
An experimental characterization of the internal
generation cycle of an open-source software traffic

generator

Leopoldo Angrisani1, Alessio Botta1, Gianfranco Miele2, Michele Vadursi3
1 University of Naples Federico II, via Claudio 21, 80125 Napoli, Italy - Email: a.botta@unina.it

2 University of Cassino and Southern Lazio, Via G. Di Biasio 43, 03043 Cassino (FR), Italy - Email: g.miele@unicas.it
3 University of Naples “Parthenope”, Centro Direz. Is. C4, 80143 Napoli, Italy - Email: vadursi@uniparthenope.it

Abstract –The paper is the first step towards the goal of
evaluating the measurement uncertainty of the inter-departure
times (IDT) provided by software traffic generator. The paper is
focused on the experimental characterization of the internal
generation cycle of a well-known, open source generator, namely
D-ITG, for different systems, and under the best possible
conditions, i.e. with the minimum system loads. The resulting
performance may be seen as the ideal limit the generator can
tend to. The extended abstract presents the rationale for the
activity, the underlying methodology and some initial tests that
highlight the relevance of the clock resolution in the accuracy of
IDT.

Keywords – traffic generator, uncertainty, inter-departure times.

I. INTRODUCTION

Network traffic generators are widely employed in
computer network performance testing, simulation and for
research purposes. They are able to inject packets, following a
particular traffic pattern, into a network in order to test its
performance or to investigate if it can reliably support a
particular application in controlled environments. This goal
can be reached because they are able to emulate and/or
replicate the traffic generated by common network
applications or traffic with specific statistical characteristics
[1].

As a consequence, results obtained by tests that involve
network traffic generators, are strictly dependent by the ability
of the generators to accurately emulate and/or replicate the
desired traffic shape or statistical pattern [2], [3].

Traffic generators are implemented over both hardware
and software platforms. The former are especially designed by
instrument manufacturers and implemented on dedicated high
performance hardware. As a consequence they are typically
more precise and reach very good performance, but expensive.
In particular, those solutions are pre-configured in order to
carry out a certain type of tests. On the contrary, the latter are
cheaper, often open-source and/or free of charge and more
flexible, but it is expected that they have lower performance in
terms of accuracy and precision [4], [5].

In spite of these characteristics that seem to endorse the
use of hardware-based traffic generators, the use of software-

based traffic generator is widespread in research and in
network performance testing. There are several reasons that
justify this choice and most of them are strictly connected to
their flexibility. As an example, they can be easily installed in
several nodes in order to emulate a network with distributed
traffic sources, or they can be updated for specific purposes
adding, for example, new traffic patterns.

Certified information about the imposed values of the
characteristics of the traffic generated by software-based
traffic generator, such as bit rate, inter-departure time (IDT),
packet rate and so on, is an extremely important need. They
would be provided as the manufacturers of hardware-based
traffic generators already supply with their products.

Unfortunately to certify them is a very difficult task
because their metrological properties (i.e., accuracy of the
traffic generation process) depend on the commercial off-the-
shelf (COTS) hardware used, the operating system (OS)
adopted, and the status of the host used for traffic generation
[6]. Therefore without that information the reference is
uncertain and consequently obtained results could be useless.

In literature this problem is investigated by considering
several approaches [6]-[9], but it is not fully analyzed
according to the guide for the expression of uncertainty in
measurements (GUM) [10].

In this scenario, stemming from the previous experiences
of the authors in network measurements [11]-[13] and in
measurement accuracy evaluation of network quality of
service parameters [14]-[16], aims of this paper are to analyze
the factors that could influence the IDT accuracy of a
software-based traffic generators and to characterize them
from a metrological point of view. To this aim a well-known
software-based traffic generator, Distributed Internet Traffic
Generator (D-ITG) [4] has been taken into account for the
experiments.

In section II brief notes on D-ITG are reported. The
methodology adopted for the characterization is described in
section III along with the presentation of experimental results.
Conclusions are given in section IV.

