, and flow id)
is saved by each sending and receiving entity into a log file.
After the generation these log files are parsed by the ana-
lyzer to recover the original information (i.e. the informa-
tion regarding each packet sent and received).

The other pieces of information (size of the packet of
TCP flows, id of the packets of UDP flows) are instead han-
dled differently. When generating TCP flows, the actual IP
packet size is decided by the TCP/IP stack of the host. TCP
does not guarantee, indeed, that the bytes passed to differ-
ent send () calls will travel through different packets (bytes
are buffered and packets are sent when the kernel decides).
This creates an issue in identifying the single blocks of data
written by the sender into the socket buffer, possibly in dif-
ferent times, and therefore for determining the perfor-
mance indicators for that particular data block. To cope
with this issue, the receiver module is provided with the
same pcap trace used by the sender, so that it knows in ad-
vance which block of data is going to be sent by the sender,
and can issue a receive () for that particular amount of data.

When generating UDP flows, the missing piece of infor-
mation is the packet id. The loss, reordering or duplication
of packets, possible with this protocol, prevents to use the
same operating mode described above. In this case, the
packet id has to travel within the packet. Our workload
generator puts this information into the identification field
of the IP header. The value of this field is re-wrapped every
65,536 packets. This mechanism is therefore robust to the
loss, reordering or duplication of 32,767 packets. Changing
the identification field requires the re-computation of the
UDP checksum. When the user requests the generation of
the same trace for a number of times, this requires
calculating these fields at generation time, as anticipated
above.

It is worth noting that these features can be disabled in
case the measure collection is not necessary.

As for payload management, changes may be needed to
some parts of the packet payloads in order to properly rep-
licate the scenario. This is the case, for instance, of multi-
media communications using SIP. In this case, the SDP
headers in the trace contain the IP addresses of the hosts
involved in the original communication. In order to be real-
istic, such addresses have to be replaced with those of the
hosts used for workload replication. Similarly, when gener-
ating RTP traffic, the timestamps in the packets have to be
updated according to the current time. The sender/receiver
module of our architecture can perform such trace adapta-
tion on the fly. For flexibility and configurability, we pro-
vide a customizable configuration in which for each
header field subject to change the user can specify what
to do using a set of options (set_to, auto_increment,
apply_custom_transformation, etc.). These features have
been used for the last experiment of Section 5.

As for timing management, as described before, the
choice of sending a packet can be made by either looking
at the timestamp in the trace or at the bytes received from
the other side. However, there is also a third possibility, to
support the case in which the experimenter wants to fill
the packets with the content of a packet trace and at the
same time he wants to generate them with a certain pat-
tern (i.e. timing, which also implies a certain bitrate). In
this case, it is possible to mix analytical-based and trace-
based generation: the packet sending times are taken from
a statistical distribution (which also includes the constant
distribution), while the packet content is taken from a pcap
trace. This generation mode is used in the first experiment
of Section 5, to emulate two different applications generat-
ing traffic at the same rate.

4.3. Replication of main states of traffic sources using tractable
models

In analytical-model based generation — both at packet
and flow level - the availability of flexible and tractable
statistical models, not limited to simple marginal distribu-
tions, is an important element. For example, models should
take into account mutual and temporal correlations. More-
over, useful and effective models should see the generation
process of each single source as a sequence of different
states in which the source can have very different behav-
iors (e.g., silent, bursty, etc.). The sender/receiver module
of our architecture adopts the modeling approach pre-
sented in [46]. Specifically, customly pre-configured Hid-
den Markov Models (HMM) are used to reproduce the
behavior of real traffic sources and then for the synthetic
generation of their workload. The HMM reproduces differ-
ent states in which a single source can be, and is used to
associate to each state different statistical profiles of both
PS and IPT, while state transitions happen with probabili-
ties defined by a transition matrix. This can be used to
accurately reproduce - for every source typology - the ori-
ginal workload by taking into account several statistical
properties, as marginal distributions as well as mutual
and temporal dependencies [46]. Fig. 3 shows an example

A. Botta et al. / Computer Networks 56 (2012) 3531-3547

IPT sequence

3000 4000

2000
sequence number

5000

PS sequence

-
4000

2000 3000
sequence number

(a) Real Trace

0 1000 5000

3539

IPT sequence

% 100
ES .
=
o E
= 2
o 3
3 2
=] 0 et L LT et i)
0 1000 2000 3000 4000 5000
sequence number
PS sequence
2000 . .
§ 1500 T TR
& 1000 . ‘ 1
17} B
o %0 s Do
0 S3 . Y VS 3 TN
1000 2000 3000 4000 5000

sequence number

(b) Synthetic Trace

Fig. 3. HMM-based workload generation (SMTP). A logarithmic transformation is applied to the values because of the wide range of IPTs of real traffic.

in which our tool performs accurate generation/replication
of time series of IPT and PS of real SMTP traffic.

4.4. Correct and accurate replication of packet timings

Accurate workload generators should guarantee the
repeatability of experiments by testing the network sce-
narios each time in the very same conditions, and thus
injecting exactly the same workload. This involves two
main aspects. Firstly, when generating packets with spe-
cific IPT and PS, it should be possible (e.g., when simultane-
ity of packet bursts must be preserved) to set the seed for
both the IPT and PS random processes. The sender/receiver
of our architecture can have the seed of each random var-
iable separately configured. Fig. 4 shows the time plot of
the IPT when generating a Normal distribution (x =5 ms
and o = 30 ms, we set IPT = 0 if IPT < 0). The left plot shows
experiments performed with a workload generator in
which the seed is out of the experimenter’s control, while

© o
0.09 +
x 4+ 1strun
0.08 X 2nd run
007 x x fo) O 3strun

inter departure time [s]

0 025 05 075 1

125 15
time [s]

(a) Different seeds

175 2

225 25

inter departure time [s]

the right plot shows experiments performed with our tool
in which the seed is configurable: specifying the genera-
tion seed can be used to inject into the network exactly
the same traffic pattern. Secondly, to inject the very same
pattern, the workload generator should be able to repro-
duce the IPT as accurately as possible. This important as-
pect, discussed in detail in [47,48], is further analyzed in
the following.

