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a b s t r a c t

In the field of network monitoring and measurement, the efficiency and accuracy of the adopted tools is

strongly dependent on (i) structural and dynamic characteristics of the network scenario under measure-

ment and (ii) on manual fine tuning of the involved parameters. This is, for example, the case of the end-to-

end available bandwidth estimation, in which the constraints of the measurement stage vary according to the

use of the final results. In this work, we present UANM (unified architecture for network measurement), a

novel measurement infrastructure for the automatic management of measurement stages, tailored to the

end-to-end available bandwidth estimation tools. We describe in detail its architecture, illustrating the

features we introduced to mitigate the problems affecting available bandwidth estimation in hetero-

geneous scenarios. To provide evidences of UANM benefits, we present an experimental validation in three

selected scenarios deployed over a real network testbed to (i) quantify the overhead introduced by the use

of UANM, (ii) show how UANM is able to alleviate the interferences among concurrent measurements, and

(iii) illustrate how UANM is capable to provide more accurate results thanks to the knowledge of the

network environment. Finally, for the first time in literature, we provide a ‘‘fair comparison’’ of eight

available bandwidth estimations tools in terms of accuracy, probing time, and intrusiveness.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Measuring the performance of current networks is compli-
cated by several factors, such as the increased number of devices
connected and their heterogeneity, the presence of overlays, the
use of multipath routing, etc. The availability of new measure-
ment infrastructures to support complex measurement experi-
ments has become of paramount importance, mainly because
single tools that have obtained good performance in the past can
be now unreliable or may not converge. This is the case of end-to-
end available bandwidth (AB) estimation tools. Almost every year,
the list of these tools is enriched with new proposals: as a non-
exhaustive list of active AB estimation tools we can cite IGI/PTR
(Hu and Steenkiste, 2003), Pathload (Jain and Dovrolis, 2003),
Pathchirp (Ribeiro et al., 2003), Abing (Navratil and Cottrell,
2003), Spruce (Strauss et al., 2003), Assolo (Goldoni et al., 2009),
Diettopp (Johnsson et al., 2004), Wbest (Li et al., 2008), YAZ
(Sommers et al., 2006), and Traceband (Guerrero and Labrador,
2010). This witnesses the interest of research community towards
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the measurement of this metric, used by different kinds of
applications (P2P, overlay networks, etc.) and for different pur-
poses (billing, QoS, etc.).

The integration of available bandwidth measurement tools
in networked systems often relies on the implementation of a
new estimation method or on the inclusion of pre-existing code.
Unfortunately, despite the interesting proposals coming from
both universities and industries, the efficiency and accuracy of
such tools is still strongly dependent on structural and dynamic
characteristics of the network under measure as well as on
manual fine tuning of the parameters related to the adopted
measurement method. The measure of available bandwidth is
even a more complicated task when the size of the network
increases. Link heterogeneity, overlay networks, and multipath
routing make the measurement process complex, and single tools
can return with unreliable results or cannot converge. Moreover,
the measurement constraints (accuracy, time duration, intrusive-
ness, etc.) vary according to the purpose of the measure, and a
tool working fine in certain conditions is often highly unreliable
or unsuitable in other ones. In these situations the measurement
process requires a detailed design step before its execution, with
particular attention to the interference effects when active AB
estimations are performed simultaneously (Croce et al., 2010). As
a consequence, tools that share a measurement end point can
obtain inaccurate measures or can lead to the complete invalida-
tion of the measurement.
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Due to all these reasons, an expert operator is currently needed
in order to properly measure the AB in heterogeneous networks. To
this end, we designed and implemented UANM (unified architecture
for network measurement), a novel measurement infrastructure to
automatically manage end-to-end available bandwidth estimation
tools. UANM is based on measurement servers capable to provide
complex and mutually exclusive end-to-end available bandwidth
estimations to any interested applications. It can work with dyna-
mically loadable measurement plugins or with standalone measure-
ment tools; in both cases it can also interact with third-party
measurement tools. A decision engine selects and configures the
most suitable method according to the measurement environment
and the intended use of the measure, e.g. allowing for the mitigation
of interference with concurrent network utilization.

UANM is used as a classic client–server application, and can be
deployed as a peer-to-peer network of measurement services. The
server (in the following, ‘‘UANM-daemon’’ or simply ‘‘daemon’’)
acts as a multi-method estimation tool with automatic tuning of
parameters, striving to perform the best achievable tradeoff
among low-intrusiveness, accuracy, and low latency according
to the requests of the clients. The client is available to all the
interested applications in form of an easy-to-embed API, and can
send requests to the measurement server through the network
using a specific protocol. Measurement requests can involve
normal hosts (single side methods), hosts equipped with a
UANM-daemon instance, or hosts equipped with third-party
measurement tools (with at least one edge supporting UANM).

This framework can manage different implementations of the
measurement techniques (i) as dynamically loadable modules or
(ii) as standalone binaries. This eases the inclusion of already
available third-party tools as well as tools not yet implemented,
thus widening the availability and the variety of estimation
methods supported. This also makes UANM suitable for fair
comparisons among different existing techniques in real world
scenarios, and can even serve as development and testing frame-
work for the implementation of new estimation methods.

In this paper we describe the architecture of UANM in detail
and we present an experimental analysis aimed at illustrating the
benefits achievable. UANM is geared towards wide adoption
among developers of network applications and researchers in
the field of network measurement, and a prototype is released
under GPL license and with a LGPL API for the development of
measurement plugins. We believe that UANM allows to overcome
the main limitations of current tools, providing accurate AB
estimation in heterogeneous environments.
2. Background

Consider a network path of N store-and-forward (with FIFO
policy) links that connect a sender to a receiver. The end-to-end

capacity of the network path is defined as

C � min
i ¼ 1, ..., N

Ci

being Ci the capacity of the i-th link (i.e. the transmission rate at
data-link layer). The capacity of a network path is then equal to
that of the link with the minimum capacity (called narrow link of
the path); the end-to-end capacity is the maximum rate attain-
able on the path when there is no other traffic on it.

For each time instant, the i-th link is either inactive or
transmitting at its full capacity, so the average utilization in the
time interval ðt�t,tÞ is

ui ðt�t,tÞ �
1

t

Z t

t�t
uiðxÞ dx

and t is the averaging timescale.
The available bandwidth in the time interval ðt�t,tÞ for the i-th
link of the path is

Aiðt�t,tÞ �
1

t

Z t

t�t
Ci � ð1�uiðxÞÞ dx¼ Ci � ð1�ui ðt�t,tÞÞ

In other words the available bandwidth of a link is the average of
the unused capacity during the considered time interval.

