
DewROS: a Platform for Informed Dew Robotics in
ROS

Giovanni Stanco∗ , Alessio Botta, Giorgio Ventre
Department of Electrical Engineering and Information Technology

University of Napoli Federico II, Napoli, Italy
{gio.stanco}@studenti.unina.it, {alessio.botta}@unina.it, {giorgio.ventre}@unina.it,

Abstract—In recent years Cloud Robotics technology has been
proposed to overcome the constraints imposed by the resources
of standalone robots. We can imagine that in near future robots
will be very present in everyday life and interact with humans,
so it is necessary to guarantee that robots could make decisions
even if the connection to the cloud is unavailable. It is then
important to move the critical tasks on the edge devices in order
to make them always accessible, not following the Cloud Robotics
paradigm but the Dew Robotics one instead.
In this paper we propose DewROS, a platform for Dew Robotics
that uses monitoring entities to monitor the system status in order
to adapt the application operating conditions. In particular in this
work we describe the DewROS platform and its application in
the case of video analysis in a surveillance scenario. The results
provided in this paper demonstrate how DewROS allows us to
exploit at their best the limited resources of our robots.

Index Terms—Cloud robotics, Dew robotics, ROS, SHERPA.

I. INTRODUCTION

In the past decades robotics saw a significant development
and has been applied to several fields of interest [1]. The
robots used in past applications were standalone machines
limited by their hardware and by their computing power.
A couple of decades ago we saw the rise of networked
robotics which connected a group of robots through a wired
or wireless connection. Networked robotics allows the robots
to share the perceived data and to solve a task in a cooperative
manner, however networked robots encounter some problems
as the standalone robots. The main problem is that there are
limitations on the computing and storage capacity caused by
the constraints imposed by the hardware of each robot and by
the difficulties to upgrade the resources once a robot has been
designed and deployed. Their limited resources are a drawback
in complex real-life problems that need real-time execution
and in machine-to-machine communication protocols that re-
quire high computation and memory. Another constraint is that
networked robots can only access to the information they have
accumulated, so they have a good performance in a well known
environment but their performance degrades when they work
in a new and different environment.
To address these challenges, researchers have proposed the
Cloud Robotics technology which utilizes the on-demand re-
sources provided by an ubiquitous cloud infrastructure taking

*Giovanni Stanco is a PhD Student at the University of Napoli Federico
II. His work is supported through a grant by Rislab SRL, Italy.

Fig. 1: Cloud Robotics: robots are interconnected via
M2M/M2C communications, sharing their resources and ac-
cessing to remote cloud resources [2].

advantage of its computation capabilities for parallel compu-
tation and data sharing. Cloud Robotics consists of two main
components: the cloud infrastructure and the robots. The cloud
infrastructure consists of high-performance servers and mas-
sive databases while the robots can be of various types, from
automated machinery to UAVs (unmanned aerial vehicles).
The transition to the Cloud Robotics approach has been made
possible thanks to the improvements in communication tech-
nology and the increasing availability of network connections,
overcoming the constraints imposed by the limited on-board
processing, storage and battery capacities.

We can imagine a near future where robots will be very
present in our lives: in our homes to help us with our domestic
chores, in our hospitals to assist the patients, in our streets with
the employment of self driving cars. Obviously small devices
are not equipped with powerful resources so it is necessary
to offload resource intensive tasks to external computers,
e.g. the Cloud. However, in the scenarios we have described
before, robots will often interact with humans so much stricter
requirements for safety are needed, in order not to collide with
or hurt people. Depending completely on the Cloud means that
our robots are not able to take decisions and that a smaller or
larger latency is introduced in every operation. Furthermore
a robot will not be able to react to a situation if the network

Authorized licensed use limited to: Universita degli Studi di Napoli Federico II. Downloaded on August 31,2021 at 13:24:42 UTC from IEEE Xplore. Restrictions apply.

