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JSBSim is an open source software (OSS) flight dynamics model that can be incorporated 

into a larger flight simulation architecture (such as FlightGear, or OpenEaagles). It can also 

be run as a standalone batch application when linked with a stub routine. Since 2004, when 

JSBSim was formally introduced at the Modeling and Simulation Technology conference, 

many advances have taken place, and a variety of uses have been demonstrated. This paper 

will present updates on project status, an overview of XML configuration file format 

enhancements, details on recent improvements and design choices, and some basic examples 

of use. A discussion about interfacing JSBSim with Matlab as a Mex-Function or Simulink 

S-Function is included, followed by a deeper look at a representative usage case study. 

I. Introduction 

JSBSim is a high-fidelity, 6-DoF (Degree-of-Freedom), general purpose, flight dynamics model software library 

written in the C++ programming languages. The library routines propagate the simulated state of an aircraft given 

inputs provided via a script or issued from a larger simulation application. The inputs can be processed through 

arbitrary flight control laws, with the outputs generated being used to control the aircraft. Aircraft control and other 

systems, engines, etc. are all defined in various files in a codified XML format. 

The library consists of approximately 70,000 text lines in 185 files. The total lines of program code is estimated 

at about 50,000 lines. Begun in 1997, JSBSim has an international team of active developers and user contributors.  

As a design goal, JSBSim has attempted to find a balance between high simulation fidelity and data file 

simplicity, so the task of simulating the flight of any aerospace vehicle can be done with the minimum specific input 

possible. Most code changes now are a result of minor code tweaks, or the addition of a few new features, as the 

user base provides inputs. The code has evolved in response to the way it is used, similar to natural selection. But, in 

some ways, development has shifted from compiled C++ code towards the creation of  common XML data files. 

At the time of this writing, JSBSim is releasing candidate source code archives for version 1.0. The numbering 

of versions is somewhat arbitrary, but it signals – roughly – that the application has been used reliably for some time 

in a number of applications, that documentation
1
 has reached a level where it is fairly thorough and useful, and the 

feature set is well defined and mature. 

II. Overview of the Vehicle Configuration and Script File Format Changes 

JSBSim is a data driven simulation. How data driven? Below is the minimum code needed to run JSBSim: 

#include <FGFDMExec.h> // Include the executive header 

int main(int argc, char **argv) { // Pass a script name via argv 

 JSBSim::FGFDMExec FDMExec; // Instantiate the Executive 

 bool result = true; // 

 FDMExec.LoadScript(argv[1]); // Load a script 

 while (result) result = FDMExec.Run(); // Run until the script completes 

} 
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All vehicle model characteristics (mass properties, aerodynamics, propulsion, etc.), initial condition values, run 

script directives, and logging directives, are stored in text files. The various configuration files were migrated to a 

completely valid XML file format to gain the benefits of using XML.
2
 Among those benefits are: 

 An XML schema can be created that defines the structure of a configuration file (e.g. an aircraft 

configuration file or a script file). The schema can be used to validate an input file before it gets parsed 

by the application itself. 

 An XSL transformation can be used to convert an XML configuration file into another format, such as 

HTML, for display in a browser. 

 There are many freely available XML parsing codes that can be leveraged. 

A. Aircraft configuration file format 

The aircraft (or, more generally, vehicle) configuration file is now structured to permit greater reuse. The general 

layout of the configuration file format is as follows (newer sections are in bold and preceded by an asterisk): 

<fdm_config> 

  <fileheader> … </fileheader>         <!-- 0 or 1 instance  --> 

  <metrics> … </metrics>          <!-- 1 instance       --> 

  <mass_balance> … </mass_balance>      <!-- 1 instance       --> 

  <ground_reactions> … </ground_reactions>   <!-- 1 instance       --> 

 *<external_reactions> … </external_reactions>  <!-- 0 or 1 instance  --> 

 *<buoyant_forces> … </buoyant_forces>     <!-- 0 or 1 instance  --> 

  <propulsion> … </propulsion>        <!-- 0 or 1 instance  --> 

 *<system> … </system>           <!-- 0 to n instances --> 

  <autopilot> … </autopilot>         <!-- 0 or 1 instance  --> 

  <flight_control> … </flight_control>     <!-- 0 or 1 instance  --> 

  <aerodynamics> … </aerodynamics>      <!-- 1 instance       --> 

  <input> … </input>            <!-- 0 or 1 instance  --> 

  <output> … </output>           <!-- 0 to n instances --> 

</fdm_config> 

The ground reactions, external reactions, buoyant forces, propulsion, system, and aerodynamics elements in the 

above configuration file outline can each contain a collection of other elements. The propulsion element contains a 

list of zero or more engines. The ground reaction element contains a list of zero or more contact points. The system 

element contains grouping of control system components, and so on. Multiple output elements can be specified. 

Some of the configuration file elements can refer to a file (through a filename attribute) that may contain the 

actual definition of the relevant model. The aerodynamics characteristics, individual engine specifications, control 

systems, and output specifications can exist in separate files that can be included in any aircraft model. This is a 

relatively recent new capability. 

B. Script file format 

JSBSim can be controlled in its standalone, batch mode through the use of a script. A JSBSim script (a custom, 

XML-format file) contains a reference to a vehicle configuration file and an initial conditions file.  It also specifies 

the length of the simulation run in seconds, the frame rate in Hz, and can contain from zero to many event elements. 

