
UANM: a platform for experimenting with available

bandwidth estimation tools

Giuseppe Aceto, Alessio Botta, Antonio Pescapé

University of Napoli Federico II, Italy

{giuseppe.aceto,a.botta,pescape}@unina.it

Maurizio D’Arienzo

Second University of Napoli, Italy

maudarie@unina.it

Abstract—In the field of network monitoring and measure-
ment, the efficiency and accuracy of the adopted tools is strongly
dependent on (i) structural and dynamic characteristics of the
network scenario under measure and (ii) on manual fine tuning of
the involved parameters. This is, for example, the case of the end-
to-end available bandwidth estimation, in which the constraints of
the measurement stage vary according to the use of the final
results. In this work we present UANM (Unified Architecture for
Network Measurement), a novel measurement infrastructure for
an automatic management of measurement stages, tailored to the
end-to-end available bandwidth estimation tools. We describe in
details its architecture, illustrating the features we introduced to
mitigate the problems affecting available bandwidth estimation
in heterogeneous scenarios. Moreover, to provide evidences of
UANM benefits, we present an experimental validation in three
selected scenarios deployed over a real network testbed: (i) we
show how UANM is able to alleviate the interferences among
concurrent measures; (ii) we quantify the overhead introduced
by the use of UANM; (iii) we illustrate how UANM is capable
to provide more accurate results thanks to the knowledge of the
network environment.

I. INTRODUCTION

The size of the current networks, their heterogeneity, the

presence of overlays, the use of multi-path routing are only

some of the examples that make the work of measurement

tools hard. Over current networks, the measurement process is

not a straightforward task, and the availability of measurement

infrastructures to support complex measurement experiments

is of paramount importance, mainly because single tools can

return unreliable results or may not converge. This is the

case of end-to-end available bandwidth (AB) estimation tools.

Almost every year, the list of these tools is enriched with new

proposals, many of them requiring active injection of traffic.

This witnesses the interest of research community towards the

measure of this metric, used by different kinds of applications

(P2P applications, overlay nets, ...) and for different pur-

poses (billing, QoS, ...). Unfortunately, despite the interesting

proposals coming from both universities and industries, the

efficiency and accuracy of such tools is still strongly dependent

on structural and dynamic characteristics of the network under

measure, and on manual fine tuning of the parameters related

0The research leading to these results has received partial funding from
the European Community’s Seventh Framework Programme (FP7/2007-2013)
under grant agreement n. 224263-OneLab2 and from the project LATINO of
the FARO programme financed by the Compagnia di San Paolo and by the
Polo delle Scienze e delle Tecnologie of the University of Napoli Federico II.

to the adopted measurement method. Moreover, the measure-

ment constraints (accuracy, time duration, intrusiveness, etc.)

vary according to the purpose of the measure, and a tool

working fine in certain conditions is often highly unreliable

in others. Even worst, active estimation methods can interfere

with each other [1]. As a consequence, applications that share a

measurement end point can suffer a degradation of the measure

or can lead to its complete invalidation. For all these reasons,

an expert operator is currently needed in order to properly

measure the AB in heterogeneous networks. To this end, we

designed and implemented UANM (Unified Architecture for

Network Measurement), a novel measurement infrastructure

to automatically manage end-to-end available bandwidth esti-

mation tools. UANM is based on measurement servers capable

to provide (through a simple API) complex and mutually

exclusive end-to-end available bandwidth estimations to any

interested applications. It can work with dynamically loadable

measurement plugins or with standalone measurement tools;

in both cases it can also interact with third party measurement

tools. A decision engine selects the most suitable method

according to the measurement environment, also avoiding the

interference between concurrent measurements. In this paper,

we describe UANM architecture in details, and we present

a preliminary experimental analysis aimed at illustrating the

benefits achievable. UANM is geared towards wide adoption

among developers of network applications and researchers in

the field of network measurement, and a prototype is released

under GPL license and with a LGPL API for developing mea-

surement plugins. We believe that UANM allows to overcome

the main limitations of current tools, allowing accurate AB

estimation in heterogeneous environments.