connection is temporarily unavailable, putting the safety of the
human user at risk. These obstacles can prevent the robot from
respecting the safety requirements, which basically means that
not all the computation can be moved to the Cloud. We
can then affirm that for future robotics application it will
be fundamental to have some tasks executed locally in order
to safeguard human users and other tasks offloaded to more
powerful devices.
In this paper we first of all describe some elements of the state
of the art in Cloud Robotics, including applications, software
platforms and architectures. One of the most interesting archi-
tectures proposed in literature for future robotics applications
is Dew Robotics, which allows to develop solutions that do not
rely completely on the Cloud but whose computational capa-
bilities are distributed among different devices. Following the
Dew Robotics architecture, we propose DewROS, a platform
that uses ROS, one of the software platforms available for
robotics. DewROS exploits the intelligence of edge devices to
change the operating conditions of our applications and adapt
them to the system’s status. We then focus our attention on one
of the possible use cases of DewROS, which is the surveillance
scenario, and describe how a DewROS software platform that
performs video analysis works. The last part of this paper is
dedicated to the deployment of the aforementioned DewROS
software platform on two machines and to the tests carried out
to validate the efficiency of our solution and to evaluate the
impact of the software on our machines.

II. RELATED WORKS

A. Robotics applications

Image processing is used to recognize objects and scenes in
a large number of applications, but it is hard to imagine to have
a high-portability device with the specific requirements for
image processing. Bhargava et al. [3] proposed an architecture
for a mobile-cloud pedestrian crossing guide for blind people
based on a mobile device with integrated GPS receiver and a
Cloud server. The mobile device is used for the most critical
tasks such as local navigation while the cloud server analyzes
the pictures captured by a camera module integrated into
sunglasses to detect the presence and status of pedestrian
signals. The server sends an appropriate response back and
a speech feedback notifies the pedestrian whether it is safe to
cross an intersection.

SLAM (Simultaneous Localization And Mapping) is the
problem of constructing and updating a map of an unknown
environment by a mobile robot while simultaneously navi-
gating the environment using the map. SLAM can be used
for both 2D and 3D motion and its main steps are: landmark
extraction, data association, state estimation, state update and
landmark update. The processing resources required to carry
out SLAM in real time can be quite high. Ayush et al. [4]
presented a system that used a private cloud infrastructure
so that was possible to deploy different resources assignment
strategies in order to satisfy the needs of the vision, odometry
and mapping operations.

Manipulation is an important task in robotics and has
wide applications, from domestic assistance to robot-assisted
surgery. If the object to grasp is not precisely known, the
problem becomes a challenge and some works in literature
have introduced a cloud infrastructure to provide a solution.
Kehoe et al. [5] have proposed a cloud-based grasp planning
algorithm that takes as input an approximate object contour
along with Gaussian uncertainity around each vertex. In a later
work they illustrated how cloud based data and computation
can improve 3D grasping tasks.

Cloud Robotics has furthermore been introduced in smart
homes to overcome the limitations of hardware existing in
simple service robots used in this scenario. Cloud computing
improved these systems by offering it advanced sensing and
interaction capabilities based on image processing and voice
recognition [6].

Another field of application for Cloud robotics is health-
care. Cloud robotics can contribute to the advancement of a
new model in this area, promoting a dedicated assistance to
the patients. A proposed application [7] is the construction
of a rehabilitation database which can be used by physical
therapy robots to record and save information and that can
help physical therapists to gather information about the health
conditions and progresses of patients. The rehabilitation sys-
tem consists of physical therapy robots and a rehabilitation
server connected through a network. The server maintains a
database of movement therapy and can also extract knowledge
based on statistical processing.

Robotics and automation systems can serve a critical role in
disaster management as they can perform unmanned search
and rescue operation in areas which are dangerous and difficult
for humans to access. Jangid et al. [8] explained in detail the
utility and tremendous benefits that can be offered by a Real-
Time Cloud (RTC) for efficient disaster management. RTC
can help intelligent robots perform complex processing via a
request and response model.

B. Software platforms

An important component for the development of distributed
robotics applications is the use of established software plat-
forms. Steps in this direction have been taken and open sources
Cloud Robotics platforms such as Rapyuta and ROS have been
proposed in literature.

Rapyuta is an open source platform that helps robots to
offload heavy computation providing computing environments
in the cloud. Each robot connected to Rapyuta has one or
more secured computing environments giving them the ability
to move their heavy computation onto the cloud. In addition,
the computing environments are tightly interconnected with
each other, giving the opportunity to work in team. With
Rapyuta robots can authenticate on the platform, creating one
or more computing environments in the Cloud, and launch
the desired processes. Computing environments are private,
secure, optimized for data transmission, and can be connected
to build parallel architectures [9].

