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CHAPTER 5

Lateral Motion (Stick Fixed)

“Dutch Roll is a complex oscillating motion of an aircraft involving rolling,
yawing and sideslipping. So named for the resemblance to the characteristic
rhythm of an ice skater.”

F. D. Adams, Aeronautical Dictionary [5.1]

5.1
INTRODUCTION

The stick fixed lateral motion of an airplane disturbed from its equilibrium state is
a complicated combination of rolling, yawing, and sideslipping motions. As was
shown in Chapter 2, an airplane produces both yawing and rolling moments due to
the sideslip angle. This interaction between the roll and the yaw produces the
coupled motion. Three potential lateral dynamic instabilities are of interest to the
airplane designer: directional divergence, spiral divergence, and the so-called
Dutch roll oscillation.

Directional divergence can occur when the airplane lacks directional or weath-
ercock stability. If disturbed from its equilibrium state such an airplane will tend
to rotate to ever-increasing angles of sideslip. Owing to the side force acting on the
airplane, it will fly a curved path at large sideslip angles. For an airplane that has
lateral static stability (i.e., dihedral effect) the motion can occur with no significant
change in bank angle. Obviously, such a motion cannot be tolerated and readily can
be avoided by proper design of the vertical tail surface to ensure directional sta-
bility.

Spiral divergence is a nonoscillatory divergent motion that can occur when
directional stability is large and lateral stability is small. When disturbed from
equilibrium, the airplane enters a gradual spiraling motion. The spiral becomes
tighter and steeper as time proceeds and can result in a high-speed spiral dive if
corrective action is not taken. This motion normally occurs so gradually that the
pilot unconsciously corrects for it.

The Dutch roll oscillation is a coupled lateral-directional oscillation that can
be quite objectionable to pilots and passengers. The motion is characterized by a
combination of rolling and yawing oscillations that have the same frequency but
are out of phase with each other. The period can be on the order of 3 to 15 seconds,
so that if the amplitude is appreciable the motion can be very annoying.
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Before analyzing the complete set of lateral equations we shall examine several
motions with a single degree of freedom. The purpose of examining the single
degree of freedom equations is to gain an appreciation of the more complicated
motion comprising the stick fixed lateral motion of an airplane.

5.2
PURE ROLLING MOTION

A wind-tunnel model free to roll about its x axis is shown in Figure 5.1. The
equation of motion for this example of a pure rolling motion is

E, Rolling moments = IXCZ; (5.1)

aL oL e

— A8, + —Ap = ;
or 35, A8, ap Ap = I, Ad (5.2)

where (3L/d5,) A8, is the roll moment due to the deflection of the ailerons and
(0L/dp) Ap is the roll-damping moment. Methods for estimating these derivatives
were presented in Chapters 2 and 3. The roll angle ¢ is the angle between z, of the
body axes and z,of the fixed axis system. The roll rate Ap is equal to A¢, which will
allow us to rewrite Equation (5.2) as follows:

Ls, A8
TAp + Ap = — 22— (5.3)
LP
Here 7, L,, and L, are defined as follows:
1 aL/dp aL/ a8,
T = _L_P and Lp = Ix sa — IX (5‘4)

The parameter 7is referred to as the time constant of the system. The time constant
tells us how fast our system approaches a new steady-state condition after being
disturbed. If the time constant is small, the system will respond very rapidly; if the
time constant is large, the system will respond very slowly.

The solution to Equation (5.3) for a step change in the aileron angle is

Ap(t) = —LS"(I — e~y AS, (5.5)
LI7
Recall that C,, is negative; therefore, the time constant will be positive. The roll
rate time history for this example will be similar to that shown in Figure 5.2. The
steady-state roll rate can be obtained from Equation (5.5), by assuming that time
t is large enough that e " is essentially O:

_Ls
= =2 A 5.6
Dss L 2 (5.6)
—C, OSb/I,

Pe = ¢, (0/2u0)0Sb/T, = el

Pub _ _Ch s
2u, C,p
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FIGURE 5.1
Wind-tunnel model constrained to a pure rolling motion.

FIGURE 5.2
Typical roll response due to aileron
deflection.

Psg-steady state roll rate

P(t)

Time

The term (p,b/2u,) for full aileron deflection can be used for sizing the aileron.
The minimum requirement for this ratio is a function of the class of airplane under
consideration:

Cargo or transport airplanes: pb/2u, = 0.07
Fighter airplanes: pb/2u, = 0.09

EXAMPLE PROBLEM 5.1. Calculate the roll response of the F104A to a 5° step
change in aileron deflection. Assume the airplane is flying at sea level with a velocity
of 87 m/s. The F104A has the following aerodynamic and geometric characteristics:

C, = —0.285 rad™' S =18 m?
Cy;, = 0.039 rad™ b=67Tm
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I~
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4676 kg - m?
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2uy  2(87 m/s) TS

1
Q = 5 puf = (0.5)(1.225 kg/m’) (87 m/9? = 4636 N/m?

b
L,=C, 2—%Q5b/1x

I

(—0.285 rad~1)(0.039 s71)(4636 N/m?)(18 m2)(6.7 m) (4676 kg - m?)
, = —13(™

1 1
T—LP— m—0.77s

h
Il

Steady-state roll rate

L;
= — 2 Ag
pSS LP a
Ls, = Ci,, OSH/I,

L, = (0.039 rad~')(4636 N/m?)(18 m?)(6.7 m)/(4676 kg - m?) = 4.66 (s~2)
Pss = —(4.661 s72)(5 deg)/[(—1.3 s7)(57.3 deg/rad)] = 0.31 rad/s

Figure 5.3 is a plot of the roll rate time history for a step change in aileron deflection.

