

Outline Part 1: Introduction to the dynamics of flexible aircraft • Motivations for the study of flight dynamics of flexible aircraft - faster, lighter, more deformable - active control of deformations for improved riding qualities • Qualitative analysis of flexibility static effects on A/C dynamics - fuselage deformation - aileron reversal Part 2: Writing the equations of motion of flexible aircraft • An hystorical perspective (with some technical considerations): - transport variables (ODE's) and deformation variables (PDE's) - the problem of the "body frame" • A mixed Newtonian-Lagrangian approach - generalized Euler equation	Outline	
 Part 1: Introduction to the dynamics of flexible aircraft Motivations for the study of flight dynamics of flexible aircraft faster, lighter, more deformable active control of deformations for improved riding qualities Qualitative analysis of flexibility static effects on A/C dynamics fuselage deformation aileron reversal Part 2: Writing the equations of motion of flexible aircraft An hystorical perspective (with some technical considerations): transport variables (ODE's) and deformation variables (PDE's) the problem of the "body frame" A mixed Newtonian-Lagrangian approach generalized Euler equation ageneralized Euler equation 		Outline
 Part 1: Introduction to the dynamics of flexible aircraft Motivations for the study of flight dynamics of flexible aircraft faster, lighter, more deformable active control of deformations for improved riding qualities Qualitative analysis of flexibility static effects on A/C dynamics fuselage deformation aileron reversal Part 2: Writing the equations of motion of flexible aircraft An hystorical perspective (with some technical considerations): transport variables (ODE's) and deformation variables (PDE's) the problem of the "body frame" A mixed Newtonian-Lagrangian approach generalized Euler equation ageneralized Euler equation 		Part 1: Introduction
 Motivations for the study of flight dynamics of flexible aircraft faster, lighter, more deformable 	Part 1: Introduction to the dynamics of flexible aircraft	Motivations – faster, lighter, more deformable
 faster, lighter, more deformable active control of deformations for improved riding qualities Qualitative analysis of flexibility static effects on A/C dynamics fuselage deformation aileron reversal Part 2: Writing the equations of motion of flexible aircraft An hystorical perspective (with some technical considerations): transport variables (ODE's) and deformation variables (PDE's) the problem of the "body frame" A mixed Newtonian-Lagrangian approach generalized Euler equation assumed modes assumed modes 	 Motivations for the study of flight dynamics of flexible aircraft 	- active control
 active control of deformations for improved riding qualities Qualitative analysis of flexibility static effects on A/C dynamics fuselage deformation aileron reversal Part 2: Writing the equations of motion of flexible aircraft An hystorical perspective (with some technical considerations): transport variables (ODE's) and deformation variables (PDE's) the problem of the "body frame" A mixed Newtonian-Lagrangian approach generalized Euler equation 	 faster, lighter, more deformable 	Analysis of static & dyn. effects
 Qualitative analysis of flexibility static effects on A/C dynamics fuselage deformation aileron reversal Part 2: Writing the equations of motion of flexible aircraft An hystorical perspective (with some technical considerations): transport variables (ODE's) and deformation variables (PDE's) the problem of the "body frame" A mixed Newtonian-Lagrangian approach generalized Euler equation 	- active control of deformations for improved riding qualities	
 Part 2: Writing the equations of motion of flexible aircraft An hystorical perspective (with some technical considerations): transport variables (ODE's) and deformation variables (PDE's) the problem of the "body frame" A mixed Newtonian-Lagrangian approach generalized Euler equation 	 Qualitative analysis of flexibility static effects on A/C dynamics fuselage deformation aileron reversal 	Part 2: EoM 4 flex. A/C Hystorical
 An hystorical perspective (with some technical considerations): transport variables (ODE's) and deformation variables (PDE's) the problem of the "body frame" A mixed Newtonian-Lagrangian approach generalized Euler equation assumed modes assumed modes 	Part 2: Writing the equations of motion of flexible sizeroft	perspective
 An hystorical perspective (with some technical considerations): the 'body frame' the problem of the "body frame" A mixed Newtonian-Lagrangian approach generalized Euler equation assumed modes assumed modes 	Part 2. Writing the equations of motion of nexible aircrait	
 transport variables (ODE s) and deformation variables (PDE s) the problem of the "body frame" A mixed Newtonian-Lagrangian approach 	 An hystorical perspective (with some technical considerations): 	
 A mixed Newtonian-Lagrangian approach – generalized Euler equation – assumed modes 	 transport variables (ODE's) and deformation variables (PDE's) the problem of the "body frame" 	Mixed NewtLagr. Approach
- assumed modes method	 A mixed Newtonian-Lagrangian approach generalized Euler equation assumed modes method 	
		2

