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CHAPTER 8

Application of Classical Control Theory
to Aircraft Autopilot Design

“The application of automatic control systems to aircraft promises to bring
about the most important new advances in aeronautics in the future.”

William Bollay, 14th Wright Brothers Lecture, 1950

8.1
INTRODUCTION

The rapid advancement of aircraft design from the very limited capabilities of the
Wright brothers’ first successful airplane to today’s high performance military,
commercial, and general aviation aircraft required the development of many tech-
nologies: aerodynamics, structures, materials, propulsion, and flight controls. To-
day’s aircraft designs rely heavily on automatic control systems to monitor and
control many of the aircraft’s subsystems.

The development of automatic control systems has played an important role in
the growth of civil and military aviation. Modern aircraft include a variety of
automatic control systems that aid the flight crew in navigation, flight management,
and augmenting the stability characteristics of the airplane. In this chapter we use
control theory to design simple autopilots that can be used by the flight crew to
lessen their workload during cruising and help them land their aircraft during
adverse weather conditions. In addition, we also discuss how automatic control
systems can be used to provide artificial stability to improve the flying qualities of
an airplane.

Table 8.1 lists some of the functions that automatic control systems provide for
flight control. In addition to the automatic flight control system, modern aircraft
use control systems to aid in the navigation of the aircraft.

The development of autopilots closely followed the successful development of
a powered, human-carrying airplane by the Wright brothers. In 1914 the Sperry
brothers demonstrated the first successful autopilot. The autopilot was capable of
maintaining pitch, roll, and heading angles. To demonstrate the effectiveness of
their design, Lawrence Sperry trimmed his airplane for straight and level flight and
then engaged the autopilot. He then proceeded to stand in the cockpit with his
hands raised above his head while his mechanic walked out along the wings in an
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TABLE 8.1
Automatic flight control system

Flight control system to reduce pilot workload
Attitude control systems to maintain pitch, roll, or heading

Altitude hold control system to maintain a desired altitude
Speed control system to maintain a constant speed or Mach number

Stability augmentation systems

If an airplane is marginally stable or unstable, automatic control systems can provide
proper flight vehicle stability

Automatic control can be used to ensure an airplane has the appropriate handling qualities;
additional damping is incorporated by using a roll, pitch, or yaw damper

Landing aids
A glide slope control system to guide the airplane down an electronic beam to the runway

A localizer to align the aircraft in the lateral direction with the runway centerline as the
airplane descends down the glide slope

A flare control system that helps the aircraft make the transition from the glide slope
to the runway

FIGURE 8.1
Sperry’s flight demonstration of a three-axis automatic control system (from [8.1]).
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attempt to upset the airplane’s equilibrium. Figure 8.1 shows a photograph of the
remarkable flight. The autopilot provided aileron, rudder, and elevator commands
so that the airplane remained in a wings-level attitude.

8.2
AIRCRAFT TRANSFER FUNCTIONS

The longitudinal and lateral equations of motion were described by a set of linear
differential equations in Chapter 3. A very useful concept in the analysis and design
of control systems is the transfer function. The transfer function gives the relation-
ship between the output of and input to a system. In the case of aircraft dynamics
it specifies the relationship between the motion variables and the control input. The
transfer function is defined as the ratio of the Laplace transform of the output to the
Laplace transform of the input with all the initial conditions set to 0. (i.e., the
system is assumed to be initially in equilibrium). For the reader who is not familiar
with theory of Laplace transformations, a brief review of the basic concepts of
Laplace transformation theory is included in Appendix C at the end of this book.
In the following sections we develop the transfer function based on the longitudinal
and lateral approximations developed in Chapters 4 and 5. We develop these
simpler mathematical models so that we can examine the idea behind various
autopilots without undue mathematical complexity.

8.2.1 Short-Period Dynamics

In Chapter 4 the equations for the short-period motions were developed for the case
where the control was held fixed. The equation with control input from the elevator
in state space form can be written as

Aa| Z./uo 1 Aa Z, Juo ]
[AQ] ., [Ma + MyZJuy M, + Md][Aq] ¥ [Maf + MyZy Juq [As] (8.1)

The control due to the propulsion system is neglected here for simplicity. Taking the
Laplace transform of this equation yields
(s = Z./uo) A(s) — Aq(s) = Z, fug Ad,(s) (8.2)

— (M, + MiZ./uo) Aas) + [s — (M, + Ms)] Ag(s)

= (M.se = Mdzae/uo) Ad, b

If we divide these equations by AS,(s) we obtain a set of algebraic equations in
terms of the transfer functions Aa(s)/Ad,(s) and Ag(s)/AS,(s):

Ay~ Agls)
A5()  Bofs) _ Ll

(s — Z./up) (8.4)
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—(M, + M;,Z,/u) ig—((ss)) +[s — (M, + My)]

Aq(s) Zs
AS,(s) Mo it P Uo

Solving for Aa(s)/Ad,(s) and Ag(s)/AS,(s) by Cramer’s rule yields

(8.5)

Zae/uo =1
My + M2 s — (M, + M)
fat) _N5@ _ |7 : (3.6)
Aae(s) Asp(s) R Za/uo —1 .

—(Ma o+ MdZa/u()) i (Mq =t Mtx)

When expanded, the numerator and denominator are polynomials in the Laplace
variable s. The coefficients of the polynomials are a function of the stabil-
ity derivatives. McRuer, Ashkenas, and Graham [8.2] use a shorthand notation
to express the transfer function polynomials. We will use this convenient nota-
tion to present the transfer function developed here. An example of the notation
follows:

Aa(s) N3() A, + B,
A, (s) A,(s) As*+ Bs+ C

(8.7)

where the coefficients in the numerator and denominator are given in Table 8.2.
The transfer function for the change in pitch rate to the change in elevator angle can
be shown to be

§ = Za/uo ZSE/MO
Zs
—(M,, + M;Z,Ju) M; + M;=>
Ag(s) _ N3 () _ ( i, (8.8)
ASe(s) Asp(S) S — ZQ/MO —1]; .
—(Ma e M&Za/uo) ¥ = (Mq £t Ma)
» Ag(s) N3(s)  As+ B, (8.9)

AS,(s) Ay(s) ~ As?+ Bs + C

Again the coefficients of the polynomials are defined in Table 8.2.