Events specify an action or actions to take when a set of conditions are satisfied. 

The structure and features of scripts have been enhanced in recent years. Most notably: 

 One can now declare new properties (with initial values) that can be manipulated or used as variables. 

 In addition to setting a property to a numeric value in an event, one can now set a property to the value 

returned by a function. 

 An event can be directed to be executed each frame, instead of only when a condition is satisfied. For 

example, a wind table could be provided as a function within an event that is continuously executed, so 

that a simulated rocket could be affected by a wind magnitude and direction based on altitude. 

 An event can include a command to print a notification to the console when it is triggered, as well as the 

name and value of specified simulation properties. 

There are also now properties available that, when set in a script, will cause an action to take place. The available 

actions are: terminate the sim, trim the aircraft, write a state file, and reset the simulation to the initial conditions. 
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III. Enhancements 

JSBSim development has seen considerable progress since it was presented in 2004 at the AIAA Conference in 

Rhode Island
3
. The major features changed or added since then include: 

 Support for any number of arbitrary systems (electrical, control, etc.) that can be built using the control 

components supplied in JSBSim (gain, summer, PID controller, switches, etc.), 

 Additional control components such as actuators and sensors (with malfunction capability) and an 

accelerometer have been added, 

 Support for airship modeling, 

 Support for arbitrary math functions, 

 Support for arbitrary external forces, 

 Runtime selectable EOM (Equations of Motion) integrators for rotational and translational velocity and 

position, 

 An overhaul of the configuration file format to be more strictly XML compliant, 

 An overhaul of the modeling of the EOM and the propagation of the aircraft state to be more readable 

and more accurate in a rotating Earth frame, 

 Refinement of the ground reactions model to reduce or eliminate instability, 

 Support for the specification of property values from the command line. 

A. Arbitrary Systems Modeling 

Since the beginning, JSBSim has provided a way to model arbitrary flight control laws for an aircraft model 

through user specification of a chain of linked control components in the flight control section of the aircraft 

configuration file (an XML text file). A simple example of such a chain of components is shown: 

<pure_gain name="fcs/roll_rate_norm"> 

  <input> velocities/p-aero-rad_sec </input> 

  <gain> 0.31821 </gain> 

</pure_gain> 

 

<summer name="fcs/roll_trim_error"> 

  <input> fcs/aileron-cmd-norm </input> 

  <input> -fcs/roll-rate-norm </input> 

</summer> 

 

<switch name="fcs/aileron_pid_trigger"> 

  <default value="1"/> 

  <test value="0"> 

    velocities/vc-kts lt 20.0 

  </test> 

</switch> 

 

<pid name="fcs/roll_rate_pid"> 

  <trigger> fcs/aileron-pid-trigger </trigger> 

  <input> fcs/roll-trim-error </input> 

  <kp>  3.00000 </kp> 

  <ki>  0.00050 </ki> 

  <kd> -0.00125 </kd> 

  <clipto> 

    <min> -1 </min> 

    <max>  1 </max> 

  </clipto> 

</pid> 

In the above example, where each component (pure_gain, summer, switch, and PID) is instantiated and named 

when parsed by the application at runtime, one should notice that consecutive components usually refer to 
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previously defined component names for inputs. Note that in XML items declared within angle brackets (< >) are 

referred to as elements. 

This component-based approach works well for defining detailed control laws for an aircraft in a text file for 

later instantiation at runtime. It allows complete control for the flight model developer; at the same time it allows the 

source code to be generic. 

Over time, it has been seen that users are modeling various types of systems with the components (electrical 

systems, for instance). So, the decision was made to create a new XML element that could be placed in the aircraft 

configuration file to group components for systems modeling. Furthermore, support was added to the new system 

element to allow referencing a separate file rather than to have the component definitions specified inline. That 

approach allows standard system models to be created and shared between aircraft models. The following snippet 

shows how an F-4N aircraft flight model incorporates several system models that are defined in other files (the 

“.xml” extension is optional): 

 
<system file="holdback"/> 

<system file="hook"/> 

<system file="catapult"/> 

<system file="BLC"/> 

<system file="gear"/>  

<system file="flaps"/>  

<system file="speedbrakes"/> 

<system file="FCS-pitch"/> 

<system file="FCS-roll"/> 

<system file="FCS-yaw"/> 

<system file="NWS"/> 

 

With the introduction of the “system” element, the “flight_control” and “autopilot” elements have now 

effectively become superfluous, though support will remain for backwards compatibility and readability. 

Since the set of control components has stabilized and matured, development has noticeably shifted away from 

source coding towards configuration file coding. In addition to the systems shown above (included with the F-4N 

model), two other general purpose system models are under development and in use. One is called GNCUtilities, 

and as the name suggests it contains general purpose GNC (Guidance, Navigation, and Control) functions, such as a 

calculation of the great circle heading and distance to a specified latitude and longitude using the Haversine 

formulas, and a calculation for the smallest included angle to a heading from the current heading. The other general 

purpose system model contains simple autopilot functions (currently only roll and heading modes are implemented). 

The system element also allows for “variables” to be introduced within it and optionally assigned initial values. 

