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CHAPTER 4

Longitudinal Motion (Stick Fixed)

“The equilibrium and stability of a bird in flight, or an aerodome or flying
machine, has in the past been the subject of considerable speculation, and no
adequate explanation of the principles involved has hitherto been given.”

Frederick W. Lanchester, Aerodonetics [4.1], published in 1908, in which
he develops an elementary theory of longitudinal dynamic stability.

4.1
HISTORICAL PERSPECTIVE

The theoretical basis for the analysis of flight vehicle motion developed almost
concurrently with the successful demonstration of a powered flight of a human-
carrying airplane. As early as 1897, Frederick Lanchester was studying the motion
of gliders. He conducted experiments with hand-launched gliders and found that
his gliders would fly along a straight path if they were launched at what he called
the glider’s natural speed. Launching the glider at a higher or lower speed would
result in an oscillatory motion. He also noticed that, if launched at its “natural
speed” and then disturbed from its flight path, the glider would start oscillating
along its flight trajectory. What Lanchester had discovered was that all flight
vehicles possess certain natural frequencies or motions when disturbed from their
equilibrium flight.

Lanchester called the oscillatory motion the phugoid motion. He wanted to use
the Greek word meaning “to fly” to describe his newly discovered motion; actually,
phugoid means “to flee.” Today, we still use the term phugoid to describe the
long-period slowly damped oscillation associated with the longitudinal motion of
an airplane.

The mathematical treatment of flight vehicle motions was first developed by
G. H. Bryan. He was aware of Lanchester’s experimental observations and set out
to develop the mathematical equations for dynamic stability analysis. His stability
work was published in 1911. Bryan made significant contributions to the analysis
of vehicle flight motion. He laid the mathematical foundation for airplane dynamic
stability analysis, developed the concept of the aerodynamic stability derivative,
and recognized that the equations of motion could be separated into a symmetric
longitudinal motion and an unsymmetric lateral motion. Although the mathemati-
cal treatment of airplane dynamic stability was formulated shortly after the first
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132 CcHAPTER 4: Longitudinal Motion (Stick Fixed)

successful human-controlled flight, the theory was not used by the inventors be-
cause of its mathematical complexity and the lack of information on the stability
derivatives.

Experimental studies were initiated by L. Bairstow and B. M. Jones of the
National Physical Laboratory (NPL) in England and Jerome Hunsaker of the
Massachusetts Institute of Technology (MIT) to determine estimates of the aerody-
namic stability derivatives used in Bryan’s theory. In addition to determining
stability derivatives from wind-tunnel tests of scale models, Bairstow and Jones
nondimensionalized the equations of motion and showed that, with certain as-
sumptions, there were two independent solutions; that is, one longitudinal and one
lateral. During the same period, Hunsaker and his group at MIT conducted wind-
tunnel studies of scale models of several flying airplanes. The results from these
early studies were extremely valuable in establishing relationships between aerody-
namics, geometric and mass characteristics of the airplanes, and its dynamic sta-
bility.*

Although these early investigators could predict the stability of the longitudi-
nal and lateral motions, they were unsure how to interpret their findings. They were
preplexed because when their analysis predicted an airplane would be unstable the
airplane was flown successfully. They wondered how the stability analysis could be
used to assess whether an airplane was of good or bad design. The missing factor
in analyzing airplane stability in these early studies was the consideration of the
pilot as an essential part of the airplane system.

In the late 1930s the National Advisory Committee of Aeronautics (NACA)
conducted an extensive flight test program. Many airplanes were tested with the
goal of quantitatively relating the measured dynamic characteristics of the airplane
with the pilot’s opinion of its handling characteristics. These experiments laid the
foundation for modern flying qualities research. In 1943, R. Gilruth reported the
results of the NACA research program in the form of flying qualities’ specifica-
tions. For the first time, the designer had a list of specifications that could be used
in designing the airplane. If the design complied with the specifications, one could
be reasonably sure that the airplane would have good flying qualities [4.1-4.4].

In this chapter we shall examine the longitudinal motion of an airplane dis-
turbed from its equilibrium state. Several different analytical techniques will be
presented for solving the longitudinal differential equations. Our objectives are for
the student to understand the various analytical techniques employed in airplane
motion analysis and to appreciate the importance of aerodynamic or configuration
changes on the airplane’s dynamic stability characteristics. Later we shall discuss
what constitutes good flying qualities in terms of the dynamic characteristics pre-
sented here. Before attempting to solve the longitudinal equations of motion, we
will examine the solution of a simplified aircraft motion. By studying the simpler
motions with a single degree of freedom, we shall gain some insight into the more
complicated longitudinal motions we shall study later in this chapter.

* The first technical report by the National Advisory Committee of Aeronautics, NACA (forerunner
of the National Aeronautics and Space Administration, NASA), summarizes the MIT research in
dynamic stability.
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4.2
SECOND-ORDER DIFFERENTIAL EQUATIONS

Many physical systems can be modeled by second-order differential equations. For
example, control servomotors, special cases of aircraft dynamics, and many elec-
trical and mechanical systems are governed by second-order differential equations.
Because the second-order differential equation plays such an important role in
aircraft dynamics we shall examine its characteristics before proceeding with our
discussion of aircraft motions.

To illustrate the properties of a second-order differential equation, we examine
the motion of a mechanical system composed of a mass, a spring, and a damping
device. The forces acting on the system are shown in Figure 4.1. The spring
provides a linear restoring force that is proportional to the extension of the spring,
and the damping device provides a damping force that is proportional to the
velocity of the mass. The differential equation for the system can be written as

d*x dx
ms +c #r + kx = F(1) : 4.1)
dx cdx k 1
— 4+ ——+ —x=—F( 4.2
or e mdt  m- m (® il

This is a nonhomogeneous, second-order differential equation with constant co-
efficients. The coefficients in the equation are determined from the physical char-
acteristics of the mechanical system being modeled, that is, its mass, damping
coefficient, and spring constant. The function F(¢) is called the forcing function. If
the forcing function is 0, the response of the system is referred to as the free
response. When the system is driven by a forcing function F(¢) the response is refer-
red to as the forced response. The general solution of the nonhomogeneous differ-
ential equation is the sum of the homogeneous and particular solutions. The homo-
geneous solution is the solution of the differential equation when the right-hand
side of the equation is 0. This corresponds to the free response of the system. The
particular solution is a solution that when substituted into the left-hand side of the
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FIGURE 4.1

A spring mass damper system.
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differential equation yields the nonhomogeneous or right-hand side of the differen-
tial equation. In the following section we will restrict our discussion to the solution
of the free response or homogeneous equation.

The solution of the differential equation with constant coefficients is found by
letting

x = Ae" (4.3)

and substituting into the differential equation yields
2 A @it & At k At —
AAeM + —AAeM + —Aete = 0 4.4
m m

Clearing the equation of Ae™ yields

¢ k
A+ —A4+—==0 (4.5)
m m
which is called the characteristic equation. The roots of the characteristic equation
are called the characteristic roots or eigenvalues of the system.
The roots of Equation (4.5) are

é c k

A= —— = (—) = (4.6)

2m 2m m
The solution of the differential equation can now be written as
x() = CieM + CyeM (4.7)

where C, and C, are arbitrary constants determined from the initial conditions of
the problem. The type of motion that occurs if the system is displaced from its
equilibrium position and released depends on the value of A. But A depends on the
physical constants of the problem; namely, m, c, and k. We shall consider three
possible cases for A.

When (c¢/2m) > Vk/m, the roots are negative and real, which means that the
motion will die out exponentially with time. This type of motion is referred to as
an overdamped motion. The equation of motion is given by

2
& c k
x(t) = C, exp [—-2— + <2—> = —]t

C cV k
+ P N p—— —
Ceexp [ 2m (2m> m]l

For the case where (¢/2m) < V'k/m, the roots are complex:

(4.8)

PURL ARl | (i)z (4.9)
m

2m
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The equation of motion is as follows:

x(t) = exp(—{;t)[Cl exp[i

S|
|
s e
gle
~
IL.J

(4.10)

r e[~ iy~ (57) 1]

, EXp i - o
which can be rewritten as
2
c k c
x() = exp(—z—mt> [A cos[ = <%> t}

(4.11)

el 2 - (32) ]

The solution given by Equation (4.11) is a damped sinusoid having a natural
frequency given by

k ¢\

The last case we consider is when (¢/2m) = Vk/m. This represents the
boundary between the overdamped exponential motion and the damped sinusoidal
motion. This particular motion is referred to as the critically damped motion. The
roots of the characteristic equation are identical; that is,

c

M2 = " om

(4.13)

The general solution for repeated roots has the form
x(t) = (C, + Cyp) (4.14)

If Ais a negative constant, then e will go to O faster than C,goes to infinity as time
increases. Figure 4.2 shows the motion for the three cases analyzed here.