Software-based synthetic workload generators can eas-
ily suffer from inaccuracies in packet sending timings -
thus affecting IPT - especially when running on COTS hard-
ware and when not altering the operating system behavior
(e.g., specific drivers, realtime support in kernel scheduler,
etc.). This means that even if the workload has been prop-
erly modeled or captured, its reproduction can be severely
flawed by a software-based workload generator unless the
timing issues are properly taken into account. For instance,
Fig. 5 shows the PDF of the IPT samples obtained when
generating a traffic flow with rate of 1 Mbps, a constant

0.1

0.09 | ® ¥ i
0.08 O 3strun
0.07

0.06 hd ke ®

0 025 05 075 1

125 15
time [s]

(b) Same seed

175 2 225 25

Fig. 4. IPT samples from Normal distribution.

3540 A. Botta et al./Computer Networks 56 (2012) 3531-3547

Uniform distribution at 1 Mbps

15000 T =y T T T T
u] O Accurate
O Inaccurate|
X _Analytical
o
__ 10000 } o
X
a
5000 |
W) .
[e]
o L™ Ty ‘ ol e
3.8 4 4.2 4.4 4.6 4.8 5 52
IPT (s) x10°

Fig. 5. IPT Samples from Uniform distribution with an accurate and non-
accurate generator.

PS of 512 Bytes, and IPTs following a Uniform distribution
(mean value is 4.1 ms). As a reference, in the same figure
we also report the analytical Uniform distribution for such
IPT (black x). The figure shows how our tool (blue? circle),
opportunely designed and tuned, follows more strictly the
analytical distribution when compared to TG [26] which
does not accurately replicate the required IPT (red
squares). This is because the sender/receiver of our archi-
tecture adopts the design directions presented in [47] as
regards timing issues in synthetic traffic generation: (i)
polling and (ii) IPT recovery in order to more accurately con-
trol actual IPTs, and (iii) buffered binary logging to reduce
internal interferences typically happening in a software
generator. We refer the reader to [47,48] for further details
on the accuracy of workload generation.

It is worth noting that the IPT reported in Figs. 4 and 5 is
measured on the host generating the workload. Therefore
its accuracy constitutes an upper bound for the accuracy
of the IPT on the network or at destination.

5. Synthetic network workload generator at work

Realistic workload generation is used in many studies,
as listed in Section 1. In this section we provide some prac-
tical examples in which our platform for the generation of
realistic network workload, thanks to its features, can be
used for the study of hot topics in the networking field:
(i) broadband Internet performance and detection of net-
work neutrality violations; (ii) RFC-based security and per-
formance assessment of home network devices; (iii)
performance assessment of multimedia communications.
The aim of this section is to provide evidences of the flex-
ibility and usefulness of the proposed tool, while it does
not intend to give deep details on each measurement sce-
nario nor to deeply discuss the results obtained.

5.1. Broadband Internet performance and network neutrality
violations

In the networking community, there is an increasing
interest on both the performance of the Broadband Inter-
net [51-54] and on the so-called “Network Neutrality”

2 For interpretation of color in Figs. 1, 2 and 4-9, the reader is referred to
the web version of this article.

[49,50], giving rise to a lively debate involving both techni-
cal and socio-economical issues [55-58]. Network Neutral-
ity violations are often connected to providers
discriminating different network applications run by users
[49,50]. For example, the provider may slow down band-
width-hungry applications (e.g. Bittorent) rather than
Web browsing, in order to avoid network saturation and
improve user experience. Several techniques are available
to Internet service providers for identifying network appli-
cations (a necessary step for performance discrimination),
the two most common ones being based on transport-level
ports and payload string matching, even if more experi-
mental criteria can look also for other (e.g., statistical)
characteristics of the flows produced by applications.

The aim of this experiment is to show how our platform
can be used for investigating if and how the provider is
applying some sort of discrimination to the traffic of differ-
ent applications. In particular, we use the features pro-
vided by our tool - e.g, trace-based and analytical
model-based generation, payload-level and transport-level
configurability, active measurements, etc. — to detect the
“neutrality” violations with reference to peer-to-peer traf-
fic in two different scenarios: a residential broadband net-
work (based on ADSL) and a mobile broadband network
(based on 3G), as schematically shown in Fig. 6a.

In the first scenario, we select 4 ADSL users having the
same SLA (Service Level Agreement) but with different ISPs
in Italy. The considered SLA is 20 Mbps in downlink and
1 Mbps in uplink. We configure the tool to periodically
generate TCP traffic flows at maximum rate (20 Mbps with
maximum allowed packet size), and emulating HTTP and
Bittorrent [62] in terms of transport-layer ports and packet
payload. Basically, we generate two flows with the same
characteristics in terms of offered bitrate and traffic profile.
However, the transport-layer ports and the payloads of the
packets of the two flows are taken from real traffic traces of
a Bittorrent and a Web browsing session. The flows have a
duration of 15 s and are not overlapped in time. Thanks to
our tool, during the generation we also collect measures
related to the end-to-end performance experienced by
the two flows.