Authorized licensed use limited to: Universita degli Studi di Napoli Federico II. Downloaded on August 31,2021 at 13:24:42 UTC from IEEE Xplore. Restrictions apply.

ROS is an open-source, meta-operating system for
robots [10]. ROS provides the typical services offered by an
operating system (for example hardware abstraction, message-
passing between processes etc.) and it also provides tools
and libraries for software development and execution. ROS
is an excellent solution for the robotics applications that need
distributed computation [11] and that rely on software that runs
across several different computers. One of the basic goals of
ROS is to design software as a collection of small independent
programs called nodes, processes that perform computation
and communicate with one another. Communication between
nodes is possible thanks to the different paradigms of com-
munication provided by ROS:

• synchronous communication over services for implement-
ing a request/reply communication;

• asynchronous streaming of data over topics, buses over
which nodes exchange messages, intended for unidirec-
tional communication and supporting publish/subscribe
semantics;

• storage of data on a Parameter Server, a shared dictionary
used to store and retrieve parameters at runtime.

C. Cloud Robotics system architectures

Nowadays one of the main research activities about Cloud
Robotics concerns Cloud Robotics system architectures (com-
munications protocols between robots and the cloud). Hu
et al. [2] proposed an architecture organized into two com-
plementary tiers: a machine-to-machine (M2M) level and a
machine-to-cloud (M2C) level. On the M2M level robots
communicate on wireless links to form a collaborative ad-
hoc cloud, while on the M2C level, the cloud provides shared
computation and storage resources and the robots offload
computation-intensive tasks for remote execution. Robots can
communicate if they are within communication range of each
other and can reach the cloud servers if they are close to
the access point of the cloud infrastructure. A wireless M2M
communication network can be formed by robots working
cooperatively to route information and is often formed in
an ad-hoc manner. In a practical situation, robots can leave
and join the network or become unavailable because of un-
predictable failures or obstructions in the environment and
the routing protocols used must take in consideration these
aspects. Traditional network routing protocols could represent
a heavy and unjustified load on the network nodes in this
case, therefore it is often worth adopting easier methods like
gossip protocols that do not require route discoveries and
maintenance and are thus suited for highly dynamic mobile
robotic networks. These protocols are also very simple to
implement, and require minimal additional computation and
memory resources. However, the trade-off is that gossiping
may result in a high message latency.

As seen before, a common problem for future applications
is that they can not be fully based on Cloud computing.
This issue has been addressed in literature as well, mainly
proposing scarcely reusable application-specific solutions and
not a generic architecture. But for future robotics applications,

Fig. 2: Dew Robotics: the computational tasks are distributed
between the dew, the fog and the cloud [12].

a new approach is necessary and a common architecture is
needed. In literature two new approaches that satisfy the needs
of future applications have been proposed and they are the Fog
and the Dew robotics [12].

The Fog computing paradigm is a distributed computing
paradigm that provides data and services closer to end users.
The Fog computing paradigm deploys the decision-making
processes that require more reliability closer to the robots.
The vicinity between the computing nodes and the end user
applications lowers network latency. The Dew computing
paradigm extends the concept of resources distribution and it is
based on the concept of microservices provided by the end user
devices, without the help of centralized nodes. The main goal
of Dew Computing is to improve scalability. The processing
tasks are distributed over a large number of devices without
the use of central nodes and the on-site devices are always able
to provide a set of functionalities without Internet connection.
The Dew paradigm can coexist with the Cloud and the Fog
paradigms. The on-site devices are able to collaborate with
central nodes when the Internet connection is available but
they are not dependent on them. In this case the computation
and storage can be split in three parts: locally on the robots,
on the Fog nodes and on the Cloud. The most critical tasks
are kept locally so that the robot can always react properly,
the least critical are moved on the Fog and on the Cloud to
exploit their computing, storage and power resources.

III. DEWROS
DewROS is a platform for Dew Robotics that uses ROS. Its

architecture is composed of different nodes interacting with
each other and distributed over different network hosts. These
nodes can communicate with each other through wired or
wireless network technology, depending on the scenario.