In analogy with the path capacity, the end-to-end available

bandwidth of the considered path is defined as

Aðt�t,tÞ � min
i ¼ 1, ..., N

Aiðt�t,tÞ

and the link with the least available bandwidth (which limits the
whole path) is named tight link.

The underlying assumptions are that during the measurement
time interval (i) the path is fixed and unique (i.e. it is not subject
to routing changes or multipath forwarding), and (ii) the capacity
of each link is constant. While both assumptions have been
validated in wired paths for time spanning in the order of multiple
days (Paxson, 1997), the same is not always valid for wireless and
mixed wireless-cum-wired scenarios (Lakshminarayanan et al.,
2004).
3. Related work

Many works have presented, analyzed, and compared the
available bandwidth estimation tools. For example, a novel
technique and the related tool (named traceband) are presented
in Guerrero and Labrador (2010). The performance of the tool is
compared with that of Spruce and Pathload in a controlled
environment and on a real network using different traffic pat-
terns, comprising self similar traffic. Traceband uses a moving
average to cope with varying channel conditions in wireless
networks. Comparative results show that the tool achieves higher
performance than the others in terms of convergence time and
intrusiveness, and the same accuracy of Pathload in all the tested
conditions. On the other hand, Botta et al. (2005) shows that
the composition of different techniques, i.e. capacity estimation
joined with available bandwidth estimation, provides an
improvement of 15% in the accuracy.

As for the comparisons, in Goldoni and Schivi (2010) the
authors compare several well known tools on a real testbed with
100 Mbps links, and with both constant bit rate (CBR) and
Poissonian cross-traffic. The authors evaluate the accuracy, the
intrusiveness, and the convergence time of the tools. Reported
results show that the highest accuracy is provided by Pathload
and YAZ, regardless of the kind of cross-traffic. The intrusiveness
and the convergence time of Pathload and YAZ are however
significant, especially during the tests on an emulated wide area
network. Among the remaining tools, Pathchirp, IGI/PTR, and
Diettopp achieve average performance in all the situations, while
Assolo exhibits high accuracy, low intrusiveness, and short con-
vergence time. As claimed by the authors, the tool calibration was
out of the scope of their contribution. However, in these condi-
tions, the tools may not produce the best results. Angrisani et al.
(2006) evaluate the performance of Pathload, Pathchirp, IGI/PTR,
and Spruce under different kinds of network traffic – i.e. on/off,
bursty, multiple TCP streams – reporting that Pathchirp and
IGI/PTR achieve the lowest standard deviation. The works of
Shriram et al. (2005) and Murray et al. (2005) present a perfor-
mance evaluation of different tools on a very high speed network.

Paxson (2004) claims that a better design stage of measure-
ment experiments is of great importance to avoid frequent
mistakes, mainly due to the imperfections of tools. Indeed, a
perfect measurement tool does not exist, and every tool should be
released with an indication of its accuracy, i.e. the deviation from
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the true value under different conditions. This does not necessa-
rily mean that a tool is better than another, but rather that
a calibration is needed to detect and correct possible errors.
The works (Ali et al., 2006; Strauss et al., 2003) test Pathload,
Pathchirp, IGI/PTR, and Spruce on real testbeds and report several
pitfalls in which they can end. The existence of biased results due
to current implementation technology is also shown in Urvoy-
Keller et al. (2008) and Shriram and Kaur (2007); the latter
also proposes a simulated environment for a fair and unbiased
comparison of tools.

Although it is not specifically designed for the measurement of
the available bandwidth, NetQuest (Song and Zhang, 2007) is one
of the first examples of an architecture that takes into the right
account all the variables related to the measurement on a large
scale network. It operates in two steps: it first tailors the experi-
ments to the environment, and then builds a global view of the
network. The design step relies on Bayesian techniques and on a
subset of active measurements to limit network starvation. In the
second step, inference algorithms are applied on the available
subset of real data to compute a global map of the network status.
In UANM, we outline the same design requirements as follows:
(i) the use of different techniques on different parts of the network
in order to achieve the best result; (ii) the augmented accuracy
obtained with additional measurements given existing informa-
tion; (iii) the support of multiple users who may be interested in
different areas of the network. The accuracy of NetQuest is strictly
dependent on the amount of data collected. Differently from
UANM, NetQuest is not mainly interested in the achievement of
the best performance from the measurement of the available
bandwidth, since it is more oriented to a wider knowledge of
the general network status. Similar to our approach, Sommers
et al. (2006) do not propose a new method to measure the
available bandwidth, but they propose an architecture called
YAZ, whose main goal is to calibrate the existing tools in order
to obtain the best results from the measurements. In contrast with
UANM, YAZ does not provide support for concurrent measurement
experiments, it does not consider the status of the network under
study, and it does not support third-party tools.

The analysis of the state of the art reveals that an architecture
able to select and calibrate the best tool for the specific measure-
ment and to provide users or applications with a result and its
error range is still needed. Such an architecture would also be a
good environment for the fair comparison of available bandwidth
estimation tools. Although many techniques are already available,
they are still not conveyed on a common platform. UANM intends
to fulfill this gap thanks to a new paradigm that is described in
the following sections.
4. UANM architecture

UANM is a distributed platform whose main features are as
follows:
�
 the support for different measurement techniques and tools in
a fair environment;

�
 a full compliance and open interaction with existing tools;

�
 a mutual exclusion of concurrent measurements;

�

1 This information is provided by the client API, by means of a configuration

file and a runtime check for daemon reachability.
an automatic selection and calibration of the most suitable tool.

It is made up of four different components: daemons, clients,
measurement plugins, and third-party probes. The main compo-
nent is the UANM-daemon that orchestrates the measurement
plugins and interacts with the other UANM-daemons and third-
party probes in order to fulfill the measurement requests issued
by the clients. Each daemon communicates with the other
daemons and with the clients by means of a dedicated control
protocol (uanmProtocol), and also with third-party probes using
their specific control protocol. The interaction between clients
and daemons happens in the classic client–server fashion, while
daemons are arranged on a peer-to-peer basis. All the compo-
nents are written in C language and run on Unix operating
systems, currently supporting Linux platforms.

