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Abstract— In the study of network traffic, the collection and
the processing of measurement data sets play a fundamental
role. Due to the large size of typical traffic traces, their analysis
is often heavy in terms of computational time and resources. In
addition, even when the data sets are small, due to the intrinsic
redundancy of the data, there is no need to consider the entire
data sets in the processing stages. To cope with these issues, we
use an Entropy-based methodology to reduce network traffic data
sets obtained by measurements over real networks. The off-line
approach we used is based on the Marginal Utility concept, and
reveals encouraging results when applied to real data captured
over real networks, especially when dealing with large amounts
of data. To show the applicability of our approach, we present
and discuss results obtained in the analysis and characterization,
at packet-level, of traffic traces from two popular network games:
Counter-Strike and Age of Mythology. Thanks to the differences
between the two considered on-line games and their traffic traces
we can draw pros and cons in realistic scenarios.

I. INTRODUCTION

Traffic analysis is a wide and fertile research area. Un-
derstanding the properties of traffic generated by new appli-
cations and flowing in current networks allows to improve
their performance and to design new architectures efficiently.
Performance evaluation of networking systems as well as
traffic characterization, modeling, simulation and emulation
are all activities that need to rely on realistic data. However,
the collection of data traces from real networks often requires
managing large quantities of data. In one hour, the collection of
60 byte packet headers on an OC-48 link can generate 600 GB
of data [4]. As the amount of data increases, the time required
for their analysis raises, and when working with large data sets
several problems can occur (e.g. the software environment for
data processing and statistical analysis runs out of memory).
Another typical example in which data reduction is necessary,
is in the context of distributed and cooperative systems for
traffic analysis and detection, when a central node must
collect several traffic data sets from other nodes and needs
to process them. Each node must stream a reduced quantity of
its collected data while still preserving the information content
needed by the central node to perform its specific analysis and
to correlate the data originating from different sources [5].

Therefore, our reduction approach starts from the following
idea: collecting a large amount of data (i.e. information)
does not necessarily imply that successive analysis stages
must use all this data. Indeed, the considered data set may
comprise information redundant with respect to the analysis
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to be performed. Methods can be therefore derived to reduce
the original data set with an acceptable loss of the properties
of interest. To reach this target we need both methods that
work effectively and techniques to measure the effectiveness
of the introduced method.

Exploiting the intrinsic redundancy of network traffic data,
in this paper we present a methodology, based on the idea
introduced in [30], to reduce network traffic data sets. We
show its application in the context of packet-level analysis of
application traffic and we assess its effectiveness discussing a
number of statistical properties of both entire and reduced data
sets. With the term packet-level analysis we mean the study of
the statistical properties of inter-packet times and packet sizes
generated by a specific Internet application [19] [18] [20].

The adopted approach is applied to the traces of applications
drawing increasing interest in the research community: on-line
games. More precisely, we apply our methodology to the traffic
generated by Counter-Strike [3] and Age of Mythology [13].
Network games, are indeed an interesting class of emerging
applications which have recently gained considerable attention
because of their different - from traditional Internet applica-
tions - QoS requirements and traffic properties, connected to
their growing popularity and spread in current networks [22]
[23] [21] [20] [18].

In [30] we presented the analytical basis and a proof of
concept of an Entropy-based reduction methodology. In this
work, to assess the efficacy of such approach, we perform
a deep analysis, extending previous results. We consider
the traffic generated by two network games (Counter-Strike
and Age of Mythology) presenting very different properties.
The performed analysis aims at evaluating the effects of the
reduction on real network traffic data, in terms of marginal
distributions, tail behavior, auto-correlation functions, and
time-scale properties. Finally, we make the statistical tools
used in this work available at [25].

The paper is organized as follows. Section II presents
related work. In Section III we give a brief overview of the
methodology we used, and we show how this was applied to
Counter-Strike and Age of Mythology traffic. The experimental
results are presented in Section IV. Finally, we discuss the
findings in Section V drawing also some final conclusions.

II. RELATED WORK

The problem of data reduction for collection and analysis
is common to several research areas (e.g. genetic [27] and
economy [28]). In the field of network traffic, several aspects
of data reduction can be considered.
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A deeply investigated approach is based on sampling. In
this area, some techniques have been developed to reduce the
amount of collected data while still being able to extract faith-
ful/reliable information related to the overall traffic traversing
a network link. Sampling is usually used for monitoring
purposes and to study flow properties, traffic matrices, etc. and
many works have been devoted to understand how sampling
affects several traffic properties [9] [10] [15].