II. RELATED WORK

Many works have analyzed and compared the available

bandwidth tools. As a first need [2] argues in favour of

a better design stage of measurement experiments to avoid

frequent mistakes, first of all those due to the imperfections

of tools. Indeed, a perfect measurement tool does not exist,

and every tool should be released with an indication of its

accuracy, i.e. the deviation from the true value under different

conditions. This does not necessarily mean that a tool is

better than another, but rather that a calibration is needed

to detect and correct some errors. Among the other studies,

[3] [4] tested pathload [5], pathchirp [6], IGI [7] and spruce

on real testbeds and report several pitfalls in which they can

end. The work in [8] evaluates the performance of the same

tools under different kinds of network traffic - i.e. on/off,

bursty, multiple TCP streams - reporting that pathchirp and

IGI achieve the smallest standard deviation. The works [9] and

[10] present a performance evaluation of different tools on a

very high speed network. The existence of biased results due

to current implementation technology is showed in [11] and

[12]; the latter also proposes a simulated environment for a fair

and unbiased comparison of tools. Finally, [13] presents the

results of a composition of different techniques. e.g. capacity

estimation joined to available bandwidth estimation, provides

an improvement of 15% in the measure accuracy.

Although it is not specifically designed for the measurement

of the available bandwidth, NetQuest [14] is one of the first

examples of an architecture that takes into the right account

all the variables related to the measurement on a large scale

network. It operates in two steps: it first tailors the experiments

to the environment, and then builds a global view of the

network. The design step relies on Bayesian techniques and on

a subset of active measurements to limit network starvation.

In the second step, inference algorithms are applied on the

available subset of real data to compute a global map of

the network status. In UANM, we outline the same design

requirements as: i) the use of different techniques on different

part of the network in order to achieve the best result; ii) the

augmented accuracy obtained with additional measurements

given existing information; iii) the support of multiple users

who are interested in different areas of the network. The

accuracy of NetQuest is strictly dependent on the amount of

data collected. In spite of UANM, NetQuest is not mainly

interested in the achievement of the best performance from

the measurement of the available bandwidth, since it is more

oriented to a wider knowledge of the general network status.

Similarly to our approach, in [15] the authors do not propose

a new method to measure the available bandwidth, but they

propose an architecture called YAZ, whose main goal is to

calibrate the existing tools in order to retrieve the best results

from the measurements. In contrast with UANM, YAZ does

not provide support for concurrent measurement experiments,

it does not consider the status of the network under study,

and it does not support third party tools. At the end of these

considerations, an architecture able to select and calibrate the

best tool for the specific measurement, providing users or

applications with a result and its error range, was still needed.

Such an architecture would also provide a fair environment

for the comparison of available bandwidth estimation tools.

Although many techniques are already available, they are still

not conveyed on a common platform. UANM intends to fulfill

this gap thanks to a new paradigm that is described in the next

section.

III. UANM ARCHITECTURE

UANM is a distributed platform whose main features are:

• support for different measurement techniques and tools

in a fair environment;

UANM

PLUGIN A

PLUGIN B

PLUGIN C

 Client_

<< UANM CTRL PROTOCOL >>

UANM

PLUGIN D

PLUGIN A

Standalone TOOL

Echoing

IP Node

<< UANM CTRL PROTOCOL >>

<< PLUGIN SPECIFIC PROTOCOLS >>

Fig. 1. Deployment Diagram

• full compliance and open interaction with existing tools;

• mutual exclusion of concurrent measurements;

• automatic selection and calibration of the most suitable

tool.