The damping constant for the critically damped case, called the critical damp-
ing constant, is defined as

e = 2VEm (4.15)

For oscillatory motion, the damping can be specified in terms of the critical
damping:

c = e, (4.16)

where (is called the damping ratio,

fises (4.17)
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For a system that has no damping, that is, ¢ = 0, which implies that { = 0, the
motion is an undamped oscillation. The natural frequency, called the undamped
natural frequency, can be obtained from Equation (4.12) by setting ¢ = 0:

w, = \/— (4.18)
m
Since both the damping ratio and undamped natural frequency are specified as
functions of the system physical constants, we can rewrite the differential equation
in terms of the damping ratio and undamped natural frequency as follows:
d*x dx
37 T Ao, + @z = £ (4.19)
Equation (4.19) is the standard form of a second-order differential equation with
constant coefficients. Although we developed the standard form of a second-order
differential equation from a mechanical mass-spring-damper system, the equation
could have been developed using any one of an almost limitless number of physical
systems. For example, a torsional spring-mass-damper equation of motion is given

by

L ’fa = ) (4.20)

de*> I dt
where c, k, and I are the torsional damping coefficient, torsional spring constant,
and moment of inertia, respectively.
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FIGURE 4.3
Relationship among 1, w, {, and w,.

The characteristic equation for the standard form of the second-order differen-
tial equation with constant coefficients can be shown to be

A%+ 2w + @2 =0 4.21)

The roots of the characteristic equation are

A2 = o, T i0, V1 = 7 (4.22)
or Ai, =1 % iw (4.23)
where n = —{w, (4.24)

w=0V1 -2 (4.25)

The real part of A, that is, 1), governs the damping of the response and the imagi-
nary part, o, is the damped natural frequency.

Figure 4.3 shows the relationship between the roots of the characteristic equa-
tion and 7, , £, and ,. When the roots are complex the radial distance from the
origin to the root is the undamped natural frequency. The system damping 7 is the
real part of the complex root and the damped natural frequency is the imaginary
part of the root. The damping ratio { is equal to the cosine of the angle between the
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negative real axis and the radial line from the origin to the root:

cos(m — ) = —cos § = —_::w_,, (4.26)

or { =cos (4.27)

The influence of the damping ratio on the roots of the characteristic equation
can be examined by holding the undamped natural frequency constant and varying
{from —oo to © as shown in Figure 4.4. The response of the homogeneous equation
to a displacement from its equilibrium condition can take on many forms depend-
ing on the magnitude of the damping ratio. The classification of the response is
given in Table 4.1.

i o, =Constant FIGURE 4.4
Variation of roots with damping ratio.
=0
L <1 \\0>g>-1
/
] /£ §=‘°°\L/g=-1
|
. 1 A ! =5
© £§=1\\ = | <1 o ©
\ /
0<{<1__ | -7 0>(>1
{=0
TABLE 4.1

Variation of response with damping ratio

Magnitude of

damping ratio

Type of root

Time response

&= =l Two positive real distinct roots Exponentially growing motion

0= =<1 Complex roots with a positive Exponentially growing sinusoidal
real part motion

t=0 Complex roots with a real Undamped sinusoidal motion
part O Pure harmonic motion

O=<T <1 Complex roots with a real Underdamped exponentially
part negative decaying sinusoidal motion

t=1 Two negative equal real Critically damped exponentially
roots decaying motion

{L=>1 Two negative distinct real Overdamped exponentially

roots

decaying motion
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43
PURE PITCHING MOTION

Consider the case in which the airplane’s center of gravity is constrained to move
in a straight line at a constant speed but the aircraft is free to pitch about its center
of gravity. Figure 4.5 is the sketch of a wind-tunnel model constrained so that it can
perform only in a pitching motion.

The equation of motion can be developed from the rigid body equations devel-
oped in Chapter 3 by making the appropriate assumptions. However, to aid our
understanding of this simple motion, we shall rederive the governing equation from

first principles. The equation governing this motion is obtained from Newton’s
second law:

E Pitching moments = 2 M.=IL ] (4.28)

The pitching moment M and pitch angle 6 can be expressed in terms of an initial
reference value indicated by a subscript, 0, and the perturbation by the A symbol:

M= M, + AM (4.29)
0 =6, + A8 (4.30)

If the reference moment M, is 0, then equation (4.28) reduces to
AM = I, A8 (4.31)

For the restricted motion that we are examining, the variables are the angle of
attack, pitch angle, the time rate of change of these variables, and the elevator
angle. The pitching moment is not a function of the pitch angle but of the other
variables and can be expressed in functional form as follows:

AM = fn(Ae, Ad, Ag, AS) (4.32)

Equation (4.32) can be expanded in terms of the perturbation variables by means

FIGURE 4.5
A model constrained to a pure pitching motion.
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of a Taylor series:

oM oM oM oM
AM = —Aa + — Aa + — Ag + — A4, (4.33)
da da aq a0,
If we align the body and fixed frames so they coincide at ¢ = 0, the change in angle
of attack and pitch angles are identical; that is,
Aa=A0 and Ad=Ag=Aa (4.34)
This is true only for the special cases where the center of gravity is constrained.
Substituting this information into Equation (4.31) yields
Aad — (M, + M )Aa — M, Ao = M; A8, (4.35)

where

oM oM
Mq e _/Ivs Mc'l = _./Iv’ and so forth
aq ¥ da i

Equation (4.35) is a nonhomogeneous second-order differential equation, having
constant coefficients. This equation is similar to a torsional spring-mass-damper
system with a forcing function, which was mentioned briefly in the previous sec-
tion. The static stability of the airplane can be thought of as the equivalent of an
aerodynamic spring, while the aerodynamic damping terms are similar to a tor-
sional damping device. The characteristic equation for Equation (4.35) is

A2 — (M, + M)A — M, =0 (4.36)

This equation can be compared with the standard equation of a second-order
system:

A%+ 2l + 02 =0 (4.37)

where (is the damping ratio and w,is the undamped natural frequency. By inspec-
tion we see that

w,=V-M, (4.38)
—(M, + M)
2V —M,
Note that the frequency is related to the airplane’s static stability and that the

damping ratio is a function of the aerodynamic damping and static stability.
If we solve the characteristic Equation (4.37), we obtain the following roots:

_ 9k & AP = dak
s = {w, ;( w, — 4w, (4.40)

or Ao = —lo, T iw,V1 — {* (4.41)

Expressing the characteristic root as

and [ = (4.39)

AMo=m*iw (4.42)
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and comparing Equation (4.42) with (4.41), yields
n = —{w, (4.43)
and o =w,V1=7[* (4.44)

which are the real and imaginary parts of the characteristic roots. The angular
frequency w is called the damped natural frequency of the system.

The general solution to Equation (4.35) for a step change Aé,in the elevator
angle can be expressed as

—{w, i
Vil— &
where Aa,;, = change in trim angle of attack =—(M;, AS,) /M,

¢ = damping ratio = — (M, + M;)/2V —M,)
w, = undamped natural frequency = V — M,
¢ = phase angle = tan"'(—V1 — {*/={)
The solution is a damped sinusoidal motion with the frequency a function of

. and the damping rate a function of C,, + C,,. and C,,_. Figure 4.6 illustrates

the angle of attack time history for various values of the dampmg ratio . Note that

as the system damping is increased the maximum overshoot of the response dimin-
ishes.

Aa(t) = Aamm[<1 + sin(V1 — £ w,t + ¢o)>] (4.45)

1.8 P (SO SN (N S (S FIGURE 4.6
g | Angle of attack time history
16 4 {=0.1 | of a pitching model for
e 0623 | various damping ratios.
1.4 0.4 &
5 0.5 L
1.2 0:6 g
A 1.0 1 i
Adrpm ] B
0.8 =
0.6 0.7 -
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FIGURE 4.7
Variation of the characteristic roots of the pitching motion as a
function of the stability coefficients.

The influence of the stability coefficients on the roots of the characteristic
equation can be seen in Figure 4.7. The curves show the effect of variations in C,,
and C, + C,, on the roots. This type of curve is referred to as a root locus plot
Notice that as the roots move into the right half plane the vehicle will become
unstable.

The roots of the characteristic equation tell us what type of response our
airplane will have. If the roots are real, the response will be either a pure divergence
or a pure subsidence, depending on whether the root is positive or negative. If the
roots are complex, the motion will be either a damped or undamped sinusoidal
oscillation. The period of the oscillation is related to the imaginary part of the root
as follows:

Period = gq—T (4.46)
w

The rate of growth or decay of the oscillation is determined by the sign of the real
part of the complex root. A negative real part produces decaying oscillation,
whereas a positive real part causes the motion to grow. A measure of the rate of
growth or decay of the oscillation can be obtained from the time for halving or
doubling the initial amplitude of the disturbance. Figure 4.8 shows damped and
undamped oscillations and how the time for halving or doubling the amplitude can
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Envelope
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Period
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FIGURE 4.8

Relationships for time to halve or double amplitude and the period.

be calculated. The expression for the time for doubling or halving of the amplitude is

0.693
tdouble or thalve il (447)
|n]
and the number of cycles for doubling or halving the amplitude is
B o]
N(CyCleS)double orhalve — 01 10 ﬁ (448)
n