TABLE 8.2
Short-period transfer function approximations

A, A, or A, B,B,, or B, c
Ay () 1 (M, + M, + Z,/up) Z M, fuy — M,
Ng.(s) Zs,/uy Ms, — M, Zs,[ug
N‘gz(s) M, + My Zs,Juy M,Zs,[ug — Ms,Z, [uy
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8.2.2 Long-Period or Phugoid Dynamics

The state-space equation for the long period or phugoid approximation are as

follows:
X —8 X Xs,,
Au = Au - AS
2| = + Z Z e] 8.10
[Ao] L4 [AO] e [AST 10
Uy Uy

The Laplace transformation of the approximate equations for the long period are

(s — X,) Au(s) + g AB(s) = X5 AS.(s) + X5 Ad(s) (8.11)
Zu Au(s) + s AB(s) = — Zs, AS,(s) — Z—‘ST A8.(s) (8.12)
Uy Uy Uy

The transfer function Au(s)/AS,(s) and A8(s)/A8,(s) can be found by setting Ad,(s)
to 0 and solving for the appropriate transfer function as follows:

Au(s) AO(s)
o) R0 i
Z, Au(s) i Ab(s) _Za

PUY T R T R il

(s — X,)

The equations of motion have been reduced to a set of algebraic equations in terms
of the desired transfer function. These equations can be solved to yield the transfer
functions

X5, 8
_25
el B
Au(s) - U, (8.15)
Ase(s) 5§ — Xu g
Z,
= s
Uy
A Xs5 + 8Z5/u
o Ko s
a §2E X 5= L
Uy
In a similar manner A6(s)/A8(s) can be shown to be
Zs, X, Z;, Z,Xs
A6(s) _u_os - Uy o
L (8.17)
85,09 L
U
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TABLE 8.3
Long-period transfer function approximations

A, A, 0or A, B,B,, or B, c
A,(s) 1 %, ~Z.8/uo
N (s) Xs, 8Zs,/uy
NS (s) ~Zs,/uy X, Zs, e — Z, X5, U

The transfer functions can be written in a symbolic form in the following manner:

Au(s) N (s) _ As+ B,
As,(s) As) As*+ Bs+C

(8.18)

A6(s) _ N§ __Aps+ By
Ab,(s) A (s) As’+ Bs+ C

(8.19)

where A,, B,, and so forth are defined in Table 8.3. The transfer functions for the
propulsive control, that is, Au(s)/Ad;(s) and AB(s)/AS(s), have the same form
except that the derivatives with respect to 8, are replaced by derivatives with
respect to &;. Therefore, Table 8.3 can be used for both aerodynamic and propul-
sive control transfer functions provided that the appropriate control derivatives are
used.

8.2.3 Roll Dynamics

The equation of motion for a pure rolling motion, developed in Chapter 5, is
Ap — L, Ap = L; A8, (8.20)

The transfer function Ap(s)/8,(s) and A¢(s)/AS,(s) can be obtained by taking the
Laplace transform of the roll equation:

(s = L,) Ap(s) = L; Ad,(s) (8.21)
Ap(s) _ Ly
or B =L (8.22)

Put the roll rate Ap is defined as A¢; therefore,

Ap(s) = sAd(s) (8.23)

Ad(s) L,
As,(s)  s(s — L)

or (8.24)
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8.2.4 Dutch Roll Approximation

The final simplified transfer function we will develop is for the Dutch roll motion.
The approximate equations can be shown to be

AB| _ [Yaluo —(1 = Y fug)|[AB] | [¥s/uo 0][A8,]
[Ar‘]‘[}ﬁvﬁ N, ][Ar]+[Na, i || a1

Taking the Laplace transform and rearranging yields
(s — Yﬂ/uo) AB(s) + (1 — Y, /ug) Ar(s) = Ys,/“o A8,(s) (8.26)
—Ng AB(s) + (s — N,) Ar(s) = N5 Ad,(s) + N, A8, (s)  (8.27)

The transfer functions AB(s)/AS,(s), Ar(s)/AS,(s), AB(s)/AS,(s), and Ar(s)/AS,(s)
can be obtained by setting A8, (s) to 0 and solving for AB(s) /A8, (s) and Ar(s)/AS,(s).
Next set AS,(s) equal to 0 and solve for AB(s)/A8,(s) and Ar (5)/A8,(s). The transfer
functions AB(s)/AS,(s) and Ar(s)/AS,(s) are obtained as follows:

AB(s) Ar(s)
= ~ — = 28
(s YB/MO) AS,(s) + {1 Y,/uo) A8, (s) Ya,/uo (8.28)
AB(s) Ar(s)
— + (s — N, = N, 8.29
Nﬁ AB,.(S) (S NI) AS,.(S) 5, ( )
Solving for the transfer function yields
Y,sr/uo 1 — Y, /u
N, =N,
AL . ik (8.30)
AS"(S) S Yﬁ/uo 1 S Y,/uo
—Ng s — N,
s =Y B/ Uy Ya,./ Uy
—N N,
A1 ‘ . (8.31)
A8,(s) s — Ypluy 1 — Y, /u
—Ng s= N.
B
=1 AB(s) = NE (s) o ?Bs + B (8.32)
AS.(s) An(s) As*+ Bs+ C
B
Ar(s) _ N5 (s) _ As+ B (8.33)

AS.(s)  Ap(s) As>+ Bs+ C

In a similar manner the aileron transfer function can be shown to be
AB(s)  NB()  Ags + Bg
A8, (s) Apr(s) As?2+ Bs+C

Ar(s) ” N (s) oo oA + By
AS,(s) Apr(s) As’+ Bs+C

(8.34)

(8.35)
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TABLE 8.4
Dutch roll transfer function approximations N
A,Bg,or A, B, Bg, or B, C %
Apg(s) 1 —(Yg + ugN,)/uq (YsN, — Ng¥, + Ngug)/u, g &3] g
NE (s) Y, /uq (Y. N5, — Y5, N, — Na,.uo)/uo \[E]/:
N%,(S) st, (Np Ys, = YBNS,)/L‘O
Ng,,(s) 0 (YrNBa - uoNﬁ,,)/“o - g .z
N5, (5) N, ~YaN;, /g : Dy s g
| N s N
Q| T E Lo
: . ! : NN S s N
The coefficients of the polynomials in the Dutch roll transfer functions are included s Sy |
in Table 8.4. The denominator coefficients are in the first row and the numerator [ w6 %o
coefficients are defined for each transfer function in the subsequent rows.
In the previous section, transfer functions were derived for both longitudinal 3
and lateral dynamics based on the approximations to these motions. For a prelim- N+ 8, « ol ~
inary autopilot design these approximations are appropriate. However, as the au- S A L, = . Ea’sz
topilot concept is refined and developed it is necessary to examine the autopilot | g % Ly T S+
performance using transfer functions based on the-complete set of either the O x N d ><: N < T
longitudinal or lateral equations. This is particularly important for the lateral £y | =N 1 ' NS
equations. As we showed in Chapter 5 the lateral approximations do not generally I = X =N Eﬁ N
give a very accurate representation of the Dutch roll motion. A+ B+ 24 B4
The longitudinal and lateral transfer functions for the complete set of equations L e B
are determined in the same manner as the approximate transfer functions derived 5
here. The transfer functions for the complete set of rigid body equations are given < E’
in Tables 8.5 and 8.6. o s 4+
s b Eon i
2.l S
8.3 B e i
CONTROL SURFACE ACTUATOR E i" + o \:; f
o . : ; . & | ¥ N
In addition to the various transfer functions that represent the aircraft dynamics, z < Ny N 2
we need to develop the transfer functions for the other elements that make up the £ | b b [
control system. This would include the servo actuators to deflect the aerodynamic =
control surfaces as well as the transfer function for any sensors in the control loop; ‘E s
for example, an attitude gyro, rate gyro, altimeter, or velocity sensor. The transfer St r N
functions for most sensors can be approximated by a gain, k. In this section we E F:
develop an expression for the transfer function of a simple position control servo p "g — ) N
that is used to accurately deflect the aerodynamic control surfaces in an automatic 25
system. 28 H a Be s
== <