Why a flexible aircraft model?		
	Outline	
Trend in aircraft technologies:	Part 1: Introduction	
 faster aircraft → higher dynamic pressure → higher loads; lighter aircraft → less structural weight; 	Motivations – faster, lighter, more deformable – active control	
• more efficient aircraft \rightarrow slender structures;	Analysis of static & dyn. effects - fuselage def.	
Result:		
 wider deformations significantly alter aircraft shape, depending on flight and manoeuvre condition; 	Part 2: EoM 4 flex. A/C	
 lower structural frequencies close to flight dynamic frequencies and/or control system bandwidth. 	Hystorical perspective - transport vs deformation variables	
Consequence:		
 coupling between structural dynamics and piloting tasks needs to be taken into account at all levels; 	Mixed NewtLagr. Approach - generalized Euler equation	
 rigid body dynamics no longer sufficient for a satisfactory description of aircraft behaviour within its operational flight envelope 		
	4	

What happens?		
	Outline	
Static effects	Part 1: Introduction	
 variation of stability margins, stability derivatives and control power (always in a worsening direction!). 	Motivations – faster, lighter, more deformable – active control	
Dynamic effects:	Analysis of static & dyn. effects - fuselage def. - aileron reversal	
 aeroelastic response: coupling between aerodynamics and structural dynamics (includes significant unsteady aerodynamic effects) at relatively high frequency usually not relevant for 	Part 2: EoM 4 flex. A/C Hystorical	
flight dynamics and control within pilot tasks bandwidth;	perspective – transport vs deformation	
 flexible aircraft response: coupling between pilot/SCAS input to control surfaces, aircraft response and 		
deformation	Mixed NewtLagr. Approach	
	5	

Need for active structural control		
	Outline	
Performance degradation in terms of	Part 1: Introduction	
reduced stability margins and control power	Motivations – faster, lighter, more deformable – active control	
lighter damping	Analysis of static	
requires active control systems to compensate for the effects of structural deformations on aircraft response to controls.	& dyn. effects – fuselage def. – aileron reversal	
First application of active structural control on flying vehicles:	Part 2: FoM 4 flex_A/C	
 rocket launchers (tested; nowadays current technology); 		
 transatmospheric vehicles (only theory!). 	Hystorical perspective	
First application to fixed wing aircraft: Rockwell B1-B (Structural Mode Control System).	 transport vs deformation variables the "body frame" 	
Many modern transport jet aircraft now features	Mixed NewtLagr. Approach	
active flutter suppression system;	 generalized Euler equation 	
• active structure control for improved ride qualities in turbulent ai	- assumed modes method	
and more		
	7	

Modelling issues	
	Outline
Flexible aircraft dyamics described by means of a hybrid	Part 1: Introduction
system of differential equations (mixed and coupled ODE's and PDE's);	Motivations – faster, lighter, more deformable – active control
 Some form of discretisation for elastic DoF's is needed for direct simulation; 	Analysis of static & dyn. effects - fuselage def. - aileron reversal
 Need for a simple yet reliable aerodynamic model, that allows for direct numerical simulation within a reasonable CPU time; 	Part 2: EoM 4 flex. A/C
 Elastic DoF's frequencies may induce (usually unwanted) couplings with 	Hystorical perspective
 pilot commands and response to aircraft acceleration (degradation of handling qualities); 	
 actuator dynamics (aero-servo-elastic problem); 	Mixed NewtLagr. Approach
- external disturbances (e.g. turbulence).	
	9

Engineering issues		
	Outline	
 When an automatic control system is required, a state observer (e.g. a Kalman filter) is needed in order to provide reasonable estimate of "elastic states" from available measurements; 	Part 1: Introduction Motivations – faster, lighter, more deformable – active control	
 The problem of estimation is made more demanding by the high level of "noise" (e.g. vibrations, turbulence, etc.); 	Analysis of static & dyn. effects - fuselage def. - aileron reversal	
 High performance actuators are necessary in order to control the system up to relatively high bandwidths; 	Part 2: EoM 4 flex. A/C	
 An engineering choice needs to be made between 	Hystorical	
 all purpose configurations (a single set of aerodynamic surfaces used for full aircraft control, including flexible DoF's); 	 perspective transport vs deformation variables the "body frame" 	
 dedicated surfaces for deformation control (conventional aerodynamic surfaces used for aircraft control). 	Mixed NewtLagr. Approach - generalized Euler equation - assumed modes method	
	10	