EXAMPLE PROBLEM4.1. A flat plate lifting surface is mounted on a hollow slender
rod as illustrated in Figure 4.9. The slender rod is supported in the wind tunnel by a
transverse rod. A low friction bearing is used so that the slender rod-flat plate system
can rotate freely in pitch. To have the center of gravity located at the pivot point ballast
is placed inside the slender tube forward of the pivot. Estimate the damping ratio, ¢, the
undamped natural frequency, w,, and the damped natural frequency of the tube-flat
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C=0. b=1'
W, = 0.3 Ibs g
W; = 0.6 lbs
Low friction

bearing

ballast ___Pivot and cg of

tube-plate system

Low friction

u I
° bearing

FIGURE 4.9
Rod-plate assembly constrained to a pure pitching motion.

plate assembly. The following assumptions are made in the analysis:

1. Neglect the mass of the slender rod.
2. Neglect the contribution of the pitching moment contribution due to the slender rod.
3. Neglect the mechanical friction of the bearings. ‘

Solution. The equation of motion governing the pitching motion of the slender rod—
flat plate model can be derived as follows:

3, Pitching moments about the center of gravity = I),é
M=10

The pitching moment for this model will be a function of only the angle of attack, a,
and the pitch rate, g. The contribution due to ¢ is not included because this effect is due
primarily to the interaction of the wing wake on an aft surface. Because there is no wing
in this case the & term can be ignored. The aerodynamic pitching moment can be
expressed as follows:

oM oM

M = & +—4g

O aq
Substituting the moment expression into the differential equation and rearranging
yields

6 —Mqg— Mya =0
oM
where M‘I_aq 7,
1
“ Ja
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Because the center of gravity is constrained the angle of attack, e, and the pitch angle,
0, are the same. The pitch rate, ¢, is the same as 6; therefore, the equation of motion
can be written in terms of either « or 6. In terms of  the equation is as follows:

60— M6—- M0=0

This equation is similar to the differential equation developed for a pitching aircraft.
The next step in the analysis is to develop exptessions to estimate the stability deriva-
tives M, and M,.

The moment contribution due to a change in angle of attack can be estimated from
the geometric and aerodynamic characteristics of the flat plate lifting surface. The
moment created by a change in angle of attack is due to the change in lift on the flat
plate times the moment arm to the pivot (center of gravity location).

M(a) = —I A Lift
M(a) = —1Ca 0S

where Q = 1 pu3, Lis the distance from the center of gravity to the aerodynamic center
of the plate, § is the planform area of the plate, and C;_ is the lift curve slope of the flat
plate.

The derivative M, can be estimated from the preceding formula:

oM
M, = E/Iy = -1C,,08/1,
In a similar manner the moment contribution due to the pitch rate, g, can be estimated.
Recall that when an aft surface undergoes a pitching motion a change in the angle of
attack is induced on the surface. The change in angle of attack can be approximated as
ql

tan @ = —
Uy

4
U

or for small angles

The pitching moment as a function of g is equal to the change in lift on the aft plate
times the moment arm to the center of gravity:

M():_lCL< >QS

The derivative M, can be estimated from this equation:

aM l
M,=—/1,=-1C|—) 0S/I
’ aq/ i CL“(uo>Q/ ’

The next step in our analysis it to determine the appropriate values for C;_, Q, and I,
from the data given. The lift curve slope, C,_, can be estimated by using the theoretlcal

value of an infinite flat plate, C,, = 2r/rad and correcting this value for the influence
of aspect ratio:

Ce,
1 + C,,/(@AR)

L



146 CcHAPTER 4: Longitudinal Motion (Stick Fixed)

The flat plate has an aspect ratio of 6, therefore, C;,, = 4.7/rad. The only term in the
expression that is not known is the mass moment of inertia, I,. The inertia of a thin flat
plate about the y’ axis through the plate’s center of gravity is given in terms of p, b, ¢,
and ¢, the mass density of the material and the dimensions of the plate, respectively.
2

1 1
L= prtc3 = Emc

IIE (9.3 - 1072 slugs)(0.167 ft)?

2.16 - 1075 slug - ft?

The inertia of the plate about an axis through the pivot point can be determined using
the parallel axis theorem:

I, =1, + md*

where d is the distance to the new axis:

I, = 2.16 X 107 slug - fi2 + (9.3 X 1073 slugs)(1 ft)?

=9.32 X 10 %slug - ft?

The mass moment of inertia of the complete system, flat plate, and ballast is given by

Iy T IYplalc
9.32 X 10 3slug - fi*> + (1.86 X 1072 slugs)(0.5 ft)?
1.4 X 10 %slug - ft?

+ I

Yballast

With the expressions developed for M, and M, and the data in Figure 4.9 we now can
develop estimates of the derivatives:

0= %pu% = (0.5)(0.002378 slug-{t?)(25 ft/s)?

= 0.7 Ib/f2

M, = —IC, 0S/I,
= —(0.92 ft)(4.7/rad)(0.7 1b/£t2)(0.167 £t2)/(1.4 X 10 slugs - ft?)
= —36.1/s2

l
and M, = —lCLa<—> 0s/1,
Uy -
= —(0.92 ft)(4.7/rad)[(0.96 ft)/(25 ft/s)](0.7 Ib/ft?)(0.167 ft2)/
(1.4 X 10 2slugs - ft?)
= —1.38/s
Substituting these values into the differential equation yields
6+ 1386+3610=0

A second-order differential equation can be expressed in terms of the system damping
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ratio, /, and the system’s undamped natural w, frequency as follows:
6+ 2w,0+w20=0

The system damping ratio and undamped natural frequency can be obtained by inspec-

tion:
w? = 36.1/s
or w, = 6.0 rad/s
and 2{w, = 1.38
{=0.115
Finally the damped natural frequency, w, is obtained from the following equation:
w=0V1l-2
= 5.96 rad/s

In this example problem we have developed the governing differential equation
from Newton’s second law. The aerodynamic moment was assumed to be linear and
a function of & and g and was expressed in terms of stability derivatives. Expressions
for estimating the stability derivatives were developed in terms of the aerodynamic,
geometric, and inertia characteristics of the rod-plate system.

4.4
STICK FIXED LONGITUDINAL MOTION

The motion of an airplane in free flight can be extremely complicated. The airplane
has three translation motions (vertical, horizontal, and transverse), three rotational
motions (pitch, yaw, and roll), and numerous elastic degrees of freedom. To ana-
lyze the response of an elastic airplane is beyond the scope of this book.

The problem we shall address in this section is the solution of the rigid-body
equations of motion. This may seem to be a formidable task; however, some
simplifying assumptions will reduce the complexity of the problem. First, we shall
assume that the aircraft’s motion consists of small deviations from its equilibrium
flight condition. Second, we shall assume that the motion of the airplane can be
analyzed by separating the equations into two groups. The X-force, Z-force, and
pitching moment equations embody the longitudinal equations, and the Y-force,
rolling, and yawing moment equations form the lateral equations. To separate the
equations in this manner, the longitudinal and lateral equations must not be cou-
pled. These are all reasonable assumptions provided the airplane is not undergoing
a large-amplitude or very rapid maneuver.

In aircraft motion studies, one must always be sure that the assumptions made
in an analysis are appropriate for the problem at hand. Students are all too eager
to use the first equation they can find to solve their homework problems. This type
of approach can lead to many incorrect or ridiculous solutions. To avoid such
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Motion occurs at

constant angle of attack Minimum speed
st j.\ %
Lightly

in altitude >\i/ Time \
Maximum speed

damped ————Long period ——

oscillation (order of 30 or more seconds)

Change in \ —~ Motion occurs at
angle of attack Time nearly constant speed

b——

Short period (several seconds)

FIGURE 4.10
The phugoid and short-period motions.

embarrassment, one must always verify that the assumptions used in developing the
equations one wishes to use are consistent with the problem one is attempting to
solve. This is particularly important when solving problems related to aircraft
dynamics.

In the following sections we shall examine the longitudinal motion of an
airplane without control input. The longitudinal motion of an airplane (controls
fixed) disturbed from its equilibrium flight condition is characterized by two oscil-
latory modes of motion. Figure 4.10 illustrates these basic modes. We see that one
mode is lightly damped and has a long period. This motion is called the long-period
or phugoid mode. The second basic motion is heavily damped and has a very short
period; it is appropriately called the short-period mode.

4.4.1 State Variable Representation of the Equations of Motion

The linearized longitudinal equations developed in Chapter 3 are simple, ordinary
linear differential equations with constant coefficients. The coefficients in the
differential equations are made up of the aerodynamic stability derivatives, mass,
and inertia characteristics of the airplane. These equations can be written as a set
of first-order differential equations, called the state-space or state variable equa-
tions and represented mathematically as

X = Ax + By (4.49)

where x is the state vector, ¥) is the control vector, and the matrices A and B contain
the aircraft’s dimensional stability derivatives.

4.4 Stick Fixed Longitudinal Motion 149

The linearized longitudinal set of equations developed earlier are repeated
here:

(% = Xu> Au — X, Aw + (g cos 6) A8 = X; AS + X; Ad;

~Z, Au + [(1 - Z) % - zw] A- [(uo + zq)% —~ gsin 00] A6 (4.50)
= Z, A8 + Z, A,

2
—M, Au — (ng—t + MW> Aw + <% = qu%> AG = M; AS + M, Ad;
where A and Ad; are the aerodynamic and propulsive controls, respectively.