Control surface servo actuators can be either electrical, hydraulic, pneumatic,
or some combination of the three. The transfer function is similar for each type. We
will develop the control surface servo actuator transfer function for a servo based
on an electric motor.
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> motor FIGURE 8.2
gl e Motor with rate feedback.
Zk |82
~
S rate feedback
e
= =
]’ ]
ot The torque produced by an electric motor is proportional to the control voltage
:Q 5 :Z ; as follows:
Rl & 1 o 3 T, = kv, (8.36)
S | K e . ' d
5 = | | where k,, is a constant. The angular position of the motor shaft can be determined
B £ o o from the equation
g+ z S b =
| = s 10 =T, (8.37)
- The relationship between the angular position of the motion shaft (output) and the
5 2 ~ :? motor control voltage (input) is given by the transfer function
| . & !
g = o K = 0 k
f + B i (8.38)
NI | [ = 5 0, s
o 3 LR S S o5 3 . :
i : § = o) > In general, the motor will incorporate a rate feedback loop as illustrated in Fig-
8} 2 /; : = :_] 3 T] ure 8.2. The transfer function for the system with rate feedback can be shown to be
+ b3 Y
+ o+ [ & 6 k
8 - QN P : % 2 e 8.39
= gTN». = i o = v, S,s+1) ( )
S ] + |3 I
R =z B2 = I 1
S o = e where ™= T B and k = B (8.40)
s Py g ;”‘/‘ mBPm m
The motor time constant 7,, is a measure of how fast the motor responds to a change
T o in control voltage. If 7, is small, the motor responds rapidly and the transfer
= H + function of the motor with rate feedback can be approximated as
( »
' . < ok
4& 2o I = =2 (841
[k il S R it B B v 8
Ll P . i .
@ L = f 2 | ~ b A simple position control servo system can be developed from the control diagram
Nl w B & e o & . .
B | = + = NJFN e "HJFN z shown in Figure 8.3. The motor shaft angle, 6, can be replaced by the flap angle,
Q N a = w 7y Gl
= N L . = s = B
& B 0 T e g e s e
5 | I L Sy v )
E 3 @_ Amplifier Servo1motor f
A k A5 58
& “El= = B
= s = i
o o 8= ST
= = b g ,L s = Position feedback
e 8 T ~—r * r k¢
® © — > 5 =
m &
a3 . FIGURE 8.3
& - a4 e i £ Simple position control servo for control surface
deflection.
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0, of the control surface. For the positional feedback system the closed loop
transfer function can be shown to have the following form:

5  k

v, T+ 1 (B42)
where k and 7 are defined in terms of characteristics of the servo,
= = Bm
k = 1/k and T = Bk (8.43)

The time constant of the control surface servo is typical of the order of 0.1 s. In the

problems that follow we assume this value as representative of typical control
surface servo time constants.

84
DISPLACEMENT AUTOPILOT

One of the earliest autopilots to be used for aircraft control is the so-called dis-
placement autopilot. A displacement type autopilot can be used to control the
angular orientation of the airplane. Conceptually, the displacement autopilot works
in the following manner. In a pitch attitude displacement autopilot, the pitch angle
is sensed by a vertical gyro and compared with the desired pitch angle to create an
error angle. The difference or error in pitch attitude is used to produce proportional
displacements of the elevator so that the error signal is reduced. Figure 8.4 is a
block diagram of either a pitch or roll angle displacement autopilot.

The heading angle of the airplane also can be controlled using a similar
scheme. The heading angle is sensed by a directional gyro and the error signal is
used to displace the rudder to reduce the error signal. A displacement heading
autopilot also is shown in Figure 8.5.

In practice, the displacement autopilot is engaged once the airplane has been
trimmed in straight and level flight. To maneuver the airplane while the autopilot

9 [ Vertical | ® [ control | % [ Aircraft 0 FIGURE 8.-4 )
& gyro ey | servo | s | dynamics A roll or pitch displacement
: - autopilot.
e
v Directional| " [ Controt] % [ Aircraft ¥
gyro servo dynamics
FIGURE 8.5

A heading displacement autopilot.
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is engaged, the pilot must adjust the commanded signals. For example, the airplane
can be made to climb or descend by changing the pitch command. Turns can be
achieved by introducing the desired bank angle while simultaneously changing the
heading command. In the following sections we examine several displacement
autopilot concepts.

8.4.1 Pitch Displacement Autopilot

The basic components of a pitch attitude control system are shown in Figure 8.4.
For this design the reference pitch angle is compared with the actual angle mea-
sured by a gyro to produce an error signal to activate the control servo. In general
the error signal is amplified and sent to the control surface actuator to deflect the
control surface. Movement of the control surface causes the aircraft to achieve a
new pitch orientation, which is fed back to close the loop.

To illustrate how such an autopilot would be designed, we will examine this
particular pitch displacement autopilot concept for a business jet aircraft. Once we
have decided on a control concept, our next step must be to evaluate the perfor-
mance of the control system. To accomplish this we must define the transfer
functions for each of the elements in the block diagram describing the system. For
this discussion we assume that the transfer functions of both the gyro and amplifier
can be represented by simple gains. The elevator servo transfer function can be
represented as a first-order system:

% _ _k
v s 1

where §,, v, k,, and T are the elevator deflection angle, input voltage, elevator servo
gain, and servomotor time constant. Time constants for typical servomotors fall in
arange 0.05-0.25 s. For our discussion we assume a time constant of 0.1 s. Finally,
we need to specify the transfer function for the airplane. The transfer function
relating the pitch attitude to elevator deflection was developed earlier. To keep the
description of this design as simple as possible, we represent the aircraft dynamics
by using the short-period approximation. The short-period transfer function for the
business jet in Appendix B can be shown to be

A6 —2.0(s + 0.3)
AS, s(s* + 0.65s + 2.15)

Figure 8.6 is the block diagram representation of the autopilot. The problem
now is one of determining the gain k, so that the control system will have the desired
performance. Selection of the gain k, can be determined using a root locus plot of
the loop transfer function. Figure 8.7 is the root locus plot for the business jet pitch
autopilot. As the gain is increased from 0, the system damping decreases rapidly
and the system becomes unstable. Even for low values of k,, the system damping
would be too low for satisfactory dynamic performance. The reason for the poor
performance of this design is that the airplane has very little natural damping. To
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8 9
2 )
Oc A ~k, -2.0[s + 0.3] 0
s+ 10 s[s2 + 0.65s + 2.15]
5 Elevator serva  Short period dynamics
FIGURE 8.6

A pitch displacement autopilot for a business jet.