It is made up of four different components: daemons,

clients, measurement plugins and third-party probes. The

main component is the daemon that, in order to fulfill the

measurement requests issued by the clients, orchestrates the

measurement plugins and interacts with the other daemons

and third-party probes. The daemons communicate with the

other daemons and with the clients by means of a dedicated

control protocol (uanmProtocol), and with the third-party

probes by using their specific control protocol. The interactions

between clients and daemons happens in the classic client-

server fashion, while daemons are arranged on a peer-to-peer

basis. UANM is written in C language and runs on Unix oper-

ating systems, currently supporting Linux platforms. The main

module of the platform is uanmDaemon, which runs on one or

both edges of the path under test, waiting for measure requests

from clients. To issue a measure request, an application has to

connect to uanmDaemon using the uanmProtocol, whose API

is provided in a C library called libuamn. uanmDaemon imple-

ments multiple measurement tools in the form of dynamically

loadable modules, hereafter called “measurement plugins” or,

in short, plugins. uanmDaemon can interact with standalone

versions of third party measurement tool, and it can use them

as one of the measurement edges. A deployment diagram that

depicts various possible settings is reported in Fig.1.

A. uanmDaemon

uanmDaemon is in charge of managing client requests and

the plugin set. It is designed to run as a daemon, with little

direct interaction with the user, since it is possibly started by

boot scripts and stays up all the time waiting for requests from

clients. Running as a daemon, the server is detached from the

terminal, and it is controlled either by means of a client issuing

management commands through the network, or locally by

using posix signals. When a measurement request is received,

uanmDaemon first performs a feasibility check aimed at

determining if it can actually perform the measurement and

what tool is best fitted to the current context. The context is a

model that comprises both a description of the path status and

a description of measurement constraints (information about

the measurement, optionally specified by the client). The path

status refers to the information about critical characteristics

that may affect the measurement process, both structural

(e.g. presence of wireless hops or of broadband access links

along the path, presence of UANM instances or known third

party estimation tools on the other edge, ...) and behavioral

(e.g. already congested path, rapidly changing routes, ...). This

information is provided by a module called Knowledge Base

that will be soon described. The measurement constraints are

set by the client, as needed for the intended purpose of the

measure. As an example, an application may request a group

of quick-and-dirty estimations to choose in a set of eligible

communication partners (e.g. for server selection), or it could

request a non intrusive sampling (e.g. for network monitoring).

The server offers a set of measurement choices referred to as

measurement profiles, each aimed at maximizing some charac-

teristics, trading off the others. If no constraints are specified,

the measure will be set in order to reach a trade-off between

accuracy and low-intrusiveness, according to the context. An

application that is aware of AB estimation parameters may

specify detailed constraints such as the average timescale, the

standard deviation, the number of estimation tries, the total

probe load, or even the exact measurement technique, all to

best tailor the measure to its own particular needs. More

information about measurement profiles and constraints are

provided in Section III-C.

Once the measurement parameters are configured, the dae-

mon sets up the communication between the edges of the path

under evaluation and schedules the measure. The scheduler

processes the measurements according to the policies. The

policy currently implemented is a FCFS queue, but mea-

surement constraints and information about convergence time

of the chosen measurement method allow for more complex

scheduling criteria. Thanks to the scheduler, it is possible

to avoid interference due to concurrent measurements, as

explained in the following. In order to gain flexibility and to

ease future incremental enhancements, the daemon is divided

in the following modules.

• Plugin Manager is in charge to control the measurement

plugins. At startup, and at each configuration-reload re-

quest, it scans the plugin directory for the presence of

plugins, it loads each of them (updating the knowledge

base with the related information), and monitors their

status.

• Knowledge Base collects all the information needed by

the daemon to process the requests, which are:

– plugin list - the list of measurement plugins known

to the daemon, each with its own characteristics and

current status;

– edge list - the list of known edges (UANMdaemons,

thirdparty probes), each with its own information

(type of edge, available methods, time of latest

communication, ...);

– network scenario - information affecting the plan-

ning of the measurement (first hop characteristics

such as capacity, symmetrical/asymmetrical, wire-

less/wired, ...);

– client list - the list of the clients that contacted the

daemon.

The information in the knowledge base is consulted

and updated by every other module when it has new

informations or needs; it can also be explicitly set in

the configuration file (providing the uanmDaemon with

external knowledge).

• Decision Engine - Scheduler checks the incoming re-

quests for feasibility, integrates their specifications and

schedules the measurements. Upon the arrival of a new

measurement request, the module refers to the Knowledge

Base to check the feasibility of the measurement, which

is fulfilled if the following conditions are met: i) the

measurement constraints can be satisfied in the current

network context by at least one available plugin; ii) the

plugins selected in the previous step are available at both

edges; iii) the timing constraints can be satisfied.