Variables in JSBSim are more commonly known as “properties” – public text names that are bound at program 

initialization to class members or get/set functions that are used in configuration files and control component 

specifications. If a system is defined in its own file, any properties that are defined within the file and given initial 

values can have those initial values overridden in the main aircraft configuration file. For instance, the Autopilot.xml 

file contains property declarations with initial values that represent limits that are used in the roll control channel: 

 
  <!-- Initial constants (can be overridden in the aircraft file) --> 

 

  <property value="0.524"> guidance/roll-angle-limit </property> 

  <property value="0.174"> guidance/roll-rate-limit </property> 

 

Within an aircraft configuration file, the Autopilot.xml file can be referenced in a system element as follows, 

overriding the values given in the Autopilot.xml file: 

 
  <system file="Autopilot"> 

    <property value="1.048"> guidance/roll-angle-limit </property> 

    <property value="0.348"> guidance/roll-rate-limit </property> 

  </system> 

 

The system element enhancement has provided flexibility and a powerful capability for modeling multiple 

complex systems in JSBSim, and the design encourages reuse of entire systems defined in XML files. 
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B. Support for Arbitrary Math Functions 

JSBSim supports the specification of arbitrary math functions in several places. Numeric values, property values, 

and values returned by lookup tables can be operated on by trigonometric, algebraic, and other functions. The 

function specification format used by JSBSim is similar to MathML but simpler, since JSBSim does not have to 

specifically support the proper display of the math functions. Here’s an example of a function: 

<function name="aero/force/LDe"> 

    <description> Lift from elevator deflection </description> 

    <product> 

        <property> aero/qbar-psf </property> 

        <property> metrics/Sw-sqft </property> 

        <property> fcs/elevator-pos-rad </property> 

        <table> 

            <independentVar> velocities/mach </independentVar> 

            <tableData> 

                0.0000 1.0000 

                0.6000 1.0500 

                1.0000 1.1500 

                1.2000 1.0000 

                1.6000 0.6600 

                2.0000 0.5000 

                2.4000 0.4000 

                3.0000 0.3100 

                5.6000 0.2100 

                6.0000 0.2000 

                9.0000 0.2000 

            </tableData> 

        </table> 

    </product> 

</function> 

The above example shows the definition of the lift force due to the elevator deflection. In fact, all aerodynamic 

forces and moments are defined using functions. Functions can also be used to define specific algorithms in the 

system specification, when none of the existing control components are suitable. 

Note that JSBSim currently supports up to 3-dimensional tables, with linear interpolation and no extrapolation. 

C. Lighter-Than-Air Vehicle Modeling 

Modeling of buoyancy has been added, allowing modeling of hot air balloons, buoyancy-assisted vehicles, and 

zeppelins. Individually positioned gas cells and ballonets can be specified for a vehicle. The gas cells can currently 

be specified as holding Hydrogen, Helium, or air, and relief valves can be defined. Heat transfer between the 

environment and a gas cell can be defined by a function. Virtual mass is not specifically supported in program code 

(at this time), but an experimental capability is provided by a system definition file. 

D. External Forces 

Beginning a couple of years ago, some users in the FlightGear community and elsewhere expressed interest in 

flying various scenarios that could not be modeled in JSBSim at the time. Users wanted the ability to apply arbitrary 

forces and resultant moments to an airframe in order to model scenarios such as aircraft carrier operations (catapult, 

hook and wire), tow ropes, parachutes, etc.  The solution was to provide an external forces class and an external 

reactions manager class to manage an array of external force class instances. 

The external forces class encapsulates the location, direction (in body, wind, or local axes). And magnitude of a 

force acting on the vehicle structure. The force direction can be changed at any time. The force magnitude can be 

defined by a function or set via a property name. For example, a simple parachute attached to a two foot diameter 

ball could be defined as follows: 

<external_reactions> 

  <!-- "Declare" the reefing property --> 
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Figure 1. Ground track of a jet aircraft accelerating from rest. 

Shaded circle is the minimum turn radius. Nose gear is steered 8 

degrees, left. X/Y Distance measurements are specified in feet. 

  <property> fcs/parachute_reef_pos_norm </property> 

 

  <force name="parachute" frame="WIND"> 

    <function> 

      <product> 

        <property>aero/qbar-psf</property> 

        <property>fcs/parachute_reef_pos_norm</property> 

        <value> 1.0 </value>  <!-- Full drag coefficient --> 

        <value> 20.0 </value> <!-- Full parachute area --> 

      </product> 

    </function> 

 

    <!-- The location below is in structural frame (x positive aft), 

         so this location describes a point 1 foot aft of the origin. 

         In this case, the origin is the center. --> 

    <location unit="FT"> 

      <x>1</x> 

      <y>0</y> 

      <z>0</z> 

    </location> 

 

    <!-- The direction describes a unit vector. In this case, since 

         the selected frame is the WIND frame, the "-1" x component 

         describes a direction exactly opposite of the direction 

         into the wind vector. That is, the direction specified below 

         is the direction that the drag force acts in. --> 

    <direction> 

      <x>-1</x> 

      <y>0</y> 

      <z>0</z> 

    </direction> 

  </force> 

</external_reactions> 

The reefing property is a normalized 

value that reflects the amount the 

parachute canopy is expanded or opened 

(0 = closed, 1 = fully opened).  The 

reefing rate can therefore be defined by a 

script or in a flight control or system 

definition.. 

The external forces capability added 

is not explicitly limited to externally 

applied forces. It provides a way to 

introduce arbitrary forces on the airframe 

which then introduce moments. 