8 7 FIGURE 8.7
i Root locus pilot of the system gain for a pitch
] /] displacement autopilot.
i 0 Y
] N
-4 3
-8 A =1
-11 =10 -1 0 1 2
1)
ret Fame | %a ® [Elevator % Fas] 6 T e
+ mp s 05, 1/s
0
Rate
gyro
Vertical
gyro
FIGURE 8.8

A pitch attitude control system employing pitch rate feedback.

improve the design we could increase the damping of the short-period mode by
adding an inner feedback loop. Figure 8.8 is a block diagram of a displacement
autopilot with pitch rate feedback for improved damping. In the inner loop the pitch
rate is measured by a rate gyro and fed back to be added with the error signal
generated by the difference in pitch attitude. Figure 8.9 is a block diagram for the
business jet when pitch rate is incorporated into the design. For this problem we
now have two parameters to select; namely, the gains k, and k,,. The root locus
method can be used to pick both parameters. The procedure essentially is by trial
and error. First, the root locus diagram is determined for the inner loop, a gyro gain
is selected, and then the outer root locus plot is constructed. Several iterations may
be required until the desired overall system performance is achieved.
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—10 | 8 -20(s+03) |6 4
¥ s+ 10 s2+ 0.66s + 2.15
Krg

FIGURE 8.9
A business jet pitch attitude control system with pitch rate feedback.

O 3 e PID 8 | Elevator | % Aircraft ¢
b servo dynamics

|

FIGURE 8.10
Pitch attitude autopilot with a PID controller.

EXAMPLE PROBLEM 8.1. Use the PID controller for a pitch attitude autopilot as
illustrated in Figure 8.10. The transfer functions for each component are given in
Table 8.7.

Solution. Using the Ziegler and Nichols method discussed in Section 7.8, the PID
gains can be estimated from the ultimate gain k,,, which is the gain for which the sys-
tem is marginally stable when only the proportional control is being used. Figure 8.11
is the root locus sketch of the transfer function:

3.0k,
(s + 10)(s® + 25 + 5)

G(s)H(s) =

The root locus crosses the imaginary axis at s = *=5.13i. The gain of the system can
be found from the magnitude criteria to be k,, = 88.7. The period, T, = 27/w = 1.22.
Table 8.8 gives the gains for the proportional, proportional-integral and proportional-
integral-derivative controllers. Figure 8.12 shows the response of the pitch attitude

TABLE 8.7
Data for Example Problem 8.1

Control element Parameters Transfer function
PID k, =17 s 7,
k=17 Z =k, =+ ks
k=2 . v
Elevator servo A= -0.1 8, A
T=01 5, ws+1
Aircraft dynamics M;s, = =352 M
= e
M= 25" _—=—— %
M,= —5s2 0. 82= M — M,
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FIGURE 8.11
Root locus plot of G(s)H(s).

TABLE 8.8
Gains for P, PI, and PID controllers

ko=

i

kg =

P control k, =05k, = 44.35
PI control k, = 0A5k,, = 39.92
k, = 0.45k,,/(0.83T,) = 39.42
PID control k, = 0.6k,, = 53.22
0
0

6k,,/(0.5T,) = 87.24
6k,,(0.125T,) = 8.12

autopilot for the three different controllers to a step input. Notice that the proportional
controller has a steady-state error; that is, it does not go to 1 but converges to a value
of approximately 0.7. The magnitude of the steady-state error can be predicted using
the steady-state error constants in Chapter 7:

1
e.YS =
1+ K,
where K, = Limit G(s)H(s) = Limit i
p = LSO R P = 15 +95; + 50

1.4

1.2

0.8

Amplitude

0.6

0.4

0.2

1.6

1.4

1.2

0.8

Amplitude

0.6

0.4

0.2

\ /
v

6 8 10 12 14 16 18 20

Time (secs)

(a) Proportional, integral, and derivative control

LA AR A
v,

FIGURE 8.12
Response to a step input of a pitch autopilot with either a P, PI, or PID controller.

6 8 10 12 14 16 18 20

Time (secs)
(b) Proportional plus integral control
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(c) Proportional, integral, and derivative control

FIGURE 8.12
Concluded.

for a proportional gain k, = 44.35

K, = 2.66
The steady-state error ey can then be calculated:
1 1
= =—=10.27
“T1t K 366

Therefore the response will go to 0.73 instead of 1 due to the steady-state error.

8.4.2 Roll Attitude Autopilot

The roll attitude of an airplane can be controlled by a simple bank angle autopilot
as illustrated in Figure 8.13. Conceptually the roll angle of the airplane can be
maintained at whatever angle one desires. In practice we would typically design the
autopilot to maintain a wings level attitude or ¢ = 0. The autopilot is composed of
a comparator, aileron actuator, aircraft equation of motion (i.e., transfer function),
and an attitude gyro to measure the airplane’s roll angle.
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Error FIGURE 8.13
bc signal [ pjteron | P« Roll Simple roll attitude control
actuator dynamics system.
Attitude
gyro

EXAMPLE PROBLEM 8.2. Design a roll attitude control system to maintain a wings
level attitude for a vehicle having the following characteristics:

Ly, =205 L,= —05k

The system performance is to have a damping ratio, / = 0.707, and an undamped
natural frequency, w, = 10 rad/s. A potential concept of a roll attitude control system
is shown in the block diagram in Figure 8.14.

Solution. Once we have decided on one or more concepts our next step is to evaluate
the performance of the proposed control system. To accomplish this we need to develop
the appropriate mathematical model for each system component. For this example we
assume that the servo actuator and sensor can be represented by gains k, and k;, for the
actuator and sensor, respectively. The equation of motion for an airplane constrained
to a pure rolling motion was developed in Chapter 5 and transfer function A¢(s) /A8, (s)
was developed earlier in this chapter. The roll angle to aileron input transfer function
for an airplane can be shown to be

Ad(s) - Ls,
A8, (s) s(s — L,)
For this example we consider the sensor to be a perfect device; the feedback path

then can be represented as a unity feedback (see Figure 8.15). The forward path
transfer function is obtained by combining the elements in the forward path:

Ad,(s) Ad(s)

Gls) = —2
970 55,0
L
= 25
slg*=" L)
be ® [Actuator | %2 | Aircraft ¢ FIGUR.E 84
———h| Kk, dynamics Roll attitude control concept.

\ /5,
Sensor

be ey ¢ FIGURE 8.15
@ Simplified roll control system.
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The feedback transfer function is idealized as a perfect sensor:
H@s) =1

Finally the loop transfer function, G(s)H(s), can be determined by combining the
forward and feedback path transfer functions:

k

G(S)H(S) = m
where k=kL,
k

GlHls) = s(s + 0.5)

The desired damping ratio of ¢ = 0.707 can be achieved with the present control
system. The gain for the system is determined by drawing a line from the origin at 45°
as indicated in the root locus plot. Recall that the damping ratio was shown to be equal
to the following expression:

l = cos @

where 0 is measured from the positive real axis in the counterclockwise direction. Any
root intersecting this line has a damping ratio of 0.707. The gain at this point can be
determined from the magnitude criteria as follows:

L s
s |5 0.5]

where s = —0.25 + 0.251.
Substituting s into the magnitude equation and determining the magnitude of each
component yields a value for k:

k =0.0139

For this example we see that it is possible to select a gain so that the damping ratio
‘requirement is satisfied; however, the undamped natural frequency is much lower than
specified:

w, = 0.35 rad/s

Recall that the undamped natural frequency is equal to the radial distance from the
origin to the point on the locus as illustrated in the root locus sketch. The problem with
this system is the low roll damping. If the roll root, L,, were greater in the negative
sense, the vertical asymptotes of the root locus would shift to the left. This is noted in
the root locus sketch (Figure 8.16) by the dotted root locus contour.