Some recent approaches aim to use the Principal Component
Analysis (PCA) [26] to reduce the dimension of the considered
parameter space. This, in turn, results in a reduction of the
quantity of information necessary to represent the data.

Other approaches are based on compression techniques. In
[17] the authors study the compression of network measure-
ment data of different granularity (SNMP, NetFlow, packet
headers), also considering joint coding of data originating from
different monitoring points

Finally, some research has been devoted to the analysis of
the measurement time period. In [16] the problem of how long
the measurement time for collecting traffic traces should be,
for classification purposes, has been examined.

III. REDUCING NETWORK TRAFFIC DATA SETS

The methodology we use in this work is based on the
concepts of Entropy, Kullback-Leibler distance, and Marginal
Utility. The analytical background has been already introduced
in [30]. In such paper it was shown how, starting from these
concepts, it is possible to obtain an equation useful to test the
goodness of the reduction. Here we recall such formula that
represents the concept of off-line Marginal Utility. For more
information please refer to [30]

The Kullback-Leibler distance is used to test whether the
addition of a block of traffic samples to an existing set
improves our knowledge regarding its marginal distribution.
Such metric measures the information gain of the new block
with respect to the existing set of traffic samples.

Let M be the size of the data set to be reduced, we divide it
into z non-overlapping blocks. Each of them will have a size
of N = �M/z�. We then compute the following expression
for m = 1, . . . , z

Uz(Sm) =
∑

xi∈A

P (xz
i ) · Y m

i (1)

where:

Y m
i =




− log(P (xz
i )), if P (xm

i ) = 0 (2)

log(
P (xz

i )

P (xm
i )

), otherwise

The reduced data set will be composed of the first j blocks
with j being the index for which Uz(Sj) becomes arbitrary
smaller than the Entropy of the entire data set [8]. If (j < z) we
have obtained a reduction of the dataset loosing a controlled
quantity of information content.

Here we show how this general methodology can be applied
to real network measurements used for traffic characterization
and modeling. This work falls in a more general research

Fig. 1. Packet-level approach: considered variables

framework for packet-level analysis of network traffic [19]
[18] [20]. For packet-level analysis, we mean analyzing net-
work traffic in terms of Inter-Packet Times and Packet Size,
instead of, e.g., flows, connections, sessions, aggregate traffic,
etc.

With the aim to study network games because of their
timeliness, here we consider traffic traces of two popular
network games, Counter-Strike (CS) and Age of Mythology
(AoM). As we can see in Table I, the AoM trace is very
small, in terms of both bytes and packets, compared with CS.
The reason for choosing such a small trace is twofold: first, to
verify the applicability of the approach to very small traces,
and, second, exploiting the different characteristics of the
two games, to investigate the generalizability of the proposed
approach.

As for the datasets to be reduced, in this work we consider
Inter-Arrival Times (IAT) between incoming packets and their
corresponding Packet Size In (PSI) as well as Inter-Departure
Times (IDT) between outgoing packets and their corresponding
Packet Size Out (PSO) (see Fig. 1). The PSI and the PSO (mea-
sured in bytes) represent the length of UDP payload, while
the IAT and the IDT refer to inter-packet times (measured
in seconds) between two consecutive IP packets. The point
of view is from the server in the case of Counter-Strike, and
from a game peer in the case of Age of Mythology. The number
of disjoint subsets we consider, for each variable, is equal to
100. Also, we consider the reduced dataset to be representative
of the entire one when the Marginal Utility becomes about
200−300 times smaller than the Entropy of the entire dataset.

We make the Matlab scripts used for data reduction and for
the statistical analysis freely available at [25].

To analyze the effectiveness of the adopted approach, we
compare different statistical properties of the entire and re-
duced data sets. In particular, to observe the effect of the
reduction on the marginal distribution, we plot the quantile of
the entire set against the quantile of the reduced one (QQ-plot)
and the Probability Density Function (PDF) of the entire and
reduced set in the same figure. To highlight the tail behavior of
the distributions, we plot the Complementary Cumulative Dis-
tribution Function (CCDF). This aspect is important because
it has been demonstrated that the presence of particular tail
behaviors (e.g. heavy-tails) in statistical distributions related
to network traffic is responsible, in some cases, for significant
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TABLE I

TRAFFIC TRACES DETAILS.

