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Abstract—Available bandwidth is a vital parameter for un-
derstanding network status. A huge number of tools have been
proposed in literature, including general ones as well as tools
specialized for specific network scenarios. In this plethora of
possibilities, an expert user is currently required to select the
best one according to the specific operating settings, in order to
achieve accurate results without disturbing the existing traffic.

In this paper we propose the use of automatic decision systems
based on machine learning to substitute the expert user and
choose the right tool for the current scenario. To verify if this is a
viable solution, we created a custom dataset and tested different
decision systems including a simple, threshold-based one and
four algorithms based on machine learning: k-nearest Neighbors,
Random Forest, Support Vector Machine, and Long Short-Term
Memory networks. We used different features including CPU,
memory, and bandwidth and verified that the decision systems
based on machine learning achieve very good performance and
can be considered as a promising solution for this important
problem.

Index Terms—Available Bandwidth, machine learning, net-
work measurements.

I. INTRODUCTION

Network performance is a hot research topic since the early
days of the Internet. Several different tools have been proposed
but the problem of accurately measuring network performance
is still an open research problem. Measurement tools are
typically divided in active and passive ones. Tools from the
former category do the measurement injecting probing packets
into the network under test and collecting them at receiver
side to evaluate how some characteristics of the probing
packets (e.g. the inter-packet time) has been altered during
the journey. Analyzing such alteration they derive the measure
of interest. The main distinguishing characteristic of passive
measurement tools is the use of existing traffic, therefore
injecting no additional traffic in the network. Not having
such traffic under control, however, limits the possibilities of
the measurements that can be done and introduces additional
sources of inaccuracy.

One important parameter regarding network performance is
available bandwidth (AB). It measures the unused capacity of
a network path thus providing a vital information regarding
current network status and what an application can expect
to obtain in this particular moment. Due to its importance,
several tools and techniques have been proposed in literature
to measure AB, having varying accuracy typically related with
a different level of intrusiveness (i.e. amount of traffic injected
in the network to perform the measurement). The difficulty

to estimate such important parameter has led to the spread
of tools customized for specific network conditions, with no
single tool able to reach the best trade-off between accuracy
and intrusiveness in all the possible situations and a skilled
user is necessary to decide which tool to use according to
each specific case [1], [13], [15]. Moreover, combination of
different measurements are needed to predict the available
bandwidth [18].

Starting from this assumption, in this work we advocate
the use of intelligent systems substituting skilled users to
select the AB measurement tool most suited to the specific
scenario under study. We envision a smart decision system,
based on machine learning, properly trained and using a set
of features on which to make an educated decision. To pave
the way for this vision to come true, we used different decision
mechanisms (from threshold-based decision systems to deep
learning) and compared their performance. We used features
considering the current occupancy of the network as well as
the current load of the CPU and memory. Our results show
that systems that choose which measurement tool to use by
relying only on thresholds fail in picking the most appropriate
one more often than those that base their decisions on a
machine learning model, the latter being able to take into
account network dynamics. This means that a measurement
system that can adapt to the network conditions by reducing its
intrusiveness when needed can be obtained relying on machine
learning algorithms.

In this paper we provide the following contributions:

• we design and test an automated system based on ma-
chine learning to dynamically select the best tool to
measure the available bandwidth;

• we create an artificial dataset to test our system;
• we test different machine learning tools for this task

and compare their results with a simple threshold-based
decision system.

The rest of the paper is structured as follows. In section II
we cite some of the most popular tools for available bandwidth
measurement. Next, in section III, we describe which kind of
systems were tested, on which data set they were trained on
and which measurement tools they could choose. In section
IV we show how the systems were evaluated and what are the
results obtained. Finally in section V we sum up the work and
draw conclusions.