L,, the roll damping root, was shown to be a function of the wing span; therefore,
we could make L, more negative by increasing the wing span of the vehicle. This may
be impractical and so we need to look at providing increased damping by means of a
stability augmentation system. This can be accomplished by incorporating a rate
feedback loop as illustrated in Figure 8.17.

The inner loop transfer function can be expressed as follows:

AP(S) = Laa
As,(s) (s—L,)
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FIGURE 8.16
Root locus plot of G(s)H(s) = k/s(s + 0.5).
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b ey e es. | Aileron |§ Airplane | P P Roll response
+ Amp. "8 .| servo 2 dynamics 1/s 16
@ ka =2
¢ kas P/Sa
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Rate gyro \
krg 12
Gyro

FIGURE 8.17
Rate feedback block diagram.

¢ (deg)
D
/

for the aircraft dynamics, k,, for the aileron servo, and k,, = 1 for the rate gyro. The \
inner loop transfer functions are 4 \
k
G = s+—HE)5_ 2
where ky = kasLs, 0 \
H(s) = 1 \
The inner loop can be replaced by the transfer function -2
s G)y 0 0.5 1 - 1.5 2 25 3
1 + G(s) H(s)y Time (secs)
_ k., FIGURE 8.18
s+ 05+ kg Time response of roll attitude control system to an initial disturbance in the roll angle.

The inner loop gain can be selected to move the augmented roll root farther out along
the negative real axis. If the inner loop root is located at s = —14.14 the root locus will
be shifted to the left so that both the desired damping and undamped natural frequency,

w,, can be achieved. This means that the inner loop gain ky, must equal 13.64. The loop et Elevator Aircraft h
transfer function G(s)H(s)q, for the outer loop can be expressed as P servo dynamics

k,(13.64)
GOH®) = S 1a14) |
with the augmentation, provided by the inner loop damping the specifications for w,
and ¢ are both satisfied. The amplifier gain k, can be shown to equal 7.33. Figure 8.18
shows the time history response of the control system with rate feedback to an initial
disturbance in the bank angle of 15°. The control system rapidly brings the vehicle back
to a wings level attitude. This simple example illustrates the challenges the designer
must face in satisfying all the design specifications. In this particular case we needed L
to add a compensator to the initial concept in the form of a rate feedback loop to meet COI_IStrUCted to minimize the deviation between the actual altitude and the desired
both the damping ratio and undamped natural frequency specifications. altitude.

To analyze how such an autopilot would function we examine an idealized
case. We make the following assumptions: First, the airplane’s speed will be con-

Altitude
sensor

FIGURE 8.19
Altitude hold control system.

8.4.3 Altitude Hold Control System trolled by a separate control system; second, we neglect any lateral dynamic
effects. With these restrictions we are assuming that the onl i ible is i

. : — - ; ; y motion possible is in

The altitude of an airplane can be maintained by an altitude hold autopilot. A the vertical plane. The transfer functions necessary for performing this analysis are

simplified altitude hold autopilot is shown in Figure 8.19. Basically the autopilot is
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the elevator servo and aircraft dynamics. The elevator transfer function can be
represented as a first-order lag as used previously:

8 _ ki

e s + 10

The aircraft dynamics will be represented by the short period approximation
developed in Section 8.3.

To examine the altitude hold control system we need to find the transfer
function Ak /AS,. This can be obtained by examining Figure 8.20, which shows the
kinematic relationship between the airplane’s rate of climb, pitch angle, and angle
of attack. From Figure 8.20 we can write the following relationship:

Ak = u, sin(A0 — Aca)
For small angles this can be reduced to
Al = uy(A6 — Aa)
Now we can find Ak/AS, as follows:
sSAA(s) = uy[AG(s) — Aa(s)]

or Ah(s) = ?[Ao(s) — Aa(s)]

V = ugfor small angles

FIGURE 8.20
Kinematic relationship for determining vertical rate of climb.
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and on dividing by A8, we obtain the desired transfer function relationship:
Ah(s) o @[AO(S) s Aa(s)}
Ab,(s) s LAS(s) Ad,(s)

The transfer function Af(s) /Ad,(s) can be obtained from Ag(s)/A8,(s) in the follow-
ing way:

Ag = A
therefore, Aq(s) = s AB(s)
AB(s) 1 Ag(s)
AS(s) s AS.(s)
_ AS+ B,
s(As®> + Bs + C)
The transfer function Aa(s)/AS,(s) was developed earlier as
Aa(s) A,s + B,
AS,(s) T A+ Bs+ C

where the coefficients in both the transfer function Af8(s)/A8,(s) and Aa(s)/AS,(s)
are given the Table 8.3.

or

EXAMPLE PROBLEM 83. A STOL transport has been modified to include direct-lift
control surfaces. Unlike conventional high-lift flaps, the direct-lift flaps can be rotated
up and down to increase or decrease the lift force on the wing. In this example, we are
going to design an altitude hold control system that uses the direct-lift control surfaces.
To simplify our analysis we assume that the airplane’s velocity and pitch attitude are
controlled by separate autopilots. The aerodynamic characteristics of the STOL air-
plane and the desired performance expected of the altitude autopilot follow:

Z, ft/s? Z;, ft/s? u, ft/s

—560 =50 400

Autopilot performance specifications are a settling time, ¢, < 2.5 s, and a damping
ratio, { = 0.6.

Solution. One potential concept for controlling the altitude of the airplane is given in
Figure 8.21. The transfer functions for each element of the control system is described
next. The amplifier transfer function is a gain, k,, the direct-lift servo is modeled as a
first-order lag, and the altitude sensor is assumed to be a perfect sensor, which gives
us a unity feedback system:

e

e

5

& _ —10

e, s+ 10

The transfer function for the aircraft dynamics can be obtained from the equation of
motion in the vertical direction. Recall that we have assumed that the speed and pitch
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Direct lift | 3 [ Aircraft | D
SEervo dynamics

Altitude sensor

FIGURE 8.21
Altitude control concept.

attitude of the airplane are held at some desired values by separate autopilots. The
equation of motion in the vertical direction is given by

. S W
2 Forces in vertical direction = m o

W+Z—mgyﬁ
or &

Expressing the variables in terms of a reference value and a perturbation yields
d
W+ Zy + AZ=mE(w0+Aw)

but W + Z, = 0 and wy = 0; for level equilibrium flight therefore,
AZ = m Aw

The change in the aerodynamic force AZ is assumed to be only a function of Aw and
A8y, that is,

Z
M =22 o P s

Substituting into the differential equation yields
Aw = Z, Aw + Zz AG;

aZ/ow 9Z/08
where Z, = —/—, Zs, = e
m m
Recall that Z,, and Z, are related in the following manner:
_9Z/ow 1 AZ/d(wfug) _ 1
 om U m Uy

Z,

Z,

The transfer function Ak/A8; now can be obtained:

Aw(s) 2y
A(s) s — Z,
but 4 = —Aw; therefore,
An(s) 1 Zs,

Ab(s) s s—2z)
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Root locus plot of G(s)H(s), altitude hold control system.

Substituting the aerodynamic data for the STOL transport yields

Ah(s) — 50
A8 (s)  s(s + 1.4)

The forward path transfer function is

k
s(s + 1.4)(s + 10)

G(s) =

where k = k,(—10)(—50) = 500 k,.