Effects of fuselage deformation		
		Outline
It is possible to define an e	effective tail lift gradient:	Part 1: Introduction
$C_{Lct}^{eff} = \frac{C_{Lct}}{1 + k \frac{1}{2} \rho V_t^2 S_t C_{Lct}} < C_{Lct}$ Effects of fuselage deformation on longitudinal static stability		Motivations – faster, lighter, more deformable – active control
		Analysis of static & dyn. effects - fuselage def. - aileron reversal
Position of neutral point:	$\frac{\boldsymbol{x}_{N}}{\overline{\boldsymbol{c}}} = \frac{\boldsymbol{x}_{AC_{wb}}}{\overline{\boldsymbol{c}}} + \frac{\boldsymbol{C}_{L\alpha_{t}}}{\boldsymbol{C}_{L\alpha_{wb}}} \overline{\boldsymbol{V}}_{H} \left(1 - \frac{\partial \varepsilon}{\partial \alpha}\right)$	Part 2: EoM 4 flex. A/C
Static stability derivative:	$C_{m\alpha} = C_{L\alpha} \left(\frac{x_{CG}}{\overline{c}} - \frac{x_{N}}{\overline{c}} \right) < 0 \text{if } x_{CG} < x_{N}$	Hystorical perspective – transport vs deformation variables
Variation of x_N :	$\frac{\Delta \mathbf{X}_{N}}{\overline{\mathbf{c}}} = \frac{\Delta \mathbf{C}_{L\alpha_{t}}}{\mathbf{C}_{L\alpha_{t}}} \overline{\mathbf{V}}_{H} \left(1 - \frac{\partial \varepsilon}{\partial \alpha}\right)$	- the "body frame" Mixed NewtLagr
where	$\Delta C_{L\alpha_t} = C_{L\alpha_t}^{\text{eff}} - C_{L\alpha_t} = -\frac{\frac{1}{2}k\rho V_t^2 S_t C_{L\alpha_t}}{1 + \frac{1}{2}k\rho V_t^2 S_t C_{L\alpha_t}} < 0$	Approach - generalized Euler equation - assumed modes method
that is, static margin is redu	ced!	
		14

Effects of fuselage deformation		
	Outline	
Effects of fuselage deformation on longitudinal modes	Part 1: Introduction	
Static margin reduction lowers short-period frequency	Motivations – faster, lighter, more deformable	
 Reduced horizontal tail lift gradient lowers damping 	- active control	
Consequence: worse HQ expected	Analysis of static & dyn. effects - fuselage def.	
 A contribution to pitch moment vs speed derivative shows up 		
In general $ M_u \ll 1$ is neglected. It becomes non-negligible at high speed because of	Part 2: EoM 4 flex. A/C	
- aerodynamic effects due to transonic aerodynamics;	Hystorical perspective	
- fuselage flexibility Remembering that $C_{t} = -\overline{V} \cdot C_{t} = -\overline{V} \cdot C_{t} - \overline{C}_{L\alpha_{t}}(\alpha_{wb} + i_{t} - \varepsilon)$		
$\frac{1}{2} \sum_{m_i} \frac{1}{\mu_i} \sum_{l_i} \frac{1}{\mu_i} \frac{1}{\mu_i} + \frac{1}{2} k \rho V_t^2 S_t C_{L\alpha_t}$		
one gets $C_{m_u} = \frac{\partial C_{m_r}}{\partial (\Delta u / V)} = -\overline{V}_H V \frac{\partial C_{L_r}}{\partial u}$	Mixed NewtLagr. Approach	
$C(\alpha + i - c) = 2kOSC$		
$\approx \overline{V}_{H} \frac{C_{La_{t}}(\alpha_{wb} + t_{t} - \varepsilon)}{\left(1 + \frac{1}{2}k\rho V_{t}^{2}S_{t}C_{La_{t}}\right)^{2}} k\rho V_{t}^{2}S_{t}C_{La_{t}} = -\frac{2\kappa Q_{t}S_{t}C_{La_{t}}}{1 + kQ_{t}S_{t}C_{La_{t}}}C_{m_{t}}$		
	16	