II. RELATED WORK

Many software tools for available bandwidth measurement
have been proposed in the last years. Examples of such
tools are PathChirp [3], Pathload [4], Abing [5], Spruce [6],
DietTopp [7], and many others. The performance of these tools
is usually measured in terms of accuracy, intrusiveness, and
time needed to convergence [10], [14]. Along with this variety
of tools, many comparative studies to assess performances
in different conditions have been carried out [13]. Shriram
et al. [9] have compared abing, pathchirp, pathload, Spruce
and also included Iperf [8], which measures achievable TCP
throughput and has become an unofficial standard in the
research networking community. They found that pathload
and pathchirp are the most accurate tools. Castellanos et al.
[11] found that, even though the performance of none of the
investigated methods are outstanding, pathChirp excels as the
best tool in terms of both accuracy and efficiency. Ahmed
Ait Ali et al. [12] obtained results showing that Pathload is
the most intrusive tool and, in some cases, can be very slow.
Pathchirp overestimates the available bandwidth and IGI is
inaccurate. Finally, Spruce seems to be the tool that offers
the best performance with regards to the criteria considered.
The aforementioned tools show to perform better or worse
according to the different setup and condition of the network
and on manual fine tuning of involved parameters. G. Aceto,
et al. introduce a unified architecture for network measure-
ment (UANM) capable of automatically managing different
measurement stages such as the choice of the measurement
tool and its fine tuning to cope with different network setups
and with different measurement purposes and constraints [1].

More recently, in innovative scenarios such as software
defined networks (SDN), the problem of available bandwidth
estimation has once again gained attention. The reason is that
the traditional methods are inadequate and poor performing
when facing the new challenges posed by the different network
configuration and behaviour, thus the urge to introduce novel
approaches to the problem [2].

In this paper we propose a system based on machine
learning to dynamically select the most fitting measurement
tool according to varying network condition. In literature,
machine learning techniques have already been used to per-
form available bandwidth estimation as an alternative to the
aforementioned traditional tools. N. Sato, et al. [16] proposed
PathML, an AB estimation method based on a data-driven
paradigm that uses machine learning with a large amount
of data. They performed a set of experiments over LTE
networks and compared their approach with PathQuick3. Ling-
Jyh Chen, et al. [17] proposed a different machine learning-
based approach, they used a Support Vector Machine (SVM)
and two probing models in their evaluation: the packet train
model and the pathChirp-like model.

In conclusion, several approaches for measuring the AB
have been presented in literature, mainly dealing with the
selection and configuration of measurement tool in a deter-
ministic fashion or with the use of machine learning to do

the measurements. In this work instead we advocate the use
of machine learning for selecting one of the several already
available AB measurement tools according to the specific
operating conditions. For details, see section III

III. TOOLS AND DATA

Our aim is to build an automatic intelligent decision making
system able to choose the most appropriate measurement tool
for available bandwidth among three representative candidates
used in our tests: iperf, pathload, and pathchirp. The tools are
listed from the most to the least accurate and, at the same
time, intrusive. A tool is more intrusive as more probing traffic
it generates and injecting more probing packets requires also
more CPU (and memory in some cases).

To better understand what is meant by most appropriate, we
should recall that the measurement tool is running on a system
together with other applications whose execution should not
be by any means affected by the measurement process. These
applications consume, and hence need, different amounts of
cpu, memory and bandwidth. The most appropriate measure-
ment tool is the one that can guarantee the best accuracy by
using only the available resources as not to interfere with the
applications in execution. So, when the system has low spare
resources the most appropriate tool is the least intrusive, while
when the system is less busy it is more appropriate to choose
a more accurate, yet more intrusive, tool.

It is important to notice that the measurement tool has to
be chosen in advance and will be used for the following
30 seconds, so the automatic tool needs to predict which
tasks will be in execution and how much bandwidth they
will require, and choose the measurement tool accordingly. As
input features, in addition to the bandwidth used by the task
in execution in the previous samples, also cpu and memory
usage are passed. Variation in these two parameters indeed
can hint that a certain task has stopped or started. In Tab. I
some of the tasks that can be executed by the system in
our scenario are listed. Each of these tasks needs resources
in different amounts, hence it is possible to infer which one
is running from the available resources. If, for example, the
system is running a task "Slam on board", the cpu, memory
and bandwidth consumption is in the ranges specified in the
table. When one or more of these values change and takes a
value out of the ranges, it means that the system has moved
to another task, or is idle. These tasks have been thought in
the real of Cloud and Dew robotics [19] [20].