4.1. UANM workflow

The UANM software platform is designed to provide ‘‘smart’’
available bandwidth estimations between a daemon and a remote
host to applications demanding for them. The simplest use case is a
client application running on the same host of a daemon that requires
an available bandwidth estimation between the local host and a
remote host. The client application needs to know that the local host
is equipped with a daemon, the port on which it is listening, besides
the remote address and the direction of the measure.1

When a measurement request is received, the daemon exe-
cutes a feasibility check, aimed at verifying if it can actually
perform the measurement and which tool is best fitted to the
current context, and how to configure it for such context. The
context is a model that comprises both a description of the path
status and a description of measurement constraints (i.e. an
information about the measurement, optionally specified by the
client). The path status refers to the characteristics that may affect
the measurement process, which can be both structural (e.g.
presence of wireless hops or of broadband access links along
the path, presence of UANM instances or known third-party
estimation tools on the other edge, etc.) and behavioral (e.g.
already congested path, rapidly changing routes, etc.). This
information is provided by a module called knowledge base that
will be soon described. The measurement constraints are set by
the client depending on the purpose of the measure. As an
example, an application may request a group of quick-and-dirty
estimations to choose in a set of eligible communication partners
(e.g. for server selection), or it could request a non-intrusive
sampling (e.g. for network monitoring). The server offers a set of
measurement choices, namely measurement profiles, each aimed
at maximizing some characteristics, trading off the others. If no
constraints are specified, the measure is set up to reach a trade-off
between accuracy and low-intrusiveness, in compliance with the
context. An application can also specify detailed constraints such
as the average timescale, the standard deviation, the number of
estimation tries, the total probe load, or even the exact measure-
ment technique. More information about measurement profiles
and constraints are provided in Section 4.5.

Once the feasibility check is completed and the measurement
parameters are configured, the daemon sets up the communication
with the other edge of the path under evaluation and schedules the
measure. The scheduler module processes the measurements accord-
ing to the policies. The policy currently implemented is a first come
first served (FCFS) queue, but measurement constraints and infor-
mation about convergence time of the selected technique allow for
more complex scheduling criteria. Thanks to the scheduler, it is
possible to avoid interference caused by concurrent measurements,
as explained in Section 4.4.

4.2. UANM-daemon

The daemon component is executed on one or both edges of
the path under test and waits for the measurement requests
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issued by the clients. It needs little or no interaction with the user
since it is possibly started by boot scripts and stays up all the
time. To issue a measure request, an application has to connect
to the daemon using the uanmProtocol, whose API is provided as
a C library called libuamn. The daemon implements multiple
measurement tools in the form of dynamically loadable modules,
called ‘‘measurement plugins’’ or, in short, ‘‘plugins’’. The daemon
can also interact with the standalone version of third-party
measurement tools, and it can use them as one of the measure-
ment edges. Figure 1 depicts a deployment diagram that includes
various possible settings.

Since it runs as a daemon, the server is detached from the
terminal, and it is controlled either by a client issuing manage-
ment commands through the network or locally using posix

signals.
In order to gain flexibility and to ease future incremental

enhancements, the daemon is divided in the following modules:
�
 Plugin manager is in charge of controlling the measurement
plugins. At startup, and at each configuration-reload request, it
scans the plugin directory to seek the available plugins, it loads
each of them (updating the knowledge base with the related
information), and monitors their status.

�
 Knowledge base collects all the information needed by the

daemon to process the requests, which are the following:
J plugin list: the list of measurement plugins known to the

daemon, each with its own characteristics and current
status;

J edge list: the list of known edges (UANM-daemons, third-
party probes), each with its own information (type of edge,
available methods, time of latest communication, etc.);

J network scenario: information affecting the planning of the
measurement (first hop characteristics such as capacity,
symmetrical/asymmetrical, wireless/wired, etc.);

J client list: the list of the clients that contacted the daemon.
The information in the knowledge base is consulted and
updated by every other module when it has new information
or needs; it can also be explicitly set in the configuration file
(providing the daemon with external knowledge).
�
 Decision engine-scheduler checks the incoming requests for
feasibility, integrates their specifications, and schedules the
measurements. Upon the arrival of a new measurement
request, the module refers to the knowledge base to check
the feasibility of the measurement, which is fulfilled if the
following conditions are met: (i) the measurement constraints
can be satisfied in the current network context by at least one
available plugin; (ii) the plugins selected in the previous step
are available at both edges; (iii) the timing constraints can be
satisfied.

Since the communications with the clients are performed on
the network, the scheduler manages also the timing of the control
messages. Moreover, it enforces the policy to manage concurrent
incoming requests: the measure can start only when both the
involved edges are not busy for a measurement. This is needed
because, to the best of our knowledge and experience with
existing AB estimation tools, these tools are designed to execute
independent measurements, and may be unreliable when exe-
cuted simultaneously from hosts that share links of their con-
necting paths. In Section 5 we show in our laboratory testbed the
effect of the interferences occurring when concurrent measures
are performed. More details on the implementation of mutual
exclusion of measurements are provided in Section 4.4.

4.3. The measurement plugins

The plugins perform the actual measurements. If the measure-
ment technique implemented by the plugin needs both the edges
to be controlled, there will be two components: a SENDER plugin,
that generates probe packets, and a RECEIVER plugin, that
receives the probe packets (and usually performs the computa-
tion of the measure). In this case, the two components usually
play different roles: one of them is executed as a daemon, waiting
for orders (we identify this behavior as WAITER), and the other is
in charge of initiating the measurement (INITIATOR). The dae-
mon exploits this information to decide whether the command to
start the measure must be issued to the local plugin or requested
to the other edge. Some techniques work with an unmanaged
edge (e.g. towards an HTTP server), so there is only one plugin
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under control: the plugins using these techniques are denoted as
SINGLESIDE. The daemon makes use of this information to check
the correct matching of available plugins on the edges of the path
while assessing the feasibility of the measurement. In its life
under the UANM control, a plugin evolves through different states
as depicted in the state chart in Fig. 2 and explained below:
�
 FOUND: the shared object implementing the plugin has been
found (the filename agrees with plugin naming conventions).

�
 KNOWN: the shared object has been correctly loaded, its

interface has been published to the daemon (the knowledge

base is then updated with the information about the plugin).

�
 INITIALIZED: the plugin is run in its own lightweight process. If

it is a WAITER, it is bound to its default port (or a dynamically
assigned one, if the default one is not available).

�
 ACTIVE: the plugin has successfully set up the communication

with its counterpart and it is waiting the order to start the
actual measurement. Synchronization is managed by the
scheduler module.