Application Scenario Packets Size Log Time
Counter-Strike Server over WAN 20.000.000 1.6 GB 7h:50m

Age of Mythology Client over LAN 68613 5 MB 0h:56m

phenomena. Besides the marginal distributions, to investigate
the impact of the reduction on both the temporal structure of
the samples and their mutual dependencies, we also look at
the modifications to the scaling properties introduced by the
reduction and we analyze the autocorrelation function of the
entire and reduced sets.

IV. EXPERIMENTAL RESULTS

A. On the Reduction of Counter-Strike traffic traces

The traffic trace of Counter-Strike server we analyzed comes
from one of the most popular on-line gaming communities
in the Northwest region of USA, namely mshmro.com [11].
Counter-Strike is a first-person-shooter (FPS) game, whose
wide-spreading goes back as far as year 2000 (with more than
20.000 active servers), when measurements indicated that the
application was generating a large percentage of all observed
UDP traffic behind DNS and RealAudio traffic [1]. The trace
we used (Table I) has been obtained by capturing all the traffic
flowing in and out from the gaming server for about 8 hours.
The server itself was configured with a maximum capacity of
22 players, which was often reached. The trace collection was
limited to 20.000.000 packets (about 8 hours) but the traffic
to (10.809.129 pkts) and from (9.190.871 pkts) the server
shows similar behavior even for the rest of the day [23]. This
trace has been collected and used in [22] and [23].

1) Entropy-based data sets reduction:
a) IAT: In Fig. 2(a), the Marginal Utility of the IAT

series, as a function of the number of samples, decays very
fast. Ending the reduction with a Marginal Utility of 0.021,
we obtain a reduced set composed of only 2 experiments.
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(b) IAT Quantile-Quantile plot
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(d) PSI Quantile-Quantile plot

Fig. 2. Reducing IAT and PSI Time Series of Counter-Strike[30].

The QQ-plot between the entire and the reduced data sets
(reported in Fig. 2(b)) shows that the approximation is quite
good for over the 99.9% of the distribution. In Fig. 4, a
comparison of the probability density function (PDF) diagrams
of the two sets shows the goodness of the approximation. Also,
the mean and standard deviation values are preserved (see
first row of Table II). Furthermore, in Fig. 5(a), we compare
the CCDF, with the y axis plotted in logarithmic scale, of
the two distributions. This figure shows a different behavior
regarding the largest values. Indeed, while the largest value of
the entire data set is 0.82s, the largest value of the reduced
one is 0.0236s. However, the samples of the entire data set
greater than this last value account for only the 0.003% of
the distribution, and the difference between the two maximum
values is slightly more than one order of magnitude. Therefore,
this cannot be considered as a significative change in tail
behavior.

b) PSI: Fig. 2(c) shows the Marginal Utility as a function
of the number of samples. In contrast with the previous case,
it falls down slowly. Even so, we obtain a net reduction of
91% (see the second row of Table II). In Fig. 2(d), the QQ-
plot (between the entire and the reduced data sets) shows a
good approximation until 90 bytes (i.e. the 99.8th percentile
of the entire data set). The PDF diagrams in Fig. 4 show
how close the distributions are. However, there are very few
values related to larger packets, which are not present in the
reduced data-set. Their amount is so small that cannot be seen
in the diagram without zooming several times, and they can
be considered as outliers.