The root locus plot of G(s)H(s) is shown in Figure 8.22. Although the desired
damping ratio { = 0.6 can be achieved, the settling time is greater than 2.5 s. The
closed-loop system response to a unit step change in altitude is shown in Figure 8.23.
To improve the system performance we need to include some form of compensation.
A lead circuit in the forward path can be used to improve the system performance.
Figure 8.24 shows the root locus plot of G(s)H(s) with the addition of a lead circuit

+
TE=2"2 ,<p
s+ b
The zero of the lead circuit was positioned just to the left of the pole at s = —1.4. With

the addition of the lead circuit the root locus plot is shifted to the left compared to the
uncompensated system. For the compensated system we can meet both the damping
ratio and settling time specification (Figure 8.25).
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FIGURE 8.23
Closed-loop response to a step input altitude hold control system.

10

Root locus
| 1
15 3
A
G 3
N
N
N
10 ™
&= k=609
(2]
3
@©
o
R e St %
o
©
E
-5 4
-10 H 7
7/
>
#
P o
Ve
e
-15 T T
-20 -15 -10
Real axis
FIGURE 8.24

Root locus plot of compensated altitude hold control system.
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FIGURE 8.25
Closed-loop response to a step input for an altitude hold control system with a
compensator.

8.4.4 Velocity Hold Control System

The forward speed of an airplane can be controlled by changing the thrust pro-
duced by the propulsion system. The function of the speed control system is to
maintain some desired flight speed. This is accomplished by changing the engine
throttle setting to increase or decrease the engine thrust. Figure 8.26 is a simplified
concept for a speed control system described in [8.3]. The components that make
up the system include a compensator, engine throttle, aircraft dynamics, and a
feedback path consisting of the velocity and acceleration feedback.

Auref i A
Forward Engine Engine Aircraft
path > throttle TR Ia i dvnamics
compensator control g :
Feedback
elements
FIGURE 8.26

A block diagram for a speed control system.
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EXAMPLE PROBLEM 84. Examine the performance characteristics of a speed con-
trol autopilot similar to the one shown in Figure 8.26 for the STOL transport included
in Appendix B. The transfer functions for the throttle servo, engine lag, forward path
compensation, and feedback elements follow:

10
G[hronle(s) = s + 10
1
G(s)engine lag s + 0.1
k(s + 0.1
G(s)=1+0.1/s = —a(ss—)
H(s) = 10s + 1

Solution. The aircraft dynamics can be approximated by using the long-period or
phugoid approximation developed earlier in this chapter:

ft/s?
X5, = 0.038=—  Z, =0
deg
Substituting these values into the aircraft transfer function yields

Au_ _ 0.038s
AS8; s*+ 0.039s + 0.039s + 0.053

Root locus
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FIGURE 8.27

3.8k,(s + 0.1)

Root locus plot G(H(s) = 775562 0.030s + 0,053)
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FIGURE 8.28

Response of speed control system to a unit step command for

different gains.
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For this autopilot both the change in velocity and the acceleration are used in the
feedback path. The feedback path transfer function is assumed to be of the form that
follows:

H(s) = 10s + 1
The loop transfer function, G(s)H(s), follows:

3.8k,(s + 0.1)
(s + 10)(s2 + 0.039s + 0.053)

The root locus plot of the loop transfer function is shown in Figure 8.27.

Figure 8.28 shows the response of the speed control system to a unit step for
several different values of the amplifier gain, k,. The three gains are indicated on
Figure 8.27. Note that for a gain corresponding to a damping ratio of 0.707 the
response is very fast but there is a steady-state error. On the other hand, the steady-
state error can be reduced by increasing the gain. However, larger gains mean a lower
damping ratio and the response has a larger overshoot. To improve the performance of
this system an additional compensator should be considered.

G(s)H(s) =

8.5
STABILITY AUGMENTATION

Another application of automatic devices is to provide artificial stability for an
airplane that has undesirable flying characteristics. Such control systems are com-
monly called stability augmentation systems (SAS).

As we showed earlier, the inherent stability of an airplane depends on the
aerodynamic stability derivatives. The magnitude of the derivatives affects both the
damping and frequency of the longitudinal and lateral motions of an airplane.
Furthermore, it was shown that the stability derivatives were a function of the
airplane’s aerodynamic and geometric characteristics. For a particular flight
regime it would be possible to design an airplane to possess desirable flying quali-
ties. For example, we know that the longitudinal stability coefficients are a function
of the horizontal tail volume ratio. Therefore we could select a tail size and or
location so that C,, and C,, provide the proper damping and frequency for the
short-period mode. Howeverq, for an airplane that will fly throughout an extended
flight envelope, one can expect the stability to vary significantly, owing primarily
to changes in the vehicle’s configuration (lowering of flaps and landing gear) or
Mach and Reynolds number effects on the stability coefficients. Because the stabil-
ity derivatives vary over the flight envelope, the handling qualities also will change.
Obviously, we would like to provide the flight crew with an airplane that has
desirable handling qualities over its entire operational envelope. This is accom-
plished by employing stability augmentation systems.

EXAMPLE PROBLEM 85. To help understand how a stability augmentation system
works, we shall consider the case of an airplane having poor short-period dynamic
characteristics. In our analysis we assume that the aircraft has only one degree of
freedom—a pitching motion about the center of gravity. The equation of motion for a
constrained pitching motion as developed in Chapter 4 is

60— (M, + M0 + M0 = M5
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The damping ratio and undamped natural frequency are given by

4, ST
§§P = —_(C’"q + Cm;,)p - /(2(1),,5'))
41,
o
pugSc
o = ey
W psp Mo 2Iy

If the aerodynamic and inertial characteristics of a business jet during cruise are such
that the preceding equations have the numerical values

6 + 0.07160 + 5.490 = —6.716,
then the damping ratio and frequency are given by

£, =10.015 W, = 2.34 rad/s

nsp

For these short-period characteristics the airplane has poor flying qualities. On exam-
ining the flying quality specification, we see that to provide level 1 flying qualities the
short-period damping must be increased so that £, > 0.3.

One means of improving the damping of the system is to provide rate feedback, as
illustrated in Figure 8.29. This type of system is called a pitch rate damper. The
stability augmentation system provides artificial damping without interfering with the
pilot’s control input. This is accomplished by producing an elevator deflection in
proportion to the pitch rate and adding it to the pilot’s control input:

8 =8, +kb
where 8, is that part of the elevator deflection created by the pilot. A rate gyro is used
to measure the pitch rate and creates an electrical signal that is used to provide elevator

deflections. If we substitute the expression for the elevator angle back into the equation
of motion, we obtain

8 + (0.071 + 6.71k)0 + 5.496 = —6.715,,
Comparing this equation with the standard form of a second-order system yields
2w, = (0.071 + 6.71k) and w? =549

The short-period damping ratio is now a function of the gyro gain k and can be
selected so that the damping ratio will provide level 1 handling qualities. For example,
if k is chosen to be 0.2, then the damping ratio { = 0.

i k"

) I
9 % <
H |
Desired B :
Pilot Control Aircraft |
$2 systems dynamics :
|
____________ L
I
I
Rate :
gyro :
I
Stability augmentation system |

FIGURE 8.29

Stability augmentation system using pitch rate feedback.
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8.6
INSTRUMENT LANDING

With the advent of the instrument landing system (ILS), aircraft became able to
operate safely in weather conditions with restricted visibility. The instrument land-
ing system is composed of ground-based signal transmitters and onboard receiving
equipment. The ground-based equipment includes radio transmitters for the local-
izer, glide path, and marker beacons. The equipment on the airplane consists of
receivers for detecting the signals and indicators to display the information.