�
 MEASURING: the actual measurement process is running. It

will terminate returning either the measure or an error, unless
interrupted by the daemon.

Each plugin implements three kinds of measurement: fully
specified, constraint-based, and profile-based. They are linked to
the kind of measurement requested by the clients through the API
(see API measurement functions in Section 4.5). For fully specified
measurements, the clients have to specify the entire parameter
string to be used by the plugin. In the profile-based measure-
ments, clients select a predefined profile for the measurements
(e.g. minimally intrusive). The daemon then calculates the para-
meter values most suitable to this request, using the information
in the knowledge base. For constraint-based measurements, the
clients specify the constraints on the measurements (e.g. the
maximum duration). Using this information and the one in the
knowledge base, the daemon calculates the most appropriate
values for the parameters.

A template is provided for the creation of new plugins,
including the common interface (file plugn.h). Available plugins
can be used to understand the changes to be made to a tool in
order to put it under the UANM control.

The list of plugin methods that a plugin has to provide is
(see Fig. 2) the following:
�
 plugin_publish()—loads the dynamic linking object code
of the plugin, making it available to the platform; if successful,
it brings the plugin to the state KNOWN.

�
 getReady()—executes the initialization code of the plugin,

up to the port binding; if successful, it brings the plugin to the
state INITIALIZED.

�
 Activate()—makes the INITIATOR set up the connection

with its WAITER; if successful, it brings the plugin to the state
ACTIVE.

�
 startMeasure()—makes the SENDER start sending the

probe packets; the state of both sides of the plugin will
become MEASURING, and at the end of the measure, ACTIVE.

�
 deactivate()—makes the INITIATOR close the control

connection with its WAITER; it will bring the plugins to the
state INITIALIZED.

�
 abortMeasure()—makes the SENDER stop sending probe

packets immediately; the state of both sides of the plugin will
be reverted to ACTIVE.

�
 teardown()—executes the shutdown code of the plugin,

releasing each resource (in particular, closing the listening
socket); it brings the plugin back to the state KNOWN.

Most of the AB estimation tools have their own control protocol
used to synchronize the edges and to set up the measurement
parameters. UANM manages the plugins as gray-boxes, using only
high level methods such as Activate(), startMeasure(), and
ignoring underlying details. This eases the transformation of
third-party tools in plugins with minimal or no changes in the
original code. This also leaves full compatibility between the
plugin and its original standalone version. For plugins that
implement the same measurement technique of a third-party
tool, the plugin name and metadata report the version of the
third-party tool that is compatible with this plugin. As an
example, the plugin Pathchirp_2.4.1_rcv_0.1 is the version 0.1 of
an implementation of the Pathchirp method, with the control
protocol compatible with Pathchirp version 2.4.1. This way the
original tools are fully compliant with the plugins sharing the
same version number. The list of the measurement methods
currently implemented as plugins is reported in Table 1.
4.4. Mutual exclusion of measurements

The main component of UANM, the daemon, is a multi-thread
application, able to concurrently manage several measurement
tasks; the platform is distributed, and its nodes interact, with
both peer-to-peer or client-server paradigms, in a many-to-many
fashion. This notwithstanding, it has been proven that timely
packet generation and packet time-stamping, and thus the accu-
racy of active measurement tools, are affected by mutual inter-
ference when sharing a measurement node (Botta et al., 2010)
or a network path (Croce et al., 2010). In order to limit this
interference, a mutual exclusion mechanism has been included in
the design of UANM, namely, a scheduler module (see Section 4.2).



Table 1
List of measurement plugins implemented.

Plugin name Protocol

version

Measure Sender/

receiver

Provided

profiles

Abing (Navratil

and Cottrell, 2003)

2.2.0 ABW Both MONITOR

Assolo (Goldoni

et al., 2009)

0.9 ABW Both DEFAULT

Diettopp (Johnsson

et al., 2004)

0.2 ABW Both SELECTION,

QOS

IGI/PTR (Hu and

Steenkiste, 2003)

2.1 ABW Both DEFAULT

Pathchirp (Ribeiro

et al., 2003)

2.4.1 ABW Both MONITOR,

DEFAULT

Pathload (Jain and

Dovrolis, 2003)

1.3.2 ABW Both SELECTION,

QOS

Spruce (Strauss

et al., 2003)

0.3 ABW Both DEFAULT

Wbest (Li et al.,

2008)

1.0 ABW Both MONITOR,

DEFAULT
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Thanks to it, each daemon performs at most one single measure-
ment each time, thus avoiding both interference due to local
resource sharing, and interference on the path under measure-
ment. When the nodes of UANM are used as vantage points along
a path in a WAN scenario, this offers a mean to mitigate mutual
interferences among active measurements in a distributed, peer-
to-peer fashion.

Considering the possible plugin status (see Section 4.3 and
Fig. 2), it can be noted that mutual exclusion is needed only
during the measurement phase: many plugins can be up and
ready to start, but the mutual exclusion is only enforced on the
transition from ACTIVE and MEASURING states, as described
in the following. The different elements composing the UANM
architecture with the integration of two levels of control protocols
(UANM protocol for the management of experiments and hetero-
geneous plugin-specific control protocols for the probing) lead to
some complexity in the communication sequences.2 Each daemon
can be contacted by a uanmClient or by another daemon, the
plugin that will be employed can be an INITIATOR or a WAITER, a
RECEIVER or a SENDER, and can hold the results of the measure-
ment or not, according to the specific tool, leading to 16 possible
cases (all combinations are represented in the current plugin set):
we will skip such minor details, focusing only on the sequence
that regards the contention of the permission to measure.

In a way similar to the CSMA/CA contention algorithm,
synchronization between the INITIATOR and the WAITER sides
of a plugin is achieved by means of control messages of types
RequestToStart and ClearToStart or NotClearToStart,
and by waiting a random backoff time. When an INITIATOR in
ACTIVE state receives a measure request from the daemon, the
measurement is enqueued in the daemon’s mutex.3 When it is
popped out from the head of the queue, a RequestToStart

message is sent to the WAITER and the reply is waited for (with a
timeout). If the reply is of type ClearToStart, the state of plugin
changes to MEASURING, the plugin-specific control protocol is
started, and the measurement is performed. At the end of the
measurement, the state is reverted to ACTIVE and the mutex is
released. If the reply is of type NotClearToStart, a random time
(uniformly distributed in a backoff time interval) is waited, then
the RequestToStart is sent again; this is iterated until either
a ClearToStart is received or a given number of retries
2 This complexity is hidden by the simple API, which constitutes one of the

advantages provided by the use of the UANM platform.
3 This implements the FCFS policy, at the time being the only supported

scheduling.
max_retries is reached. On the other side, when a WAITER in
ACTIVE state receives a RequestToStart, it tries to lock a
daemon-scoped mutex. If successful, a ClearToStart message
is sent back, the state of plugin changes to MEASURING, and the
control is handed to the plugin-specific control protocol. If the
mutex lock fails (due to another plugin holding it), a NotClear-

ToStart message is sent, and no state transition is done; an
optional suggested backoff can be provided in this message.