E. Landing Gear Modeling: Problem 

and Solution 

Modeling an aircraft at rest while 

supported by landing gear can cause 

instability in simulations if it is not done 

with care. This problem has historically 

been dealt with in several ways, 

including through the use of the tricycle 

approximation
4
. 
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Figure 2. Time history of lateral ground reactions and roll 

angle with fade-in of forces from 0.0 to 0.3 ft/sec. 

In early versions of JSBSim, individual tires 

were modeled as contact points for which the side 

force (parallel to the aircraft Y axis) was simply a 

function of the friction coefficient, which went 

from 0.0 to a maximum of the static friction 

coefficient (as the tire was steered), and then back 

down to a steady state value defined by the 

dynamic friction coefficient. With this model, 

when running JSBSim with the aircraft at rest on 

the runway, the aircraft was seen to slowly drift, 

and to exhibit a rapid, small amplitude, angular 

oscillation.  

The landing gear model has been improved 

mainly through two approaches: using Pacejka’s 

“Magic Formula”
5
 for calculating lateral forces due 

to steering or dynamics, and the fading out of 

ground reaction forces when velocity is very near 

zero.  Figure 1 shows that the initial turn radius is 

the same as the geometrically-determined tricycle 

approximation (calculated from the wheelbase and the front tire steering angle), and that the turn radius enlarges 

with velocity. Figure 2 shows the aircraft resting on the ground without drifting or oscillating after being dropped 

onto the runway. 

F. Simulation Performance / CPU Loading 

Since JSBSim is a generic flight dynamics software library, and aircraft are fully defined in text files, one might 

ask if runtime performance suffers due to the high degree of generality that the code must support. Various code 

profiling tools (valgrind, cachegrind, etc.) have been employed to find bottlenecks in the code, and compiler 

directives have been set to maximize performance. On the author’s machine, the “-O9” compiler optimization flag is 

set, as well as the –march=nocona architecture flag. The resulting standalone JSBSim application is 2.4 MB in size. 

When a simulated 3 hour test run was made on a 64-bit machine with an Intel quad-core CPU running at 2.66 GHz 

under Microsoft Windows Vista, the entire run took 43 seconds – 250 times faster than realtime. For the test run, a 

50 Hz. frame rate was used, rotational EOM (rates and positions) were propagated with a 2
nd

 order Adams Bashforth 

integrator, and translational EOM used a trapezoidal integrator. 

IV. Interfacing JSBSim with Matlab/Simulink 

Users of Matlab/Simulink can rely on a well established interface to FlightGear. This capability is provided by 

the MathWorks “Aerospace Blockset” product. Air vehicles implemented by Simulink flight dynamics models are 

easily animated by sending the simulated flight data to a properly configured FlightGear session, which is used as a 

flight visualization server. From the standpoint of the open source community, the fact that MathWorks decided to 

release and support the FlightGear interface (in sync with new FlightGear releases) did sound like a very important 

point, which enhanced the already widespread success of FlightGear. 

Recently Agostino De Marco provided an example of a MEX-function that enables Matlab users to access 

JSBSim capabilities from the Matlab command window. This function has been named MexJSBSim. The acronym 

“MEX” in MexJSBSim stands for Matlab EXecutable. MEX-files are dynamically linked subroutines that can be 

produced from C, C++ or Fortran source. When compiled and made visible to the the environment, MEX-functions 

(or “MEX-files”) can be run from within Matlab in the same way as Matlab M-files or built-in functions. These 

external interface functions provide functionality to transfer data between MEX-files and Matlab. 

The MEX-function MexJSBSim has been developed with the purpose of establishing a sort of standardized way 

of using a JSBSim::FGFDMExec object from the Matlab command line. Currently, this project is developed under 

the Windows platform. Yet, the source code is platform-independent and the Mex-function can be compiled on other 

platforms.
‡
 MexJSBSim is an attempt to provide control engineers a direct access to a well established, high fidelity, 

flight dynamics model like JSBSim, enabling them to concentrate their work on automatic control logic and 

autopilot design. 

                                                           
‡ See the MexJSBSim web site at http://www.dias.unina.it/demarco/Work/JSBSim_Matlab [cited 1 August 2009] 

http://www.dias.unina.it/demarco/Work/JSBSim_Matlab
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Figure 3. JSBSim S-function GUI. 

Evolving from the MexJSBSim code, a JSBSim S-function has been developed. Matlab S-functions (system-

functions) provide a powerful mechanism for extending the capabilities of the Simulink environment. An S-function 

is a computer language description of a Simulink block written in Matlab, C, C++, Ada, or Fortran. C, C++, Ada, 

and Fortran S-functions are compiled as MEX-files. As with other MEX-files, S-functions are dynamically linked 

subroutines that the Matlab interpreter can automatically load and execute. S-functions use a special calling syntax 

called the S-function API, that enables users to interact with the Simulink engine. This interaction is very similar to 

the interaction that takes place between the engine and built-in Simulink blocks. 

In practice, the JSBSim S-function is a custom made Simulink block and is usable as other built-in blocks. 

Figure 3 shows an example of Simulink project that uses the JSBSim S-function. 

Both the MEX function, MexJSBSim, and the S-function represent two effective examples of integration of a 

complex C++ code with the Matlab application. These allow the JSBSim users that have access to Matlab to bring 

all the advantages offered by JSBSim into that sophisticated and powerful computing environment. 