In practice, the force derivatives Z, and Z,, usually are neglected because they
contribute very little to the aircraft response. Therefore, to simplify our presenta-
tion of the equations of motion in the state-space form we will neglect both Z, and
Z,,. Rewriting the equations in the state-space form yields

Au X, X, 0 —g || Au
Aw| Z, Z, U 0 || Aw
Ag M, + M, Z, M,+ M, Z, M,+ Mu, 0 ||Ag
Ad 0 0 1 0 ]].A9
X5 Xs, (4.51)
Z Zs, [ As ]
Ms + M,Zs Ms + M,Zs A,
0 0
where the state vector x and control vector 1) are given by
Au
Aw Ad
= = 4.52
X Ag |? n [ AS, ] (4.52)
Af
and the matrices A and B are given by
PR~ X, 0 —8
0
A= | Fu " (4.53)
M, + M,Z, M, + MyZ, M,+ Mg, 0
| 0 0 1 0
X X,
Zs Xs
= 4 4.54
5= uy + 2, M, + M, Z,, A
g 0 0




150 CHAPTER 4: Longitudinal Motion (Stick Fixed)

TABLE 4.2
Summary of longitudinal derivatives

= 7(CDM + 2C)08 X = —(CD“ — C.,)08

X, o
mu, mu
7 = —(Cy, + 2C. )08
& mi,
=(C,, =+ €505 é
Zz,=——->2+ b= =
mity Z; C 20, 0S/(ugm)
Z, = UpZ, Z, = upyZ,
G
Z;= €, = 0S/m Zs, = Cyy, OS/m
Uty
i, = ¢, 052
" ol
<z B —
m, = c,, &2 s Ly G5
uyl, “ 2ug uyl,
Ma = quw MD'( = MOM‘;,.
c
M, = C,, Do (0se)/1, M, = C,,,(0Sc)/1,
o

The force and moment derivatives in the matrices have been divided by the mass
of the airplane or the moment of inertia, respectively, as indicated:

0X/du 0X/ou
= #, M, = —/—, and so forth (4.55)

m I

Table 4.2 includes a list of the definitions of the longitudinal stability derivatives.
Methods for estimating the stability coefficients were discussed in Chapter 3.

The homogeneous solution to Equation (4.49) can be obtained by assuming a
solution of the form

X

u

x = x,eM (4.56)
Substituting Equation (4.56) into Equation (4.49) yields
A —-Alk, =0 (4.57)
where I is the identity matrix
1.0 0 0
I= T e 4.58
0 010 (4.58)
0 0 01
For a nontrivial solution to exist, the determinant
AL —A| =0 (4.59)
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must be 0. The roots A, of Equation (4.59) are called the characteristic roots or
eigenvalues. The solution of Equation (4.59) can be accomplished easily using a
digital computer. Most computer facilities will have a subroutine package for
determining the eigenvalues of a matrix. The software package MATLAB* was
used by the author for solution of matrix problems.

The eigenvectors for the system can be determined once the eigenvalues are
known from Equation (4.60).

M- AP, =0 (4.60)

where P, is the eigenvector corresponding to the jth eigenvalue. The set of equa-
tions making up Equation (4.60) is linearly dependent and homogeneous; there-
fore, the eigenvectors cannot be unique. A technique for finding these eigenvectors
will be presented later in this chapter.

EXAMPLE PROBLEM 4.2. Given the differential equations that follow
X + 0.5x, — 10x, = —16
Xy = Xyt X = 26
where x; and x, are the state variables and 6 is the forcing input to the system:
(a) Rewrite these equations in state space form; that is,
x = Ax + By

(b) Find the free response eigenvalues.
(c) What do these eigenvalues tell us about the response of this system?

Solution. Solving the differential equations for the highest order derivative yields
X = —0.5x; + 10x, — 6

Xp= —x; + %3 + 28

M W

which is the state space formulation

or in matrix form

X = Ax + By

h A= =
where [ 1 1 ] and B I: ]

The eigenvalues of the system can be determined by solving the equation

[AI-A| =0

*MATLAB is the trademark for the software package of scientific and engineering computrics
produced by The Math Works, Inc.
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where I is the identity matrix. Substituting the A matrix into the preceding equation
yields

10 —-05 10

Ho 1] - [—1.0 1.0] il
A O =05 10| _ 0
0 A 10 LOHES

A4105 —10
1.0 A—10

Expanding the determinant yields the characteristic equation
A+05)A—-10+10=0
or A2 —051+95=0

The characteristic equation can be solved for the eigenvalues for the system.
The eigenvalues for this particular characteristic equation are

A = 0.25 + 3,070

The eigenvalues are complex and the real part of the root is positive. This means that
the system is dynamically unstable. If the system were given an initial disturbance, the
motion would grow sinusoidally and the frequency of the oscillation would be gov-
erned by the imaginary part of the complex eigenvalue. The time to double amplitude
can be calculated from Equation (4.47).

0693 _ 0693
double I 7 | 0.25
= 2.7%s

The period of the sinusoidal motion can be calculated from Equation (4.46).

Poibll = = 2 — 0
w 3.07

4.5
LONGITUDINAL APPROXIMATIONS

We can think of the long-period or phugoid mode as a gradual interchange of
potential and kinetic energy about the equilibrium altitude and airspeed. This is
illustrated in Figure 4.10. Here we see that the long-period mode is characterized
by changes in pitch attitude, altitude, and velocity at a nearly constant angle of
attack. An approximation to the long-period mode can be obtained by neglecting

the pitching moment equation and assuming that the change in angle of attack is
0; that is,

Aa=A—w Ao =0—Aw =0 (4.61)

Uy
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Making these assumptions, the homogeneous longitudinal state equations reduce to
the following:

X, -8
Au - Au
=1-= 4.62
[Ae] Lo, [Aa] VR
Uy

The eigenvalues of the long-period approximation are obtained by solving the
equation

[AT-A| =0 (4.63)
A—X, g
or Z, A =0 (4.64)
Uo

Expanding this determinant yields

2.8
Uy

/ z
or %, = [x,, + /X2 + 4—“5] / 2.0 (4.66)
Uy

The frequency and damping ratio can be expressed as

®, = \|—2x& (4.67)
P u()

o (4.68)

anp

If we neglect compressibility effects, the frequency and damping ratios for the
long-period motion can be approximated by the following equations:

M—gx= = (4.65)

w, = V2L (4.69)
1 1
L = =T (4.70)

Notice that the frequency of oscillation and the damping ratio are inversely propor-
tional to the forward speed and the lift-to-drag ratio, respectively. We see from this
approximation that the phugoid damping is degraded as the aerodynamic efficiency
(L/D) is increased. When pilots are flying an airplane under visual flight rules the
phugoid damping and frequency can vary over a wide range and they will still find
the airplane acceptable to fly. On the other hand, if they are flying the airplane
under instrument flight rules low phugoid damping will become very objectable. To
improve the damping of the phugoid motion, the designer would have to reduce the
lift-to-drag ratio of the airplane. Because this would degrade the performance of
the airplane, the designer would find such a choice unacceptable and would look for
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another alternative, such as an automatic stabilization system to provide the proper
damping characteristics.

4.5.1 Short-Period Approximation

An approximation to the short-period mode of motion can be obtained by assuming
Au = 0 and dropping the X-force equation. The longitudinal state-space equations
reduce to the following:

Av Z A
vl PR PRV o I
Aq Mw 7= Mwa Mq 4E Mwuo Aq
This equation can be written in terms of the angle of attack by using the relation-
ship
O

Uy

Aa (4.72)

In addition, one can replace the derivatives due to w and w with derivatives due to
a and & by using the following equations. The definition of the derivative M, is

loM 1 oM uy M
My=-—=-—"— =270 _  y, 4.73
I, 0a I, 9(Aw/uy) I, ow " LT
In a similar way we can show that
Za = MOZW and MD'( :quW (474)

Using these expressions, the state equations for the short-period approximation
can be rewritten as

V)
== 1
Uy

-
[ AC.Z] = > [i“] (4.75)
4 M, + M= M, + M|

Uy

The eigenvalues of the state equation can again be determined by solving the
equation

IAI- Al =0 (4.76)
which yields
Z
A== -1
Uy
7 =0 (4.77)
Mo = M=\ = (M, + M)
0

The characteristic equation for this determinant is

z
A2 — (Mq + M, + é)A + M2~ M, =0 (4.78)

Uy Ug
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TABLE 4.3
Summary of longitudinal approximations

Long period (phugoid) Short period
—~Z.g zZM,
= | —=£ = /== M,

Frequency ,, e Wysp %
Z,
M, + M, + =2
; + =K o "o
Damping ratio L o = —

np nsp

The approximate short-period roots can be obtained easily from the characteristic

equation,
Z Z\
)\Sp:<Mq+Md+—u>/2t[<Mq+Md+—>
uO uO

7 1/2 (4.79)
= 4<Mq—“ = Ma>] /2
Uy
or in terms of the damping and frequency
1/2
w, = [(Mqé = M,,)] (4.80)
sp u()
Zy
b= o 2] fw g
0

Equations (4.80) and (4.81) should look familiar. They are very similar to the
equations derived for the case of a constrained pitching motion. If we neglect the
Z,term (i.e., neglect the vertical motion), Equations (4.80) and (4.81) are identical
to Equations (4.38) and (4.39). A summary of the approximate formulas is pre-
sented in Table 4.3.