An example of this communication sequence is given in Fig. 3,
where a SENDER that has the role WAITER is temporarily kept
from measuring because of another measurement being on
the way.

This mechanism introduces a communication overhead, which
implies a delay between the request of measurement and its
handling by the plugins. Such delay ranges from 1 RTT to

mutex_overhead¼ max_retries � ðRTTþbackoffÞ

This mechanism, however, guarantees the avoidance of concur-
rent measurements, which translates in higher measure accuracy,
as shown in Section 5.2.

4.5. The clients and the UANM API

Every application that is able to communicate with a daemon
using the uanm-protocol is a client. A communication API is
provided with UANM for this aim. Every application in need of
network measurement can benefit from a local centralized
orchestration point (daemon) offering enhanced measurement
services through a highly abstracted interface. The API provides
different measure-request functions ranging from the simplest
(e.g. specifying only the endpoints and the type of measure) up to
a completely detailed one (e.g. specifying the technique to use
and its parameters).

Every application can request a measure that fits its needs
using the convenient function. This allows for the use of the
UANM servers as probes, to be integrated in distributed measure-
ment infrastructures. In fact, by means of detailed requests, the
daemon can also become a transparent layer between the
application and the measurement method, so that it can be used
as a unifying interface towards different kinds of measurement
techniques.

As the main purpose of a daemon is to provide measurement
services, the main functions are dedicated to measurement
requests. These functions differ in the number of parameters,
because the most simple ones make a set of plausible assump-
tions. The measure-request functions have been designed to
provide a simple and flexible interface to the measurement. In
the following, we report the kinds of measurement that can be
requested by a client.
1.
wid

be
Measure using profile: The general use case for the UANM
architecture is represented by an application in need of an
available bandwidth estimation, with loose constraints, that
can just pick one ‘‘ready-cooked’’ measurement profile (see
Table 2 for a list of available profiles and their characteristics).
The measurement profiles are an abstract classification of use
cases in terms of measurement characteristics,4 and they are
meant as a choice of a preset combination of values for the
actual measurement parameters. They are also used by the
decision engine of the daemon as selection criteria in the choice
of the most suitable method. For these reasons, the character-
istics of the profiles have been chosen as being useful in
4 The measurement profiles have been designed using the available band-

th estimation as a reference, but the same principles and implementations can

used for every supported type of measure.
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Activate SENDER (waiter)

Request RECEIVER activation

Activate RECEIVER (initiator)

The mutex is LOCKed
(because of another measurement
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Request to StartWaiter checks the mutex,
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NOT Clear to Start (wait T seconds) Initiator FREEs the mutex.
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Initiator checks the mutex,
finds it FREE and LOCKs it.Request to Start

Waiter checks the mutex,
finds it FREE and LOCKs it.

Clear to Start

Waiter FREEs the mutex.

(the other measurement has finished)

uDaemon A uDaemon B

The mutex has been FREEd

Initiator FREEs the mutex.

Fig. 3. Measurement mutual exclusion: the case of a SENDER that has the role WAITER and gets deferred because of a LOCKED mutex.

Table 2
List of predefined measurement profiles with characterization.

Profile

name

Response

time

Accuracy Repetition

frequency

Averaging

interval

Probe

load

SELECTION Wide Wide Once Wide High

MONITOR Wide Wide Medium Wide Low

QOS Strict Strict Low Strict High

DEFAULT Medium Medium Once Medium Medium

Table 3
List of supported measurement constraints.

Measurement

characteristic

Response

time

Uncertainty Averaging

interval

Probe

load

Type of bound Upper Upper Exact Upper

Unit ms Mbps ms Mbps
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tool comparison and evaluation (as described in Shriram and
Kaur, 2007).
2.
 Measure with constraints: In case the client has specific con-
straints on the measurement, it is possible to inform the
daemon of such constraints by means of this function, specify-
ing the bounding characteristics of the measurement and the
value of the acceptable limit. The supported measurement
constraints are reported in Table 3.
3.
 Fully specified measure: The maximum control on the measure-
ment process is given to clients through this function, which
allows to specify the measurement tool and all the parameters
allowed by the tool. The syntax of parameter specification is
the same as the command-line syntax of the specific tool, as
described in the tool documentation.

To develop ‘‘smart’’ clients and administration interfaces, some
administration functions are also provided. According to permis-
sions set for the daemon, some of these functions could be
forbidden to some clients. In order to perform additional tasks,
ancillary functions are also provided. These functions can be used
as building blocks to create a complex client or a manager, or to
integrate UANM in another architecture, such as a distributed
measurement infrastructure, an anomaly detection system, or a
network monitoring application.
5. UANM at work

Thanks to the availability of different tools embedded in
UANM, we execute a wide set of comparative tests on a laboratory
testbed. In a first set of experiments we validate three important
aspects of UANM: (i) the impact of the architecture on the
measures with respect to the standalone tools; (ii) the avoidance
of the interference of two or more tools in execution on the
same measurement path at the same time; (iii) the capability to
select the best tool and of properly configuring its parameters
for the specific network scenario. In a second set of experiments,
we use UANM to compare the accuracy, the intrusiveness,
and the measurement time of several available bandwidth
estimation tools.

5.1. Testbed and tools

For our experiments we set up a laboratory testbed composed
of eight Linux-based hosts (see Fig. 4). More details on the setup
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Fig. 4. Testbed used for the experiments.

Table 4
Details of network interfaces installed on the testbed nodes (see Fig. 4 for the

testbed layout).