Fig. 6b shows the results obtained in downlink with TCP
for both HTTP and Bittorrent and for all the ISPs (we refer
to them with the terms ISP1, ISP2, ISP3 and ISP4). Looking
at this figure two main considerations can be made: (i)
none of the 4 ADSL reaches the bitrate of the SLA; (ii)
one of the ISPs (the ISP2) out of four is actually enforcing
a limitation of the Bittorrent traffic. In fact, the bitrate re-
ceived when replicating the workload of this application
is much lower than that received when replicating HTTP.

In the second scenario, we used the 3G network connec-
tion of one of the main operators in Italy. As a mobile user,
we generate flows replicating the transport layer ports and
packet payloads of Bittorrent and HTTP, but with the same
characteristics in terms of offered bitrate and traffic profile.
In more details, we generate through 3G connection two
flows with a constant bitrate of 350 Kbps, and with packet
sizes (704 Bytes) and inter-packet times (62 pps). However,
as done in the previous scenario, the transport-layer ports
and the payloads of the packets of the two flows are taken
from real traffic traces of a Bittorrent (for the first flow) and

A. Botta et al./Computer Networks 56 (2012) 3531-3547

Workload
generator

3541

HTTP-like
flow

Bittorrent-like

/ flow

Workload sink

L e PNEL LEIRY PPy SR SRR SN]

Workload
generator
~-ISP1 HTTP
-6-ISP1 Bittorrent|
—+|ISP2 HTTP 2l
-e-|SP2 Bittorrent
—+ISP3 HTTP or
-+-1SP3 Bittorrent| g}
—=-1SP4 HTTP
-8-ISP4 Bittorrent| ®|
Qar
Qo
=3
L 27
o
5 -~
0

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Time (s)

(b) Results of the experiment on the ADSL

500 T T
400 [
300
(2]
Q
Ke)
< —HTTP
£ 200
2 = = =Bittorrent
100 [Hy , 2 wh v H
P L Sl RN L N WL Ay Y 1 it Ll
', VAT Tyt O AR LY LY Y AR TS L XY
;..-,‘--‘.:-,",.:.y‘.'gn‘:"‘.".’ AL gy ek
i . .
0
0 20 40 60 80 100 120

Time (s)

(c) Results of the experiment on the 3G

Fig. 6. Synthetic workload generator at work for detecting network neutrality violations.

a Web browsing session (for the second one). The flows

have a duration of 120 s and are not overlapped in time.
Fig. 6¢c shows the bitrate observed during the experi-

ment: the performance of the Bittorrent-like flow (58 Kbps

in average) is significantly lower than that of the HTTP-like
flow (350 Kbps in average). This means that also this tele-
com operator is differentiating the service provided to dif-
ferent applications, reducing the bandwidth available to

3542 A. Botta et al./Computer Networks 56 (2012) 3531-3547

Bittorrent flows. These two experiments show that by gen-
erating configurable and realistic workload and measuring
the network performance it experiences, it is possible to
verify that the provider is actually enforcing a policy to
limit the bandwidth allocated to Bittorrent flows, and to
quantitatively study its effects. Generally, in literature, this
kind of analysis is performed using ad hoc tools [59].

5.2. RFC-based security and performance assessment of home
network devices

Security and performance are hot topics in home net-
working scenarios. To study both topics in a standard,
repeatable and comparable fashion, different RFCs have
been proposed, addressing issues related to the assessment
of the performance of network devices [60,61] and to
firewall benchmarking [61]. For instance, an assessed
methodology is proposed in [60] to benchmark network
interconnect devices such as bridges, switches, and rou-
ters. In [60] authors state the importance of specific fea-
tures that benchmarking equipment should provide:
coordination between sender and receiver of probing traf-
fic (if run on different hosts), inclusion of sequence num-
bers in probing packets, generation of bidirectional
traffic, generation of bursty traffic (i.e. with on-off pat-
terns), and generation of a mix of protocols approximating
the conditions of a real network. Moreover, the authors
stress the importance of generally accepted testing prac-
tices regarding repeatability, variance and statistical signif-
icance of small numbers of trials. In [61] different tests for
firewall benchmarking are proposed: IP throughput, maxi-
mum TCP connection establishment rate, HTTP transfer
rate, latency, etc. These tests require the benchmarking
equipment to provide features such as: generation and
recording of unidirectional and bidirectional IP flows, gen-
eration of multiple concurrent TCP connections, generation
of HTTP traffic, timestamping of sent and received packets,
etc. Moreover, they require the collection of different mea-
sures related to the generated traffic.

All these features are provided by our workload gener-
ator, and can be used to test home network devices for
both performance and firewall capabilities, as done in this
experiment. In Fig. 7a we report a high level view of the
network used for the experiments. It is a home network
constituted by a laptop connected to the Internet through
an ADSL connection. The laptop is equipped with our
workload generation platform, which communicates with
a workstation located at the University of Napoli and con-
nected to the Internet through the GARR [63]. In this sim-
ple experiment we follow the guidelines of [61]: we
generate HTTP requests and responses and we measure
the performance of the ADSL router/firewall with and
without the firewalling features enabled. In Fig. 7b and ¢
we respectively report some of the results regarding both
firewall and baseline performance (i.e. by disabling the
firewalling features on the home router). As suggested in
[61] (and more precisely in its Section 5.6.5.1), such results
are presented in a tabular form, showing the transfer rate
achieved through the firewall when a client in the home
requests multiple objects to a server outside the home
using HTTP 1.1. As shown, the firewall slightly affects the

performance when large objects are requested. In particu-
lar, all the HTTP requests and responses are completed
with and without the firewall, and the transfer rate is
about the same. More importantly, the features for bidirec-
tional and synchronized trace replication can be used to
easily generate realistic workload of real clients and serv-
ers, and to measure the performance parameters achieved
by such workload.