Wing torsion induced by aileron deflection	
	Outline
 Torsion moment is roughly proportional to dynamic pressure 	Part 1: Introduction
and aileron deflection: $M_T \propto \frac{1}{2}\rho V^2 \delta_A$	Motivations – faster, lighter,
• Torsional deformation ϑ is proportional to torsion moment M_{T} ,	 active control
and it corresponds to a variation of airfoil incidence in the opposite direction, that is: $\vartheta(y) = -\Delta \alpha(y) \propto M_T$	Analysis of static & dyn. effects - fuselage def. - aileron reversal
• As a consequence, the variation of roll control moment coefficient ΔC_t due to torsion effects can be written in the form $\Delta C_t = k_\tau \frac{1}{2} \rho V^2 \delta_A$	Part 2: EoM 4 flex. A/C
The resulting total roll control moment is thus given by	<pre>perspective - transport vs</pre>
$\Delta C_{\ell}^{tot} = \Delta C_{\ell}^{rig} + \Delta C_{\ell}^{flex} = C_{\ell\delta_{A}}\delta_{A} + \frac{1}{2}k_{T}\rho V^{2}\delta_{A}$ and the effective control moment gradient becomes	deformation variables - the "body frame" Mixed NewtLagr.
$C_{\ell_{\delta_{A}}}^{c,r} = C_{\ell_{\delta_{A}}} + \frac{1}{2} \kappa_{T} \rho V^{2}$	Approach
• Aileron reversal speed V_R is defined as the velocity such that the control gradient vanishes $C_{t_{\delta_a}} + \frac{1}{2}k_T \rho V_R^2 = 0$	Euler equation – assumed modes method
• The effective roll control gradient becomes $C_{\ell_{\delta_A}}^{eff} = C_{\ell_{\delta_A}} \left 1 - \frac{V^2}{V^2} \right $	
	18

Why is it so difficult?	
	Outline
Transport vs deformation variables	Part 1: Introduction
 Transport variables (position vector, speed, Euler angles and angular velocity) 	Motivations – faster, lighter, more deformable – active control
 depend on time <i>t</i> only; describe "global" properties of aircraft motion; their evolution can be described in terms of a set of ODE's. 	Analysis of static & dyn. effects – fuselage def. – aileron reversal
 Deformation variables depend on time <i>t</i> and position in an aircraft-"fixed" frame; describe "local" properties of structure motion; their evolution is described by means of a set of PDE's; 	Part 2: EoM 4 flex. A/C Hystorical perspective - transport vs deformation
 A hybrid set of highly coupled highly nonlinear ordinary and partial differential equations is obtained. 	- the "body frame" Mixed NewtLagr.
 Some form of discretization of the latter is required. 	Approach - generalized
 Coupling extends to inertial terms (highest differential order), so that the system of O+PDE's is in non-normal form. 	Euler equation - assumed modes method
	20

Why is it so difficult?	
	Outline
Is there something like an aircraft-fixed frame?	Part 1: Introduction
Unfortunately the answer is NO!!!	Motivations – faster, lighter,
Body-fixed frame centred in aircraft CoG defined for the rigid	more deformable – active control
aircraft case only.	Analysis of static
 Position of CoG and other inertial properties (e.g. moments of inertia) depend on deformation state. 	 fuselage def. aileron reversal
 At the same time a frame representative of aircraft position and attitude is necessary! 	Part 2: EoM 4 flex. A/C Hystorical
Two possible choices:	 perspective transport vs
1 Mean axes (Milne 1964)	deformation variables
2. Decude hedy even (Turzey and Mairovitch 2002)	- the "body frame"
2. Pseudo-body axes (Tuzcu and Meirovitch, 2003)	Mixed NewtLagr. Approach
	21

Linear and angular momentum balance		
		Outline
Momentum balance	$\frac{d}{d}(mv_c) = \Sigma F$	Part 1: Introduction
Absolute angular momentum balance	dt	Motivations – faster, lighter, more deformable – active control
(pole O fixed in the inertial frame)	$\frac{dt}{dt} (n_0) = 2m_0$	Analysis of static & dyn. effects - fuselage def. - aileron reversal
Relative angular momentum balance	$\frac{d}{dt}(h_c) = \Sigma M_c$	Part 2: EoM 4 flex. A/C
		Hystorical perspective
For a deformable body it is		 transport vs deformation variables
	.7	- the "body frame"
$h_{C} = \int_{\mathcal{F}} (r \times v) \delta m = \int_{\mathcal{F}} \left[r \times (v_{C} + \omega \times v) \delta m \right]_{\mathcal{F}}$	$(r + \dot{r}) \delta m =$	Mixed NewtLagr. Approach
$= \left(\int_{\mathcal{E}} r \delta m \right) \times V_{c} + \int_{\mathcal{E}} \left[r \times (\omega \times r) \right] \delta m$	$+\int_{\mathcal{F}} (r \times \dot{r}) \delta m$	
0 <i>I</i> ω by definition of CoM "rigid-body" term	distortional component of angular momentum	
		22