A. Dataset

The dataset we used to test our systems, represents a real
scenario in which there are some tasks that use different re-
sources like CPU, memory and bandwidth. Our systems must
measure AB considering CPU, memory, and the bandwidth
that currently running tasks use, choosing the more appropriate
monitoring tool which will then perform the measurement for
a certain period of time.

Every row of the synthetic dataset show the cpu, memory
and bandwidth usage in average over a period of 10 seconds.



Task Cpu(%) Mem(%) bw(kbps) Duration(s)
Slam on Board (65-85) (40-60) (250-750) (30-60)

Remote Slam (15-25) (15-25) (8000-
12000) (10-60)

Video Capture &
Encoding (70-90) (15-25) (800-1200) (20-40)

Video Capture &
Transmission (15-25) (15-25) (15000-

30000) (10-40)

idle (1-10) (1-5) (5-25) (10-60)

TABLE I: Table of Tasks

The dataset has been built by randomly picking the task in
execution from those in Tab. I. We can see that each task has
a range of values for CPU, memory, bandwidth and duration.
Random values from these ranges are extracted to form a
new row and n copies of this row will be appended to the
dataset where n = Tr/10 and Tr is the randomly picked time
for the task. We created two datasets using this approach, a
large one, having 418,363 rows, and a small one, having 323
rows. We also used the small dataset because it may be more
representative of real situations. Considering that each sample
represents 10 seconds, the large dataset represents about 48
days, while the small one represents 53 minutes.

The dataset has been labeled considering how much band-
width is available and how much is needed by the three
measurement tools to perform the measurement. Once a choice
has been made, the AB measurement tool will run for the
following 30 seconds, this means that it should consider the
bandwidth used by the tasks running on the system over that
time interval as in the following:

bwm(T ) = max(bw(T ), bw(T + 10), bw(T + 20)) (1)

where bw(T ) is the bandwidth required on average by the
tasks over the time interval [T, T + 10). Since the chosen
measurement tool runs for 30 seconds, a choice is needed
only when time is 0 or a multiple of 30.

B. Decision systems considered

We used different types of algorithms to make the decision
about the AB measurement tool: simple system, classification
systems, and prediction systems. The simple system just takes
as input bw(T ) and outputs the tool assuming that this value
will remain stable during the measurement period and that the
CPU and memory consumption of the tool will never interfere
with existing tasks. Regarding the classification systems, we
used three different types of supervised learning classification
algorithm: k-nearest Neighbors (KNN), Random Forest (RF),
and Support Vector Machine (SVM). These were trained by
giving them in input the features (cpu, memory, bandwidth)
and the labels (tool1, tool2, and tool3). For the prediction
systems, we used a Deep Long Short-Term Memory (LSTM)
network. Two different versions of LSTM have been used,
the first one has been trained on sequences of the bandwidth,
CPU, and memory over time while the other has been trained
on bandwidth sequences only. In both cases, they predict the
bandwidth in T + 10 and T + 20 based on past values of

Fig. 1: Simple System: ROC Curves large data-set

the features. Then, we used such value to decide the AB
measurement tool to use.

IV. RESULTS OBTAINED

The performances of the proposed systems have been com-
pared by examining Roc curves and AUCs. A ROC curve
(receiver operating characteristic curve) is drawn by plotting
True Positive Rate (TPR) against False Positive Rate (FPR)
at different classification thresholds. AUC, namely the area
under the ROC curve, measures the ability of the classifier to
distinguish between classes and ranges in values from 0 to 1,
the higher is the AUC the better the classifier works. In multi-
label classification, as our case, a ROC curve can be drawn
individually for each class or, alternatively, MIRC and MARC
curves can be drawn to get averaged performance of the clas-
sifier among the classes. Macro-average Roc curve (MARC)
plots TPR on FPR by computing the metrics independently
for each class and then taking the average, on the other hand
Micro-average Roc curve aggregates the contributions of all
classes to compute the average metrics. The two curves may
differ due to imbalanced dataset.