To help clarify the preceding analysis, we shall determine the longitudinal
characteristics of the general aviation airplane included in Appendix B.

EXAMPLE PROBLEM43. Find the longitudinal eigenvalues and eigenvectors for the
general aviation airplane included in Appendix B and Figure 4.11. Compare these
results with the answers obtained by using the phugoid and short-period approxima-
tions. The exact solution was determined numerically using MATLAB.

Solution. First, we must determine the numerical values of the dimensional longitudi-
nal stability derivatives. The dynamic pressure Q and the terms 0S, OS¢, and ¢/2u, are

Q = 3 puj = (0.5)(0.002378 slug/ft*)(176 ft/s)?
= 36.8 Ib/ft>
0S = (36.8 1b/ft2)(184 f2) = 6771 Ib
QST = (6771 1b)(5.7 ft) = 38596 ft - 1b
(T/2u0) = (5.7 f)/(2 X 176 ft/s) = 0.016 s



===
==

184 ft2
33.4 ft

5.7 ft

1048 slug-ft?

ly = 3000 slug-ft2

2750 Ib
CG at 29.5% MAC

S
b

T

0; M = .158; V1o = 176 ft/sec

I, = 3530 slug-ft2

w

Iy

Nominal flight condition
References geometry

h (ft)
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The longitudinal derivatives can be estimated from the formulas in Table 4.2.

u derivatives

X, = —(Cp, + 2Cp)0S/(uym)
= —[0.0 + 2(0.05)](6771 1b)/[(176 ft/s)(85.4 slugs)]
= —0.045 (s

z,= —(Cy, + 2C,)0S/(ugm)
= —[0.0 + 2(0.41)](6771 1b) /[ (176 fi/s)(85.4 slugs)]
= —0.369 (s7)

M,=0

w derivatives
X, = —=(Cp, = C1)0S/(uem)
= —(0.33 — 0.41)(6771 1b)/[(176 ft/s)(85.4 slugs)]
= 0.036 (s71)
Z, = _(CLQ o1 CDO)QS/ (uom)

g = —(4.44 + 0.05)(6771 Ib)/[((176 £t/s)(85.4 slugs))
<
E = 2,02 (s7)
[+
8 Mw = CmeSE/(uOIy)
.§ = (—0.683)(38 596 ft - Ib)/[(176 ft/s)(3000 slugs - ft?)]
<
- = —0.05 [1/(ft - 9)]
g .
% w derivatives
u; XM‘, =0
3 Zy=0
g c
8 Mviz = Crm;— QSE/(MOI\’)
o 2ug :
Q
<€J E = (—4.36)(0.016 5)(38 596 ft - 1b)/[(176 ft/s)(3000 slugs - ft?)]

ES = —0.0051 (ft™")
5
< g derivatives
o
; %=

=g Z, =

S "

% M, = C, — 0Sc/I,

= E 2u ’

E é = (—9.96)(0.016 5)(38 596 ft - 1b)/(3000 slugs - ft2)

= —2.05(s7Y)
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Substituting the numerical values of the stability derivatives into Equation (4.51), we
can obtain the stability matrix:

X = Ax
Au —0.045 0.036 0.0000 —32.2 Au
or Aw _|—0369 —2.02 176 0.0000 | | Aw
Ag 0.0019 —0.0396 —2.948 0.000 || Ag
A6 0.0000  0.0000 1.0000 0.0000 ]| A6

The eigenvalues can be determined by finding eigenvalues of the matrix A:
|)\I - Al =0
The resulting characteristic equation is
A* +5.0510% + 13202 + 0.67L + 0.59 = 0
The solution of the characteristic equation yields the eigenvalues:
Ap = —0.0171 * i(0.213) (phugoid)
Ay = —25+1(2.59) (short period)

The period, time, and number of cycles of half amplitude are readily obtained once the
eigenvalues are known.

Phugoid
(long period) Short period
0.69 0.69
tip = 0.69/|n| = —0.0171 tip = 0.69/|m| = —95
t1/2 =403 s tl/Z =0.28s
Period = 27/w = 21/0.213 Period = 27/w = 27/2.59
Period = 29.5 s Period = 2.42 s
Number of cycles to half amplitude | Number of cycles to half amplitude
tl/2 w w
Nijp=-"2-=0.110— Nip = 0.110—
#E e Kl v El
_ (0.110)(0.213) _(0.110)(2.59)
| -0.0171] | -Z5|
Ny, = 1.37 cycles Ny, = 0.11 cycles

Now let us estimate these parameters by means of the long- and short-period approx-
imations. The damping ratio and undamped natural frequency for the long-period
motion was given by Equations (4.69), (4.70), (4.80), and (4.81).

Phugoid approximation

1/2
@y, = \/ uug = [ (0.3(6197)6()32'21)] = (.26 rad/s
0

4.5 Longitudinal Approximations 159

X, —(=0.045)
= TR o) 0087
= o 2028

AI.Z = _gpwlz,, 2 iwn,, v 1 =y £]27
= —(0.087)(0.26) = i(0.26)V:1 — (0.087)*

= —0.023 = i0.26
2ar 2ar
iod = — = — =24 9 5
Period % 026 4.2 s
0.69 0.69
hyp=—=r—":=1305s
n | —0.023 |
N = 0110 -2 = 0,110 020 5 ol
= f); — = 0. — = 1. e
e El 0.023 -
Short-period approximation
Z,M,
Wy, = I'E an
/4 u()

Recall that Z,

u(JZwa sz = uOva and Md = MOMW

Il

[(—2.02)(—2.05) — (—0.05)(176)]"/2 = 3.6 rad/s

wnsp

Za
gsp = (Mq I Méz + u—)/[wanm]
0

= [(—=2.05) + (—0.88) + (—2.02)]/[(2)(3.6)]
= 0.69
Al,z,sp = _gspwnsp e iwn Vidi ggp

p

—(0.69)(3.6) = i(3.6)V1 — (0.69)

— —2.48 = 12.61
Period = %w[’ = Zig—l =24s

typ = 0767 T E _ijgi = 0278 s

Ny = 0.110 ﬁ = 0.110% = 0.16 cycles

A summary of the results from the exact and approximate analyses is included in
Table 4.4. In this analysis, the short-period approximation was found to be in closer
agreement with the exact solution than the phugoid approximation. In general, the
short-period approximation is the more accurate one.

The eigenvectors for this problem can be determined by a variety of techniques;
however, we will discuss only one relatively straightforward method. For additional
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TABLE 4.4
Comparison of exact and aproximate methods

Exact method Approximate method Difference

Phugoid tiy =403 s ti, =308 25%
P=1295s P=242s 18%
Short period ti, = 0.280s tyn =0278s 0%
P=242s P=24s 0%

information on other techniques, readers should go to their methematics library or
computer center. Most computer facilities maintain digital computer programs suitable
for extracting eigenvalues and eigenvectors of large-order systems.

To obtain the longitudinal eigenvectors for this example problem, we will start
with Equation (4.60), which is expanded as follows:

W — A1) Aw; — Ajp Aw, — Ay Agy — Ay A, = 0
—Ay A + (N — Ap)Aw; — Ayg — Ay A6, =0

— Ay Auy — Asy Ay + (A — Ay)Ag; — Ay A6, = 0
— Ay Dy — Ay Aw; — Ay Agy + (N — AAG;, = 0

In this set of equations, the only unknowns are the components of the eigenvector; the
eigenvalues ); and the elements of the A matrix were determined previously. Dividing
the preceding equations by any one of the unknowns (for this example we will use A6)),
we obtain four equations for the three unknown ratios. Any three of the four equations
can be used to find the eigenvectors. If we drop the fourth equation, we will have a set
of three equations with the three unknown ratios, as follows:

Au Aw A
()lj - A11)<I9> - A12<A_0> - A13<A_Z> = Ay
J 7 7
Au Aw Ag
*A;u(Eg)j + = A22)<I9>,- - A23<A—9>j = Ay

Au A A
—Anl ) —Asn = + (A — As) ) - Asy
Ab 5 A6 Ad ;

J
This set of equations can easily be solved by conventional techniques to yield the
eigenvector [Au/A0, Aw/A0, Ag/A8, 1].

The nondimensional eigenvectors for the example problem have been computed
and are listed in Table 4.5. The longitudinal modes now can be examined by means of
a vector or Argand diagram. The magnitude of the eigenvectors are arbitrary so only
the relative length of the vectors is important.

Figure 4.12 is an Argand diagram illustrating the long-period and short-period
modes. In this diagram the lengths of the vectors are decreasing exponentially with
time, while the vectors are rotating with the angular rate w. The motion of the airplane
can be imagined as the projection of the eigenvectors along the real axis.