Definition of the "mean axes" frame	
Statement: whichever the deformation state, there always exists a	Outline
frame centred in the centre of mass such that	Part 1: Introduction
$\int_{\infty} (r \times \dot{r}) \delta m = 0$	Motivations – faster, lighter, more deformable – active control
This frame is known as the mean axes frame.	
Proof: assume two different body-frames, F_{B1} and F_{B2} . It is	Analysis of static & dyn. effects - fuselage def. - aileron reversal
$h_{C1} = I_{B1}\omega_{B1} + \int_{\mathcal{E}1} (r_{B1} \times \dot{r}_{B1}) \delta m$	
$h_{C2} = I_{B2}(\omega + \Delta \omega)_{B2} + \int_{\mathcal{E}^2} (r_{B2} \times \dot{r}_{B2}) \delta m$	Part 2: EoM 4 flex. A/C
$\int_{\mathcal{S}_2} (r_{B_2} \times \dot{r}_{B_2}) \delta m = \int_{\mathcal{S}_2} \left(T_{B_2 B_1} \widetilde{R}_{B_1} T_{B_1 B_2} \right) \left[T_{B_2 B_1} (\dot{r}_{B_1} + \Delta \omega_{B_1} \times r_{B_1}) \right] \delta m$	Hystorical perspective
$= \mathcal{T}_{B2B1} \int_{\mathcal{F}^2} \left(\widetilde{\mathcal{R}}_{B1} \dot{r}_{B1} \right) \delta m + \mathcal{T}_{B2B1} \int_{\mathcal{F}^2} \left[\widetilde{\mathcal{R}}_{B1} \left(\Delta \omega_{B1} \times r_{B1} \right) \right] \delta m$	 transport vs deformation variables
$= T_{B2B1} \left[\int_{\mathcal{S}^2} (r_{B1} \times \dot{r}_{B1}) \delta m + I_{B1} \Delta \omega_{B1} \right]$	- the "body frame"
The distortional term thus disappears if $\Delta \omega_{B1} = -I_{B1}^{-1} \int_{\varepsilon_2} (r_{B1} \times \dot{r}_{B1}) \delta m$	Mixed NewtLagr. Approach
that is, the coordinate transformation matrix evolves according to	
the equation $T_{B B2} = \Delta \Omega_{B } T_{B B2}$.	
In such a case the angular momentum has the form $h_C = I_{00}$	
	23

Pros & cons of the "mean axes" frame	j
Statement: whichover the deformation state, there always exists a	Outline
frame centred in the centre of mass such that	Part 1: Introduction
$\int_{\mathscr{D}} (\mathbf{r} \times \dot{\mathbf{r}}) \delta \mathbf{m} = 0$	Motivations – faster, lighter, more deformable
This frame is known as the mean axes frame .	- active control
 Pros: frame centred in the vehicle centre of mass → relative angular 	Analysis of static & dyn. effects - fuselage def. - aileron reversal
 major inertial coupling term between transport and deformation DoF's is removed from E.o.M. → if variations of inertia tensor 	Part 2: EoM 4 flex. A/C Hystorical
Cons:	- transport vs deformation
 significant coupling between transport and deformation DoF's is always present in the aerodynamic terms: 	- the "body frame"
 centre of mass depends on deformation state, so that its 	Mixed NewtLagr. Approach
velocity depends on deformation rate too;	
 most important: mean axes always exist, but the identification of their actual position is far from trivial (i.e. truly difficult!). 	
	24