The basic function of the ILS is to provide pilots with information that will
permit them to guide the airplane down through the clouds to a point where the pilot
re-establishes visual sighting of the runway. In a completely automatic landing, the
autopilot guides the airplane all the way down to touchdown and roll out.

Before addressing the autoland system, we briefly review the basic ideas behind
the ILS equipment. To guide the airplane down toward the runway, the guidance
must be lateral and vertical. The localizer beam is used to position the aircraft on
a trajectory so that it will intercept the centerline of the runway. The transmitter
radiates at a frequency in a band of 108—112 MHz. The purpose of this beam is to
locate the airplane relative to a centerline of the runway. This is accomplished by
creating azimuth guidance signals that are detected by the onboard localizer re-
ceiver. The azimuth guidance signal is created by superimposing a 90-Hz signal
directed toward the left and a 150-Hz signal directed to the right on the carrier
signal. Figure 8.30 shows an instrument landing localizer signal. When the aircraft
is flying directly along the projected extension of the runway centerline, both
superimposed signals are detected with equal strength. However, when the aircraft
deviates say to the right of centerline, the 150-Hz signal is stronger. The receiver
in the cockpit detects the difference and directs the pilot to fly the aircraft to the left
by way of a vertical bar on the ILS indicator that shows the airplane to the right of
the runway. If the airplane deviates to the left, the indicator will deflect the bar to
the left of the runway marker.

The glide path or glide slope beam is located near the runway threshold and
radiates at a frequency in the range 329.3-335.0 MHz. Its purpose is to guide the
aircraft down a predetermined descent path. The glide slope is typically an angle

Localizer centerline
maximum signal

strength
90-Hz beam
%« Localizer

TRz | __—~— < transmitter

“150-Hz beam
% Runway

-

FIGURE 8.30
A localizer beam system.
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of 2.5-3° to the horizontal. Figure 8.31 shows a schematic of the glide path beam.
Note that the glide path angle has been exaggerated in this sketch. As in the case
of the localizer, two signals are superimposed on the carrier frequency to create an
error signal if the aircraft is either high or low with respect to the glide path. This
usually is indicated by a horizontal bar on the ILS indicator that moves up or down
with respect to the glide path indicator. The marker beacons are used to locate the
aircraft relative to the runway. Two markers are used. One, located 4 nautical miles
from the runway, is called the outer marker. The second, or inner, marker is located
3500 ft from the runway threshold. The beams are directed vertically into the
descent path at a frequency of 75 MHz. The signals are coded, and when the
airplane flies overhead the signals are detected by an onboard receiver. The pilot
is alerted to the passage over a marker beacon by both an audio signal and visual
signal. The audio signal is heard over the aircraft’s communication system and the
visual signal is presented by way of a colored indicator light on the instrument
panel.

In flying the airplane in poor visibility, the pilot uses the ILS equipment in the
following manner. The pilot descends from cruise altitude under direction of
ground control to an altitude of approximately 1200 ft above the ground. The pilot
then is vectored so that the aircraft intercepts the localizer at a distance of at least
6 nautical miles from the runway. The pilot positions the airplane using the localizer
display so that it is on a heading toward the runway centerline. When the aircraft
approaches the outer marker, the glide path signal is intercepted. The aircraft is
placed in its final approach configuration and the pilot flies down the glide path
slope. The pilot follows the beams by maneuvering the airplane so that the vertical
and horizontal bars on the ILS indicator show no deviation from the desired flight
path. The ILS system does not guide the aircraft all the way to touchdown. At some
point during the approach the pilot must look away from the instruments and
outside the window to establish a visual reference for the final portion of the

\<Glide path

Glide slope beam
centerline, maximum
signal strength

777777777 7777777777777 77777777777, /////;\/////////////////// ////7///////////// 77777777
Outer marker Inner marker

FIGURE 8.31
A glide slope beam system.
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FIGURE 8.32
An airplane displaced from the glide path.

landing. The pilot may take 5 or 6 seconds to establish an outside visual reference.
Obviously the pilot must do this at sufficient altitude and distance from the runway
so that if the runway is not visible the pilot can abort the landing. This gives rise
to a “decision height,” which is a predetermined height above the runway that the
pilot cannot go beyond without visually sighting the runway.

The ILS as outlined in the previous paragraphs is an integral part of a fully
automatic landing system. To be able to land an airplane. with no visual reference
to the runway requires an automatic landing system that can intercept the localizer
and glide path signals, then guide the airplane down the glide path to some pre-
selected altitude at which the aircraft’s descent rate is reduced and the airplane
executes a flare maneuver so that it touches down with an acceptable sink rate. The
autoland system comprises a number of automatic control systems, which include
a localizer and glide path coupler, attitude and airspeed control, and an automatic
flare control system.

Figure 8.32 shows an airplane descending toward the runway. The airplane
shown is below the intended glide path. The deviation d of the airplane from the
glide path is the normal distance of the airplane above or below the desired glide
path. The angle I is the difference between the actual and desired glide path angle
and R is the radial distance of the airplane from the glide slope transmitter. To
maintain the airplane along the glide path, one must make I" equal 0. Figure 8.33
is a conceptual design of an autopilot that will keep the airplane on the glide path.
The transfer functions for d and I" are obtained from the geometry and are noted
in Figure 8.32.

As the airplane descends along the glide path, its pitch attitude and speed must
be controlled. This again is accomplished by means of a pitch displacement and
speed control autopilot. The pitch displacement autopilot would be conceptually
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FIGURE 8.33

An automatic glide path control system.

the same as the one discussed earlier in this chapter. Figure 8.34 shows an auto-
matic control system that could be used to maintain a constant speed along the
flight path. The difference in flight speed is used to produce a proportional dis-
placement of the engine throttle so that the speed difference is reduced. The
component of the system labeled compensation is a device incorporated into the
design so that the closed-loop system can meet the desired performance speci-
fications. Finally, as the airplane gets very close to the runway threshold, the glide
path control system is disengaged and a flare maneuver is executed. Figure 8.35
illustrates the flare maneuver just prior to touchdown. The flare maneuver is needed

Uret ey e[ 1p Ts : e : u
: rottle Engine [ M| Aircraft
Compensation — "o ™ lag [ | dynamics
u
Speed plus
acceleration
feedback

FIGURE 8.34
An automatic speed control system.
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FIGURE 8.35
A flare maneuver.
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FIGURE 8.36
An automatic flare control system.

to decrease the vertical descent rate to a level consistent with the ability of the
landing gear to dissipate the energy of the impact at landing. An automatic flare
control system is shown in Figure 8.36. A detailed discussion of the autoland system
is provided by Blakelock [8.3].