Since all the communications with clients are performed

on the network, the Scheduler manages also the timing

of the control messages, and the synchronization with

commands issued by signals. The scheduler enforces

the policy to manage concurrent incoming requests: the

measure starts only when both the actors, that we will

call in the following WAITER and the INITIATOR, are

in an idle state. This is needed because, to the best of

our knowledge and experience with existing available

bandwidth tools, these tools are designed to execute

single measurements, and they are not reliable in case

of concurrent measurements that may be executed from

different systems, while sharing a portion of the network.

In section IV we also show the effect of the interference

among concurrent measures in our laboratory testbed.

B. The measurement plugins

The plugins perform the actual measurement part. If the

measurement technique implemented by the plugin needs

both the edges to be controlled, there will be two compo-

nents: a SENDER plugin, that generates probe packets, and

a RECEIVER plugin, that receives the probe packets (and

usually performs the computations to estimate the measure). In

this case, the two components usually perform different roles:

one of them being run as a daemon, waiting for orders (we

identify this behavior as WAITER), and the other one in charge

of initiating the measurement (INITIATOR). This information

is needed by uanmDaemon in order to decide if the command

to start the measure must be issued to the local plugin or

requested to the other edge. Some techniques allow for the

use of an unmanaged edge, so there is only one plugin under

control: the plugins using this kind of methods are denoted as

SINGLESIDE. This information is needed by uanmDaemon

in order to check the correct matching of available plugins

TABLE I

LIST OF IMPLEMENTEDmeasurement plugins.

Plugin Protocol Sender/ Provided
Name Version Measure Receiver profiles

pathChirp 2.4.1 ABW both MONITOR
pathLoad 1.3.2 ABW both SELECTION, QOS
IGI 2.1 ABW both MONITOR
abget 1.0 ABW Sender SELECTION

on the edges of the path while assessing the feasibility of the

measurement.

Each plugin can implement three kinds of measurement:

fully-specified, constraint-based, and profile-based. They cor-

respond to the kind of measurement requested by the clients

through the API (see API Measurement Functions in section

III-C). For fully-specified measurements, the clients have to

specify the entire parameter string to be used by the plugin.

In the profile-based measurements, clients select a prede-

fined profile for the measurements (e.g. minimally intrusive

measurement). uanmDaemon then calculates the parameter

values most suited to this request, using the information in

the Knowledge Base. For constraint-based measurements, the

clients specify the constraints on the measurements (e.g. the

maximum duration). Using this information and that in the

Knowledge Base, the uanmDaemon calculates the most appro-

priate values for the parameters. Each receiver-based estima-

tion method has its own control protocol, used to synchronize

the edges and to set the measurement parameters. UANM

manages the plugins as gray-boxes, using only high level

methods such as initPlugin(), startMeasure(), ignoring under-

lying details. This eases the transformation of third party tools

in UANM-plugins with minimal or no changes in the original

code. This also leaves full compatibility of the UANM-plugin

version of the tool and its original standalone version. The list

of the measurement methods currently implemented as UANM

plugins is reported in Tab. I.

C. The Clients and the UANM API

Every application that is able to communicate with a

uanmDaemon by using the uanm-protocol is a uanmClient.

A communication API is provided with UANM for this aim.

Every application in need of network measurement can ben-

efit of a local centralized orchestration point (uanmDaemon)

offering enhanced measurement services through a highly ab-

stracted interface. The API provides different measure-request

functions ranging from the simplest (e.g. specifying only the

endpoints and the type of measure) up to a completely detailed

one (e.g specifying the technique to use and its parameters).

In the following, we report the kinds of measurement that can

be requested by a client.

1) Measure using Profile: The general use case for the

UANM architecture is represented by an application in

need of an available bandwidth estimation, with loose

constraints, that can just pick one “ready-cooked” mea-

surement profile (see Tab. II). The measurement profiles

are an abstract classification of use cases in terms of

TABLE II

LIST OF PREDEFINED measurement profiles WITH CHARACTERIZATION.