Let us reconsider this problem. Suppose that Figure 5.3 is a measured roll rate
instead of a calculated response. The roll rate of the airplane could be measured by
means of a rate gyro appropriately located on the airplane. If we know the mass and
geometric properties of the airplane we can extract the aerodynamic stability
coefficients from the measured motion data.

If we fit the solution to the differential equation of motion to the response we
can obtain values for C; and C, It can be shown that after one time constant the
response of a first-order” system o a step input is 63% of its final value. With this

FIGURE 5.3
Pss = 17.8 Deg/sec Roll time history of an F104A to a
NI g 5° step change in aileron
_________ deflection.
P
(Deg/sec) 1g 4 5-Degree
aileron step
input
0 T T T
0 1 2 3 4

Time (sec)
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in mind we can obtain the time constant from Figure 5.3. The steady-state roll rate
can also be measured directly from this figure. Knowing 7 and p,,, we can compute
L and L, and, in turn, C, and C,, The technique of extracting aerodynamic data
from the measured response is often called the inverse problem or parameter
identification.

5.2.1 Wing Rock

One of the most common dynamic phenomena experienced by slender-wing air-
craft flying at high angles of attack is known as wing rock. Wing rock is a
complicated motion that typically affects several degrees of freedom simulta-
neously; however, as the name implies the primary motion is an oscillation in roll.
The rolling motion is self-induced and characterized by a limit cycle behavior.
Obviously such a dynamic motion is unwanted and should be avoided.

A highly swept wing will undergo a wing rock motion at large angles of attack.
Figure 5.4 shows the rolling motion for a delta wing having a leading edge sweep
of 80° (from [5.2] and [5.3]). The wing was mounted on an air bearing system that
permitted only a free to roll motion. The model was released with initial conditions
¢ = 0and ¢ = 0. The model is unstable in a roll: The motion begins to build up
until it reaches some maximum amplitude at which time it continues to repeat the
motion. This type of motion is called a limit cycle oscillation. The limit cycle
motion clearly is indicated when the response data is plotted in a phase plane
diagram. In the phase plane diagram, the amplitude, ¢, is plotted versus the roll
velocity, ¢. The data in Figure 5.4 when plotted in the phase plane is as shown on
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FIGURE 5.4
Wing rock motion of a flat plate delta wing.
Leading edge sweep angle of 80° and & = 30°
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FIGURE 5.5

Phase plane plots of the wing rock motion of a delta wing,

the left side of Figure 5.5. The motion is observed to spiral out to the limit cycle.
If the initial conditions on release were any combination on ¢ and ¢ within the
limit cycle boundary the motion would still spiral out the limit cycle boundary. On
the other hand if the initial conditions were outside the limit cycle boundary
the motion would spiral into the limit cycle as illustrated on the right side of Fig-
ure 5.5. The limit cycle motion is due to the nonlinear aerodynamic characteristics
of a slender delta wing at large angles of attack. Because the aerodynamics are
nonlinear, the equation of motion also will be nonlinear. This type of motion can
not be predicted using the linear differential equations presented in this chapter.

Airplanes most susceptible to this oscillatory phenomenon typically have
highly swept planforms or long, slender forebodies that produce vortical flows
during excursions into the high angle-of-attack regime. The wing rock motion
arises from the unsteady behavior of the vortical flow fields associated with these
planforms, coupled with the rolling degree of freedom of the aircraft. The unsteady
loads created by the flow field produce a rolling oscillation that exhibits the classic
limit cycle behavior. The motion can be quite complex and in many cases is the
result of the coupling of several degrees of freedom. There are cases where the
motion is primarily a rolling motion, however, as presented here.

5.2.2 Roll Control Reversal

The aileron control power per degree, ( pb/2u,)/8, is shown in Figure 5.6. Note that
(pb/2u,)/8, essentially is a constant, independent of speeds below 140 m/s. How-
ever, at high speeds (pb/2u,)/8, decreases until a point is reached where roll
control is lost. The point at which (pb/2u,)/8, = 0 is called the aileron reversal
speed. The loss and ultimate reversal of aileron control is due to the elasticity of the
wing.
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Some understanding of this aeroelastic phenomenon can be obtained from the
following simplified analysis. Figure 5.7 shows a two-dimensional wing with an
aileron. As the aileron is deflected downward it increases the lift acting on the wing.
The increased lift produces a rolling moment. Deflecting the aileron also produces
anose-down aerodynamic pitching moment that tends to twist the wing downward.
Such a rotation will reduce the lift and rolling moment. The aerodynamic forces
vary with the square of the airplane’s velocity whereas the elastic stiffness of the
wing is independent of the flight speed. Thus, the wing may twist enough that the
ailerons become ineffective. The speed at which the ailerons become ineffective is
called the critical aileron reversal speed.

To determine the aileron reversal speed, we shall use the information in Fig-
ure 5.7. The torsional stiffness of the wing will be modeled by the simple torsional
spring located at the elastic axis of the wing. The lift and moment coefficients for
the two-dimensional airfoil can be expressed as functions of the stability co-
efficients:

Cg == Cgma = Cgsa (58)
Cp = Cp, + Cp 8 (5.9)

where 6 is the flap angle; that is, aileron. Aileron reversal occurs when the rate of
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change of lift with aileron deflection is 0:

L= (C,a+ C¢,0) Oc (5.10)
dL da
= (cguE + ceﬁ) Qc =0 (5.11)
da Ce,
or T Ee— | (5.12)

a

Note that the angle of attack is a function of the flap angle because the wing can
twist. The aerodynamic moment acting about the elastic axis is

M =[G, + Csb + (G a + Cp,8)a]lOc® (5.13)
This moment is balanced by the torsional moment to the wing:
ka =[G, + C,B + (C, a + C,0)a] Oc* (5.14)

where k is the torsional stiffness of the wing.
Differentiating Equation (5.14) with respect to 6 yields

d
d—‘(; = [c,,,s + <c€a i—‘; = Cea) a} Oc? (5.15)

Substituting Equation (5.12) into (5.15) and solving for Q yields the critical dy-
namic pressure when control reversal will occur:

B

Qrev i —W (516)

mg

The reversal speed is given by

2%,
U =\ — m (5.17)

Note that the reversal speed increases with increasing torsional stiffness and in-
creasing altitude.