In a DewROS architecture we have two main groups of
nodes. The first group is made up of the nodes that actually
execute the needed operations to fulfill our final goal and they

Authorized licensed use limited to: Universita degli Studi di Napoli Federico II. Downloaded on August 31,2021 at 13:24:42 UTC from IEEE Xplore. Restrictions apply.

are deployed on the machine that best satisfies their resources’
needs. These nodes in fact carry out different tasks, which
may or may not need powerful resources and that can be
more or less critical. Typically the dew nodes have simple
hardware and limited power supply, so they host the less
computation-demanding operations, while the fog hosts have
more computational, storage and power resources, appropriate
for the most demanding tasks.

The second group is composed of different ROS nodes that
monitor performance parameters regarding the hosts they run
on [13]–[15] and interact with the nodes belonging to same
group or the other one. The parameters monitored by these
nodes can be various, e.g. CPU and memory usage, battery
percentage, network parameters. All this information collected
is then shared with, e.g. the first group of nodes in order
to change their operating conditions and to optimise their
operations. The communication among the nodes is fully in
line with the ROS communications paradigm.

The DewROS platform works as follows: the main nodes
start their operations on the dew or fog machines, in the
meantime the monitoring nodes, which run on the dew and
the fog machines, begin their work and periodically inform the
other nodes, sending messages containing the values measured
via ROS topics (figure 3). Thanks to the information received,
the first nodes can make changes about their operating con-
ditions and adapt to the system’s status. For example, we can
implement a node that monitors the CPU usage and the battery
level of the robot and another one that uses this information
to reduce the number of running processes when the CPU is
overloaded or to decide where to perform a task according to
the energy requirement and availability on the robot.

We believe that DewROS will be more and more important
in the future as it provides the necessary support for several
operations in a multi-layer Cloud robotics scenario. DewROS
is suitable for all the distributed robotic applications where
devices with limited resources are employed and where the
monitoring of performance parameters can bring advantages.
In the following, we will focus our attention on a specific
use case where video analysis is used for rescuing and
surveillance.

Fig. 3: Main and monitoring nodes in a DewROS solution.

Fig. 4: A sketch of the SHERPA team.

IV. DEWROS IN SHERPA

A. The SHERPA project

SHERPA [16] is a European project whose research activ-
ities started in 2013. The real world scenario inspiring the
SHERPA activities is the one of surveillance and rescuing
in unfriendly and hostile environments like mountains or
forests. The main goal of SHERPA is to develop a robotic
platform supporting the rescuers in their activity in order to
improve their ability while decreasing the costs and the risks.
The adverse environmental conditions in which the platform
operates ask for robust automatic control and communication
capabilities of the robotic platform.

The activities of SHERPA are focused on a combined aerial
and ground robotic platform to support human operators in
surveillance and rescuing tasks in hostile environments, like
the alpine scenario targeted by the project.

B. DewROS in SHERPA

One of the purposes of rescuing missions is to find survivors
after a natural disaster in an alpine environment. The UAVs
employed by SHERPA are therefore sent in the location of
the calamity to capture videos and images in order to find
dispersed people. The huge amount of information captured
can not be easily analyzed by a human operator, who will
easily become the bottleneck of the system performance.
Exploiting the computational resources of a Cloud service can
surely help. Capturing videos at high definition is necessary
for good video analysis results. But such videos involve a large
volume of byte, which cannot be easily transferred from the
drone (the dew node) to the ground (a fog node), especially in
alpine scenarios, where the network conditions are not optimal
and largely variable with the drone moving around.

DewROS can provide several benefits in this scenario. It
can monitor the network conditions and performance so as
to maximize the video quality according to such conditions
and to capture videos at the highest resolution possible. Our
monitoring nodes continuously check the network conditions
and allow the dew node to decide the best quality of the video
captured to be transferred towards the Cloud for the analysis.

For this use case, we devised a solution made up by three
main ROS nodes that execute the video analysis: a reader

Authorized licensed use limited to: Universita degli Studi di Napoli Federico II. Downloaded on August 31,2021 at 13:24:42 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: Reader node diagram.

node that captures video frames from a camera, a writer node
that receives the frames and writes them in a video file, and an
annotator node that receives the video to analyze and sends an
annotation request to a cloud service. The intelligence of the
system is therefore divided among different hosts. The reader
node is deployed on the dew host and the other two run on the
fog host, while the most resource demanding task is performed
by the cloud services.