5.3. Performance assessment of multimedia communications

Perceived quality of multimedia communications de-
pends on performance of both signaling and data flows.
Therefore, the analysis of the performance of multimedia
systems has to consider issues related to both the signaling
(connection set up, codec negotiation, etc.) and the multi-
media flows (voice, video, etc.). To illustrate the utility of
the features provided by our network workload generation
tool, we show two examples in which the features intro-
duced as well as its configurability and flexibility allow a
researcher to study two interesting and emerging scenar-
ios: multiplayer network games workload generation and
analysis of the performance of real VoIP communications.

5.3.1. Multiplayer network games

Adopting the analytical model-based approach, we
show how we are able to replicate the workload of a LAN
party with eight Age of Mythology (AoM) players. Traffic
flows generated by AoM players are captured during the
LAN party. Afterwards, the traffic has been modeled in
terms of IPT and PS. Such models are then added to our
workload generators, and the traffic is generated over the
same LAN, according to these models. In this way we rep-
licate the same LAN party with the same number of users
and with synthetic traffic. Fig. 8a shows the probability
distribution functions (PDFs) of the IPT and PS of the origi-
nal application traffic (Empirical), of the models (Analyti-
cal), and of the traffic generated by our tool (Synthetic).
As Fig. 8a shows, the workload generator is able to cor-
rectly replicate respectively both IPT and PS of the original
real traffic trace.

During the workload generation, we also record mea-
sures related to the ongoing games session and - in order
to compare the bitrate achieved with real AoM players
and with our tool - we also perform an experiment using
our workload generator on the LAN instead of real AoM
players. Fig. 8b shows the bitrate achieved in both cases:
as we can simply see the real bitrate and the bitrate
achieved with the workload generator are almost the
same. More precisely, both experiments are 15 min long,
the real traffic traces with a mean of 0.9979 Kbps and
standard deviation of 0.20 Kbps and the synthetic trace
with a mean of 0.9777 Kbps and a standard deviation of
0.22 Kbps. This simple experiment shows how our tool
can be used to generate realistic workload of multimedia
communications and to measure, at the same time, impor-
tant performance parameters like bitrate.

5.3.2. VoIP applications
Adopting the trace-based approach, we test the perfor-
mance of a real VolP communication using a real applica-

A. Botta et al./Computer Networks 56 (2012) 3531-3547

— e c—
-
P LT

.
»* Home

-

¢
’
’
L]
1)

A}
Workload *s_

~
N
Y

router/firewall

Public
Internet

Provider

network

3543

enerator “===z"" connection
J SuT
(a) Network scenario
Firewall performance
Object size 100KB 1IMB 5MB
Completed 50 50 50
requests 100% 100% 100%
Completed 50 50 50
responses 100% 100% 100%
Transfer Rate %106 %106 %100
(bit/s) 5.5%10 6.8*10 6.6*10
(b) Results with the firewall enabled
Reference performance
Object size 100KB IMB 5MB
Completed 50 50 50
requests 100% 100% 100%
Completed 50 50 50
responses 100% 100% 100%
Transfer Rate %106 %106 %100
(bit/s) 5.3*10 6.9*10 7.2¥10

(c) Results with the firewall disabled

Fig. 7. Synthetic workload generator at work for RFC-based security and performance assessment of home network devices.

tion, namely Ekiga. Traffic flows containing SIP and RTP
(audio using the speex codec) are captured during VolIP calls
between Ekiga instances. Afterwards, the traces are repli-
cated among our workload generators and a real Ekiga in-
stance (Fig. 9a). The host on the left of the figure is
equipped with our tool and connected to the Internet
through an ADSL, while the other host is located inside
our university network and it is running a real Ekiga in-
stance. Thanks to the features for trace replication and syn-
chronization, modifying the payload content on-the-fly,
our tool is able to interact with real applications: the RTP
stream is actually reproduced by Ekiga and the audio is
intelligible. During the workload generation, we also re-
cord measures related to the ongoing communications. In
order to measure the jitter in the two directions, we also
perform an experiment using our workload generator on
both sides of the network of Fig. 9a. In Fig. 9b we report

the results obtained for the two multimedia flows, from a
workload generator to the other and viceversa, in terms
of end-to-end jitter. As shown, the jitter of both flows is
lower than 1 ms, with one direction having slightly higher
values due to the asymmetric bandwidth of the ADSL con-
nection. Again, this simple experiment shows how our tool
can be used to generate realistic workload of multimedia
communications, interacting also with real applications,
and to measure, at the same time, important performance
parameters like jitter.

6. Discussion and conclusion
Network workload is the result of network events and

interactions happening at different abstraction levels.
Accurate modeling and generation of realistic network

3544

A. Botta et al./Computer Networks 56 (2012) 3531-3547

01 T T T T T T T T T T
I Erpirical I Enpiical
009 === Analytical | = === Analytical | |
Synthetic #— Synthetic
0.08 -
0.07
0.06]
0.05 4
0.04 |
003 ',
ll -
0.02 :
] a
0.01 :]
- %,. L “‘ —
005 01 015 02 025 03 035 04 1 20 25)
IPT (s) PS (Byte)

(a) PDFs of Empirical vs. Analytical vs. Synthetic

Bitrate comparison

3 T T T

25}

Bitrate (kbps)

—— Empirical
— Synthetic

L 1 1 1
0 100 200 300 400
Time (s)

L 1 1 1
500 600 700 800 900

(b) Results of the experiment

Fig. 8. Synthetic workload generator at work for AoM LAN party.