V. Examples of Use 

A. FlightGear 

The earliest and best known use of JSBSim is within the open source FlightGear flight simulator
§
. FlightGear 

features several selectable flight dynamics models: LaRCSim (Langley Research Center Simulator), JSBSim, 

YASim (“Yet Another Simulator”), and a derivative of LaRCSim produced by Michael Selig at the University of 

Illinois at Urbana-Champagne. Input from the FlightGear community has driven many of the enhancements to 

JSBSim. While JSBSim is incorporated as a native part of FlightGear, a recently added feature is the ability to run 

JSBSim separately, communicate with FlightGear over a socket, and use FlightGear as visual scene server to a 

JSBSim instance. 

                                                           
§ See the FlightGear project web site: http://www.flightgear.org  

http://www.flightgear.org/
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Figure 5. Aerocross Systems Echo Hawk 

Figure 4. OpenEaagles architecture showing JSBSim (at 

bottom right). 

B. OpenEaagles 

OpenEaagles (Open Extensible Architecture 

for the Analysis and Generation of Linked 

Simulations) is – according to their web site
**

 - 

“a multi-platform simulation framework (see 

Figure 4) targeted to help simulation engineers 

and software developers rapidly prototype and 

build robust, scalable, virtual, constructive, 

stand-alone, and distributed simulation 

applications.” 

C. ArenaLogic Simulator 

ArenaLogic has made various uses of 

JSBSim during development of military 

simulator products, and is currently investigating 

the use of JSBSim to drive modeling of missiles 

and ordnance, as well as target aircraft. 

D. VirtualAir 

VirtualAir
††

 is an open source air traffic simulation framework, using Modeling and Simulation HLA (High 

Level Architecture) to integrate various driver flight models, including X-Plane,
‡‡

 Microsoft Flight Simulator,
§§

 

FlightGear, and JSBSim (through a Python interface to JSBSim
***

). JSBSim has been integrated with VirtualAir at 

this time, but is still undergoing testing. 

E. U. S. Department of Transportation 

In work done with and for the U.S. D.O.T., a 

human pilot math model was developed using 

JSBSim as the 6-DoF (six degree-of-freedom) 

simulation core.
6
 

F. Aerocross Systems Echo Hawk 

JSBSim is used for Hardware-in-the-Loop 

(HITL) testing of the Aerocross Echo Hawk UAV. 

Custom code was written to interface with the flight 

hardware (PC/104-based system) via RS-

232/422/485, proportional analog I/O, discrete I/O, 

and sockets, but the core simulation code was 

unaltered JSBSim code. Pilot/operator training also 

relies on JSBSim as the 6-DoF code. 

G. duPont Aerospace Company 

JSBSim was used at duPont Aerospace Company along with Matlab for real-time HITL simulation and 

pilot/operator training. Rex duPont of duPont Aerospace Company explains,
†††

 
In the 1990s duPont Aerospace Company was building an airplane to test its concept for a vertical takeoff fan jet 

transport plane.  We had developed a Microsoft Windows-based flight simulator that we had used to test the flying 

qualities of the proposed craft.  However, we needed a simulation that we could use in real time so that we could test the 

flight characteristics on a full-sized mockup with the flight actuators operating in the loop.  We settled on the FlightGear 

simulator, using the JSBSim flight dynamics model because we could get the full code, it was nicely organized so that we 

could create new subprograms to match our aircraft, and support was readily available. 

                                                           
** See the OpenEaagles project web site: http://www.openeaagles.org  
†† See the VirtualAir project web site at http://www.sourceforge.net/projects/virtualair  
‡‡ See the X-Plane web site at http://www.x-plane.com  
§§ See the Microsoft Flight Simulator web site at http://www.microsoft.com/games/flightsimulatorx/  
*** JSBSim-Python web site: http://sourceforge.net/projects/jsbsim-python/  
††† Private email correspondence with Rex duPont, 22 August 2009. 

http://www.openeaagles.org/
http://www.sourceforge.net/projects/virtualair
http://www.x-plane.com/
http://www.microsoft.com/games/flightsimulatorx/
http://sourceforge.net/projects/jsbsim-python/
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Figure 6. duPont Aerospace DP-1 in a tethered hover 

test. (Courtesy of duPont Aerospace Company) 

We developed simultaneously a Matlab 

simulator for the use in developing more effective 

autopilot guidance systems, since our primary task 

became to take the aircraft off using the autopilot 

alone and to hover in place for 30 seconds.  This 

would show definitively that the control system 

was sufficiently robust.  Therefore, we built into 

each relevant module of the Matlab simulator and 

the JSBSim derivative simulator a series of unit 

tests that provided a sequence of inputs to each 

model that could be cross verified to ensure that 

the two systems stayed in sync. 

We used the JSBSim system to test a number 

of dynamic issues that were not easily testable 

with the Matlab model, especially issues involving 

pilot feel and the controllability during transition 

to and from hover. These issues are hard to 

evaluate in the pure control-system world of 

Matlab because during transition the underlying 

force structure is continuously varying as 

aerodynamic forces become more important and 

pure thrust control forces less.   

We also did parametric studies on such issues as the sensitivity of the key parameters in the aerodynamic simulation 

to possible errors in estimation.  These were done by having the pilot fly a series of standard maneuvers designed to test 

the aircraft's response when one or more parameter was degraded by as much as 50% (without the pilot knowing which 

one was changed).   

We simulated various servo bandwidths as well, testing to see at what point the flying characteristics became 

unacceptable.  This helped define the characteristics needed.  What pilots desire from control systems is almost always 

different from the optimal theoretical parameters. 