These nodes use network monitoring tools to evaluate the
network status. The monitoring nodes are launched by the
reader node and influence its behaviour providing it with useful
information. They are divided in two groups. The first group
contains the active nodes, that evaluate the initial value of the
available bitrate between the dew and the fog hosts before
the frames capture begins. The second group contains the
passive nodes, which use Linux tools to check the conditions
of network interfaces and status of TCP connections over
them. This second group of nodes works at the same time
of the frames capture and provides the information that the
reader node will use to change its operating conditions.

1) Reader: The reader node is responsible to start the
active measurement, the passive measurement and the frames
capture. The main function of the script initializes the node,
starts the active measurement and then, when the active
measurement is finished, launches two threads: one for the
passive measurement and one for the frames capture.

The active measurement is done by three nodes that use
D-ITG (Distributed Internet Traffic Generator) [17], a tool
capable to measure the most common performance metrics
(e.g. throughput, delay, jitter, packet loss) at packet level. The
three D-ITG nodes work as follows:

• receiver node: on the fog host, it calls the D-ITG
Receiver entity and starts listening;

• sender node: on the dew host, it calls the D-ITG Sender
entity which sends packets to the receiver node;

• decoder node: on the fog host, it calls the D-ITG
Decoder entity to analyze the log file stored during the
experiment, retrieves the measured bitrate value and saves
it on the ROS parameter server to make it accessible to
the other nodes.

The initial values of the video resolution (i.e. the frame
size) are decided on the basis of the measured bitrate. Once
the active measurement is completed, the reader node starts
two threads at the same time. One of the threads launches
two passive nodes. The first passive measurement nodes uses
ifconfig to retrieve the number of bytes sent by the dew host
in a time interval in order to evaluate the outgoing bitrate on

Fig. 6: Nodes for a DewROS platform in SHERPA.

the interface we used. The bitrate can be easily calculated as
follows:

8 ∗ (bytes1− bytes0)

timestamp1− timestamp0
(1)

According to our needs, this bitrate value can be saved in a
text file or sent over a ROS topic, making it available for every
node that may need it. The other passive node checks the size
of the queues of the data that are waiting to be transmitted in
order to decide whether the bitrate provided by the network
is enough to transmit the video frames at the resolution its
is using. In order to know the size of these queues, the node
periodically calls netstat, a command-line utility that displays
network connections and network protocol statistics. This size
value gives us an idea about the bitrate availability and will be
sent over a ROS topic and used by the reader node to increase
or decrease the video resolution.

The second thread launched by the reader node is responsi-
ble for frame capture. For the frame capture we used OpenCV,
an open source computer vision and machine learning software
library. The reader node creates an OpenCV VideoCapture
object, sets width and height according to the bitrate value
determined by the active measurement and starts capturing.
Every frame captured using VideoCapture is converted in a
CompressedImage message using the JPEG compression and
sent over a topic to the writer node. While the node is capturing
video frames, it periodically checks if a new message from
the second passive node is available. If a new message is
not available the node will keep on capturing, otherwise it
will check the received queue size value and will decide if
it is necessary to change the video resolution using a simple
adaptive algorithm we implemented.

2) Writer: The writer node runs on the fog host. After
its initialization, the node subscribes to the topic over which
the reader node sends the frames in a CompressedImage
message. Every time a new frame is received, the callback
function converts the CompressedImage in an OpenCV image
and accesses its width and its height: we need to check the
dimensions of every frame received to decide whether it is
possible to write the new frame on the current video chunk or
if it necessary to open a new one.

3) Annotator: The annotator node is on the fog host and
works with videos saved locally. We implemented two dif-

Authorized licensed use limited to: Universita degli Studi di Napoli Federico II. Downloaded on August 31,2021 at 13:24:42 UTC from IEEE Xplore. Restrictions apply.

ferent annotator nodes that use two different Cloud services:
one for Google Cloud Video Intelligence and one for Amazon
Web Services Rekognition. The common part of these two
nodes is that they subscribe to a ROS topic over which the
writer node will transmit the name of the video file to upload
and analyze. The Google annotator can communicate with the
Google servers thanks to the videointelligence library provided
by Google, while in the Amazon annotator we need to import
the boto3 library to exploit the AWS functionalities. The result
of the annotation process is a text file containing the labels,
that is the name of the objects identified in the video, the
percentage confidence in the accuracy of the detected label
and the time the object was detected in the video.