workload are difficult and challenging tasks because of
heterogeneity, scale and complexity of the current Inter-
net. In addition, the continuous temporal evolution of the
network workload seriously compromises the fidelity to
reality of both theoretical models and real platforms de-
signed and developed in the past. In our view, the genera-
tion of realistic network workload (using software
platforms) should reflect and take into account these con-
siderations and should be pursued using a flexible and
highly configurable approach. The intrinsic nature of
swiss-army-knife of our tool tackles the main issues chal-
lenging this field. As clearly shown in the previous exam-
ples, our tool represents a framework for generating the
requested network workload providing the possibility to
(i) act as both trace-based and analytical model-based work-

load generator, (ii) set several parameters at several
abstraction layers (packets, flows, objects, applications,
users, etc.), (iii) measure performance indicators when
generating synthetic workload, (iv) consider issues related
to the large scale of current Internet, automated configura-
bility of the involved entities, repeatability of the genera-
tion stages, and comparability of the results. The network
scenario (number of involved hosts, emulated network
scenarios, network conditions, etc.), the analytical models
or the network traces, and all the other parameters of each
experiment are left to the control and the decision of the
users.

In this paper, we have discussed the main features that
a network workload generator should have today in order
to properly study current research questions and we have

A. Botta et al./Computer Networks 56 (2012) 3531-3547 3545

Multimedia
flows

--------- —

-
cefecfoecccnnsnnsnccna="

= e,

J flows

Ekiga

ft-ph
Signaling soft-phone

suT ... &

) [
L

P

*
-

Workload
Generator

Public
Internet

Workload sink

(a) Network scenario

0.8

0.6

Jitter (ms)

0.4

0.2

+ Forward
o Reverse

Time (s)

(b) Results of the experiment

Fig. 9. Synthetic workload generator at work for performance assessment of multimedia communications.

presented a tool implementing such features. The pre-
sented tool is a new development version of the D-ITG
[64-68] network traffic generator. D-ITG has been used
to evaluate the performance of wireless networked sys-
tems. More precisely, in [69,70] it has been used to analyze
the performance of heterogeneous wireless networks, con-
sidering handoffs too. In [71] it has been used to correctly
assess the capacity of wireless links. In [72,73] it has been
used to evaluate the performance achieved in metropolitan
wireless network in the Berlin area. In [74] it has been used
to asses the impact of middleboxes on the performance of
wireless networks (3G and Satellite networks). Finally,
data collected using D-ITG over real heterogeneous wire-
less networks have been used to derive the model pre-
sented in [75]. Also, D-ITG has been used to evaluate the
performance of transport protocols (e.g., SCTP) [76] and
networked embedded systems (e.g., network processors)
[77].

As illustrative examples, we have shown how - gener-
ating realistic network workload with the proposed tool

— it is possible to practically study hot topics like broad-
band Internet performance and network neutrality viola-
tions, RFC-based security and performance assessment of
home network devices, and performance analysis of multi-
media communications. The analysis and the methodology
proposed in this paper could be also used to study other
hot topics like censorship [78] and the impact on the net-
work of natural disasters [79].

Acknowledgements

We are grateful to the Area Editor and the anonymous
reviewers, whose comments helped us improving the qual-
ity and the content of the paper. We thank Loreto Di Resta
for helping us with the trace-based approach. This work
has been partially funded by Seven One Solution srl and
by LINCE project of the FARO programme jointly financed
by the Compagnia di San Paolo and by the Polo delle Scien-
ze e delle Tecnologie of the University of Napoli Federico II.

3546 A. Botta et al./Computer Networks 56 (2012) 3531-3547

References

[1] M. Calzarossa, G. Serazzi, Workload characterization: a survey,
Proceedings of the IEEE 81 (8) (1993) 1136-1150.

[2] D. Ferrari, On the foundation of artificial workload design, in: Proc.
ACM SIGMETRICS, 1984, pp. 8-14.

[3] Orabi Shurrab, Jules Pagna Disso, Irfan Awan, A realistic approach to
background traffic generator, in: 27th Annual UK Performance
Engineering Workshop, 7-8 July 2011, 2011.

[4] M.C. Weigle, P. Adurthi, F. Hernandez-Campos, K. Jeffay, F.D. Smith,
Tmix: a tool for generating realistic TCP application workloads in ns-
2, ACM SIGCOMM Computer Communication Review (CCR) 36 (3)
(2006) 67-76.

[5] P.Barford, M. Crovella, Generating representative Web workloads for
network and server performance evaluation, SIGMETRICS -
Performance Evaluation Review 26 (1) (1998) 151-160.

[6] Y. Choi, J.A. Silvester, H. Kim, Analyzing and modeling workload
characteristics in a multiservice IP network, IEEE Internet Computing
(2011) 35-42.

[7] D.A. Menasce, Workload characterization, IEEE Internet Computing 7
(5) (2003) 89-92.

[8] E. Veloso, V. Almeida, W. Meira Jr., A. Bestavros,]J. Shudong, A
hierarchical characterization of a live streaming media workload,
IEEE/ACM Transactions on Networking 14 (1) (2006) 133-146.

[9] Abdolreza Abhari, Mojgan Soraya, Workload generation for YouTube,
Multimedia Tools Applications Journal 46 (1) (2010) 91-118.

[10] P.K. Gummadi, RJ. Dunn, S. Saroiu, S.D. Gribble, H.M. Levy,].
Zahorjan, Measurement, modeling, and analysis of a peer-to-peer
file-sharing workload, in: SOSP, 2003, pp. 314-329.