Concluding the incoming traffic trace analysis, if we con-
sider the size of the largest of the two reduced data sets (IAT
and PSI), we can approximate the entire data set using about
1 million of samples. This means that we have obtained a
reduction of about 90%.
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(b) IDT Quantile-Quantile plot
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(d) PSO Quantile-Quantile plot

Fig. 3. Reducing IDT and PSO Time Series of Counter-Strike[30].

c) IDT: For this variable, the Marginal Utility decays to
zero more slowly than the IAT case (Fig. 3(a)). As shown in
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the third row of Table II, we obtain a reduction of 59%. In Fig.
3(b) and 5(b)) we can see that the approximation is quite good
for over the 99.9% of the distribution, and mean and standard
deviation are well approximated (see third row of Table II).
Figs. 4 and 5(b) show that the two distributions are close in
the main part and in the tail too.

d) PSO: We sketch the Marginal Utility against the
number of samples in Fig. 3(c). The QQ-plot in Fig. 3(d)
shows a good approximation up to about 500 bytes, which
accounts for 99.2% of the original data set. In the fourth row
of Table II a summary of the conducted analysis is reported.
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Fig. 4. Counter-Strike PDFs (clockwise: IAT, IDT, PSO, PSI).

Finally, the outgoing traffic is well approximated by an
IDT/PSO series of about 4 millions of samples.
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Fig. 5. CCDF of Counter-Strike.

2) Wavelet Analysis of CS Reduced Data Sets: The reduc-
tion criterion we use here is based on the analysis of the
marginal distributions of traffic data samples. But, in the study
of network traffic also temporal structures and dependencies
(e.g. long range dependence and scaling behavior) can be
of interest. In this section, we briefly show a time-frequency
analysis based on the Wavelet Transform, revealing similar
behaviors between the entire and reduced data sets. We use
the Logscale Diagram (LD), which shows the trend of the
energy of the wavelet coefficients at each time scale, allowing
to estimate the scaling behavior of the considered process and
the corresponding Hurst parameter (see [12]).

From the Counter-Strike IAT and IDT data sets, we calcu-
lated the packet rate time series, with a period of 1 ms, of
traffic flowing in both directions (to and from the server).
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Fig. 6. Logscale Diagram comparison of CS reduced and original data sets.

Let Sj , S1
j be the logarithms of the energy of the wavelet

coefficients at scale j of respectively the entire and reduced
data sets. We found Sj =σj

S1
j (for j = 1, ..., 17 in the case

of IAT and for j = 1, ..., 22 in the case of IDT) where the
=σj

operator takes into account their confidence intervals.
This can be seen in the LDs in Figs. 6(a) and 6(b), where,
at each scale, the confidence intervals of the two diagrams
always intersect. It is worth noting that we found the same
results for the byte rate time series (Figs. 6(c) and 6(d)), which
were obtained by combining information from the IAT and
PSI series as well as IDT and PSO series. This comparison
is indeed important, since it is highlights properties of real
network traffic by combining information on packet arrival
times and their size. The analysis in this section shows that,
for the considered data sets, the reduction did not heavily affect
the traffic temporal structures.

3) Effects of the Reduction on the Autocorrelation: Beside
the wavelet spectrum of the packet rate and byte rate series,
we study the behavior of the Autocorrelation function for both
complete and reduced data sets of IDT and PS. This is done
to further assess the impact of the adopted approach on the
samples temporal behavior and their mutual dependencies.

In Fig. 7 the autocorrelation plots, until lag 100, are reported
for all the data traces. As shown, for all the considered
variables, the autocorrelation values of the reduced sets are
very close to those of the original sets. In particular, the
Root Mean Square (RMS) value of the error introduced by
the reduction ranges from 0.0128 (for the IAT series) to
0.0232 (for the PSO series). To better observe the effect of
the reduction, a zoomed view of the IAT autocorrelation is
reported in Fig. 8. IAT is the variable that presents more
correlation among the samples, also, its autocorrelation plot
reveals an oscillating trend. The view of Fig. 8 allows to verify
that the trend of the reduced-set autocorrelation is very similar
to that of the original set. This witnesses that the temporal
structure of the samples is preserved even in the presence of
a such particular behavior.
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TABLE II

Counter-Strike DATA SET REDUCTION[30].