Additionally, we developed a number of HUD display systems that facilitated operations during hover, where very 

precise control of ground speed is required.  Eventually we achieved a system that allowed a young engineer who did not 

even have a pilot's license to take off and hold a hover at constant altitude to within one foot for over 30 seconds. 

We finally achieved our goal of autopilot controlled take-off and hover in two flights of approximately 45 seconds 

duration on September 30, 2007.  Both flights were terminated because one of the engines ran out of fuel, rather than for 

any control problems. 

H. MITRE Air Traffic Studies 

JSBSim is being used at MITRE in developing a 6-DoF simulation of the FMS (Flight Management System) 

behavior during CDAs (Continuous Descent Arrival) and OPDs (Optimized Profile Descent). Both the standalone 

version of JSBSim (for batch runs) and a version integrated with FlightGear have been used. Additional control 

system components have been created to support specific lateral and vertical navigation studies. JSBSim has also 

been extended to handle output of messages over a socket to another application used at MITRE which provides a 

view similar to what an Air Traffic Control operator would see.  

I. University of Naples 

The University of Naples has a motion base flying/driving simulator
7
 that is driven by FlightGear and JSBSim. 

The simulator has a three-screen visual presentation that provides a 190 degree field-of-view. The JSBSim source 

code was modified to provide a force feedback capability. 

JSBSim has been used at the University of Naples as a tool supporting risk level evaluations of near-ground 

flight operations. One of the practical problems considered in those collision risk studies consisted in the evaluation 

of threat posed to flight operations when a new obstacle (such as a building or radar tower) is placed inside the 

airport area. The risk evaluation has been performed by varying the obstacle geometry and location. 

The risk assessment  procedure has been based on the analysis of statistical deviations of aircraft trajectories 

from the “normal” flight path, evaluating the probability of a generic trajectory to cross a given “protection” area 

enveloping the potential obstacle. Within this framework, the operational scenario has been formally described and 

implemented in order to run multiple computer simulations. 
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Figure 7. Grob Sailplane. 

VI. An Example of Use in Forensic Engineering 

In this section we discuss in more depth an example of the use of JSBSim. This example is in the reconstruction, 

simulation, and analysis of a flight accident. The current ability to produce advanced and realistic animations is a 

valuable aid to investigators in analyzing accident trajectories. The subject of this section can be viewed as a typical 

application of what is known as “forensic engineering,” i.e. the application of scientific and engineering knowledge 

to legal matters, such as accident reconstruction
8
. 

A. The Right, Super-Slow, 

Tonneau Accident 

In 2001 a flight accident 

occurred in Italy with a two-seat, 

competition sailplane, the Grob 

G103C Twin Astir. The design of 

this aerobatic sailplane dates back 

to the 1970s. The airplane has a 

weight (MTOW) of 600 kg, a 

wing aspect-ratio of 16.95, a wing 

surface of 18.172 m
2
, a wing span 

of 17.55 m, and an overall length 

of 8.2 m (see Figure 7). 

The day the aircraft crashed, 

the pilots were rehearsing the 

typical sequence of maneuvers 

required in one of the Italian 

national contests. The accident 

occurred during the execution of 

an aerobatic figure called the 

“right super-slow tonneau,” at an 

altitude of approximately 500 m above ground level. This maneuver requires the pilot to perform a complete rotation 

about the airplane’s longitudinal axis (roll axis) in a span of not less than 10 seconds. For this particular sailplane 

(belonging to the class of trainers known as Club), due to the high rolling moment of inertia, normally the super-

slow tonneau cannot be completed in less than 10 to 15 seconds. During this maneuver the sailplane CG trajectory is 

not strictly a straight line, but it is a three-dimensional curve. Typically, this maneuver ends with a loss of altitude of 

about 80 m. 

The sketch of Figure 8 illustrates the complete three-dimensional evolution, starting and ending with the aircraft 

in wings level conditions. 

Figure 9 shows the simulated 

time histories of Euler angles 

ψ, θ, and φ for this maneuver, 

produced by JSBSim. Many 

witnesses have confirmed 

that the rear fuselage beam 

snapped when the sailplane 

approached the second knife-

edge, causing the 

unrecoverable fall that killed 

the two pilots. The fatal 

condition can be visualized 

by inspecting Figure 8 (the 

failure occurred after a 

rotation of approximately 

270 deg) and observing the 

markers on the roll angle 

curve in Figure 9 (roll 

markers are at 45° Figure 8. Super-slow Tonneau Maneuver. 



 

12 

American Institute of Aeronautics and Astronautics 

Figure 10. Time history (from a JSBSim run) of roll angle and 

true airspeed (TAS) for the complete super-slow tonneau 

maneuver. 

Figure 9. Time history (from a JSBSim run) of the Euler angles 

for a complete super-slow tonneau maneuver. 

increments). 

Typically, a Grob G103C enters the tonneau with a velocity of 180 km/h (about 97 kts), with a slight pitch-down 

attitude (pitching angle θ negative). From this condition the pilot pulls the stick, the airplane rotates nose-up and 

climbs. As soon as θ reaches a value of 5 to 7 degrees above the horizon, the required roll rotation is started off by 

moving the stick progressively to the maximum right position. The roll commences and when the manuever finally 

approaches the second knife-edge (270 degrees roll) the pilot points the fuselage nose down moderately by acting 

simultaneously on elevator and rudder. 