[11] M. Arlitt, C. Williamson, Internet web servers: workload
characterization and performance implications, IEEE/ACM
Transactions on Networking 5 (5) (1997) 631-645.

[12] A. Williams, M. Arlitt, C. Williamson, K. Barker, Web Workload
Characterization: Ten Years Later, Springer, Heidelberg, 2005.

[13] R. Hashemian, D. Krishnamurthy, M. Arlitt, Web workload
generation challenges - an empirical investigation, Software:
Practice and Experience (2011).

[14] R. Pena-Ortiz et al., Dweb model: representing Web 2.0 dynamism,
Computer Communications 32 (6) (2009) 1118-1128.

[15] Mudashiru Busari, Carey Williamson, ProWGen: a synthetic
workload generation tool for simulation evaluation of web proxy
caches, Computer Networks 38 (6) (2002) 779-794. 22 April.

[16] F. Ricciato, Unwanted traffic in 3G networks, Computer
Communication Review 36 (2) (2006) 53-56.

[17] F. Ricciato, E. Hasenleithner, P. Romirer-Maierhofer, Traffic analysis
at short time-scales: an empirical case study from a 3G cellular
network, IEEE Transactions on Network and Service Management 5
(1) (2008) 11-21.

[18] E. Wustrow, M. Karir, M. Bailey, F. Jahanian, G. Huston, Internet
background radiation revisited, IMC (2010) 62-74.

[19] K.V. Vishwanath, A. Vahdat, Swing: realistic and responsive network
traffic generation, IEEE/ACM Transactions on Networking 17 (3)
(2009) 712-725.

[20] J. Sommers, H. Kim, P. Barford, Harpoon: a flow-level traffic
generator for router and network tests, SIGMETRICS - Performance
Evaluation Review 32 (1) (2004). 392-392.

[21] Christopher Mueller, Michael Horie, Stephen W. Neville, A
distributed application-level IT system workload generator, in:
International Conference on Advanced Information Networking
and Applications (AINA '09), 2009.

[22] http://code.google.com/p/ostinato/.

[23] http://gull.sourceforge.net/#O0pen+Source.

[24] http://www.grid.unina.it/software/ITG/.

[25] http://rude.sourceforge.net/.

[26] http://www.postel.org/tg/tg.html.

[27] http://cs.itd.nrl.navy.mil/work/mgen/.

[28] http://caia.swin.edu.au/genius/tools/kute/.

[29] http://code.google.com/p/brute/.

[30] C. Rolland, J. Ridoux, B. Baynat, Catching IP traffic burstiness with a
lightweight generator, in: Proc. IFIP NETWORKING’07, Atlanta, May
14-18, 2007, pp. 924-934.

[31] http://sourceforge.net/projects/traffic/.

[32] http://www.ittc.ku.edu/netspec/.

[33] http://www.netperf.org/netperf/.

[34] http://sourceforge.net/projects/iperf/.

[35] http://www.thefengs.com/wuchang/work/tcpivo/.

[36] http://tcpreplay.synfin.net/.

[37] http://wwwcsif.cs.ucdavis.edu/wongfs/research.html.

[38] R. El Abdouni Khayari, M. Rucker, A. Lehmann, A. Musovic,
ParaSynTG: a parameterized synthetic trace generator for
representation of WWW traffic, in: Proc. of SPECTS’08, Edinburgh,
June 16-18, 2008, pp. 317-323.

[39] AW. Kolesnikov, B.E. Wolfinger, N. Luttenberger, H. Peters, Web
workload generation according to the UniLoG approach, in: 17th GI/
ITG Conference on Communication in Distributed Systems (KiVS
2011), 2011.

[40] http://cseweb.ucsd.edu/kvishwanath/Swing/.

[41] http://www.cs.bu.edu/crovella/links.html.

[42] Joel Sommers, Vinod Yegneswaran, Paul Barford, A framework for
malicious workload generation, in: Internet Measurement
Conference, 2004, pp. 82-87.

[43] Bianca Schroeder, Adam Wierman, Mor H. Balter, Open versus
closed: a cautionary tale, in: NSDI 2006, vol. 3, Berkeley, CA, USA,
2006.

[44] E.A. Bretz, Network test starts in the lab, IEEE Spectrum 38 (1) (2001)
77-78.

[45] http://www.ntop.org/products/pf_ring/dna/.

[46] A. Dainotti, A. Pescapé, P. Salvo Rossi, F. Palmieri, G. Ventre, Internet
traffic modeling by means of hidden Markov models, Computer
Networks 52 (14) (2008) 2645-2662.

[47] A. Botta, A. Dainotti, A. Pescapé, Do you trust your software-based
traffic generator?, IEEE Communications Magazine 48 (9) (2010)
158-165

[48] A. Botta, A. Dainotti, A. Pescapé, Do you know what you are
generating? Co-Next 2007 Student Workshop, 2007, pp. 32.

[49] P. Kanuparthy, C. Dovrolis, DiffProbe: Detecting ISP service
discrimination, in: Proc. of the IEEE INFOCOM Conference, March
2010.

[50] M. Dischinger, A. Mislove, A. Haeberlen, K. Gummadi, Detecting
Bittorrent blocking, in: ACM SIGCOMM IMC, 2008.

[51] M. Dischinger, A. Haeberlen, K.P. Gummadji, S. Saroiu, Characterizing
residential broadband networks, in: Proc. ACM SIGCOMM Internet
Measurement Conference, San Diego, CA, USA, October 2007.

[52] G. Bernardi, M.K. Marina, Bsense: a system for enabling automated
broadband census: short paper, in: Proc. of the 4th ACM Workshop
on Networked Systems for Developing Regions (NSDR '10), June
2010, 2010.