Pros & cons of the "mean axes" frame Outline Definition: A set of pseudo-body axes is given by a reference Part 1: Introduction frame attached to the centre of mass of the undeformed aircraft structure and fixed with respect to it. Motivations – faster, lighter, more deformable - active control Pros: Analysis of static & dyn. effects - fuselage def. - aileron reversal simple definition; • deformation state naturally described with respect to the ٠ undeformed condition. Part 2: EoM 4 flex. A/C Cons: Hystorical perspective the actual centre of mass moves with respect to the origin of transport vs deformation variables the frame \rightarrow usual angular momentum balance equations - the "body frame" (w.r.t. the CoM) can no longer be used; fully coupled equations are obtained (local inertial acceleration • Mixed Newt.-Lag Approach depends on transport acceleration, which in turn depends on time derivative of deformation rates). 25

Why is it so difficult? Last issue		
	Outline	
Derivation of a finite order model (ODE system) may follow	Part 1: Introduction	
different paths:	Motivations – faster, lighter,	
 Direct derivation from a global Hamiltonian discretized by 	more deformable – active control	
means of FEM in a set of mean axes (Cavin III & Dusto, 1977);	Analysis of static & dyn. effects	
 Inertially decoupled models with aerodynamic coupling only in a set of approximate mean axes (Waszak et al., 1987); 	 fuselage def. aileron reversal 	
Direct derivation from a global Lagrangian function in terms of	Part 2: EoM 4 flex. A/C	
quasi-velocity variables expressed in a set of pseudo-body axes; discretization performed on the full set of hybrid O+PDE's (Tuzcu and Meirovitch, 2003);	Hystorical perspective - transport vs deformation variables	
 Mixed Newtonian-Lagrangian approach in a set of pseudo- 	- the "body frame"	
body axes (Avanzini, Capello, Piacenza, 2014; from approach	Mixed NewtLagr. Approach	
by Junkins et al. for space structures); discretization of defor-	 generalized Euler equation 	
of assumed modes used as generalized variables: transport	 assumed modes method 	
dynamics derived by generalized Euler equation.		
	26	

State variables and discretization	
State vector $\mathbf{x} = /\mathbf{x} \mathbf{I} \mathbf{x} \mathbf{J} \mathbf{x}^{T}$	Outline
State vector $\mathbf{x} = (\mathbf{x}_T^{T}, \mathbf{x}_D^{T}, \mathbf{x}_D^{T})^T$	Part 1:
Transport variables: $\mathbf{x}_{T} = (u, v, w; p, q, r; \phi, \theta, \psi; \Delta x, \Delta y, -h)^{T}$	Motivations
Deformation variables:	 faster, lighter, more deformable
1 Discretization $\xi_{\epsilon,i}(x_{\epsilon},t) = \sum_{k=1}^{N} \eta_{k}^{(f,i)}(t) \Phi_{k}(x_{\epsilon})$	 active control
Fuselage ($i=z$ v) flexural deformation	Analysis of static & dyn. effects
(z=longitudinal: v=lateral) $\vartheta_{\ell}(x_{\ell}, t) = \sum_{k=1}^{N} \sigma_{k}^{(f)}(t) \Theta_{k}(x_{\ell})$	 fuselage def. aileron reversal
Fuselage torsional deformation	Part 2:
$\xi_{m,i}(x_{m,i,i},t) = \sum_{k=1}^{N} \eta_{k}^{(w,i)}(t) \Phi_{k}(x_{t})$	EoM 4 flex. A/C
Wing $(i=r,l)$ flexural deformations	Hystorical perspective
(r=right; l=left) $\vartheta_{wi}(x_{wi},t) = \sum_{k=1}^{N} \sigma_{k}^{(w,i)}(t) \Theta_{k}(x_{f})$	- transport vs deformation
Wing (<i>i=r,I</i>) torsional deformation	variables
(r=right; l=left)	the body hame
2 Booulting state vector for deformation variables	Mixed NewtLagr. Approach
2. Resulting state vector for deformation variables.	 generalized Euler equation
$\boldsymbol{x}_{D} = (\eta_{1}^{(f,y)}, \dots, \eta_{N}^{(f,y)}; \eta_{1}^{(f,z)}, \dots, \eta_{N}^{(f,z)}; \sigma_{1}^{(f)}, \dots, \sigma_{N}^{(f)};$	 assumed modes method
$\eta_1^{(w,l)}, \dots, \eta_N^{(w,l)}; \eta_1^{(w,r)}, \dots, \eta_N^{(w,r)}; \sigma_1^{(w,l)}, \dots, \sigma_N^{(w,l)}; \sigma_1^{(w,r)}, \dots,$	
$\sigma_N^{(w,r)})^{T}$	32

Giulio Avanzini - Università del Salento