On close examination of Figure 4.12, several observations can be made. For the
long-period mode, we see that the changes in angle of attack and pitch rate are
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TABLE 4.5
Longitudinal eigenvectors for general aviation

Eigenvector Long period Short period

A=—00171 £ 02131 A= —-2.5 % 2.5%

Au_/uo —0.114 = 0.837i 0.034 *= 0.0251
A6

AW—/MO = E 0.008 = 0.05i 1.0895 = 0.733i
A6 A6

W ~0.000027 * 0.00347i  —0.039 + 0.041i

Long FIGURE 4.12
R | Eigenvectors for the general

Au o = 0.213 rad/sec vectors aviation airplane in
o are decaying exp (-0.0171t)  Problem4.3.

s 80
J - Re
w
Short
period mode Au P
I — -not visible
UO
Age not visible Aa
2u,
A6

o = 2.5 rad/sec vectors
are decaying exp (-2.5t)

negligible. The motion is characterized by changes in speed and pitch attitude. Notice
that the velocity vector leads the pitch attitude by nearly 90° in phase. In contrast, the
short-period mode is characterized by changes in angle of attack and pitch attitude with
negligible speed variations. As we can see from the vector diagrams, the assumptions
we made earlier in developing the long- and short-period approximations indeed are
consistent with the exact solution.
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4.6
THE INFLUENCE OF STABILITY DERIVATIVES
ON THE LONGITUDINAL MODES OF MOTION

The type of response we obtain from solving the differential equations of motion
depends on the magnitude of the stability coefficients. This easily can be seen by
examining the expressions for the damping ratio and frequency of the long- and
short-period approximations, Table 4.6 summarizes the effect of each derivative on
the longitudinal motion

Of the two characteristic modes, the short-period mode is the more important.
If this mode has a high frequency and is heavily damped, then the airplane will
respond rapidly to an elevator input without any undesirable overshoot. When the
short-period mode is lightly damped or has a relatively low frequency, the airplane
will be difficult to control and in some cases may even be dangerous to fly.

The phugoid or long-period mode occurs so slowly that the pilot can easily
negate the disturbance by small control movements. Even though the pilot can
correct easily for the phugoid mode it would become extremely fatiguing if the
damping were too low.

Figures 4.13 and 4.14 show the effects of varying the center of gravity position
and the horizontal tail area size on the long- and short-period responses. As the
center of gravity is moved rearward the longitudinal modes become aperiodic and,
eventually, unstable.

From a performance standpoint, it would be desirable to move the center of
gravity further aft so that trim drags during the cruise portion of the flight could
be reduced. Unfortunately, this leads to a less stable airplane. By using an active
control stability augmentation system, the requirement of static stability can be
relaxed without degrading the airplane’s flying qualities.

Recent studies by the commercial aircraft industry have shown that fuel saving
of 3 or 4 percent is possible if relaxed stability requirements and active control
stability augmentation are incorporated into the design. With the ever-rising costs
of jet fuel, this small percentage could mean the savings of many millions of dollars
for the commercial airlines.

TABLE 4.6
Influence of stability derivatives on the long- and
short-period motions

Stability derivative Mode affected How affected

M, + M, Damping of short- Increasing M, + M,
period mode of motion increases damping

M, Frequency of short- Increasing M, or static
period mode of motion stability increases the

frequency

X, Damping of the phugoid Increasing X, increases
or long-period mode of damping
motion

Z, Frequency of phugoid Increasing Z, increases

mode of motion

the frequency

X
Short-period root

Long-period root

X

|
i n

Arrow indicates direction of decreaging
static margin. Center of gravity is moving aft.

FIGURE 4.13

Influence of center of gravity position on longitudinal

response.

Short-period r&

X

Long-period root

iw

Arrow indicates direction
of root movement for
increasing tail area.

X

i

l
|

FIGURE 4.14

Influence of horizontal tail area

on longitudinal response.
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4.7
FLYING QUALITIES

In the previous sections we examined the stick fixed longitudinal characteristics of
an airplane. The damping and frequency of both the short- and long-period mo-
tions were determined in terms of the aerodynamic stability derivatives. Because
the stability derivatives are a function of the geometric and aerodynamic character-
istics of the airplane, designers have some control over the longitudinal dynamics
by their selection of the vehicle’s geometric and aerodynamic characteristics. For
example, increasing the tail size would increase both the static stability of the
airplane and the damping of the short-period motion.* However, the increased tail
area also would increase the weight and drag of the airplane and thereby reduce the
airplane’s performance, The designer is faced with the challenge of providing an
airplane with optimum performance that is both safe and easy to fly. To achieve
such a goal, the designer needs to know what degree of stability and control is
required for the pilot to consider the airplane safe and flyable.

The flying qualities of an airplane are related to the stability and control
characteristics and can be defined as those stability and control characteristics
important in forming the pilot’s impression of the airplane. The pilot forms a
subjective opinion about the ease or difficulty of controlling the airplane in steady
and maneuvering flight. In addition to the longitudinal dynamics, the pilot’s im-
pression of the airplane is influenced by the feel of the airplane, which is provided
by the stick force and stick force gradients. The Department of Defense and
Federal Aviation Administration has a list of specifications dealing with airplane
flying qualities. These requirements are used by the procuring and regulatory
agencies to determine whether an airplane is acceptable for certification. The
purpose of these requirements is to ensure that the airplane has flying qualities that
place no limitation in the vehicle’s flight safety nor restrict the ability of the
airplane to perform its intended mission. The specification of the requirements for
airplane flying qualities can be found in [4.5].

As one might guess, the flying qualities expected by the pilot depend on the
type of aircraft and the flight phase. Aircraft are classified according to size and
maneuverability as shown in Table 4.7. The flight phase is divided into three
categories as shown in Table 4.8. Category A deals exclusively with military air-
craft. Most of the flight phases listed in categories B and C are applicable to either
commercial or military aircraft. The flying qualities are specified in terms of three
levels:

Level 1 Flying qualities clearly adequate for the mission flight phase.

Level 2 Flying qualities adequate to accomplish the mission flight phase but
with some increase in pilot workload and/or degradation in mission
effectiveness or both.

* Because the aerodynamic derivatives also are a function of the Mach number, the designer can
optimize the dynamic characteristics for only one flight regime. To provide suitable dynamic charac-
teristics over the entire flight envelope, the designer must provide artificial damping by using stability
augmentation.
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TABLE 4.7
Classification of airplanes

Class 1 Small, light airplanes, such as light utility, primary trainer, and light
observation craft
Class II Medium-weight, low-to-medium maneuverability airplanes, such as heavy

utility/search and rescue, light or medium transport/cargo/tanker,
reconnaissance, tactical bomber, heavy attack and trainer for Class II
Class III Large, heavy, low-to-medium maneuverability airplanes, such as heavy
transport/cargo/tanker, heavy bomber and trainer for Class III
Class IV High-maneuverability airplanes, such as fighter/interceptor, attack, tactical
reconnaissance, observation and trainer for Class IV

TABLE 4.8
Flight phase categories

Nonterminal flight phase
Category A Nonterminal flight phase that require rapid maneuvering, precision tracking,
or precise flight-path control. Included in the category are air-to-air combat
ground attack, weapon delivery/launch, aerial recovery, reconnaissance,
in-flight refueling (receiver), terrain-following, antisubmarine search, and
close-formation flying
Category B Nonterminal flight phases that are normally accomplished using gradual
maneuvers and without precision tracking, although accurate flight-path
control may be required. Included in the category are climb, cruise, loiter,
in-flight refueling (tanker), descent, emergency descent, emergency
deceleration, and aerial delivery.
Terminal flight phases
Category C Terminal flight phases are normally accomplished using gradual maneuvers
and usually require accurate flight-path control. Included in this category
are takeoff, catapult takeoff, approach, wave-off/go-around and landing.

Level 3 Flying qualities such that the airplane can be controlled safely but pilot
workload is excessive and/or mission effectiveness is inadequate or
both. Category A flight phases can be terminated safely and Category
B and C flight phases can be completed.

The levels are determined on the basis of the pilot’s opinion of the flying character-
istics of the airplane.

4.7.1 Pilot Opinion

Handling or flying qualities of an airplane are related to the dynamic and control
characteristics of the airplane. For example, the short- and long-period damping
ratios and undamped natural frequencies influence the pilot’s opinion of how easy
or difficult the airplane is to fly. Although we can calculate these qualities, the
question that needs to be answered is what values should ¢ and w, take so that the
pilot finds the airplane easy to fly. Researchers have studied this problem using
ground-based simulators and flight test aircraft. To establish relationships between
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TABLE 4.9
Cooper-Harper scale

Pilot Overall
rating  Aircraft characteristic Demand of pilot assessment
1 Excellent, highly desirable  Pilot compensation not a factor for
desired performance
2 Good, negligible Pilot compensation not a factor for Good flying
deficiencies desired performance qualities
3 Fair, some mildly Minimal pilot compensation

unpleasant deficiencies

required for desired performance

4 Minor but annoying Desired performance requires
deficiencies moderate pilot compensation

5 Moderately objectionable Adequate performance requires Flying qualities
deficiencies considerable pilot compensation warrant

6 Very objectionable but Adequate performance requires improvement

tolerable deficiencies

extensive pilot compensation

7 Major deficiencies Adequate performance not
attainable with maximum tolerable
pilot compensation; controllability Flying quality
not in question deficiencies
8 Major deficiencies Considerable pilot compensation is require
required for control improvement
9 Major deficiencies Intense pilot compensation is
required to retain control
10 Major deficiencies Control will be lost during some Improvement
portion of required operation mandatory

the stability and control parameters of the airplane and the pilot’s opinion of the
airplane a pilot rating system was developed. A variety of rating scales have been
used over the years; however, the rating system proposed by Cooper and Harper
[4.6] has found widespread acceptance. The Cooper-Harper scale is presented in
Table 4.9. The rating scale goes from 1 to 10 with low numbers corresponding to
good flying or handling qualities. The scale is an indication of the difficulty in
achieving the desired performance that the pilot expects.