II. BRIEF NOTES ON D-ITG

D-ITG [4] is a well-known tool that is able to generate
IPv4 and IPv6 traffic, as well as traffic at network, transport,
and application layer. D-ITG uses stochastic processes to
emulate the Inter Departure Time (IDT) and Packet Size (PS)
of real applications, supporting several statistical distributions
for IDT and PS random variables (exponential, uniform,
cauchy, normal, pareto, etc.). This approach is actually
followed by a large set of traffic generators [6]. Among the
two random variables, the IDT is the most sensitive to poor
accuracy, being tightly dependent on the way the host running
the traffic generator manages the time (process scheduling,
time function resolution, etc.). In fact, a simplified version of
the generation loop of D-ITG is reported in Fig. 1. As shown,
the generation loop (which is repeated for every packet
generated) contains different memory accesses (mem), system
calls (sys), computations (cpu), and I/O requests. In particular,
for every packet, D-ITG:

 fetches the current time from the Operating
System (OS) using a gettimeofday() function;

 initializes some variables;
 fills the packet payload with the timestamp taken

before and other information;
 pushes the packet into in the outgoing socket

buffer;
 raises a signal on the serial port, if required;
 stores the log information for this packet, if

required (this information is actually buffered in
RAM for a number of packets, and dumped on
disk periodically);

 draws the new IDT and PS using a random
number generator;

 fetches again the current time from the OS to
know how long it has passed since the beginning
of the loop;

 waits for the remaining time before sending the

new packet.

These operations are necessary for packet generation, and this
generation loop is very similar to that of other packet-level
traffic generators.

III. CHARACTERIZATION METHODOLOGY AND

EXPERIMENTAL RESULTS

Considering there are several sources of uncertainty in the
internal generation loop of D-ITG, which are connected to a
number of internal (i.e., strictly depending on the process of
packet generation) and external (i.e., connected with the other
ongoing processes managed by the OS) operating conditions,
we decided to start by characterizing single operations, or
small group of operations. The goal of the experimental
activity is two-fold: understanding the contribution of each
operation in the generation loop shown in Fig. 1 in the
accumulation of delays that constitute the inter-departure time,
along with its variability, and paving the way to the expression
of the uncertainty associated to inter-departure times in the
generation loop of D-ITG.

While the time needed for the completion of operations
such as memory accesses, computations and I/O requests is
basically deterministic and therefore has no impact on the
uncertainty of inter-departure times, except for a possible
systematic effect, the most critical issues, in terms of
variability and predictability, are OS function calls. This is the
reason why the initial experiments have been focused on
those. In particular, in Fig. 1 three OS calls can be singled out:
the gettimeofday() function, the set_serial() and the wait,
which is basically a select() function. As the set_serial()
performs an optional operation, the attention has been focused
on the remaining two.

Theoretically speaking, one could be interested to evaluate
the variability of the completion time of each of the two
functions. However, from an operational point of view, it is
difficult to characterize the functions separately. In fact, we
need to timestamp packets as they go through the steps of the
generation cycle, but timestamping implies further involving
the OS with a new function call to the gettimeofday(), which
brings on additional time contribution (and uncertainty) to the
process. In other words, to characterize the select() function,
we need to execute a select() and a gettimeofday(), anyway.

So, we start by analyzing the gettimeofday() and then
move to the series of a gettimeofday() and a select() for
different values of imposed waiting time. The approach
consists in the iterated execution of the function(s) for a given
number of times (ten thousand times in the first set of
experiments), and is similar to the approach followed in [9].
The first-order difference of the timestamping results is then
calculated, in order to achieve a vector containing the
execution time of each iteration.

This way, even though we need to execute a
gettimeofday() to timestamp the different executions of the
select() function, we can nevertheless evaluate the relative
weight of the select() function, by comparing the results of the
two sets of executions.

Finally, the timestamping results of the series of the sole
gettimeofday() and select() functions have been compared
with those obtained when the internal generation loop of D-

Fig.1. D-ITG simplified generation cycle.

ITG is executed. The goal is to experimentally verify which is
the relative weight of the OS function calls in the generation
loop. To achieve this, the loop in Fig. 1 (with the exclusion of
the optional operations) has been executed in order to generate
a CBR traffic stream with a packet rate that is consistent with
the waiting time given as input to the select() function in the
previous tests, and the inter-departure times have been
evaluated as the difference of two successive gettimeofday()
results.

The tests have been repeated for different imposed values
of inter-departure times, from 200 s to 0.1 s. Moreover, they
have been performed on three different hosts, with the
following hardware characteristics:
- CPU 4-core Intel(R) Xeon(R) CPU E5-1620 0 @ 3.60GHz;
- 8GB RAM;
- 1 TB SATA HD;
- Network card: Intel 82574L Gigabit Network

It is worth noting that the hosts as well as D-ITG have
been configured in order to minimize the CPU resources
consumption, i.e. with graphical interface inactivated, single
user, local traffic generation (i.e., destination host = source
host) and generation of minimum size packets.

In the first experiments, the sole gettimeofday() has been
executed continuously, i.e. at the maximum rate granted by the
hosts.