V. EXPERIMENTATIONS

A. Using the measurement nodes
To evaluate our solution we tested DewROS in controlled

and uncontrolled conditions, using a wired connection in the
former case and a wireless one in the latter one. In both cases
the dew host was a Raspberry Pi, while the fog one was an
Ubuntu virtual machine running on a Windows PC.

1) Testing in controlled conditions: For our testing activi-
ties in controlled conditions we used an Ethernet connection
and tool that limits the available bitrate on our network
in order to test our adaptive algorithm. The tools we used
are tc (traffic control) and netem (network emulator). Tc is
used to configure traffic control settings in the Linux kernel
and allows us to add a queueing discipline to our selected
interface; netem is an enhancement of the Linux traffic control
facilities that allows to add delay, packet loss and more other
characteristics to packets outgoing from a selected network
interface. Specifically we use netem’s rate option to set the
maximum bitrate outgoing from our selected interface, as
shown in Figure 7.

Fig. 7: Devices used for the testing activities.

We used tc on the Linux computer, specifically on the inter-
face that links the Linux computer to our PC, and periodically
changed the maximum outgoing bitrate, randomly choosing
its value from a set of seven values ranging from 0.5 to 32
Mbps. We also tested our system changing two parameters:
the first parameter is the time period used in the script that
sets a traffic control constraint, the second is the time period
used in the netstat node to communicate the aggregate value
of the queues. Fig. 8 shows the results of a test lasting about
40 minutes, with a traffic control period of 180 seconds and
a netstat period of 5 seconds.

The blue line in figure 8 shows the values of bitrate imposed
by tc and netem, the red dots show the bitrate measured by

Fig. 8: Bitrate values.

the ifconfig node on our Raspberry Pi. We can see how the
outgoing bitrate follows the restrictions imposed by netem.

Fig. 9: Frame width and queue sizes.

Fig. 9 shows how the video resolution changes according
to the queue size. The blue line is the width of the frames, the
red line shows the aggregate values of the queues: these are
the values received by the reader node from the node using
netstat and are plotted using a logarithmic scale for the y-axis.
The dashed black line is the threshold above which the video
resolution is decreased. We can easily see that every time there
is a large queue the frame’s width decreases while when we
do not have a queue the width increases.

If we compare the two graphs we can notice a trend: when
the available bitrate is high there are no queues, so the adaptive
algorithm can use a higher video resolution; when the available
bitrate drops the queues’ sizes increase so the reader uses a
lower resolution. We carried out several experiments using
three different values of traffic control periods and three values
of netstat periods. We changed the traffic constraint every
30, 60 or 180 seconds while the three periods we used with
netstat are 2, 5 or 10 seconds. For every combination of these
values we performed three experiments and calculated the
average error in Mbps between the available bitrate and the
produced bitrate. In table I we reported the error values for
every combination of the two time periods.

For the netstat periods of 2 and 5 seconds we observe
the expected trend: the average difference is minimum when
the channel changes slowly (that is when the traffic control
constraint changes every 180 seconds), while it is maximum

Authorized licensed use limited to: Universita degli Studi di Napoli Federico II. Downloaded on August 31,2021 at 13:24:42 UTC from IEEE Xplore. Restrictions apply.

30 s 60 s 180 s
2 s 5.714 5.499 3.155
5 s 8.44 6.595 5.019

10 s 6.961 6.612 8.564

TABLE I: Average error in Mbps between the available and
used bitrate.

when the channel changes rapidly. In particular for the 2
seconds period we have lower differences since our passive
node is more sensible to the channel’s variations so that our
system can follow the traffic control constraints better than
it does when the netstat period is 5 seconds. This expected
trend is not respected for the 10 seconds period: the 10 seconds
interval between the notification of two queues values is in fact
too high for our application and it does not allow to follow the
variability of the channel and to exploit the maximum available
bandwidth.

2) Testing in uncontrolled conditions: We also tested our
solution using Wi-Fi as well. Obviously it was not possible
to use tc and netem in this case, but we had to move our
Raspberry Pi around an access point in order to have a variable
channel. In our tests our Windows PC, on which the virtual
machine is running, works as an access point, while the
Raspberry Pi is mounted on a moving device. The device we
used is a Smart Video Car Kit for Raspberry Pi produced by
the company Sunfounder [18].