5.3
PURE YAWING MOTION

As our last example of a motion with a single degree of freedom, we shall examine
the motion of an airplane constrained so that it can perform only a simple yawing
motion. Figure 5.8 illustrates a wind-tunnel model that can only perform yawing
motions. The equation of motion can be written as follows:

E Yawing moments = I i (5.18)

The yawing moment N and the yaw angle s can be expressed as

N=N,+AN = + Ay (5.19)
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Yo FIGURE 5.8
Wind-tunnel model
constrained to a pure
yawing motion.
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The yawing moment equation reduces to

AN = I Ay (5.20)
ON ., . ON aN
— ie— = .
o8 AB or Ar 25, 0, (3.21)

Because the center of gravity is constrained, the yaw angle ¢ and the sideslip angle
B are related by the expression

Ay = —AB Ay = —ApB Ay = Ar (5.22)
Substituting these relationships into Equation (5.20) and rearranging yields

oN
="_AB +
where AN Y AB

Ay — (N, — Np) Ay + Ny Ay = N; A3, (5.23)
_ AN/ ar
I

Z

where N, and so forth.

For airplanes, the term N usually is negligible and will be eliminated in future
expressions.
The characteristic equation for Equation (5.23) is

A2— N+ N;=0 (5.24)

The damping ratio { and the undamped natural frequency w, can be determined
directly from Equation (5.24):

w0, = VN, (5.25)
N,

= —-—— 5.26

£ o, (5.26)

The solution to Equation (5.23) for a step change in the rudder control will
result in a damped sinusoidal motion, provided the airplane has sufficient aerody-
namic damping. As in the case of the pure pitching we see that the frequency of
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oscillation is a function of the airplane’s static stability (weathercock or directional
stability) and the damping ratio is a function of the aerodynamic damping deriva-
tive. Figure 5.9 illustrates the yawing motion due to a step change in rudder deflec-
tions for different levels of aerodynamic damping.

EXAMPLE PROBLEM 5.2. Suppose an airplane is constrained to a pure yawing
motion as described in Section 5.3. Using the data for the general aviation airplane in
Appendix B, determine the following:

(a) The yawing moment equation rewritten in state-space form.

(b) The characteristic equation and eigenvalues for the system.

(¢) The damping ratio, £, and undamped natural frequency, w,. :

(d) The response of the airplane to a 5° rudder input. Assume the initial conditions
are AB(0) = 0, Ar(0) = 0.

Solution. The lateral derivatives can be estimated from the data in Appendix B. For
the sea-level flight condition, the weathercock static stability coefficient, C,,, the
yawing damping coefficient, C, , and the rudder control power, C,,,» have the following

numerical values:
C,, = 0.071/rad

G, = —0.072/rad

C, = —0.125/rad

The derivative C,; is not included in the table of Appendix B and will be assumed to
be O for this problem.

For a flight velocity of 176 ft/s, the dimensional derivatives Ng, N,, and N, can be
estimated from the mass, geometric, and aerodynamic stability coefficient data of
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Appendix B. The dynamic pressure, Q, is calculated next:

1
0= Epu% = (0.5) (0.002378 slug/ft®) (176 ft/s)

= 36.8 lb/ft?

The dimensional derivative, Ny, which is the yaw moment due to the airplane’s weath-
ercock stability, is obtained from the expression

v Cu0Sh
BN i
_ (0.071/rad) (36.8 Ib/ft?) (184 ft) (33.4 f)

- N 3530 slug - ft2

= 4.55/s”

The dimensional derivative, N,, which is the yaw damping of the airplane, is obtained
from the expression

b
C.| —)0Osb
n,.<2u0)Q

IZ
_ (—0.125/rad) [33.4 £t/(2(176 ft/s))] (36.8 Ib/fe2) (184 £t?) (33.4 ft)
B 3530 slug - ft?

= —0.76/s

The dimensional derivative, Ns,, the rudder control derivative, is obtained from the
expression

C.,, 0Sb

I

Z

_ (—0.072/rad) (36.8 Ib/ft?) (184 ft2) (33.4 fr)
a 3530 slug - ft?

8

= —4.6/s?

Substituting the dimensional derivatives into the constrained yawing moment equation
(Equation (5.23)) yields

A — (N, — Np) Adr + Ny Ay = N A8,
where Nj is assumed to be 0:
A + 0.76 A + 4.55 Ay = —4.6 AS,

This is a second-order differential equation in terms of the dependent variable Ay. The
preceding second-order differential equation can be wri.ten as a system of two first-
order differential equations by defining the system states as Ay and Ar. Recall that the
time rate of change of the yaw angle is the same as the yaw rate; that is, Ajy = Ar.
Solving the yaw moment equation for the highest order derivative A,

A = —0.76 Ay — 4.55 Ay — 4.6 A8,
or Ar = —0.76 Ar — 4.55 Ay — 4.6 A8,
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The two state equations are
A = Ar
A7 = —0.76 Ar — 4.55 Ay — 4.6 AS,