Profile Response Repetition Averaging Probe

Name Time Accuracy Frequency interval Load

SELECTION wide wide once wide high

MONITOR wide wide medium wide low

QOS strict strict low strict high

DEFAULT medium medium once medium medium

TABLE III

LIST OF SUPPORTEDmeasurement constraints.

Measurement Response Averaging Probe
Characteristic Time Uncertainty interval Load

Type of Bound upper upper exact upper

Unit ms Mbps ms Mbps

measurement characteristics1, and they are meant as a

choice of a preset combination of values for the actual

measurement parameters. They are also used by the

Decision Engine of the daemon as selection criteria

in the choice of the most suitable method among the

available ones. For these reasons, the characteristics of

the measurement have been chosen as being useful in

tool comparison and evaluation (as described in [12]).

2) Measure with Constraint: In case the client provides

explicit constraints to the purpose of the measure, it is

possible to inform the uanmDaemon of such constraints

by means of this function, specifying the bounding

characteristics of the measurement and the value of the

acceptable limit. The supported measurement constraints

are reported in Tab. III.

3) Fully Specified Measure: The maximum control on the

measurement process is given to clients through this

function, that allows to specify the measurement tool

and all the parameters allowed by the tool. The syntax

of parameter specification is the same as the command-

line syntax of the specific tool, as described in the tool

documentation.

To develop ”smart“ clients and administration interfaces,

some administration functions are also provided. According to

permissions set for the uanmDaemon, some of these functions

could be forbidden to some clients. In order to perform

additional tasks, ancillary functions are also provided. These

functions can be used as building blocks to create a complex

uanmClient or a manager, or to implement the interface

needed to integrate UANM in another architecture, such as a

distributed measurement infrastructure, an anomaly detection

system, or a network monitoring application.

IV. UANM VALIDATION

The availability of different tools embedded in the UANM

architecture allows us to execute some first comparative tests

on a laboratory testbed. The main purpose of these experiments

is to verify the selection of the best tool with the configuration

1The measurement profiles have been designed using the available band-
width estimation as reference, but the same principles and implementations
can be used for every supported type of measure.

.7.138

.3.132

.4.135

.1.135

.10.135

.1.133

.5.138

.6.137

.4.137.5.137

.7.136

.10.136

.2.170

. 6 .

. 7 .

. 3 .

.3.138
. 5 . . 4 .

. 2 .

. 1 .

.6.149

D - I T GD - I T G

UANM

UANM

UANM,

D - I T G

.10.132

.2.135

Cross Traffic

Probe Traffic

Fig. 2. Testbed used for the experiments.

of the most appropriate parameters operated by the UANM

architecture, but also, and not less important, to check the

reliability of the measurement tools in different use cases that

comprise the interference of two or more tools in execution

on the same measurement path at the same time. To validate

the UANM architecture we also run some comparative tests

with the tools pathchirp and pathload used as stand alone

applications or as UANM plugin.

A. Testbed and Tools

For our experiments we set up a laboratory testbed com-

posed of 8 linux-based hosts showed in Fig. 2. The three

intermediate hosts act as routers, and the end systems are

provided with pathchirp and pathload tools, as well as with

UANM. To emulate different load conditions, we also provide

the three end systems on top of the testbed scheme with a

traffic generator called D-ITG [16]. Both the measurement and

the cross traffic are generated from left towards right.

B. Preliminary results

In our preliminary experiments we aim at demonstrating

the basic benefits introduced by the UANM architecture with

respect to a trivial use of available bandwidth tools. In this first

stage, we focus the attention on the following three issues:

1) the avoidance of the effect of the interference among

concurrent measurement processes;

2) the evaluation of the overhead introduced by the adop-

tion of the UANM architecture with respect to the

regular available bandwidth tools;

3) the results achieved by UANM when autonomously

selecting a tool and its parameters with respect to a basic

use of the available bandwidth tools.