Fig. 10: Sunfounder Smart Video Car Kit for Raspberry Pi.

The first experiments we carried out were inside our lab-
oratory. Fig. 11 shows is a map of the laboratory and the
trajectory followed by the Smart Video Car. This experiment
was repeated three times but we report only the results of the
first repetition, since the three results are similar.

The first plot of Fig. 12 shows the bitrate measured by
the ifconfig node every ten seconds. The frame widths are
reported in the second plot. The queue sizes measured every
two seconds are reported in the third plot. As we can see,
our system works as expected: the reader decreases the video
resolution when the queue size exceeds the threshold, while
the video resolution is increased when the queue size is null.

We then carried out a second group of experiments, driving
our Smart Video Car outside our laboratory, introducing a
brick wall obstacle between the Raspberry Pi and the access

Fig. 11: Path inside our laboratory.

Fig. 12: Results of the experiment inside the laboratory.

point provided by our Windows PC. The path that our car
followed is reported in Fig. 13.

Fig. 13: Path in the laboratory and in the corridor

In this case we used the same interval of two seconds for
both of our passive nodes in order to have more information
in our graphs. In the first plot of Fig. 14 we also reported the
bitrate values retrieved from iwconfigThe Wi-Fi NIC of our
Raspberry supports multiple bit rates, so we can interpret the
red dots of the first plot as the nominal available bitrate. In
Fig. 14 we can see a sudden drop of the bitrate reported by
iwconfig before the 120th second of the experiment. These mo-
ments correspond at the exit of the car from the laboratory and
the beginning of the straight path in the corridor. Even though
this seems to be the section where the network conditions are
the worst, our platform was still able to capture frames at the
lowest resolution possible because it had previously lowered
the video quality. Actually, we can see that on the 120th second
the queue was empty, so it was possible to increase the video
resolution, even if the available bitrate was limited.

As we can see from Fig. 12 and Fig. 14, the frames capture

Authorized licensed use limited to: Universita degli Studi di Napoli Federico II. Downloaded on August 31,2021 at 13:24:42 UTC from IEEE Xplore. Restrictions apply.

Fig. 14: Results of the experiment in the laboratory and in the
corridor.

starts with the 640x480 resolution, which is decided after the
active measurement, that in our experiments always returned
a bitrate of 30-35 Mbps. Despite having this available bitrate
and using only around 5-10 Mbps to send the video frames,
we observe large queues at the beginning of our experiment
and the video resolution is quickly reduced. The large number
of bytes not acknowledged by the remote host may be caused
by the ACK mechanisms in IEEE 802.11.

VI. CONCLUSION

In this paper we have discussed one of the main problems
regarding future robotics applications. In particular we high-
lighted how robots will be pervasive in everyday life and how
robots will need computational power to respond in safety-
critical tasks.

We then proposed the DewROS platform, that could over-
come the obstacles of a Cloud robotics solution, moving
part of the computational resources closer to the end user.
We also described one of the possible scenarios where such
a platform could be used, analysing how to implement a
DewROS solution in the case of a rescuing mission. The main
distinguishing characteristic of DewROS is the provisioning
of a few monitoring nodes that continuously measure the
performance of the network (and possibly of other interesting
parameters in the future) and provide such important informa-
tion to the other ROS nodes. Having such vital information,
the other nodes can better perform their tasks and fully exploit
the available resources, typically limited, at the robot side.

We also tested DewROS both in controlled and uncontrolled
network conditions, to see if everything was working properly
and to check the befits achievable.Our results show that the
introduction of DewROS in a real working environment can
actually improve the performance of ROS nodes and allow to
fully exploit the available, usually limited, resources.

Our ongoing work is focused in implementing more moni-
toring nodes in DewROS and testing it in other use cases, also
using real drones.

ACKNOWLEDGMENT

This work was partially supported by MIUR through
the "ICT for Health" project, Dipartimento di Eccel-

lenza (2018-2022) "Ingegneria Elettrica e delle Tecnologie
dell’Informazione" and by Cisco Systems through the Spon-
sored Research Agreement "Research Project for Industry 4.0".

REFERENCES

[1] O. Saha and R. Dasgupta, “A comprehensive survey of recent trends in
cloud robotics architectures and applications,” Robotics, vol. 7, 08 2018.