Size [sample] Mean StDev Entropy [bit] Reduced Size [sample] Mean StDev Reduction Marginal Utility [bit]
IAT 10809129 0.0023614 s 0.0023564 s 7.83 216183 0.0023491 s 0.0022617 s 98% 0.021
PSI 10809129 39.559 bytes 9.6741 bytes 4.93 972822 40.331 bytes 8.9248 bytes 91% 0.024
IDT 9190871 0.0027772 s 0.0062425 s 9.11 3768258 0.0028466 s 0.0064410 s 59% 0.045
PSO 9190871 127.68 bytes 100.42 bytes 7.89 459544 127.03 bytes 98.53 bytes 95% 0.036

0 10 20 30 40 50 60 70 80 90 100
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Lag

A
ut

oc
or

re
la

tio
n

 

 

Entire set
Reduced set

(a) IAT

0 10 20 30 40 50 60 70 80 90 100
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Lag

A
ut

oc
or

re
la

tio
n

 

 

Entire set
Reduced set

(b) PSI

0 10 20 30 40 50 60 70 80 90 100
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Lag

A
ut

oc
or

re
la

tio
n

 

 

Entire set
Reduced set

(c) IDT

0 10 20 30 40 50 60 70 80 90 100
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Lag

A
ut

oc
or

re
la

tio
n

 

 

Entire set
Reduced set

(d) PSO

Fig. 7. Autocorrelation plot of CS reduced and original data sets.
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Fig. 8. Autocorrelation plot of IDT of CS reduced and original data sets.

B. On the Reduction of Age of Mythology traffic traces

The traffic trace of Age of Mythology (UDP traffic on
port 2500) has been provided, in Tcpdump format and with a
time resolution ≤ 1us, by the Worcester Polytechnic Institute
(WPI), MA (USA) [14]. Age of Mythology is a popular game,
representative of another category: real-time strategy (RTS)
games. The trace (Table I) is related to 1 hour of traffic and
it consists of packet sequences of a complete gaming session,
between two players, captured in a LAN environment. The
extracted data sets have been used in [24] and [18]. With
outbound traffic (described by means of IDT and PSO) we
mean traffic flowing in the outbound direction when seen from
the point of view of a specific peer (i.e. leaving the workstation
of a gaming user). With inbound traffic (described by means
of IAT and PSI) we refer to the opposite direction. The trace
collection was limited to about 68, 000 packets (5 MB data)
captured during August 2003.

It is worth noting that, due to space constrains, we present
the AoM results following the same approach of the CS results
but only focusing on the principal findings.

1) Entropy-based data sets reduction:
a) IAT: In Fig. 9(a) the Marginal Utility as a function

of the number of samples is shown. In this case the data set
reduction is only about 7%. The scarce reduction obtained in
this case is due to the small number of samples present in
the entire data set. This results in a high information content
provided by each subset (i.e. each experiment).
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Fig. 9. Reducing IAT and PSI Time Series of AoM.

A summary of the performed reduction is given in the first
row of Table III, while in Fig. 9(b) the QQ-plot between the
entire data set and the reduced one is shown. Given such
a small reduction, the very good approximation of the IAT
marginal distribution shown in Fig. 10, is easily expected.
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Fig. 10. AoM IAT (pdf left, ccdf right).

b) PSI: In Fig. 9(c) the Marginal Utility as a function
of the number of samples is shown. In this case the data set
reduction is of 10% as shown in the second row of Table III.
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TABLE III

Age of Mythology DATA SET REDUCTION.

Size [sample] Mean StDev Entropy [bit] Reduced Size [sample] Mean StDev Reduction Marginal Utility [bit]
IAT 34133 0.0986 s 0.0796 s 7.76 31744 0.0980 s 0.08 s 7% 0.031
PSI 34133 12.595 bytes 4.686 bytes 2.09 30720 12.592 bytes 4.835 bytes 10% 0.01
IDT 34480 0.0982 s 0.0727 s 7.96 22068 0.0959 s 0.0723 s 36% 0.039
PSO 34480 12.397 bytes 3.979 bytes 2.09 31722 12.386 bytes 4.064 bytes 8% 0.01

The QQ-plot (Fig. 9(d)) between the entire data set and the
reduced one shows a good approximation.

c) IDT: In Fig. 11(a) the marginal utility as function of
the number of samples is shown. As shown in Fig. 11(b),
considering that the 99, 9th percentile of the entire data set is
equal to 0.3, the reduced dataset well approximates the entire
one. For a summary of the analysis refer to the third row of
Table III.
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Fig. 11. Reducing IDT and PSO Time Series of AoM.

d) PSO: In Fig. 11(c) the Marginal Utility against the
number of samples is sketched. A summary of the conducted
analysis is shown in the fourth row of Table III. The QQ-plot
(Fig. 11(d)) indicates a quite good approximation.
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Fig. 12. Logscale Diagram comparison of AoM reduced and original data
sets (output and input byte rate on the left and right diagram respectively).