[53] C. Kreibich, N. Weaver, B. Nechaev, V. Paxson, Netalyzr: illuminating
the edge network, in: Proc. Internet Measurement Conference,
Melbourne, Australia, November 2010.

[54] Srikanth Sundaresan, Walter de Donato, Nick Feamster, Renata
Teixeira, Sam Crawford, Antonio Pescapé, Broadband internet
performance: a view from the gateway, in: Proceedings of the ACM
SIGCOMM 2011 Conference, New York, NY, USA, 2011, pp. 134-145.

[55] NationalBroadbandPlan, http://www.broadband.gov/.

[56] http://www.broadband-europe.eu/.

[57] D.J. Weitzner, Net neutrality... seriously this time, IEEE Internet
Computing 12 (3) (2008) 86-89.

[58] G. Goth, The global net neutrality debate: back to square one? IEEE
Internet Computing 14 (4) (2010) 7-9..

[59] M. Dischinger, M. Marcon, S. Guha, K.P. Gummadi, R. Mahajan, S.
Saroiu, Glasnost: enabling end users to detect traffic differentiation,
in: USENIX NSDI'10, 2010.

[60] S. Bradner, J. McQuaid, RFC 2544: benchmarking methodology for
network interconnect devices, in: IETF, 1999.

[61] B. Hickman, D. Newman, S. Tadjudin, T. Martin, RFC 3511:
benchmarking methodology for firewall performance, in: IETF,
2003.

[62] M. Izal, G. Urvoy-Keller, E.W. Biersack, P. Felber, A. Al Hamra, L.
Garces-Erice, Dissecting BitTorrent: five months in a Torrent’s
lifetime, in: Passive & Active Measurement 2004, April 2004.

[63] http://www.garr.it/.

[64] A. Botta, A. Dainotti, A. Pescapé, Multi-protocol and multi-platform
traffic generation and measurement, in: [IEEE INFOCOM 2007 DEMO
Session, Anchorage, Alaska, USA, May 2007.

[65] S. Avallone, D. Emma, S. Guadagno, A. Pescapé, G. Ventre, D-ITG:
distributed internet traffic generator, in: First IEEE International
Conference on Quantitative Evaluation of Systems (QEST 2004),
Enschede, Netherlands, September 27-30, 2004.

[66] D. Emma, A. Pescapé, G. Ventre, Analysis and experimentation of an
open distributed platform for synthetic traffic generation, in: 10th
IEEE International Workshop on Future Trends of Distributed
Computing Systems (FTDCS 2004), Suzhou, China, May 2004, pp.
277-283, ISBN: 0-7695-2118-5.

[67] S. Avallone, D. Emma, A. Pescapé, G. Ventre, A distributed
multiplatform architecture for traffic generation, in: International
Symposium on Performance Evaluation of Computer and

http://code.google.com/p/ostinato/
http://gull.sourceforge.net/#Open+Source
http://www.grid.unina.it/software/ITG/
http://rude.sourceforge.net/
http://www.postel.org/tg/tg.html
http://cs.itd.nrl.navy.mil/work/mgen/
http://caia.swin.edu.au/genius/tools/kute/
http://code.google.com/p/brute/
http://sourceforge.net/projects/traffic/
http://www.ittc.ku.edu/netspec/
http://www.netperf.org/netperf/
http://sourceforge.net/projects/iperf/
http://www.thefengs.com/wuchang/work/tcpivo/
http://tcpreplay.synfin.net/
http://wwwcsif.cs.ucdavis.edu/wongfs/research.html
http://cseweb.ucsd.edu/kvishwanath/Swing/
http://www.cs.bu.edu/crovella/links.html
http://www.ntop.org/products/pf_ring/dna/
http://www.broadband.gov/
http://www.broadband-europe.eu/
http://www.garr.it/

A. Botta et al./Computer Networks 56 (2012) 3531-3547 3547

Telecommunication Systems, (SPECTS) 2004, San Jose, California
(USA), July 25-29, 2004, pp. 659-670, ISBN: 1-56555-248-9.

[68] S. Avallone, A. Pescapé, G. Ventre, Distributed Internet traffic
generator (D-ITG): analysis and experimentation over
heterogeneous networks, in: International Conference on Network
Protocols, ICNP 2003, Atlanta-Georgia, USA, November 2003.

[69] M. Bernaschi, F. Cacace, A. Pescapé, S. Za, Analysis and
experimentation over heterogeneous wireless networks, in: First
IEEE International Conference on Testbeds and Research
Infrastructures for the DEvelopment of NeTworks and
COMmunities (TRIDENTCOM'’05), Trento, Italy, February 2005.

[70] G.lannello, A. Pescapé, G. Ventre, L. Vollero, Experimental analysis of
heterogeneous wireless networks, in: WWIC 2004, Wired/Wireless
Internet Communications 2004, LNCS, vol. 2957, Frankfurt,
Germany, February 2004, pp. 153-164, ISBN: 3-540-20954-9.

[71] L. Angrisani, A. Botta, A. Pescapé, M. Vadursi, Measuring wireless
links capacity, in: IEEE 1st International Symposium on Wireless
Pervasive Computing, 2006, 16-18 January 2006, pp. 1-5.

[72] Roger Karrer, Istvan Matyasovszki, Alessio Botta, Antonio Pescapé,
Experimental evaluation and characterization of the magnets
wireless backbone, in: ACM WINTECH, 2006, pp. 26-33.