Table I and Table II account for the experimental results of
accuracy tests performed on the generation loop, and the
software traffic generator, respectively. Table I also includes
the results of the execution on the sole gettimeofday(). Results
are expressed in terms of average and experimental standard
deviation of IDT, as well as relative difference between
imposed and measured average IDT, namely IDT.

The first observation suggested by the results is that the
relative weight of the delay introduced by the sole
gettimeofday() is negligible with respect to average IDT as
well as to the experimental standard deviation, at least for the
packet rates considered.

The experimental results also show that for practically any
packet rate, the measured IDT is greater than expected, for
both experiments involving the generation loop and those
involving the traffic generator. The difference IDT becomes
relatively high for packet rates higher than 1000 pkt/s (IDT
lower than 1 ms), and comparable values of IDT have been
experienced for the same imposed packet rate.

Fig. 2 permits to compare the relative experimental
standard deviation in the two set of experiments, upon the
variation of the imposed packet rate. The figure shows that the

experimental standard deviation is of the same order of
magnitude for packet rates up to 1000 pkt/s (IDT higher than
1 ms). On the contrary, for higher packet rates, the variability
of the IDTs observed for the software traffic generator

becomes significantly higher, as demonstrated by the
experimental standard deviation, which is one or even two
orders of magnitude higher than that exhibited by the IDT of
the generation loop. It looks like the set of operations
performed by the traffic generator start to have a non-
negligible role in the reduction of repeatability of IDTs when
the imposed IDT goes under 1 ms.

The experiments have also highlighted the following
phenomenon that is certainly worth being further investigated
in successive tests. Very high peaks can be observed in IDT
values, which are separated from each other of some tens of
seconds. As it can be seen in Fig. 3, which gives details of the
measured IDT values for two different packet rates, such
peaks are even three orders of magnitude higher than the
average IDT values. The fact that this phenomenon occurs
also when the simplified loop is executed, reinforces the idea
that it is due to the OS. More tests are being executed at the
time when this paper was written in order to better understand
and characterize this phenomenon, which certainly has an
effect on the IDT uncertainty.

IV. CONCLUSIONS

The paper is the first step towards the goal of evaluating the
measurement uncertainty of the inter-departure times (IDT)
provided by software traffic generator. It has presented a
methodology and experimental results aimed to characterize

Table I. Experimental results of the accuracy test performed on the
simplified generation loop composed by the OS calls select() and

gettimeofday().

Imposed
packet rate

[pkt/s]

Imposed
IDT [s]

IDT [s]
IDT
[%]

IDT [s]

 0.1 0.100125 0.13 0.000017

 0.01 0.010066 0.66 0.000015

 0.004 0.004061 1.52 0.000012

 0.002 0.002061 3.03 0.000013

 0.001 0.001059 5.94 0.000014

 0.0005 0.0005631 12.61 0.0000082

 0.0003 0.000360 19.86 0.000010

 0.0002 0.0002596 29.78 0.0000059

gettimeofday 0.000000065 0.000000080

Table II. Experimental results of the accuracy test performed on the
considered software traffic generator.

Imposed
packet rate

[pkt/s]

Imposed
IDT [s]

IDT [s] IDT [%] IDT [s]

 0.1 0.091000 -9.00 0.000019

 0.01 0.0100674 0.67 0.0000043

 0.004 0.0040658 1.65 0.0000031

 0.002 0.002065 3.27 0.000014

 0.001 0.001065 6.51 0.000044

 0.0005 0.00057 13.05 0.00011

 0.0003 0.00036 20.60 0.00037

 0.0002 0.00026 30.95 0.00047

Fig. 2. Relative standard deviation of the obtained measurement results
versus the imposed IDT.

the internal generation cycle of a well-known, open source
generator, namely D-ITG, for different systems, and under the
best possible conditions, i.e. with the minimum system loads.

The results have shown that for lower packet rates, the
experimental standard deviation experienced for the execution
of a simplified loop select()-gettimeofday() and for the
execution of the internal loop of the software traffic generator
used for the tests, are of the same order of magnitude. On the
contrary, for packet rates greater than 1000 pkt/s (IDT lower
than 1 ms), the IDTs measured in the tests with the software
traffic generator exhibit a much higher experimental standard
deviation, compared to those measured when the simplified
loop is executed. This suggests that the other functionalities
and operations performed by the traffic generator are
responsible for a larger variability of IDTs, when the latter are
lower than 1 ms. Of course, a much wider experimental
campaign is needed to assess this behavior.

As regards the difference between imposed and average
measured IDT, no significant difference is observed in the two
cases.