Node Net Device Driver Driver version Adapter model

132 ctrl eth1 e1000 7.3.21-k3-NAPI Intel 82541GI (r05)

132 3 eth2 sky2 1.22 Marvell 88E8050 ASF (r17)

133 1 eth0 e1000 6.1.16-k2-NAPI Intel 82541PI (r05)

133 ctrl eth1 e1000 6.1.16-k2-NAPI Intel 82541GI/PI (r05)

135 2 eth0 e1000 7.3.20-k2-NAPI Intel 82541PI (r05)

135 4 eth1 e1000 7.3.20-k2-NAPI Intel 82541GI (r05)

135 1 eth2 sky2 1.14 Marvell 88E8050 ASF (r17)

136 ctrl eth0 igb 2.1.0-k2 Intel 82576 (r01)

136 7 eth1 igb 2.1.0-k2 Intel 82576 (r01)

137 6 eth3 sky2 1.21 Marvell 88E8050 (r17)

137 5 eth4 e1000 7.3.20-k2-NAPI Intel 82541PI (r05)

137 4 eth5 e1000 7.3.20-k2-NAPI Intel 82541GI/PI (r05)

138 5 eth0 e1000 7.3.20-k2-NAPI Intel 82541GI/PI (r05)

138 3 eth1 sky2 1.14 Marvell 88E8050 (r17)

138 7 eth2 e1000 7.3.20-k2-NAPI Intel 82541PI (r05)

149 6 eth0 r8169 2.3LK-NAPI Realtek RTL-8169 (r10)

149 ctrl eth2 asix N/A ASIX AX88772

170 2 eth0 e1000e 0.3.3.3-k6 Intel 82573L

Table 5
CPUs and Linux kernels installed on testbed nodes.

Node Cores CPU Kernel version

132 2 Intel Xeon 3.2 GHz Linux 2.6.27.24-mfwd SMP

133 2 Intel Xeon 3.2 GHz Linux 2.6.15-mpls-1.950 SMP

135 2 Intel Xeon 3.2 GHz Linux 2.6.22.5-49.fc6.mpls.1.958

SMP

136 8 Intel Xeon E5520

2.27 GHz

Linux 2.6.32-24-server SMP

137 2 Intel Xeon 3.2 GHz Linux 2.6.26-1-686 SMP

138 2 Intel Xeon 3.2 GHz Linux 2.6.22.5-49.fc6.mpls.1.958

SMP

149 2 Intel Xeon 3.2 GHz Linux 2.6.32-24-generic SMP

170 2 Intel Xeon 3.2 GHz Linux 2.6.27.56-0.1-default SMP

G. Aceto et al. / Journal of Network and Computer Applications 35 (2012) 1402–1414 1409
of each machine can be found in Tables 4 and 5. The three
intermediate hosts 135, 137, and 138 act as routers, and the end
systems are provided with Pathchirp and Pathload, as well as with
UANM. To emulate different load conditions, we also provide the
three hosts 136, 149, and 170 with the D-ITG (Botta et al., 2007)
traffic generator. In order to validate the measures provided by
the tools and the load conditions enforced by the traffic generator,
traffic is captured through tcpdump on router 137. Both the
probing packets and the cross traffic are generated from right
towards left, along the paths highlighted with arrows. This setup
presents a RTT from host 133 to 132 (sender and receiver of probe
traffic, respectively) of about 1 ms in average, with about 0.1 ms
of standard deviation, measured with 1000 packets sent with zero
inter-packet time (ping flooding). The results reported in graphs
are collected from client output and daemon logging facilities,
and have been validated through the analysis of the traffic traces
captured on the router 137.

5.2. Platform validation

These experiments aim at demonstrating the basic benefits
introduced by UANM with respect to a trivial use of available
bandwidth estimation tools.

In this section, we focus the attention on the following issues:
1.
 the evaluation of the overhead introduced by the adoption of
UANM with respect to the regular AB estimation tools;
2.
 the avoidance of the effect of the interference among concurrent
measurement processes;
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the results achieved by UANM when autonomously selecting a
tool and its parameters with respect to a basic use of the AB
estimation tools.

5.2.1. Overhead introduced by UANM

In the following test we show how the adoption of UANM does
not introduce significant overhead with respect to the original
tools. Figure 5 reports the results of two series of measurements
conducted under different load conditions. This figure shows a
diagram with the cross traffic on the x-axis and the measured
available bandwidth on the y-axis, both expressed in Mbps. To
increase the readability of such a diagram, we report a line related
to the ideal values. All the results are calculated as the average of
the outcomes of 10 experiments. We use the same outline for all
the validation experiments. In the first measurements we execute
Pathload, whose results are returned as usual in a range (PL min
and PL max), and Pathchirp (PC). In the other measurements we
use the same tools but embedded in UANM under a fully specified

profile (UANM PL, as the average of min and max, and UANM PC).
As shown in Fig. 5, the difference between the outcomes in the
two experiments is negligible in all the cases.
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5.2.2. Effect of the interference among available bandwidth

estimation tools

In this experiment we show the inaccuracy of a measure
performed when more measurement processes share even one
single part of the network for a long or a short time interval. This
problem may occur since the current techniques and tools do not
provide coordination among measurement stations or any kind of
alert feedback from the network. We set all the links of the testbed
to 100 Mbps, and we start two series of concurrent measurement
processes from senders 170 and 133 towards receiver 132. We also
generate cross traffic from 149 to 136 at different rates of 10, 20,
50, and 80 Mbps so that there is a bottleneck link between router
137 and 138.

Figure 6 reports the results of these experiments. The situa-
tions considered are as follows: two concurrent Pathload (PL upon
PL), Pathchirp upon Pathload (PC upon PL), and two concurrent
Pathchirp (PC on PC). Moreover, we also report the results related
to a standalone use of Pathload (PL standalone) and Pathchirp (PC
standalone). As reported, there is an effect due to the interference
that affects both the tools, as the difference between the results of
concurrent and non-concurrent measurements is significant. We
also notice that, in some experiments with Pathload upon Path-
load, the tool did not converge. This result is due to the approach
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Fig. 5. Overhead introduced by the UANM architecture.
adopted in Pathload, which leads the network towards congestion
for a short time interval. The design of UANM daemon avoids the
interference effect thanks to the Scheduler that coordinates the
different clients and activates the measurements on a FCFS basis,
as reported in Section 4.4.