[73] R. Karrer, I. Matyasovszki, A. Botta, A. Pescapé, MagNets: experiences
from deploying a joint research-operational next-generation
wireless access network testbed, in: Proc. of 3rd International
Conference on Testbeds and Research Infrastructures
(TridentCom), Orlando, FL, May 2007.

[74] A. Botta, A. Pescapé, Monitoring and measuring wireless network
performance in the presence of middleboxes, in: The 8th
International Conference on Wireless On-demand Network
Systems and Services (WONS), Bardonecchia (TO), Italy, January
2010.

[75] G.lannello, F. Palmieri, A. Pescapé, P. Salvo Rossi, end-to-end packet-
channel Bayesian model applied to heterogeneous wireless
networks, in: IEEE Globecom 2005 General Conference, St. Louis,
MO, USA, December 2005, ISBN: 0-7803-9415-1.

[76] A. Dainotti, S. Loreto, A. Pescapé, G. Ventre, SCTP performance
evaluation over heterogeneous networks, Concurrency and
Computation: Practice and Experience (Wiley) 19 (8) (2007).
Special Issue on Performance Analysis and Enhancements of
Wireless Networks, pp. 1207-1218.

[77] A. Botta, W. de Donato, A. Pescapé, G. Ventre, Networked embedded
systems: a quantitative performance comparison, in: IEEE Globecom
2008, New Orleans, LA, USA, 30 November-4 December, 2008.

[78] A. Dainotti, C. Squarcella, E. Aben, K.C. Claffy, M. Chiesa, M. Russo, A.
Pescapé, Analysis of country-wide internet outages caused by
censorship, in: ACM SIGCOMM Conference on Internet
Measurement Conference (IMC '11), ACM, NY, USA, 2011, pp. 1-18.

[79] ZS. Bischof,].S. Otto, F.E. Bustamante, Distributed systems and
natural disasters: BitTorrent as a global witness, in: Special
Workshop on Internet and Disasters (SWID ’11), ACM, NY, USA,
2011, Article 4, 8 pp.

Alessio Botta is a postdoc at the Department
of Computer Engineering and Systems of the
University of Napoli Federico II (Italy). He
graduated in Telecommunications Engineer-
ing (M.S.) and obtained the Ph.D. in Computer
Engineering and Systems, both at University
of Napoli Federico II. His research interests are
in the area of networking and, in particular, in
the area of network performance measure-
ment and improvement, with a specific focus
on wireless and heterogeneous systems.
Alessio Botta has coauthored more than 40
international journal (IEEE Communications
Magazine, IEEE Transactions on Parallel and

Distributed Systems, Elsevier Computer Networks, etc.) and conference
(IEEE Globecom, IEEE ICC, IEEE ISCC, etc.) publications. He has served and
serves several technical program committees of several international
conferences (IEEE Globecom, IEEE ICC, etc.) and he acts as reviewer for
different international conferences (IEEE Infocom, etc.) and journals (IEEE
Transactions on Mobile Computing, IEEE Network, IEEE Transactions on
Vehicular Technology, etc.) in the area of networking. In 2010 he was
awarded with the best local paper award at IEEE ISCC 2010.

Alberto Dainotti received the M.S. Laurea
Degree in Computer Engineering in 2004 at
the University of Napoli Federico II (Italy). In
2008 he received the Ph.D. in Computer
Engineering and Systems from the same uni-
versity. From July 2007 to February 2008 he
visited the Cooperative Association for Inter-
net Data Analysis (CAIDA) at University of
California San Diego, working on traffic clas-
sification and analysis of malware traffic.
Currently he works as a Post-Doc at Depart-
ment of Computer Engineering and Systems
of the University of Napoli Federico II. His
research interests fall in the areas of network
measurements, traffic analysis, and network security. He is a member of
the IEEE.

Antonio Pescapé is an Assistant Professor at
the Department of Computer Engineering and
Systems of the University of Napoli Federico II
(Italy). He received the M.S. Laurea Degree in
Computer Engineering and the Ph.D. in Com-
puter Engineering and Systems, both at Uni-
versity of Napoli Federico II. His research
interests are in the networking field with
focus on Internet Monitoring, Measurements
and Management and Network Security.
Antonio Pescapé has coauthored over 90
journal (IEEE Communications Magazine,
JSAC, IEEE Wireless Communications Maga-
zine, IEEE Networks, etc.) and conference
(SIGCOMM, IMC, PAM, Globecom, ICC, etc.) publications and he is co-
author of several patents pending. He has served and serves on more than
70 technical program committees of IEEE and ACM conferences. He has
served as Editorial Board Member of IEEE Survey and Tutorials (2007-
2010) and was guest editor for the special issue of Computer Networks on
“Traffic classification and its applications to modern networks”. In 2009
he was awarded with the IET Communications Premium Award 2009, in
2010 he was awarded with the best local paper award at IEEE ISCC 2010,
in 2011 he was awarded with the TEA (Technologybiz Endorsement
Award). He is a Senior Member of the IEEE.

	A tool for the generation of realistic network workload for emerging networking scenarios
	1 Introduction and motivation
	2 Realistic network workload generation
	3 A synthetic workload generator
	4 Advanced features introduced in the synthetic workload generator
	4.1 Synchronization among the involved entities
	4.2 Replication of real but fully configurable packet traces
	4.3 Replication of main states of traffic sources using tractable models
	4.4 Correct and accurate replication of packet timings

	5 Synthetic network workload generator at work
	5.1 Broadband Internet performance and network neutrality violations
	5.2 RFC-based security and performance assessment of home network devices
	5.3 Performance assessment of multimedia communications
	5.3.1 Multiplayer network games
	5.3.2 VoIP applications

	6 Discussion and conclusion
	Acknowledgements
	References