Ongoing research activities are focused on extending the set
of test cases at different (higher) packet rates, and analyzing
the results, in order to infer the roles of the different sources of
measurement uncertainty and ultimately evaluate the
uncertainty of the IDT of the traffic generator, in compliance
with the GUM [10]. The same approach is intended to be used

for the characterization and uncertainty evaluation of other
traffic generators.

REFERENCES

[1] L. Angrisani, C. Narduzzi, “Testing communication and computer
networks an overview,” IEEE Instr. and Meas. Magazine, pp. 12 24,
Oct. 2008.

[2] F. Dressler, “Policy-Based Traffic Generation for IP-BasedNetworks,”
IEEE INFOCOM, Apr. 2006.

[3] K. V. Vishwanath and A. Vahdat, “Realistic and Responsive Network
Traffic Generation,” ACM SIGCOMM Computer Communication
Review, vol. 36, no. 4, pp. 111–22, Oct. 2006.

[4] A. Botta, A. Dainotti, A. Pescapè, "A tool for the generation of realistic
network workload for emerging networking scenarios", Computer
Networks, vol. 56, no. 15, pp 3531-3547, 2012.

[5] A. Santos, S. Fernandes, R. Antonello, G. Szabo, P. Lopes, D. Sadok,
“High-Performance Traffic Workload Architecture for Testing DPI
Systems,” 2011 IEEE Global Telecommunications Conference
(GLOBECOM 2011), , vol., no., pp.1,5, 5-9 Dec. 2011.

[6] A. Botta, A. Dainotti, A. Pescapè, “Do You Trust Your Software-based
Traffic Generator?”, IEEE Communications Magazine, vol.48, no. 9,
pp.158-165, Sept. 2010.

[7] M. Paredes-Farrera, M. Fleury, M. Ghanbari, “Precision and accuracy
of network traffic generators for packet-by-packet traffic analysis,” 2nd
International Conference on Testbeds and Research Infrastructures for
the Development of Networks and Communities TRIDENTCOM 2006,
pp. 32-37.

[8] P. Arlos. On the Quality of Computer Network Measurements. PhD
thesis, Blekinge Institute of Technology, Karlskrona, Sweden, 05:2005,
Oct. 2005.

[9] K. Wac, P. Arlos, M. Fiedler, S. Chevul, L. Isaksson, R. Bults,
“Accuracy Evaluation of Application-level Performance

 a) b)

 c) d)

Fig. 3. Measured IDT for a),b) simplified loop, and c),d) software traffic generator.
Imposed IDT value was 10 ms for subplots on the left and 0.2 ms for subplots on the right.

Measurements,” Proc. of Next Generation Internet Networks, pp. 1-5,
2007.

[10] JCGM, “Guide 100-Evaluation of measurement data – guide to
theexpression of uncertainty in measurement,” 2008.

[11] L. Angrisani, S. D’Antonio, M. Esposito, M. Vadursi, “Techniques for
Available Bandwidth Measurement in IP Networks: a Performance
Comparison,” Computer Networks, Vol.50, Issue 3, 22 Feb. 2006,
pp.332-349.

[12] L. Angrisani, A. Botta, A. Pescapè, M. Vadursi, “Measuring Wireless
Links Capacity,” IEEE Intern. Symp. on Wireless Pervasive Computing
ISWPC 2006, 16-18 Jan 2006, Phuket (Thailand), pp.1-5.

[13] L. Angrisani, A. Pescapè, M. Vadursi, G. Ventre, “Performance
measurement of IEEE 802.11b-based networks affected by narrowband
interference through cross-layer measurements,” IET Communications,
vol. 2, No.1, pp. 82-91, Jan. 2008.

[14] L. Angrisani, D. Capriglione, L. Ferrigno, G. Miele, “Internet protocol
packet delay variation measurements in communication networks: how
to evaluate measurement uncertainty?,” Measurements, vol. 46, no. 7, pp
2099–2109, Aug. 2013.

[15] L. Angrisani, D. Capriglione, L. Ferrigno, G. Miele, “A Methodological
approach for estimating protocol analyzer instrumental measurement
uncertainty in packet jitter evaluation,” IEEE Trans. on. Instr. and
Meas., vol. 61, no. 5, pp. 1405-1416, May 2012.

[16] L. Angrisani, D. Capriglione, L. Ferrigno, G. Miele, “Type A uncertainty
in jitter measurements in communication networks,” in proc. of 2011
IEEE Instrumentation and Measurement Technology Conference
(I2MTC), p. 1-5, May 2011.