5.2.3. Selection and trim of the best available bandwidth

estimation tool

The decision engine in UANM is able to automatically select the
best tool related to the particular network configuration and to
recognize some basic configurations in order to set up the most
appropriate parameters for the required measure. In this experi-
ment we show the difference between a straightforward use of
Pathchirp or Pathload with respect to the adoption of UANM onto
the same testbed with all the links set to 1 Gbps. We made three
series of experiments with cross traffic set to 0, 250, and
500 Mbps. As shown in Fig. 7, a basic usage of Pathchirp returns
the worst results, and Pathload still underestimates the ideal
values. In such a situation, the UANM decision engine selects
Pathchirp according to the strict accurate QoS measurement
profile, thus preparing the measure with a different configuration
of the packet trains. The results of this last series of experiments
appear to be the best in all the tested load conditions.

5.3. Use case: comparing available bandwidth estimation techniques

In this section we present the results of a fair comparison of
the performance of several AB estimation tools, performed by
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means of UANM. All the tools currently available as plugins (see
Table 1) are run with the default parameter values, overriding
UANM decision engine by means of fully specified measure
requests. While the original Pathload tool returns an upper and
a lower bound for the estimated measure, its plugin version
returns also the average of those two values. The original IGI/PTR
tool returns two values of available bandwidth: one calculated by
the IGI algorithm and the other by the PTR algorithm; they
slightly differ, except for high cross traffic rates, in which case
IGI results are heavily inaccurate. The plugin version of IGI/PTR
returns only the value provided by PTR.

No specific settings have been enforced for the operating
systems on the testbed nodes (see Table 5), and no change is
made on standard settings for the network adapters, except the
100 Mbps set up for the speed parameter on all the network
adapters involved in the experiments (see Table 4). CBR cross
traffic is generated by the host 170 towards the host 136 at rates
of 25, 50, 75, and 100 Mbps, and with IP packet size of 1000 Byte.
A batch of 10 subsequent requests is performed with each plugin
and for each cross traffic rate, as well as in absence of cross traffic.
The data collected by the controlling client and the two running
UANM-daemons are averaged over the 10 samples, and they are
shown and analyzed in the following.

5.3.1. Accuracy

In Fig. 8 the outcomes of accuracy tests are reported for
different cross traffic values. Some tools achieved low accuracy,
namely Abing (Fig. 8c), Wbest (Fig. 8g), and Spruce (Fig. 8h). In a
recent work Goldoni and Schivi (2010) perform a similar analysis,
against cross traffic values of 8, 16, 32, and 64 Mbps, and they
obtained higher accuracy. In order to verify the cause of this
difference, we performed different experiments.5 Thanks to these
experiments, we verified that the difference can be attributed to
the fact the whole testbed is equipped with Gigabit Ethernet
network adapters, whose interrupt mitigation parameters have
been not modified from the default (only the speed has been
forced to 100 Mbps, while interrupt coalescence has not been
disabled, differently from Sommers et al., 2006); such condition is
known to affect the performance of some available bandwidth
estimation tools (Sommers et al., 2006; Jin and Tierney, 2003;
Prasad et al., 2004). Besides those reported above, other results
deserve some comments. Wbest (Fig. 8g), not considered in
Goldoni and Schivi (2010), is tuned by default to operate on IEEE
802.11 wireless networks, so its performance are probably
affected by a full wired Fast Ethernet scenario. Diettopp (Fig. 8a)
shows the highest performance in terms of accuracy, achieving its
best result with 25 Mbps of cross traffic (�2.5 Mbps of average
error) and the worst one with fully saturated path (reporting
27 Mbps); it has also the lowest standard deviation, i.e. less than
1 Mbps. Pathload (Fig. 8e) is also quite accurate, with an average
error comprised in between �12 and �9 Mbps, but the standard
deviation is among the highest ones, mostly in correspondence of
low values of cross traffic (almost 28 Mbps for the unloaded
path). Pathchirp (Fig. 8f) shows intermediate performance, with
an average error comprised in between 3 and 18 Mbps, and the
largest error (�35 Mbps) in the absence of cross traffic; its
standard deviation is about 5 Mbps, with more stability at higher
cross traffic rates. IGI/PTR (Fig. 8f) presents performance compar-
able to Pathload, with an average error comprised in between �5
and �12 Mbps, and a small standard deviation (in between 1 and
6 Mbps).
5 We also performed the same measurements with the original version of the

tools, obtaining similar results, which excluded UANM from the possible causes.
5.3.2. Probing time

The probing time is defined as the difference between the
timestamps of the last and the first probe packet. With the
inclusion of usually negligible computation time, and with
the addition of control communication overhead, this is related
to measurement latency (time needed by the tool in order to
provide a response). For the tools that iteratively probe the
network a number of times and provide a final response by
filtering intermediate results (Pathchirp, Assolo), we consider the
whole measurement period, for three reasons: (i) the filtering
process is part of the algorithm; (ii) the value returned by the
algorithm refers to the whole probing period; (iii) with this
definition, probing time is a good index for measurement latency.
For tools that run continuously, providing a running estimation of
the available bandwidth, we forced a time limit of 10 s (we
empirically found this value to be enough to get stationary
results).

It can be seen in Fig. 9a that the probing time of each plugin is
almost constant with the cross traffic rate, with the exceptions of
IGI/PTR and Pathload. IGI/PTR presents a probing time that is
increasing with cross traffic, starting from 74 ms with unloaded
path, requiring 0.7 s with 75 Mbps of cross traffic, and 36 s with
fully saturated path. In this last case it also shows a standard
deviation of 10 s. Pathload shows almost constant probing times,
of about 6 s, and a standard deviation of about 2.5 s, for almost all
the values of cross traffic. Only at 100 Mbps, it needs about 27 s
on average, with a standard deviation of 8 s. Assolo, Diettopp,
Pathchirp, and Spruce show probing times comparable with those
of Pathload (in between 6 s and 8 s) with very low standard
deviation.

5.3.3. Intrusiveness

Figure 9b shows the total amount of probe traffic generated in
average by the plugins during each measurement session. For
iterative and continuously probing techniques, we use the same
conventions used in the probing time analysis. It can be noted
that almost all the plugins offer a probing load constant with the
rate of cross traffic, with the exception of IGI/PTR and Pathload.
IGI/PTR generates an amount of probe traffic that is increasing
with the cross traffic, starting from 410 kB with unloaded path,
up to 3.4 MB when the path is fully saturated, and the standard
deviation is increasing from 46 kB to 980 kB. Pathload shows a
probe traffic volume that is decreasing with the cross traffic rate.
It starts at 6 MB with unloaded path, down to 1.3 MB in satura-
tion, also the standard deviation decreases from 2.8 MB down to
208 kB. This is consistent with the nature of the technique, that
has to congest the path, employing more probe traffic when cross
traffic contribution is lower. Diettopp generates the same amount
of probe traffic in all the cases (5.4 MB), only for the saturated
path it reduces the traffic to 2.2 MB showing also higher varia-
bility (78 kB of standard deviation). Together with Pathload, it is
the tool with the highest intrusiveness. Abing is the least
intrusive, with a fixed offered traffic volume of 59 kB in every
condition. Similarly, Wbest generates always 134 kB of probe
traffic. The volume of probing traffic of Assolo, Pathchirp, and
Spruce is almost constant with the cross traffic rate, and all of
them generate an amount of probe traffic close to 300 kB.