Il

which can be readily arranged in matrix form as

[l e [ R AT

or X = Ax + By

A . =
where the state vector, x = [ A"b], the control vector is Ad,, and the A and B matrices
r

are

0 1
A= [—4.55 —0.76}

b [~2.6]

The characteristic equation for the system is found from the'equation
[AT-A| =0

where on substituting in the A matrix yields

L0 0 1
"\[0 1] > [—4.55 —0.76” =¥

A —q
= M + 0.76) + 4.55 =
’4.55 A+ 0.76’ dpi ATl

or A2+ 0.76\ + 455 =0

The characteristic equation for a second-order system could have been obtained di-

rectly from the second-order differential equation.
The eigenvalues of the system are found by obtaining the roots of the characteristic

equation. For this example the root or eigenvalues can be shown to be

A, = —038 = 2.1i
The eigenvalues are complex; therefore the free response motion will be a damped
sinusoidal oscillation. The motion is damped because the real part of the eigenvalue is

negative.
The damping ratio, £, and the undamped natural frequency can be estimated from

Equations (5.25) and (5.26):
w, = VNg = V4.55/s* = 2.13 rad/s

N, (0.76/s)
= = = =0.178
and E=-= /N,  2(2.13 radls) g
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Yawing Response to a Step Change in Rudder Angle
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FIGURE 5.10

Yawing motion response to a 5° step input in the rudder angle.

Finally the response of the airplane to a 5° step input in the rudder is shown in Fig-
ure 5.10. The change in both heading angle Ay and the yaw rate Ar are presented
as a function of time. The response was determined using MATLAB.

54
LATERAL-DIRECTIONAL EQUATIONS OF MOTION

The lateral-directional equations of motion consist of the side force, rolling mo-
ment, and yawing moment equations of motion. The lateral equations of motion
can be rearranged into the state-space form in the following manner. We start with

a lateral set of Equations (5.27):

d
<d—t— Yu> Av — Y, Ap + (uy — Y,) Ar — g cos 0o Ad = Y, AS,

d L. d
— L, Ao + (= — = B = + :
» Av ( - L,,) Ap <Ix i L,) Ar =L, A8, + L; A5, (5.27)

Lo d d
) Xz —
— N, Av — <—I; = =} N,,) Ap + <—t o= N,) Ar = N, A8, + Ns, A6,
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Rearranging and collecting terms, this equation can be written in the state variable
form:

X = Ax + By (5.28)

The matrices A and B are defined as follows:

Y, Y,  —(-—Y%) gcos,
I .
L+ BN LE+ENE L4 ENE 0
A= L 2 x (5.29)
N* e xzrxk * o Xk * Ty
PHLy Ny L NI4ELY 0
o 1 0 0 |
[0 Y, |
I
LY+ Ny L3+ =N
B = . 1 (5.30)
Ni+FLE Np+ LY
0 1) :
[ Av
| Ap A8,
X = ie and n= [AS,] (5.31)
| Ad

The starred derivatives are defined as follows:

L, y N,
n-@/am

L¥ = and the like. (5.32)

N TR T))

If the product of intertia I, = 0, the equations of motion reduce to the following
form:

Av Y, Y, —(u—Y) gcosb||Av 0 1,

Ap| _|L, L, £ 0 Ap Ls Ls [Aaa

ar| TN, N, N, o ||ar|t N, w,|Las] ©3F
A 0 1 0 0 Ad 0 0

It sometimes is convenient to use the sideslip angle AB instead of the side
velocity Av. These two quantities are related to each other in the following way:

AB = tan™! a¢ = ] (5.34)

Uy Uy
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Using this relationship, Equation (5.33) can be expressed in terms of AB:

AB & E _<1 = _Y_’> £ 08 U B AB 0 _Iéc

U U U U U
A. 0 0 0. 0 0 A8
=12 L L 0 i” | L, L, [ Aa"] (5.35)
ap| [N M N, 0 4 ; Ny, Ny|

0 1 0 0 0 0

The solution of Equation (5.35) is obtained in the same manner as we solved the
state equations in Chapter 4. The characteristic equation is obtained by expanding
the following determinant:

M- Al =0 (5.36)

where I and A are the identity and lateral stability matrices, respectively. The
characteristic equation determined from the stability matrix A yields a quartic
equation:

AM* 4+ BA + CA*+ DA+ E=0 (3:37)

where A, B, C, D, and E are functions of the stability derivatives, mass, and inertia
characteristics of the airplane.

In general, we will find the roots to the lateral-directional characteristic equa-
tion to be composed of two real roots and a pair of complex roots. The roots will
be such that the airplane response can be characterized by the following motions:

1. A slowly convergent or divergent motion, called the spiral mode.

2. A highly convergent motion, called the rolling mode.

3. A lightly damped oscillatory motion having a low frequency, called the Duich
roll mode.

Figures 5.11, 5.12, and 5.13 illustrate the spiral, roll, and Dutch roll motions. An
unstable spiral mode results in a turning flight trajectory. The airplane’s bank angle
increases slowly and it flies in an ever-tightening spiral dive. The rolling motion
usually is highly damped and will reach a steady state in a very short time. The
combination of the yawing and rolling oscillations is called the Dutch roll motion
because it reminded someone of the weaving motion of a Dutch ice skater.

5.4.1 Spiral Approximation

As indicated in Figure 5.11 the spiral mode is characterized by changes in the bank
angle ¢ and the heading angle . The sideslip angle usually is quite small but
cannot be neglected because the acrodynamic moments do not depend on the roll
angle ¢ or the heading angle ¢ but on the sideslip angle B, roll rate p, and yawing
rate r.