From this point the speed increases as 

observed in Figure 10. 

During the development of the whole 

maneuver, it is at the moment the airplane 

approaches the second knife-edge that 

both the required stick and rudder pedal 

forces are higher. In this situation, the 

elevator is deflected at the 100% 

(forward), ailerons at 60% (right) and 

rudder at 50% (right). 

Figure 11 shows the simulated time 

history of altitude above the ground. 

Passing from the second knife-edge to the 

straight wings-level flight the right pedal 

is fully deflected (from the same side of 

the stick). During the last 60 degrees of 

rotation before re-leveling wings, the stick 

needs to be pulled again to avoid nose-

down attitudes. This helps keeping a 

moderate speed in order to enter correctly 

in the next figure of the aerobatic 

program. If the maneuver is correctly performed, the final speed at the end of the tonneau is approximately the same 

as the entering speed (from 150 to 180 km/h). 

Figure 12 shows the detailed time history of the normalized aero-surface deflections prescribed as inputs to 

JSBSim. These laws have been determined through pilot interviews and by subsequent trial and error, taking as a 

reference a number of key conditions to be met during the development of the entire maneuver (for instance, the 

speed loss and the altitude loss, combined with roll angle time history, the time duration of a complete roll, etc.). It 

is clear that the histories of commands 

that determine the simulated maneuver 

depend strongly on the aerodynamic 

model of the airplane, and especially on 

each aero-surface estimated control 

effectiveness (aerodynamic control 

derivatives). [Note: since this study was 

performed, support for functions has been 

added to the scripting capability. Another 

approach to providing “virtual pilot” 

inputs to perform the tonneau maneuver 

would be to manually fly the same 

maneuver in FlightGear while logging the 

control inputs. The inputs could then be 

turned into a table and included within a 

function in a script event.] 

B. Simulating the Maneuver with 

JSBSim 

A detailed model of the sailplane has 

been produced in the JSBSim input 

format with the aid of several tools. The 
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Figure 12. Normalized control surface position inputs. 

Figure 11. Time history (from a JSBSim run) for a complete 

super slow tonneau maneuver. 

aerodynamics of wing and empennages 

has been analyzed with the well known 

two-dimensional viscous/inviscid code 

XFoil
9
, combined with the open source 

software XFLR5
10

. The latter is a GUI 

(Graphical User Interface)  application that 

allows for calculation of aerodynamic 

characteristics of a complete wing, that 

means including 3D effects and induced 

drag, in the presence of a fuselage and of 

tail surfaces. The XFLR5 code uses lifting 

line theory (LLT) in the case of wings 

with a simple geometry. It can switch to a 

vortex lattice method (VLM) or a panel 

method (PM) in order to include the 

effects of sweep or dihedral and of the 

presence of other bodies in the 

aerodynamic configuration. The program 

enables the user to generate a wing 

geometry with different geometrical 

sections, allowing different airfoils for 

each section. All aerodynamic characteristics of the airfoils used in the wing, in the whole range of Reynolds 

numbers and angles of attack, must be pre-calculated by XFOIL and be available in a database. For this task XFLR5 

embeds a rewritten version of XFoil, which is nicely integrated into the main GUI application as a sub-tool that can 

be launched through one of the many 

menu options. 

The modeling of the complete aircraft 

has been improved and completed with 

the well known aircraft design tool AAA 

by DARcorporation
11

. The full model of 

the G103C includes: an accurate 

estimation of fuselage aerodynamics on 

the total pitching and yawing moments, 

the non-linear effects at high angle of 

attack and high angles of sideslip, and the 

estimated stability and control derivatives. 

C. Analysis of Simulated Results 

Investigators have proven that a failure 

of the composite fuselage shell (located 

near the cockpit) caused the structural 

failure of the rear fuselage beam. The 

failure seems to be due to the appearance 

of a structural instability caused by the 

combined actions of torsion and bending 

which – at the second knife-edge of the maneuver – are particularly demanding for the structure. 

Assessing the nature of the dynamic loads during this maneuver was required to defend the sailplane 

manufacturer from charges of poor structural design. Therefore, it was important to calculate the accelerations of the 

tail empennages during the development of the maneuver in order to correctly estimate the rear fuselage beam 

loading conditions, accounting for all the inherent inertia effects. 
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Figure 13. Time history (from a JSBSim run) of tail accelerations for a complete super-slow 

tonneau maneuver. 

Figure 13 shows the simulated time histories of linear accelerations of a point of the sailplane located in the 

plane of symmetry, near the tail. They are calculated by JSBSim and are used to evaluate the actual time dependent 

loads on the tail empennage. [Note: the accelerations were calculated through the careful setting of the “pilot 

eyepoint” position in the configuration file. Accelerations at the pilot position are calculated, based on the linear 

acceleration of the aircraft, and include rotational effects. In the latest releases of JSBSim, the same results could be 

obtained using the new accelerometer control system component.] 

As it can be observed in Figure 14 (and in a similar plot for vertical tail loads not included here), the maximum 

dynamic loads are quite less than the effective maximum loads allowed by the structure. This result pointed to the 

investigation of possible alternative explanations for the accident. It was actually discovered later that the same 

sailplane experienced a hard landing some time before the fatal event, which required the replacement of the tail 

wheel and the repair of the rear fuselage tip. 