These measures are depicted in the following graphs with
labels: “MIRC” is the micro-average ROC curve, “MARC” is
the macro-average ROC curve, “ROC 1” is the ROC curve of
class 1 (tool 1), “ROC 2” is the ROC curve of class 2 (tool
2), “ROC 3” is the ROC curve of class 3 (tool 3) and “a” is
the Area Under the ROC Curve (AUC). The tests have been
carried out with the proposed datasets using the first 70% of
dataset for the training, and the last 30% of the dataset is for
the testing. Then, we made a 10 fold cross-validation.

A. Simple System

To test the performance of the Simple system, we compared
the predictions it generated with the real values (true tools).
We tested it with the two proposed dataset and plotted the
ROC curves. The choice is made by seeing only the bandwidth
feature excluding the CPU and memory features. Figure 1
shows the ROC curves with large dataset.

From the figure we observe that in general the system
achieves good performance (it detects around 86% of tool 1,
85% of tool 2 and 84% of tool 3). As expected, the same
results have been obtained with the small dataset, making the
simple System a simple comparison without keeping track of



Fig. 2: RF ROC Curves

the past nor learning from the dataset. Thus, its performance
is independent from the size of the dataset and cannot be
increased adding more samples. Notice that Simple system
is representative of tools like "UANM" [1] which only looks
at the current value, do not make predictions and have a static
association between features and tools.

B. Classification Systems

We have tested the classification systems with two different
combinations of the two datasets described in Sec. III-A, thus
obtaining four cases: case 1 and 2 refer to the large dataset,

Fig. 3: MIRC and MARC Curves of the KNN and SVM

and case 3 and 4 to the small one. The difference between
case 1 and 2 (as well as between case 3 and case 4) is that
in the latter case we have tried to add memory: for each row,
we added the four previous values to such row. In this way,
the classification system considers also what happened a few
time intervals before the current one.

Therefore, datasets without memory take as input samples
of CPU, memory and bandwidth at time T, while datasets
with memory take as input also samples up to 40 seconds in
the past. For the best classification system (Random Forest),
we plotted the ROC curves, the micro (MIRC) and macro



Fig. 4: Deep LSTM: ROC Curves

(MARC) average while for the others (K-nearest Neighbors
and Support Vector Machine), we plotted only the MIRC and
MARC. Fig. 2 shows the RF ROC curves of case 1, 2, 3, and
4, and fig. 3 shows the micro and macro average of the KNN
and SVM related to case 1, 2, 3, and 4.

With large dataset we have an improvement of the results by
adding memory (case 2). In case 1, Random Forest achieves
the best performance detecting around 87% of tool 1, 89% of
tool 2 and 85% of tool 3 while in case 2 it achieve the best
performance detecting around 93% of tool 1, 94% of tool 2
and 92% of tool 3.

With the small dataset without memory (case 3) it achieves
the best performance detecting around 91% of tool 1, 92%
of tool 2 and 89% of tool 3. We do not have a significant
improvement of the results by adding memory (case 4), but
still Random Forest achieves the best performance detecting
around 96% of tool 1, 89% of tool 2 and 93% of tool 3.

C. Prediction Systems

We tested the two LSTM Systems proposed only with
two of the datasets described in Sec. III-A, not considering
the cases in which we have datasets with memory as for
the classification systems. This is because the LSTM model
already has memory using the concept of the look back, which
is the number of previous time steps to use as input variables
to predict the next time period. Fig. 4 shows the ROC curves
of the Deep LSTM with CPU, memory, and bandwidth.