The aerodynamic contributions due to 8 and r usually are on the same order
of magnitude. Therefore, to obtain an approximation of the spiral mode we shall
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FIGURE 5.11
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neglect the side force equation and A¢. With these assumptions, the equations of
motion for the approximation can be obtained from Equation (5.35):

LyAB + L, Ar =0 (5.38)
AF = Ny AB + N, Ar (5.39)
b Np o Bellp = Lple iy 0 g (5.40)

Lg
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FIGURE 5.13
The Dutch roll motion.

The characteristic root for this equation is

- LgN, — L,Ng (5.41)
Lg

The stability derivatives L (dihedral effect) and N, (yaw rate damping) usually are

negative quantities. On the other hand, N, (directional stability) and L, (roll mo-

ment due to yaw rate) generally are positive quantities. If the derivatives have the

usual sign, then the condition for a stable spiral model is

LgN, — NgL, >0 (5.42)
or LgN, > NgL, (5.43)

Increasing the dihedral effect L, or the yaw damping or both can make the spiral
mode stable.
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5.4.2 Roll Approximation

This motion can be approximated by the single degree of freedom rolling motion,
which was analyzed earlier in the chapter:

TAp+Ap =0

where 7 is the roll time constant. Therefore,
1
Ag = —==1, (5.44)
T

The magnitude of the roll damping L, is dependent on the size of the wing and tail
surfaces.

5.4.3 Dutch Roll Approximation

If we consider the Dutch roll mode to consist primarily of sideslipping and yawing
motions, then we can neglect the rolling moment equation. With these assump-
tions, Equation (5.35) reduces to

: .2 _({_%
MBSk 549
N, N, '

Solving for the characteristic equation yields

A2 — (YB N uoN,.))\ 4 YeN, = Np¥, + uoNg _ o (5.46)

Uy Uy

From this expression we can determine the undamped natural frequency and the
damping ratio as follows:

Y,N, — N, Y, +
@, = \/BN’ Hol + My (5.47)
Uy
1 (Y + uN,
for = 3 < £ 2 > (5.48)
, U

npR

The approximations developed in this section give, at best, only a rough
estimate of the spiral and Dutch roll modes. The approximate formulas should,
therefore, be used with caution. The reason for the poor agreement between the
approximate and exact solutions is that the Dutch roll motion is truly a three-
degree-of-freedom motion with strong coupling between the equations.

EXAMPLE PROBLEM 53. Find the lateral eigenvalues of the general aviation air-
plane described in Chapter 4 and compare these results with the answers obtained
using the lateral approximations. A summary of the aerodynamic and geometric data
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TABLE 5.1

Summary of lateral directional derivatives

SC. SbC,
Yy = h (ft/s*> or m/s?) N, = b (s Lg=
m L
0SbC, Sb*C,
Y,=—=" (ft/s / - :
" 2muy KB/ o (il # 2Lu,
0osb*C,
L = P =1
= i &)
Sb6C, Sb2C,
¥ = o5bC,, (ft/s) or (m/s) N = o7,
2muygy 21Lu,
- ash?q,, =
by = 2L.u, 6™
SC SC
Y5, = b (ft/s?) or (m/s?) Ys = b
m m
osbC, H 0ShC, .
Sa & IZ 6" (si-) N&r = ]Z :
osbC, osbCy,
sa = 7 “ (s72) Ly = 7 =

QSbC,,
;

x

(™)

(s

(s™)

(ft/s?) or (m/s?)

™)

(7%

needed for this analysis is included in Appendix B. The stick fixed lateral equations

follow:

: Ys ¥
A B Ir
Af Uy Uy
ar| T (B Lo

; Ns; N

A B P

¢ 0 1

—<1—Zf) Ecos@0 AB

Uy Uy
Ap
ILVr 8 Ar
4 A
0 0 4

Before we can determine the eigenvalues of the stability matrix A, we first must
calculate the lateral stability derivatives. Table 5.1 is a summary of the lateral stability
derivative definitions and Table 5.2 gives a summary of the values of these derivatives

for the general aviation airplane.

Substituting the lateral stability derivatives into the stick fixed lateral equations

yields
AB —0.254
or Ap | _|-16.02
A? 4.488
Ad 0

X = Ax
0 -1.0 0.182|| AB
—8.40 219 0 Ap
—0.350 -0.760 0 Ar
1 0 0 Ad

The eigenvalues can be determined by finding the eigenvalues of the matrix A:

[AI—-A| =0



200 CHAPTER 5: Lateral Motion (Stick Fixed)

TABLE 5.2
Lateral derivatives for the general
aviation airplane

Il

Y, = —0.254 (s L, = —0.091 (ft -5)~!
Yo = —4572 (ft/sy) Ls= —16.02 (579

Il

Y,=0 = —84(s7")
Y, =0 L,=219("
N, = 0.025 (ft - 5)~!

N, = 4.49 (s72)

N, = —035 (")

N, = —0.76 (s~

The resulting characteristic equation is
AT+ 9.4170% + 13.982A2 + 48.102) + 0.4205 = 0
Solution of the characteristic equation yields the lateral eigenvalues:
A = —0.00877 (Spiral mode)
A = —8.435 (Roll mode)
A = —0.487 * i(2.335) (Dutch roll mode)

The estimates for the lateral eigenvalues using the approximate expressions is obtained
as follows:

LgN, — LN,
Lg

/\spiral =T

Susbtituting in the numerical values for the derivatives yields

Agpirat = [(—=16.02 s72)(=0.76 s7") — (2.19 s71)(4.49 s72)]/(—16.02 s7?)
—0.144 57!
Aot = L, = —84 57!