2) Wavelet Analysis of AoM Reduced Data Sets: We per-
formed a wavelet-based analysis of the inbound and outbound
traffic data sets of Age of Mythology. The logscale diagrams
related to the byte rate (calculated with a period of 1 ms) are
shown in Fig. 12. It can be seen that, even in this case, we
found consistency between the reduced and entire data sets.

3) Effects of the Reduction on the Autocorrelation: In
order to verify the consistence between the autocorrelation
functions of the entire and reduced set, Fig. 13 depicts the
autocorrelation plots of the IAT and PSI series. As we can
see, negligible differences exist. The IDT and PSO series
autocorrelations are not shown because of space constraints,
however, similar considerations apply.
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Fig. 13. Autocorrelation plot of AoM reduced and original data sets.

V. DISCUSSION AND CONCLUDING REMARKS

In this paper we applied an off-line Entropy-based approach
to traffic data set reduction (introduced in [30]). We showed
its application, along with a critical analysis of the results
and side-effects, in a framework of traffic characterization at
packet level. We chose network games because they represent
an important category of Internet applications generating novel
traffic patterns. In the choice of the games we selected two dif-
ferent test cases. Indeed, even if both Counter-Strike and Age
of Mythology run over UDP, the two considered traces differ
in several aspects: game typology (RTS vs. FPS), network
observed (LAN vs. WAN), time duration, size in bytes, etc.
Moreover, in the case of Counter-Strike we have analyzed the
traffic related to a gaming server, serving more than 20 players,
whereas for Age of Mythology the traffic observed is related
to the workstation of a single player fighting against one
single opponent to which was directly connected (therefore
traffic has symmetric properties). This broad range of different
parameters allows a wider view on the applicability of the
adopted reduction technique and to more easily spot pros and
cons.

In the networking field, the most used techniques to reduce
data sets are based on sampling. We believe that the presented
approach is complementary to it. Sampling is suited for on-
line applications aiming to produce reports that are quick
and concise rather than accurate and complete. Our approach
allows to characterize (and model) network traffic without
losing sensible information. Moreover, sampling requires the
data set to be strict-sense [10] or wide-sense [9] stationary.
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Under such conditions, it can accurately approximate second
order statistics like the Hurst parameter, but it could still fail
to capture the mean [9]. Further, it is able to reconstruct the
wavelet spectrum (at least at low frequencies) under particular
conditions[10]. According to these considerations, as shown
in the previous sections, the adopted Entropy-based off-line
technique presents the advantages of correctly capturing mean,
standard deviation, and marginal distributions. Moreover, in
the analyzed traces we investigated side-effects on time prop-
erties, and we found they were not sensibly compromised by
the reduction (even if the original data set is nonstationary).
We investigated these properties by comparing the wavelet
spectrum log-scale diagrams of the packet rate and byte rate
series, and looking at auto-correlations. Also, as a further
proof, the entire and reduced data sets were tested with the
model proposed in [18] finding promising results (not shown
here for the sake of brevity and because the proposed model is
out of the scope of this paper). Such model, based on Hidden
Markov Models, is specifically designed to take into account
and reproduce - in a joint fashion - the temporal structures and
the mutual dependencies (besides the marginal distributions)
of the inter-packet time and packet size data sets. We found
that, the model parameters did not significantly change when it
was trained with the reduced data sets. However, in the present
work, we also found that the reduction that can be obtained
without relevant loss of information is not very effective in the
case of smaller data sets. Moreover, a problem to be further
investigated is about the amount of predictability or control
on the quantity of reduction resulting from the application of
the proposed methodology. Sampling techniques, for example,
often allow to anticipate the amount of data to be stored.

Finally, in the case of large data sets, a loss of some
information related to outliers or to very rare values is possible.
Indeed, the threshold used as a stopping point implicitly
defines the probability associated to the discarded samples.
However, in the considered test-cases, the reduction did not
affect important properties such as, for example, tail behaviors.

The experimental results have shown that the adopted ap-
proach reveals promising. In our ongoing work we plan to
apply it to more typologies of network traffic data sets, also
enlarging the set of statistical indicators to be studied.
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