We can see that the small dataset presents slightly higher
values for ROC curves areas than the large dataset one, if we
consider the aggregate of the three classes. The ROC curves

Fig. 5: Deep LSTM only Bandwidth: ROC Curves

areas of each single class show that the small dataset model
outperforms the large dataset one only in recognizing class 2,
while the large dataset model seems to be better balanced. The
LSTM system with CPU, memory, and bandwidth (with large
dataset) achieves very good performance detecting around
87% of tool 1, 89% of tool 2 and 88% of tool 3 while with the
small dataset, the LSTM system achieves good performance
detecting around 88% of tool 1, 100% of tool 2 and 83% of
tool 3.

Figure 5 shows the ROC curves of the Deep LSTM only
with Bandwidth. Comparing the large and small dataset, we
can see that the same considerations can be repeated as in the
previous case. It is interesting to compare fig. 4 and fig. 5,
indeed we can see that removing CPU and memory from the
input of the LSTM model, performance improves both for the
small dataset case and for the large dataset case. This can
be explained considering that CPU and memory do not carry
useful information that is not yet contained in the bandwidth
for improving the predictive power of the models. In particular
the LSTM system with only bandwidth achieves excellent
performance detecting around 91% of tool 1, 91% of tool 2 and
89% of tool 3 with large dataset. Regarding the small dataset,
it also achieves excellent performance detecting around 91%
of tool 1, 98% of tool 2 and 83% of tool 3.

Tab. II compares the best prediction system with only
bandwidth and the best classification system (RF) both with
small dataset without memory. Both systems detects around
91% of tool 1. Tool 2 is detected more accurately by the
prediction system (98%) compared to RF classification system
(92%), while the latter detects more precisely tool 3 (89%)



Tool 1 Tool 2 Tool 3
Prediction System 91% 98% 83%

RF classification system 91% 92% 89%

TABLE II: Comparison between Prediction and Classification
Systems

compared to the prediction system (83%).

V. CONCLUSION

Our aim was to develop a smart decision system to choose
the best AB measurement tool in each specific network con-
dition. To meet this goal, we created a threshold-based system
that chooses the measurement tool only based on the current
bandwidth. We saw that the threshold-based system was not a
good choice because it made a simple comparison, and did not
keep track of the past, so it did not make accurate predictions.
Predictions are instead necessary because the measurement
lasts for a certain period of time (30 seconds), thus the system
must choose the more appropriate monitoring tool according
to CPU, memory and bandwidth that tasks will use in the next
30 seconds.

Because of this, we considered different types of smart
systems: the classification and the long short-term memory
(LSTM) ones. Regarding the classification systems, we tested
three models: k-nearest neighbors, random forest, and sup-
port vector machine. For the LSTM system we tested two
different versions: the first one was trained on sequences of
the bandwidth, cpu, and memory over time while the second
one was trained on bandwidth sequence only. To test these
models, we created a synthetic datasets composed of several
tasks which used the cpu, memory, and bandwidth differently,
and each had a different runtime. In addition, we generated two
types of those datasets: a large synthetic dataset with about
418,363 rows and a small synthetic dataset with 323 rows.
For both datasets, we made two cases where in the second
one we added memory to the synthetic dataset. Then, we
tested our classification systems in four cases: large synthetic
dataset (case 1), large synthetic dataset with memory (case
2), small synthetic dataset (case 3) and small synthetic dataset
with memory (case 4). Our results show that the performance
of the classification systems was high, and there was a slight
improvement adding memory to the dataset and in this case,
Random Forest achieved the best performance. Both LSTM
systems performance was high. Moreover, the LSTM system
with only bandwidth performed slightly better then the LSTM
system with bandwidth, cpu, and memory.

In summary, all the systems achieve good performance, and
suggest that systems based on machine learning can actually
be used in place of expert users to decide which available
bandwidth estimation tool has to be used in a specific network
condition. The choice of which decision system to use should
be made on the basis of considerations other than performance,
such as the duration of training phase, the amount of resources
required, etc.. Our ongoing work is mainly concerned with

collecting data from real scenario in order to test the decision
system with real data.
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