The Dutch roll roots are determined from the characteristic equation given by Equa-
tion (5.44):

AZ — (Yﬁ = uON,))\ I YgN, — Ng¥, + uyNg —0
Uy Uy
or A? 4+ 1.1021 + 471 =0

which yields the following roots
Apr = —0.51 = 2.109i
and W, . = 2.17 rad/s

N DR

{pr = 0.254
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TABLE 5.3
Comparison of exact and approximate roots

Exact Approximate
v Typs 8 75,8 P,s Ti2s 8 T,, s P,s
Spiral '78.7 _ = 479 — -
Roll 0.082 — — 0.082 — —
Dutch roll 1.42 — 2.69 1.35 — 2.98

Table 5.3 compares the results of the exact and approximate analysis. For this
example, the roll and Dutch roll roots are in good agreement. On the other hand, the
spiral root approximation is very poor.

The relationship between good spiral and Dutch roll characteristics presents a
challenge to the airplane designer. In Chapter 2 it was stated that an airplane
should possess static stability in both the directional and roll modes. This implies
the C, > 0 and C,[i < 0. However, if we examine the influence of these stability
coefficients on the lateral roots by means of a root locus plot, we observe the
following. As the dihedral effect is increased, that is, C; becomes more negative,
the Dutch roll root moves toward the right half-plane, which means the Dutch roll
root is becoming less stable and the spiral root is moving in the direction of
increased stability. These observations are clearly shown in Figures 5.14 and 5.15.

Variation of lateral root with C, iw 50
B
°— C'B =0
G, <0 - 4.0
B y
- 3.0
Dutch
roll root
- 2.0
’
A
II ~ 1.0 c
C'B<0 C'B>O ‘ - 'B<0
el L L 8 1 1 'r < L 17

L
—9.(;7:8.0 70 60 -50 -40 -3.0 -20 \-1.0 1.0 2.0
. = =1.0 Splral

Roll root Cp>0" root
\
Dutch - —2.0
roll root
- —3.0

FIGURE 5.14
Variation of lateral roots with C,.
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i FIGURE 5.15
~ 5.0 Variation of lateral roots with C,,.
Variation of lateral
roots with C"B I 4.0
®— C"g =0 :
I
€ 0‘ i 30
B I
i
Dutch roll root - 2.0

ras

Roll root
/ k‘ C”B <0
il L I |
i
-8.0 ‘/53.0 =2.0 =1.0 1.0 20
Spiral root {_ 1.0

Negligible change

|
I
in roll root ,' - —2.0
C..>0 ;
o I L -3.0
I
I
|
|I L —4.0
- -5.0
/8,
8
' e |Rudder | B Airplane U
= servo dynamics
Rate
gyro
FIGURE 5.16

Block diagram of a yaw damper system.

Increasing directional stability of the airplane, that is, C, becomes more
positive, causes the spiral root to become less stable and the frequency of the Dutch
roll root is increased. Increasing the yaw damping, that is, C, becomes more
negative, will result in better Dutch roll damping. Unfortunately, this is not easy to
achieve simply by geometric design changes. Increasing the vertical tail size will
cause an increase in both C, and C,. Many airplanes are provided with a rate
damper to artificially provide adequate damping in Dutch roll. Figure 5.16 is a
sketch of a simple control system to provide increased yaw damping for the air-
plane.
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5.5
LATERAL FLYING QUALITIES

In this chapter we examined the lateral direction characteristics of an airplane. The
relationship between the aerodynamic stability and control derivatives and the
lateral response was discussed. We have developed the necessary equations and
analysis procedures to calculate the lateral dynamics. Although these techniques
allow us to determine whether an airplane design is stable or unstable, by itself the
analysis does not tell us whether the pilot will judge the airplane to have acceptable
flying characteristics. To determine this the designer needs to know what dynamic
characteristics are considered favorable by the pilots who will fly the airplane. This
information is available through the lateral-directional flying quality specifications.

The lateral-directional flying quality requirements are listed in Tables 5.4, 5.5,
and 5.6. The definition of class and category were presented in Chapter 4. In
Example Problem 5.2 the aircraft would be considered a Class 1 vehicle and the
flight phase as Category B. Using the information from Table 5.4, we find that the
aircraft studied here has Level 1 flying qualities.

EXAMPLE PROBLEM 54. As shown earlier, the Dutch roll motion can be improved
by increasing the magnitude of the yaw damping term N,. One means of increasing N,
is by increasing the vertical tail area. Unfortunately, increasing the vertical tail area
will add additional drag to the airplane as well as increase the directional stability. The
increase in directional stability will degrade the spiral characteristics of the airplane.
For most transport and fighter aircraft, increased damping is provided artificially by
means of a yaw damper.

In this example we examine the basic idea behind a yaw damper. More detailed
information on stability augmentation systems and autopilots will be provided in

TABLE 5.4
Spiral mode (minimum time to double amplitude)
flying qualities

Class Category  Level 1 Level2  Level 3
Iand IV A 12 s 12s 4s
Band C 20 s 12s 4s
II and IIT All 20's 12 4s
TABLE 5.5

Roll mode (maximum roll time constant) flying
qualities (in seconds)

Class Category Level 1 Level 2 Level 3

LIV 1.0 14
I, 11 = 1.4 3.0 19
All B 1.4 3.0 10
I1v 1.0 1.4
11, II1 L 1.4 3.0 10
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TABLE 5.6
Dutch roll flying qualities

Min {w,,* Min w,,

Level Category Class Min * rad/s rad/s
i) A LIV 0.19 0.35 1.0
1L, III 0.19 0.35 0.4
B All 0.08 0.15 0.4
C L II-C 0.08 0.15 1.0
v
II-L, 111 0.08 0.15 0.4
2 All All 0.02 0.05 0.4
3 All All 0.02 — 0.4

Where C and L denote carrier- or land-based aircraft.
*The governing damping requirement is that yielding the larger value of .