[2] G. Hu, W. P. Tay, and Y. Wen, “Cloud robotics: architecture, challenges
and applications,” IEEE Network, vol. 26, no. 3, pp. 21–28, May 2012.

[3] P. Angin, B. Bhargava, and S. Helal, “A mobile-cloud collaborative
traffic lights detector for blind navigation,” 01 2010, pp. 396–401.

[4] K. Ayush and N. K. Agarwal, “Real time visual slam using cloud
computing,” in 2013 Fourth International Conference on Computing,
Communications and Networking Technologies (ICCCNT), July 2013,
pp. 1–7.

[5] B. Kehoe, D. Berenson, and K. Goldberg, “Toward cloud-based grasp-
ing with uncertainty in shape: Estimating lower bounds on achieving
force closure with zero-slip push grasps,” in 2012 IEEE International
Conference on Robotics and Automation, May 2012, pp. 576–583.

[6] J. Pinta, J. Maestre, I. Jurado, and S. Reyes de Cózar, “Off the shelf
cloud robotics for the smart home: Empowering a wireless robot through
cloud computing,” Sensors, vol. 17, 03 2017.

[7] T. Yokoo, M. Yamada, S. Sakaino, S. Abe, and T. Tsuji, “Development of
a physical therapy robot for rehabilitation databases,” in 2012 12th IEEE
International Workshop on Advanced Motion Control (AMC), March
2012, pp. 1–6.

[8] N. Jangid and B. Sharma, “Cloud computing and robotics for disaster
management,” in 2016 7th International Conference on Intelligent
Systems, Modelling and Simulation (ISMS), Jan 2016, pp. 20–24.

[9] G. Mohanarajah, D. Hunziker, R. D’Andrea, and M. Waibel, “Rapyuta:
A cloud robotics platform,” IEEE Transactions on Automation Science
and Engineering, vol. 12, no. 2, pp. 481–493, April 2015.

[10] “Ros - introduction,” Available at http://wiki.ros.org/ROS/Introduction
(2018).

[11] J. M. O’Kane, A Gentle Introduction to ROS. Independently published,
10 2013, available at http://www.cse.sc.edu/~jokane/agitr/.

[12] A. Botta, L. Gallo, and G. Ventre, “Cloud, fog, and dew robotics:
Architectures for next generation applications,” in 2019 7th IEEE
International Conference on Mobile Cloud Computing, Services, and
Engineering (MobileCloud), April 2019, pp. 16–23.

[13] V. Persico, A. Botta, P. Marchetta, A. Montieri, and A. Pescapé, “On
the performance of the wide-area networks interconnecting public-cloud
datacenters around the globe,” Computer Networks, vol. 112, pp. 67
– 83, 2017. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S138912861630353X

[14] G. Aceto, A. Botta, A. Pescape, and C. Westphal, “Efficient storage and
processing of high-volume network monitoring data,” IEEE Transactions
on Network and Service Management, vol. 10, no. 2, pp. 162–175, June
2013.

[15] A. Botta, W. de Donato, A. Pescape, and G. Ventre, “Discovering
topologies at router level: Part ii,” in IEEE GLOBECOM 2007 - IEEE
Global Telecommunications Conference, Nov 2007, pp. 2696–2701.

[16] L. Marconi, C. Melchiorri, M. Beetz, D. Pangercic, R. Siegwart,
S. Leutenegger, R. Carloni, S. Stramigioli, H. Bruyninckx, P. Doherty,
A. Kleiner, V. Lippiello, A. Finzi, B. Siciliano, A. Sala, and N. Tomatis,
“The sherpa project: Smart collaboration between humans and ground-
aerial robots for improving rescuing activities in alpine environments,”
in 2012 IEEE International Symposium on Safety, Security, and Rescue
Robotics (SSRR), Nov 2012, pp. 1–4.

[17] A. Botta, A. Dainotti, and A. Pescapè, “A tool for the generation
of realistic network workload for emerging networking scenarios,”
Computer Networks, vol. 56, no. 15, pp. 3531–3547, 2012.

[18] “Smart video car kit for raspberry pi,” Available at https://www.
sunfounder.com/learn/category/Smart-Video-Car-for-Raspberry-Pi.
html.

Authorized licensed use limited to: Universita degli Studi di Napoli Federico II. Downloaded on August 31,2021 at 13:24:42 UTC from IEEE Xplore. Restrictions apply.