5.3.4. Discussion

Thanks to this fair comparison, a few considerations can be
done. The most accurate plugins are Diettopp and Pathload, both
trading off this characteristic with the highest level of intrusive-
ness, and also high probing time and thus high measurement
latency; these properties make them suitable for measurement
requests in profile SELECTION or in some applications of profile
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Fig. 8. Experimental results: accuracy of different estimation techniques in the presence of different values of CBR cross traffic with fixed packet size (1000 Byte).

(a) Diettopp, (b) IGI/PTR, (c) Abing, (d) Assolo, (e) Pathload, (f) Pathchirp, (g) Wbest and (h) Spruce.
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QOS but not for MONITOR or DEFAULT (see Table 2). IGI/PTR is the
quickest in all the cases except with the saturated path, and has a
good accuracy, but its probing time can range in more than
2 orders of magnitude. For this reason, it is unsuitable for
applications that require time-bound measurement (see Measure

with constraint type of request, Section 4.5); the same is true for
its variable probe load. Pathchirp, while being less accurate for
low cross-traffic values, has a probing time comparable with
Pathload and Diettopp, but significantly less injected traffic; this
makes it suitable for MONITOR profile of measurements. The
same can be said for Assolo, that shows performance similar to
Pathchirp, but higher accuracy for lower cross traffic values.

Even if we used only the default settings of the plugins and a
basic network scenario (varying only the cross traffic rate), the
experimental results showed that there is no tool that suits the
requirements of all the applications. Therefore, an informed
choice of the tool and of its parameters are necessary for the
effective and efficient estimation of the available bandwidth.
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Another important consideration is related to the scalability of
the proposed architecture. In this paper, we have performed
experiments on a small-scale testbed. The question arises how
the platform scales, i.e. what we can expect in large deployments.
As also recently discussed in the literature (Croce et al., 2010), for
what concerns the techniques for AB estimation, the main issues
we can expect on large-scale deployments are the intrusiveness of
the probing traffic in terms of both traffic rate and profile, leading
to high overhead, and the interference between probing packets,
leading to inaccurate estimations. Moreover, the experiments
reported in Section 5.2.2 and in Croce et al. (2010) show that
each tool has its own characteristics with respect to the issues
above. Therefore, it is important to have a platform that allows to
manage different kinds of techniques and to choose the best one
depending on the network scenario (e.g. for large scale deploy-
ments a PGM technique with few iterations; Croce et al., 2010).
In particular, to make an informed decision, the tool should take
into account:
�
 The overhead in terms of volume of probing traffic injected
into the network. The platform should choose the technique
that minimizes the overhead.

�
 The interference among concurrent measurements. The plat-

form has to avoid concurrent measurements when possible
(see Section 4.4), or it has to choose the technique least
impacted by the interference, when concurrent measurements
are necessary.

Besides, another important issue arises in large-scale deploy-
ments. The complexity of the network increases, and this under-
mines the possibility to perform network-aware measurements.
In heterogeneous scenarios it is difficult to discover many things
about the network, such as, the number of hops, or, more in
general, the topology of the network, the kind of links traversed,
etc. A specific analysis is necessary to cope with these aspects.
We aim at performing it in our future work.
6. Conclusions and future work

In this paper we presented UANM, a novel platform for
supporting and orchestrating complex measurements of end-to-
end available bandwidth. Thanks to an open API, existing tools or
new ones can be easily pluginized in this platform, still keeping a
full compliance with original tools. UANM is able to manage
concurrent measurement and to avoid interference, thus increas-
ing the accuracy and reliability of any measurement. We
described in detail the architecture of the platform, illustrating
all the features we introduced in order to mitigate the problems
arising in available bandwidth estimation over heterogeneous
networks.

The platform is made up of server nodes (the measurement
edges, named UANM-daemons) that offer possibly complex esti-
mations of available bandwidth to applications (named UANM-
clients) that query for them. Different estimation techniques are
available to the measurement server in the form of dynamically
loadable modules, the measurement plugins. The offered service
is ‘‘smart’’ in the sense that the knowledge and the choice of the
measurement details (which technique to use, and how to set its
parameters) are entrusted to the daemon, that carries it according
to the request of the client and to the known status of the
network path under measure. Measurement requests from clients
can be very simple, just specifying the address of the other edge of
the measurement path, or fully detailed (the daemon in this case
offers scheduling of measurement, in order to avoid mutual
interferences). The measurements can be made on the path
between a server (UANM-daemon) on one edge, and on the other
edge (i) another UANM-daemon, (ii) a supported third-party
measurement tool, and (iii) a common host (by means of single-

ended plugins). In order to validate UANM, we performed an
extensive set of comparative experiments carried out on a
laboratory testbed, and we showed how UANM can actually
provide accurate results in typical situations in which the other
tools fail. Moreover, thanks to our platform, we provided for the
first time in literature a ‘‘fair comparison’’ of eight available
bandwidth estimations tools in terms of accuracy, probing time,
and intrusiveness. In our ongoing work, we are extending the set
of plugins implemented in UANM, widening both the set of
supported measures and the number of estimation techniques
for each measure, in order to test the platform in a more
challenging scenario that also includes wireless links. Moreover,
the scheduling policy will be extended from FCFS to other criteria
including time constraints or the availability of independent
paths on multi-homed daemons, and the mutual exclusion
mechanism will be modified in order to allow its enabling on a
per-plugin, instead of per-daemon, granularity. Finally, we plan to
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increase the capabilities for network awareness of the platform.
UANM is geared towards wide adoption among developers of
network applications and researchers in the field of network
measurement, and a prototype is released under GPL license
and with a LGPL API for the development of measurement
plugins. We believe that UANM allows to overcome the main
limitations of current tools, providing accurate AB estimation in
heterogeneous environments.
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