Starting from the first point, we show the problem a mea-

sure may encounter when more uncontrolled measurement

processes share even one single part of the network for a

long or short time interval. This problem may occur since the

current methods and tools do not provide coordination among

measurement stations or any kind of alert feedback from the

network. We set all the links of the testbed to 100 Mbps, and

we start two series of concurrent measurement processes from

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

A
v
a
ila

b
le

 B
a
n
d
w

id
th

Cross Traffic (Mbps)

Interference effect

Ideal
PC stand alone

PC on PC
PL stand alone

PC upon PL
PL upon PL

Fig. 3. Effect of the interference among available bandwidth tools.

sender .170 and .133 towards receiver .132. We also overlap

an adjunctive cross traffic from .149 to .136 at different rate

of 10, 20, 50, and 80 Mbps so that there is a bottleneck link

between router .137 and .138.

Fig. 3 shows a diagram with x axis representing cross traffic

and y axis the measured available bandwidth both expressed in

Mbps. To increase the readability of such a diagram, we report

a line related to the ideal values. All the results are calculated

as an average of the outcomes of 10 experiments. We use the

same outline for all the experiments. The situations considered

are: two concurrent pathload (PL upon PL), pathchirp upon

pathload (PC upon PL), and two concurrent pathchirp (PC on

PC). Moreover, we also report the results related to a stand

alone use of pathload (PL stand alone) and pathchirp (PC stand

alone). As reported, there is an effect due to the interference

that affects both the tools, as the difference between the stand

alone status and the concurrent measures is significant. We also

noticed in some experiments with pathload upon pathload that

the tool did not converge to a final stage. This result is due

to the approach adopted in pathload, which leads the network

towards a congestion state for short time interval. The design

of UANM daemon avoids the interference effect thanks to the

scheduler that coordinates the different clients and activates

the measurements on a FCFS basis.

In the following test we show how the adoption of UANM

does not introduce significant overhead with respect to the

original tools. Fig. 4 reports the results of two series of

measurements conducted under different load conditions. In

the first measurement we execute pathload, whose results are

returned as usual in a range (PL min and PL max), and patchirp

(PC). We repeat the same measurement with the same tools

embedded in UANM under a fully specified profile (UANM

PL, as an average on min and max, and UANM PC). As shown

in Fig. 4, the difference between the two situations is negligible

in all the cases.

The third aspect we highlight is the lack of measurement

accuracy that may happen when the available bandwidth tools

are used without knowledge of the basic network configura-

tion. For instance, pathchirp gives wrong result on high speed

networks unless some of its parameters are correctly set up.

The decision engine in UANM is able to automatically select

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

A
v
a
ila

b
le

 B
a
n
d
w

id
th

Cross Traffic (Mbps)

UANM vs stand alone tools

Ideal
UANM PL

PL min
PL max

UANM PC
PC

Fig. 4. Overhead introduced by the UANM architecture.

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000

A
v
a
ila

b
le

 B
a
n
d
w

id
th

Cross Traffic (Mbps)

Measurement precision

Ideal
PC

UANM PC
PL

Fig. 5. Selection and trim of the best available bandwidth tool.

the best tool related to the particular network configuration

and to recognize some basic configuration in order to set up

the most appropriate parameters for the required measure.

In this last experiment we show the difference between a

straightforward use of pathchirp or pathload with respect to

the adoption of UANM onto the same testbed with all the

links set to 1Gbps. We made three series of experiments with

cross traffic set to 0, 250, and 500 Mbps. As from the Fig. 5, a

basic usage of pathchirp returns the worse results, and pathload

still underestimates the ideal values. In such a situation, the

UANM decision engine selects pathchirp according to the

strict accurate QoS measurement profile, thus preparing the

measure with a different configuration of the packet trains. The

results of this last series of experiments appear to be the best in

all the tested load conditions. The set of plugins implemented

in UANM is still in progress and we are confident in a quick

extension of the list in order to test the platform in a more

challenging scenario that also include wireless links.