Flying qualities research provides the designer information to assess the flying
qualities of a new design early in the design process. If the flying qualities are found
to be inadequate then the designer can improve the handing qualities by making
design changes that influence the dynamic characteristics of the airplane. A de-
signer that follows the flying qualities guidelines can be confident that when the
airplane finally is built it will have flying qualities acceptable to its pilots.

Extensive research programs have been conducted by the government and the
aviation industry to quantify the stability and control characteristics of the airplane
with the pilot’s opinion of the airplane’s flying qualities. Figure 4.15 is an example
of the type of data generated from flying qualities research. The figure shows the
relationship between the level of flying qualities and the damping ratio and un-
damped natural frequency of the short-period mode. This kind of figure is some-
times referred to as a thumbprint plot. Table 4.10 is a summary of the longitudinal
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FIGURE 4.15
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TABLE 4.10
Longitudinal flying qualities
Phugoid mode
Level 1 7> 0.04
Level 2 >0
Level 3 T, > 55s
Short-period mode
Categories A and C Category B
G Ly /48 &
Level min max min max
1 0.35 1.30 0.3 2.0
2 0.25 2.00 0.2 2.0
3 0.15 — 0.15 —

specifications for the phugoid and short-period motions that is valid for all classes
of aircraft.

The information provided by Table 4.10 provides the designer with valuable
design data. As we showed earlier, the longitudinal response characteristics of an
airplane are related to its stability derivatives. Because the stability derivatives are
related to the airplane’s geometric and aerodynamic characteristics it is possible for
the designer to consider flying qualities in the preliminary design phase.

EXAMPLE PROBLEM44. A fighter aircraft has the aerodynamic, mass, and geomet-
ric characteristics that follow. Determine the short-period flying qualities at sea level,
at 25,000 ft, and at 50,000 ft for a true airspeed of 800 ft/s. How can the designer
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improve the flying qualities of this airplane?

W = 17 580 Ib I, = 25 900 slug - ft*
S = 260 ft> c=10.8ft

C,, =40rad™! Cn, = —43rad™

Cp, = —04rad™  C,, = —1.7rad™

Solution. The approximate formulas for the short-period damping ratio and frequency
are given by Equations (4.80) and (4.81):

Z M
(l)nsp = 1 —
Uy
[ = - (M, + M, + Z,/up)
Sp 2w,,,

where Z, = —C. 0S/m

M, = C,, (i) e

2u0 y

Y

T\ OS¢
G <2u0> I

¥

M,

If we neglect the effect of Mach number changes in the stability coefficients, the
damping ratio and frequency can easily be calculated from the preceding equations.
Figure 4.16 is a plot of /;, and w,, » as functions of the aititude. Comparing the esti-
mated short-period damping ratio and frequency with the pilot opinion contours in
Figure 4.15, we see that this airplane has poor handling qualities at sea level that
deteriorate to unacceptable characteristics at altitude.

To improve the flying qualities of this airplane, the designer needs to provide more
short-period damping. This could be accomplished by increasing the tail area or the tail
moment arm. Such geometric changes would increase the stability coefficients C,,,,
C,,» and C,,;. Unfortunately, this cannot be accomplished without a penalty in flight
performance. The larger tail area results in increased structural weight and empennage
drag. For low-speed aircraft geometric design changes usually can be used to provide
suitable flying qualities; for aircraft that have an extensive flight envelope such as
fighters it is not possible to provide good flying qualities over the entire flight regime

03" 6 FIGURE 4.16
- Variation of £, and w,  as a
: -5 function of altitude.
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from geometric considerations alone. This can be accomplished, however, by using a
stability augmentation system.

4.8
FLIGHT SIMULATION

To determine the flying quality specifications described in a previous section re-
quires some very elaborate test facilities. Both ground-based and in-flight simulators
are used to evaluate pilot opinion on aircraft response characteristics, stick force
requirements, and human factor data such as instrument design, size, and location.

The ground-based flight simulator provides the pilot with the “feel” of flight by
using a combination of simulator motions and visual images. The more sophisti-
cated flight simulators provide six degrees of freedom to the simulator cockpit.
Hydraulic servo actuators are attached to the bottom of the simulator cabin and
driven by computers to produce the desired motion. The visual images produced on
the windshield of the simulator are created by projecting images from a camera
mounted over a detailed terrain board or by computer-generated images. Fig-
ure 4.17 is a sketch of a five degree of freedom ground-based simulator used by the

FIGURE 4.17

Sketch of United States Air Force Large Amplitude Multimode Aerospace Research
Simulator (LAMARS). Courtesy of the Flight Control Division, Flight Dynamics
Directorate, Wright Laboratory.
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United States Air Force for handling qualities research. The crew station is located

5 at the end of a 30 ft arm that can be controlled to provide the crew with vertical
= } p
2 5 e 2 and lateral accelerations.
3 e 8 § An example of an in-flight simulator is shown in Figure 4.18. This figure is a
25 £ 3 2 sketch of the U.S. Air Force’s total in-flight simulator (TIFS , which is a modified
o > = © c 4 . g . »
s @ 5 a2 2 C131 transport. By using special force-producing control surfaces such as direct
© . . . . . .
n o ; 3 lift flaps and side force generators, this airplane can be used to simulate a wide
= @© @ g P g P
g £ 5 2 o range of larger aircraft. The TIFS has been used to simulate the B-1, C-5, and
> 3 ot L Nl g g
§ 2 < 5 space shuttle among other craft.
1] g 5. il .
W % The stability characteristics of the simulator can be changed through the com-
2 £ uter. This capability permits researchers to establish the relationship between
L c P P y P P
53 & pilot opinion and aircraft stability ch:racteristics. For example, the short-period
£ 3 ks characteristics of the simulator could be varied and the simulator pilot would be
g p asked to evaluate the ease or difficulty of flying the simulator. In this manner, the
g researcher can establish the pilot’s preference for particular airplane response
> I characteristics.
zs
=2
B g 4.9
25 SUMMARY
25 3
=B é g é In this chapter we examined the stick fixed longitudinal motion of an airplane using
:‘_? o B e the linearized equations of motion developed in Chapter 3. The longitudinal dy-
w8 a. o namic motion was shown to consist of two distinct and separate modes: a long-
o ° g HE period oscillation that is lightly damped, and a very short-period but heavily
o & = damped oscillation.
<>“u 2 Approximate relationships for the long- and short-period modes were devel-

oped by assuming that the long-period mode occurred at constant angle of attack
and the short-period mode occurred at a constant speed. These assumptions were
verified by an examination of the exact solution. The approximate formulas permit-
ted us to examine the relationship of the stability derivatives on the longitudinal
motion.

Before concluding, it seems appropriate to discuss several areas of research
that will affect how we analyze aircraft motions. As mentioned, active control
technology in commercial aircraft can be used to improve aerodynamic efficiency.
With active controls, the aircraft can be flown safely with more aft center of gravity
position than would be possible with a standard control system. By shifting the
center of gravity further aft, the trim drag can be reduced substantially. This allows
for improved fuel economy during the cruise portion of the flight.

Active control technology also can be used to improve ride comfort and reduce
wing bending during flight in turbulent air. With active controls located on the
wing, a constant load factor can be maintained. This alleviates most of the un-
wanted response associated with encounters with a vertical gust field. In addition
FIGURE 4.18 to improving the ride for passengers, the gust alleviation system reduces the wing
Airborne flight simulator. bending moments, which means the wing can be lighter. Again, this will result in
potential fuel savings.
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Aircraft configuration Missile configuration

Body vortices

X Low a Low &
b N  Symmetric pattern Symmetric pattern
// rti ¥> Highe High a
Wing tip VOLLIGES X Asymmetric pattern Asymmetric pattern
vortex >

‘ \
Wing tip » FIGURE 4.20
vortex Vortex flows around an aircraft at large angles of attack.
FIGURE 4.19 . ‘

Sketch of a fighter aircraft illustrating separated vortical
flows.

The analysis presented in this chapter assumes that the aerodynamic character-
istics are linear and can be represented by stability derivatives. This assumption is
quite good if the angle of attack of the airplane is small. However, modern fighter
aircraft are capable of performing transient maneuvers that involve high angular
rates and large angles of attack [4.7, 4.8]. The flow field around a slender fighter
aircraft at large angles of attack is dominated by vortices created by flow separation
around the forebody (nose of the fuselage), strake, wing and control surfaces.
Figure 4.19 is a sketch of the leeward wake over a slender fighter aircraft. The
interaction of these vortices with various components of the aircraft can create
significant nonlinear aerodynamic forces and moments. To further illustrate the
complexity of the wake flow around a fighter aircraft, we will examine the separated
flow over the forebody that is the nose region of the fuselage in the next section.