Chapters 7—10. To examine how a yaw damper can be used to provide damping for an
airplane, consider the yawing moment equation developed earlier:

A — N, Ay + Ng Ay = N5, AS,

Suppose that for a particular airplane the static directional stability, yaw damping,
and control derivatives were as follows:

Ng=1.77s7" N, = —0.10s7! Ns, = —0.84 57!
For this airplane the damping ratio and undamped natural frequency would be
N,
= ——— = 0.037 w, = VN; = 1.33 rad/s
2V, y

The low damping ratio would result in a free response that would have a large over-
shoot and poor damping. Such an airplane would be very difficult for the pilot to fly.
However, we could design a feedback control system such that the rudder deflection is
proportional to the yaw rate; that is,

A8, = —k Ay

Substituting the control deflection expression into the equation of motion and rearrang-
ing yields

Ay — (N, — kNs) Afr + Ng Ay = 0

By proper selection of k we can provide the airplane whatever damping characteristics
we desire. For the purpose of this example, consider the simple yawing motion to be an
approximation of the Dutch roll motion. The flying quality specifications included in
Table 5.6 state that a Level 1 flying quality rating would be achieved for the landing
flight phase if

{>0.08 {w, > 0.15 rad/s w, > 0.4 rad/s

A damping ratio of 0.2 and a frequency of 1.33 would be considered acceptable by
pilots. The problem now is to select the unknown gain k so that the airplane has the
desired damping characteristics. If we compare the yaw moment equation of motion to
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the standard form for a second-order system, we can establish a relationship for k as
follows:

2w, = —(N, — kN5) 0532 = —[~0.1 — k(—0.84)] k= —0.514

Figure 5.16 is a sketch of a simple yaw damper stability augmentation system.

Although we designed a feedback system to provide improved damping, it is
possible to control both the damping and the frequency. This can be accomplished
by making the rudder deflection proportional to both the yaw rate and yaw angle;
that is,

A8, = —ky Ay — ky Ay
Substituting this expression back into the differential equation yields
A — (N, — kyNs,) Adp + (Ng + k) Ay = 0

The gains k, and k, then are selected so that the characteristic equation has the desired
damping ratio and frequency. The use of feedback control to augment the stability
characteristics of an airplane plays an important role in the design of modern aircraft.
By using stability augmentation systems, the designer can ensure good flying qualities
over the entire flight regime. Furthermore, with the addition of a stability augmenta-
tion system, the designer can reduce the inherent aerodynamic static stability of the
airplane by reducing the vertical tail size. Thus, the designer can achieve an improve-
ment in performance without compromising the level of flying qualities.

5.6
INERTIAL COUPLING

In the analysis presented in this and the previous chapter, we treated the longitudi-
nal and lateral equations separately. In so doing we assumed that there is no
coupling between the equations. However, slender high-performance fighter air-
craft can experience significant roll coupling that can result in divergence from the
desired flight path, causing loss of control or structural failure.

The mechanisms that cause this undesirable behavior can be due to inertial or
aerodynamic coupling of the equations of motion. To explain how inertial coupling
occurs, we examine the nonlinearized moment equations developed in Chapter 3.
The moment equations are reproduced in Equation (5.49):

> Roll moments = Lp + qr(I, — L) — (r + gqp)L,
> Pitching moments = 1,g + pr(I, — 7) + (p*> — r)L, (5.49)
2. Yawing moments = Li + pq(l, — I) + (qr — p)L.

The first cases of inertial coupling started to appear when fighter aircraft
designs were developed for supersonic flight. These aircraft were designed with
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low aspect ratio wings and long, slender fuselages. In these designs, more of the
aircraft’s weight was concentrated in the fuselage than in the earlier subsonic
fighters. With the weight concentrated in the fuselage, the moments of inertia
around the pitch angle yaw axis increased and the inertia around the roll axis
decreased in comparison with subsonic fighter aircraft.

On examining Equation (5.49) we see that the second term in the pitch equa-
tion could be significant if the difference in the moments of inertia becomes large.
For the case of a slender high-performance fighter executing a rapid rolling maneu-
ver the term pr(I, — I.) can become large enough to produce an uncontrollable
pitching motion.

A similar argument can be made for the product of inertia terms in the equa-
tions of motion. The product of inertia /., is a measure of the uniformity of the
distribution of mass about the x axis. For modern fighter aircraft I, typically is not
0. Again we see that if the airplane is executing a rapid roll maneuver the term
(p* — r?»I,, may be as significant as the other terms in the equation.

Finally, aerodynamic coupling also must be considered when aircraft are ma-
neuvering at high angular rates or at high angles of attack. As was discussed in
Chapter 4 high angle of attack flow asymmetries can cause out-of-plane forces and
moments even for symmetric flight conditions. Such forces and moments couple
the longitudinal and lateral equations of motion.

5.7
SUMMARY

In this chapter we examined the lateral modes of motion. The Dutch roll and spiral
motions were shown to be influenced by static directional stability and dihedral
effect in an opposing manner. The designer is faced with the dilemma of trying to
satisfy the flying quality specifications for both the spiral and Dutch roll modes.
This becomes particularly difficult for airplanes that have extended flight en-
velopes. One way designers have solved this problem is by incorporating a yaw
damper in the design. The yaw damper is an automatic system that artificially
improves the system damping. The increased damping provided by the yaw damper
improves both the spiral and Dutch roll characteristics.

PROBLEMS

Problems that require the use of a computer have a capital C after the problem number.

5.1. Determine the response of the A-4D to a 5° step change in aileron deflection. Plot
the roll rate versus time. Assume sea-level standard conditions and that the
airplane is flying at M = 0.4. What is the steady-state roll rate and time constant
for this motion?
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5.2. For the roll response shown in Figure P5.2, estimate the aileron control power L,

53.