VII. Conclusion 

JSBSim has found a variety of uses in industry and academia, and has benefited from the exposure, through 

feature requests, shared expertise, suggestions, and trouble reports. 

Future plans may include, 

- Adding multi-body capability, allowing, for example, the modeling of multi-stage launch vehicles more 

seamlessly, 

- Adding a formal turbulence model, 

- Completing work on adding WGS84. JSBSim currently uses a spherical Earth model. 

- Enhance compatibility with additional pre- and post-processing utilities and languages. 

Figure 14. Time history (from a JSBSim run) of horizontal tail loading for a complete super-slow 

tonneau maneuver. 
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Appendix 

A. Tonneau Maneuver Script 

<use aircraft="g103c" initialize="init_tonneau"/> 

<run start="0.0" end="16" dt="0.005"> 

 

<event name="Trim"> 

   <description>Trim at the initial conditions state</description> 

   <condition>  sim-time-sec gt 0.1  </condition> 

   <set name="simulation/do_simple_trim" value="1"/> 

</event>  

 

<event name="Trim tab off"> 

   <description>Set trim tab to zero</description> 

   <condition> sim-time-sec gt 1 </condition> 

   <set name="fcs/pitch-trim-cmd-norm" value="0" action="FG_RAMP" tc="2"/> 

</event>  

 

<event name="Enter the tonneau"> 

   <condition> sim-time-sec gt 2 </condition> 

   <set name="fcs/elevator-cmd-norm" value="-0.6" action="FG_RAMP" tc="0.2"/>  

   <set name="fcs/rudder-cmd-norm" value="0.1" action="FG_RAMP" tc="1.6"/> 

   </notify> 

</event> 

 

<event name="Phase 1, Start rolling"> 

   <condition> sim-time-sec gt 3 </condition> 

   <set name="fcs/aileron-cmd-norm" value="1" action="FG_RAMP" tc="0.5"/> 

    <set name="fcs/rudder-cmd-norm" value="0" action="FG_RAMP" tc="1.6"/> 

</event> 

 

<event name="Phase 2"> 

   <description> 45 of 360 </description> 

   <condition> attitude/phi-rad gt 0.785 </condition> 

   <set name="fcs/elevator-cmd-norm" value="-0.3" action="FG_RAMP" tc="0.4"/> 

   <set name="fcs/rudder-cmd-norm" value="-0.2" action="FG_RAMP" tc="0.5"/> 

</event> 

 

<event name="Phase 3"> 

   <description> 90 of 360 </description> 

   <condition> attitude/phi-rad gt 1.57 </condition> 

   <set name="fcs/elevator-cmd-norm" value="0" action="FG_RAMP" tc="0.1"/> 

   <set name="fcs/rudder-cmd-norm" value="-0.6" action="FG_RAMP" tc="0.7"/> 

   <set name="fcs/aileron-cmd-norm" value="0.7" action="FG_RAMP" tc="0.5"/> 

</event> 

 

<event name="Phase 4"> 

   <description> 135 of 360 </description> 

   <condition> attitude/phi-rad gt 2.35 </condition> 

   <set name="fcs/rudder-cmd-norm" value="0" action="FG_RAMP" tc="0.7"/> 

   <set name="fcs/aileron-cmd-norm" value="0.5" action="FG_RAMP" tc="2"/> 

   <set name="fcs/elevator-cmd-norm" value="0.4" action="FG_RAMP" tc="0.7"/> 

</event> 
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<event name="Phase 5"> 

   <description> 180 of 360 </description> 

   <condition> attitude/phi-rad gt 3.125 </condition> 

   <set name="fcs/rudder-cmd-norm" value="-0.4" action="FG_RAMP" tc="1.5"/> 

   <set name="fcs/elevator-cmd-norm" value="1" action="FG_RAMP" tc="1"/> 

</event> 

 

<event name="phase 6"> 

   <description> 225 of 360 </description> 

   <condition>  

      attitude/phi-rad ge -2.37 

      attitude/phi-rad le -2.35       

   </condition> 

   <set name="fcs/rudder-cmd-norm" value="-0.2" action="FG_RAMP" tc="1.5"/> 

   <set name="fcs/elevator-cmd-norm" value="-0.5" action="FG_RAMP" tc="1"/> 

</event> 

 

<event name="Phase 7"> 

   <description> 270 of 360 </description> 

   <condition> 

      attitude/phi-rad ge -1.6 

      attitude/phi-rad le -1.57       

   </condition> 

   <set name="fcs/elevator-cmd-norm" value="-1" action="FG_RAMP" tc="1"/> 

</event> 

 

<event name="Phase 8"> 

   <description> 315 of 360 </description> 

   <condition> 

      attitude/phi-rad ge -0.8 

      attitude/phi-rad le -0.78       

   </condition> 

   <set name="fcs/rudder-cmd-norm" value="0.4" action="FG_RAMP" tc="1.4"/> 

   <set name="fcs/elevator-cmd-norm" value="-0.4" action="FG_RAMP" tc="0.5"/> 

</event> 

 

<event name="Finish tonneau"> 

   <description> Go wings-level </description> 

   <condition> 

      attitude/phi-rad ge -0.05 

      attitude/phi-rad le -0.01       

   </condition> 

   <set name="fcs/rudder-cmd-norm" value="0" action="FG_RAMP" tc="1.5"/> 

   <set name="fcs/aileron-cmd-norm" value="0.1" action="FG_RAMP" tc="0.5"/> 

</event> 
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