V. CONCLUSIONS AND FUTURE WORK

In this paper we presented UANM, a novel platform for

supporting and orchestrating complex measurement of end-

to-end available bandwidth. Thanks to an open API, existing

tools or new ones can be easily pluginized in this platform, still

keeping a full compliance with original tools. UANM is able

to manage concurrent measurement and to avoid interference,

thus increasing the accuracy and reliability of any measure-

ment. We described in details the architecture of the platform,

illustrating all the features we introduced in order to mitigate

the problems arising in available bandwidth estimation over

heterogeneous networks. Comparative experiments carried out

on a laboratory testbed showed how UANM can actually

provide accurate results in typical situations in which the other

tools fail. In the future we plan to implement and evaluate

other plugins, widening both the set of supported measures

and the number of estimation techniques for each measure.

The scheduling policy will be extended from FCFS to other

criteria including time constraints or the availability of inde-

pendent paths on multi-homed daemons. We are considering to

modify the work-flow of the daemon to follow the autonomic

paradigm: by leveraging the current modular structure of the

daemon we are planning to turn UANM in an autonomic

architecture. We believe that UANM can be useful for a fair

comparison of measurement techniques, even on a WAN scale

thanks to the use of overlay network.

REFERENCES

[1] D. Croce, M. Mellia, and E. Leonardi. The quest for bandwidth
estimation techniques for largescale distributed systems. In ACM

HotMetrics, 2009.
[2] V. Paxson. Strategies for sound internet measurement. 2004.
[3] A. A. Ali, F. Michaut, and F Lepage. End-to-end available bandwidth

measurement tools : A comparative evaluation of performances. 2007.
http://arxiv.org/abs/0706.4004.

[4] J. Strauss, D. Katabi, and F. Kaashoek. A measurement study of avail-
able bandwidth estimation tools. In 3rd ACM SIGCOMM conference on

Internet measurement, 2003.
[5] M. Jain and C. Dovrolis. End-to-end available bandwidth: measurement

methodology, dynamics, and relation with tcp throughput. IEEE/ACM

Trans. Netw., 11(4):537–549, August 2003.
[6] V. Ribeiro, R. Riedi, R. Baraniuk, J. Navratil, and L. Cot. pathchirp:

Efficient available bandwidth estimation for network paths. In Passive

and Active Measurement Workshop, 2003.
[7] N. Hu and P. Steenkiste. Evaluation and characterization of available

bandwidth probing techniques. IEEE Journal on Selected Areas in

Communications, 21:879–894, 2003.
[8] L. Angrisani, S. D’Antonio, M. Esposito, and M. Vadursi. Techniques

for available bandwidth measurement in ip networks: a performance
comparison. Comput. Networks, 50(3):332–349, 2006.

[9] A. Shriram, M. Murray, Y. Hyun, N. Brownlee, A. Broido,
M. Fomenkov, and K. Claffy. Comparison of public end-to-end band-
width estimation tools on high-speed links. In PAM, 2005.

[10] M. Murray, S. Smallen, O. Khalili, and M. Swany. Comparison of end-
to-end bandwidth measurement tools on the 10gige teragrid backbone. In
The 6th IEEE/ACM International Workshop on Grid Computing., 2005.

[11] G. Urvoy-Keller, T. En-Najjary, and A. Sorniotti. Operational compari-
son of available bandwidth estimation tools. ACM SIGCOMM Comput.

Commun. Rev., 38(1):39–42, January 2008.
[12] A. Shriram and J. Kaur. Empirical evaluation of techniques for

measuring available bandwidth. In IEEE INFOCOM 2007, pages 2162–
2170, 2007.

[13] A. Botta, S. D’Antonio, A. Pescapé, and G. Ventre. Bet: a hybrid
bandwidth estimation tool. In International Conference on Parallel and

Distributed Systems, volume 2, pages 520–524 Vol. 2, 2005.
[14] H Song and Q Zhang. Netquest: A flexible framework for large

scale network measurements. IEEE/ACM Transactions on Networking,
17(1):106–119, 2007.

[15] J. Sommers, P. Barford, and W. Willinger. A proposed framework for
calibration of available bandwidth estimation tools. 2006.

[16] A. Botta, A. Dainotti, and A. Pescapé. Multi-protocol and multi-platform
traffic generation and measurement. In IEEE INFOCOM 2007 DEMO

Session, May, 2007.