54.

and the roll damping derivative L,. Information on the characteristics of the
airplane is in the figure.

M
V = 224 ft/sec
4 S = 542 ft?
P it b =54t
[degisec] I, = 42,273 slug/ft?
9 AS, = 5°
p = 0.00205 slug/ft®
O T | T T
0 1 2 3
Time~ sec
FIGURE P5.2

Roll rate time history.

A wind-tunnel model free to rotate about its x axis is spun up to 10.5 rad/s by
means of a motor drive system. When the motor drive is disengaged, the model
spin will decay as shown in Figure P5.3. From the spin time history determine the
roll damping derivative L,,.

12 FIGURE P5.3

10 Roll rate time history.

8 - Roll spin down

6_

4 -

2_

04—

P(rad/sec)

Time-sec

A wind-tunnel model is constructed of two small lifting surfaces mounted to an

axisymmetric body as illustrated in Figure P5.4. The body houses a set of ball

bearings that permit the model to roll freely about the longitudinal or x axis. The

right lifting surface (positive y axis) is mounted to the body at a —3° and the left

lifting surface is set at a +3°.

(a) Estimate the rolling moment of inertia, I,, of the model. Approximate the
lifting surfaces as thin flat plates. Neglect the body contribution.

(b) Estimate the roll torque due to the differential mounting incidence. Express
your answer as a roll moment coefficient per unit deflection, Cj,.

(¢) Estimate the roll damping coefficient, C; .
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5.5,

(d) Calculate the response of the model if it is released from the rest. Neglect the
friction of the bearings.

Low friction
bearing

Mounting support

c=o"
\/ b=12"
X — ‘((C
Free to roll about +3° /
the x-axis Assume the diameter of

the body is very small.

Assume surfaces are made
of aluminum and are 0.1 inches thick.

FIGURE P54

Suppose the wing segments for the model described in Problem 5.4 are set so that
there is no differential incidence between the two sections. If the wings are
mounted in this manner, the roll torque due to the differential incidences will be
0. Now consider what would happen if a half-span wing were mounted upstream
of the free-to-roll model as illustrated in Figure P5.5. Assume that the free-to-
roll wing is centered in the tip vortex. Estimate the maximum roll rate of the

Low friction
bearing

Mounting support

c=2"

\\T>/ b=12"

Assume the diameter of
the body is very small.

No differential

wing incidence /

X

Wing tip vortex

Assume surfaces are made
of aluminum and are 0.1 inches thick.

FIGURE P5.5

5.6.

5.7,
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free-to-roll wing. The strength of the vortex can be shown to be as follows.
_8C,VS
b

r

|

where C;, = wing lift coefficient
V = velocity of the tunnel
S = wing area of generating wing
b = span of generating wing.

Assume the vortex core is 5% of the generating wing span.

Assuming the cruciform finned model in Figure P5.6 is mounted in a wind
tunnel so that it is constrained to a pure yawing motion. The model is displaced
from its trim position by 10° and then released. Neglect the fuselage and B
contribution and assume S = 7D?/4.

(a) Find the time for the motion to damp to half its initial amplitude.

(b) What is the period of the motion?

‘ 10D | D = Characteristic length

N D=5.0cm
——— —13.D

V =30 m/sec [Tl Tail surfaces are
C) — flat plates
D)

l,=5.0 X 102 kg-m?
4D S = 7D?/4
T T T T T T T T T 7T 7T T T TT 777,

FIGURE P5.6
Yawing wind-tunnel model.

Figure P5.7. shows the stick fixed lateral roots of a jet transport airplane. Identify
the roots and determine the time for the amplitude and period to halve or double
where applicable.

iw

(rad/sec)

-1 6
= 4

X
-2

L T T T T % T T T 1 M
-8 -6 -4 -2 : 2 4

- -2

X «
+-4
- -6

FIGURE P5.7
Lateral roots for a jet transport.
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5.8(C). The Dutch roll motion can be approximated using the following equations:

A _<1 B —&) ol 9 = A8
Ar | Uy Uy A, Uy r
Ng N,

Assume the coefficients in the plant matrix have the following numerical values:

Yy = —78ft/s® N, = —0341/s Y5 = —5.236 ft/s>
Y, = 2.47 ftls up = 154 ft/s N, = 0.616 1/s?
Ng = 0.64 1/5>

(a) Determine the Dutch roll eigenvalues.

(b) What is the damping ratio and undamped natural frequency?

(c) What is the period and time to half amplitude of the motion?

(d) Determine the response of the system if the initial conditions are as follows:

FERY

From the time history plot, estimate the period and time to half amplitude.
(e) Determine the response of the system to a step input. For this part assume that
the initial conditions are both 0.

The last two parts of this problem should be solved by computer.

5.9(C). Develop a computer code to obtain the stick fixed lateral eigenvalues from the
lateral stability matrix. Use your computer program to analyze the lateral motion
of the 747 jet transport. Estimated aerodynamic, mass, and geometric character-
istics of the 747 are included in Appendix B. The MATLAB Software is suggested
for this problem.

5.10(C). Using the program developed in problem 5.9, examine the influence of C,and C,,
on the lateral roots. Use the 747 data, but vary C,, and C,, separately.

5.11. Using the Dutch roll .approximation, determine the state feedback gains so that the
damping ratio and frequency of the Dutch roll are 0.3 and 1.0 rad/s, respectively.
Assume the airplane has the following characteristics:

Y, = —19.5 ft/s Y. = 1.3 ft/s
Np= 15572 N.= =021 57!
Y5, = 4.7 ft/s? N5, = —0.082s72
uy = 400 ft/s
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