As the angle of attack of the airplane increases, the flow around the fuselage
separates. The separated flow field can cause nonlinear static and dynamic aerody-
namic characteristics. An example of the complexity of the leeward wake flows
around a slender aircraft and a missile is sketched in Figure 4.20. Notice that as the
angle of attack becomes large the separated body vortex flow can become asym-
metric. The occurence of this assymetry in the flow can give rise to large side
forces, yawing, and rolling moments on the airplane or missile even though the
vehicle is performing a symmetric maneuver (i.e., sideslip angle equals 0). The
asymmetric shedding of the nose vortices is believed to be a major contribution to
the stall spin departure characteristics of many high-performance airplanes.

Figure 4.21 a and b are multiple exposure photographs of the vortex pattern b
above a cone finned model. A laser light sheet is used to illuminate smoke entrained FIGURD 4 )

; : X s e 21

into the body vortices. The light sheet was positioned so that it intersected the flow Flow Sisualisation of bod i s !
normal to the longitudinal axis of the model. The cross section of the body vortices vortex pattern. (b) As mn};e\t/;r ltc)ez = ymmem.c body
are observed at several axial locations along the model. The model was painted st Bady Yol patiea.
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black so that only the vortices are visible. The model surface is indicated by a
curved line which is a reflection of the laser sheet from the model surface. In part
a the body vortices are symmetric; however, as the angle of attack is increased
further the wake vortices become asymmetric. The vortex on the right side of the
model is farther away from the model surface than the left side vortex. When the
wake vortices become asymmetric the body experiences both a side force and
yawing moment even though the model is at zero sideslip angle.

The asymmetric vortex wake can lead to aerodynamic cross-coupling between
the longitudinal and lateral equations of motion. Analyzing these motions requires
a much more sophisticated analysis than that presented in this chapter.

PROBLEMS

Problems that require the use of a computer have the capital letter C after the problem
number

4.1. Starting with Newton’s second law of motion, develop the equation of motion for
the simple torsional pendulum shown in Figure P4.1. The concept of the torsional
pendulum can be used to determine the mass moment of inertia of aerospace
vehicles or components. Discuss how one could use the torsional pendulum con-
cept to determine experimentally the mass moment of inertia of a test vehicle.

FAATAA AV ATAAANAA AU AT UARAUAREVREAUARAUARU R RRAR R RURRRRRRY

/ Wire

Torsional &)

pendulum

FIGURE P4.1
Aircraft model swinging as a torsional pendulum.

4.2. A mass weighing 5 Ib is attached to a spring as shown in Figure P4.2 (a). The
spring is observed to extend 1 in. when the mass is attached to the spring. Suppose

4.3.

44.

4.5(C).

4.6.
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the mass is given an instantaneous velocity of 10 ft/s in the downward direction
from the equilibrium position. Determine the displacement of the mass as a
function of time. Repeat your analysis for the spring mass damper system in
Figure P4.2 (b), assume F = —cy, where ¢ = 0.6 (Ib - s/ft.).

AN

Viscous
damper

Mass Mass
y Yy

(a) Mass-spring system

Spring Spring

(b) Mass-spring-damper-system

FIGURE P4.2
Spring-mass and spring-mass-damper systems.

The differential equation for the constrained center of gravity pitching motion of
an airplane is computed to be

@+ 4a + 36a = 0

Find the following:

(a) w,, natural frequency, rad/s

(b) ¢, damping ratio

() w, damped natural frequency, rad/s

Given the second-order differential equation
6+20+50=-5
(a) Rewrite this equation in the state space form:
x = Ax + By

(¢) Determine the eigenvalues of the A matrix.

Determine the eigenvalues and eigenvectors for the following matrix:

2 =3 1
A= 3 1 2
=5 2 —4

The characteristic roots of a second-order system are shown in Figure P4.6. If this
system is disturbed from equilibrium, find the time to half-amplitude, the number
of cycles to half amplitude, and the period of motion.



176 CHAPTER 4: Longitudinal Motion (Stick Fixed)

4.7(C).

4.8.

4.9.

X i FIGURE P4.6
T Second-order system roots.
-2
| T T T T T T T 1M
-6 -4 -2 2 4
- -2
X o

The missile shown in Figure P4.7 is considered so that only a pitching motion is
possible. Assume that the aerodynamic damping and static stability come com-
pletely from the tail surface (i.e., neglect the body contribution). If the model is
displaced 10" from its trim angle of attack (o = 0) and then released determine
the angle of attack time history. Plot your results. What effect would moving the
center of gravity have on the motion of the model?

D = Characteristic length

10\£’ iy D = 5.0cm

I -
) Tail surfaces are
V = 30m/sec fe 5D /K?LD flat plates

l,=5.0 X 102kg - m?
S = 7wD¥/4

FIGURE P4.7
Pitching wind-tunnel model.

Develop the equation of motion for an airplane that has freedom only along the
flight path; that is, variations in the forward speed. Assume that X = fn (x, y),
where u is the forward speed and 8; is the propulsive control. If the airplane is
perturbed from its equilibrium state, what type of motion would you expect?

Given the following differential equation
¥+ &% —deto6x=r

(a) Rewrite the equation in state-space form; that is, x = Ax + Bm. Hint: let

Xi= XX = X, %3 = X,
(b) If the characteristic equation is given by

MA+3)A2=22+2)=0

describe the free response modes of motion.
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4.10. Given the differential equation

2
dr  dx
de? dt
(a) Rewrite the equation in state-space form.
(b) Determine the characteristic equation of the system
(¢) Find the eigenvalues of the system and describe the motion one might expect
for these eigenvalues.

+2x =4

4.11(C). For the set of differential equations that follow
&+ 2a—qg=0
6 + 10a + 150 = — 56

(a) Rewrite the equations in state-space form,

(b) Use MATLAB or similar software to determine the eigenvalues of the A
matrix.

(c) Determine the response of the system to a unit step input. Assume the initial
states all are 0.

4.12. Use the short- and long-period approximations to find the damping ratio for the
executive jet airplane described in Appendix B.

4.13. Show that if one neglects compressibility effects the frequency and damping ratio
for the phugoid mode can be expressed as

e

’  V2L/D

4.14. From data in Figure P4.14 estimate the time to half-amplitude and the number of
cycles for both the short- and long-period modes.

@,y = \/55 and
Uy

Longitudinal roots FIGURE P4.14
iw
X 2
11
.
T T T T T T T 17
4.2 -0.8 04 X 0.4
1 -1
X .2

4.15. The short-period equations for a particular airplane can be expressed as follows:

Z
[Aa] - 7 1 [Aa
Ag Ag

M, M,
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4.16.

4.17.

4.18(C).

4.19(C).

4.20(C).

4.21(C).

Suppose Z,/uy, = —1. Determine M, and M, so that the damping ration { = 0,
and the undamped natural frequency is 2 rad/s.

What effect will increasing altitude have on the short- and long-period modes? Use
the approximate formulas in your analysis.

Develop the equation of motion for an airplane that has freedom only along the
flight path; that is, variations in forward speed. If the airplane is perturbed from
its equilibrium state what type of motion would you expect? Clearly state all of
your assumptions.

Develop a computer program to compute the eigenvalues for the longitudinal
equations of motion. Use your program to determine the characteristic roots for
the executive jet airplane described in Appendix B. Compare your results with
those obtained in Problem 4.12.

An airplane has the following stability and inertia characteristics:
W = 564 000 Ib C, = 1.11
I, = 13.7 X 10° slug - fi® Cp = 0.102
I, = 30.5 X 10° slug - ft* C., = 5.7rad™
I, =43.1 X 10° slug - ft? Cp, = 0.66 rad™!
h = sea level C,, = —126rad™!
§ = 5500 ft> Crs="=3208d™"
b = 195.68 ft Cn, = —20.8 rad™!
c=273ft
V = 280 ft/s

(a) Find the frequency and damping ratios of the short- and long-period modes.

(b) Find the time to half-amplitude for each mode.

(c) Discuss the influence of the coefficients Cp,and C, on the longitudinal
motion.

Determine the longitudinal equations
X = Ax + By

for that STOL transport in Appendix B.

(a) Determine the eigenvalues of the A matrix.

(b) Determine the response of the airplane to a step input of the elevator,
A6, = —0.1 rad.

Using the plant matrix A determined in Problem 4.18(C), examine the infiu-
ence of the stability derivatives, C,,, C,,, Cz,, and C,, on the longitudinal eigen-
values. Vary one stability coefficient at a time and plot the movement of the
eigenvalues.
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4.22. A wind-tunnel model is constrained so that only a pitching motion can occur. The

model is in equilibrium when the angle of attack is 0. When the model is displaced
from its equilibrium state and released, the motion shown in Figure P4.22 is

10
|
5 ..II
- I..
8 gt = w w l—l:.-m_&._l
(Deg) . ® " B
b m = [}
-5 n " u®
= ..
-10 T T T T
0 2 4 6 8
Time (seconds)
FIGURE P4.22

recorded. Using the following data determine C,, and G, + Gy 2

mg *

uo = 100 ft/s c=02ft
Q=1191b/f2 I, = 0.01 slug - ft?
S=05f2

Assume that equation of motion is

0(t) = 6, e™ cos wt

where n = (M, + M;)/2.0
and w=V-M,
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