8.7
SUMMARY

In this chapter we examined briefly the use of an automatic control system that can
be used to reduce the pilot’s workload, guide the airplane to a safe landing in poor
visibility, and provide stability augmentation to improve the flying qualities of
airplanes with poor stability characteristics. Additional applications of automatic
control technology include load alleviation and flutter suppression.

Load alleviation can be achieved by using active wing controls to reduce the
wing-bending moments. By reducing the wing design loads through active controls,
the designer can increase the wing span or reduce the structural weight of the wing.
Increasing the span for a given wing area improves the aerodynamic efficiency of
the wing; that is, it increases the lift-to-drag ratio. The improvement in aerody-
namic efficiency and the potential for lower wing weight result in better cruise fuel
efficiency.

Stability augmentation systems also can be used to improve airplane perfor-
mance without degrading the vehicle’s flying qualities. If the horizontal and vertical
tail control surfaces are used in an active control system, the tail area can be
reduced. Reducing the static stability results in smaller trim drag forces. The
combination of smaller tail areas and reduced static stability yields a lower drag
contribution from the tail surfaces, which will improve the performance character-
istics of the airplane.

Another area in which active control can play an important role is in suppress-
ing flutter. Flutter is an unstable structural motion that can lead to structural failure
of any of the major components of an airplane: wing, tail, fuselage, or control
surfaces. Flutter is caused by the interaction between structural vibration and the
aerodynamic forces acting on the surface undergoing flutter. During flutter the
aerodynamic surface extracts energy from the airstream to feed this undesirable
motion. An automatic control system incorporating active controls can be designed
to prevent flutter from occurring by controlling the structural vibration.
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PROBLEMS

Problems that require the use of a computer have the capital letter C after the problem
number.

8.1(C). A roll control system is shown in Figure P8.1. Sketch the root locus diagram for this

system.
(a) Determine the value of the gain, k, so that control system has a damping ratio
of £ = 0.707.

(b) What is the steady-state error for a step and ramp input?

(c) Sketch the response of the control system to a 5° step change in bank angle
command.

(d) Repeat this problem using control synthesis software such as MATLAB.

k 1.0
be .

g ¢
s+10 s(s+1)

8.2(C). Use a rate feedback inner loop to improve the transient response of the control
system in Problem 8.1. The system damping ratio is to remain at { = 0.707.

FIGURE P8.1

8.3(C). For the pitch rate feedback control system shown in Figure P8.3, determine the gain
necessary to improve the system characteristics so that the control system has the
following performance: { = 0.3, w, = 2.0 rad/s. Assume that the aircraft charac-
teristics are the same as given in Figure 8.9 in Section 8.4.
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FIGURE P8.3

8.4(C). A simplified pitch control system is shown in Figure P8.4. Design a PID controller
for this system and plot the response of the system to a 5° step change in the
commanded pitch attitude.

: 0
& PID | .| Elevator | | Aircraft
controller servo dynamics

FIGURE P8.4
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8.5(C).

8.6(C).
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The Wright Flyer was statically and dynamically unstable. However, because the
Wright brothers incorporated sufficient control authority into their design they
were able to fly their airplane successfully. Although the airplane was difficult to fly,
the combination of the pilot and airplane could be a stable system. In [8.5] the
closed-loop pilot is represented as a pure gain, k,, and the pitch attitude to canard
deflection is given as follows:

0 11.0(s + 0.5)(s + 3.0)

8, (s2+ 0725 + 1.44)(s2 + 595 — 11.9)

Determine the root locus plot of the closed-loop system shown in Figure P8.5. For
what range of pilot gain is the system stable?

Pilot Airframe
0 & 1)
c + kp c ai p

c

Visual feedback

FIGURE P8.5

The block diagram for a pitch attitude control system for a spacecraft is shown in
Figure P8.6a. Control of the spacecraft is achieved through thrusters located on the
side of the spacecraft as illustrated in Figure P8.6b.

(a) Determine the root locus plot for the control system if the rate loop is discon-
nected. Comment on the potential performance of this system for controlling
the pitch attitude.

(b) Determine the rate gain k,, and the outer loop gyro gain &, so that the system
has a damping ratio { = 0.707 and a settling time, ¢, = 1.5 s.

0 e T ] 0
o+ Ko + £ L =

(a)
FIGURE P8.6

8.7(0).

8.8(C).

8.9(0).
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‘ T FIGURE P8.6 (continued)

—

A wind-tunnel model is constrained so that it can rotate only about the z axis; that
is, pure yawing motion. The equation of motion for a constrained yawing motion
was shown in Chapter 5 to be as follows:

A — N, Afr + Ny A = N; AS,

where Ng = 2.0s7% N, = —0.5s7" and N5, = —10 s 2. Design a heading control
system so that the model has the following closed-loop performance characteristics:

=06
£=235
Assume that the rudder servo transfer function can be represented as

AS, _ k

e s + 10

Every pilot or airline passenger has encountered a rough flight due to atmospheric
turbulence. The bumpy ride is due to the airplane encountering a vertical gust field.
When an airplane encounters a vertical gust the effective angle of attack of the wing
is changed, causing the airplane to accelerate in the vertical direction. This un-
wanted motion can be eliminated by means of a gust alleviation system. If the wing
lift can be controlled, the acceleration due to the gust can be attenuated. One means
of controlling the wing lift is by using direct lift controls. Basically, direct lift
control surfaces are wing flaps that can be rotated up or down to either decrease or
increase the wing lift. Consider a wind-tunnel model constrained to motion in only
the vertical direction; that is, pure plunging motion. Also assume that the model is
equipped with direct lift flaps. See Example Problem 8.3. Design a control system
for the wind-tunnel model so that the vertical velocity is held near 0. Assume the
direct lift actuator can be represented by the transfer function

k
s + 10

8 | >

Design a control system for the wind tunnel model of Problem 8.8 to maintain a
constant vertical position in the wind tunnel.
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CHAPTER 9

Modern Control Theory

9.1
INTRODUCTION

In Chapters 7 and 8, the design of feedback control systems was accomplished using
the root locus technique and Bode methods developed by Evans and Bode, respec-
tively. These techniques are very useful in designing many practical control
systems. However, the design of a control system using either of the techniques
essentially is by trial and error. The major advantage of these design procedures is
their simplicity and ease of use. This advantage disappears quickly as the complex-
ity of the system increases.

With the rapid development of high-speed computers during the recent
decades, a new approach to control system design has evolved. This new approach,
commonly called modern conirol theory, permits a more systematic approach to
control system design. In modern control theory, the control system is specified as
a system of first-order differential equations. By formulating the problem in this
manner, the control system designer can fully exploit the digital computer for
solving complex control problems. Another advantage of modern control theory is
that optimization techniques can be applied to design optimal control systems. To
comprehend this theory fully one needs to have a good understanding of matrix
algebra; a brief discussion of matrix algebra is included in Appendix C.

It is not possible in a single chapter to present a thorough discussion of modern
control theory. Our purpose is to expose the reader to some of the concepts of
modern control theory and then apply the procedures to the design of aircraft
autopilots. It is hoped that this brief discussion will provide the reader with an
appreciation of modern control theory and its application to the design of aircraft
flight control systems. Additional background material on modern control theory
can be found in the references included at the end of this chapter [9.1-9.5].
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