
JSBSim

Jon S. Berndt
and the JSBSim

Development Team

An open source, platform‐independent, flight dynamics model in C++

JSBSim
An open source, platform‐independent,

flight dynamics model in C++

Jon S. Berndt
& the JSBSim Development Team

Copyright © 2008 Jon S. Berndt, All Rights Reserved.

[This version released on:8/8/2008]

ACKNOWLEDGEMENTS

This software is the result of work done by many people over the years. Tony Peden has been
contributing to the growth of JSBSim almost from day 1. He is responsible for the initialization and
trimming code. Tony also incorporated David Megginson's property system into JSBSim. Tony
hails from Ohio State University, with a degree in Aero and Astronautical Engineering. David Culp
developed the turbine model for JSBSim, and crafted several aircraft models that use it including
the T-38. David has experience flying many types of military and commercial aircraft, including
the T-38, and the Boeing 707, 727, 737, 757, 767, the SGS 2-32, and the OV-10. David is an
aerospace engineer, a graduate from the U.S. Air Force Academy. David Megginson came from
a long involvement as a core FlightGear developer. David correlated our flight dynamics with his
flying experience to aid in maximum realism, among other things. David designed the property
system that both FlightGear and JSBSim use. He is well known for his contributions to XML
technology, and wrote the easyXML parser that both FlightGear and JSBSim use. Erik Hofman
has done a bit of everything, hunting down aircraft data, creating flight models (F-16), and
performing some programming. He also tests for IRIX compatibility. Erik has a degree in
Computer Science. Mathias Frölich added a versatile per-gear ground elevation capability, and
many other things. Mathias is a mathematician from Germany. Agostino De Marco has created a
broadly capable cost/penalty trim analysis feature for JSBSim, and has used JSBSim by itself and
together with FlightGear at the University of Naples. David Luff from the United Kingdom provided
the piston engine model. Engineers with many years of simulation experience, Lee Duke and Bill
Galbraith have contributed suggestions and ideas that have improved JSBSim. Bruce Jackson
from NASA Langley Research Center – who has been involved in the development and use of a
variety of simulations for many years – has been supportive and helpful, and the simulation code
he wrote in C many years ago, (“LaRCSim”) was instructive in the early development of JSBSim.
Curt Olson, who coordinates the development of FlightGear and some of its constituent parts
(SimGear) has been a great help over the years in countless discussions of simulation, control
theory, and many other topics. Working with the FlightGear community has made JSBSim a
better tool. Finally, the user and developer community has worked well to bring JSBSim to where
it is today. Thanks are due to anyone who has ever taken the time to report a bug or to ask for a
feature

PREFACE

JSBSim was conceived in 1996 as a lightweight, data-driven, non-linear, six-degree-of-
freedom (6DoF), batch simulation application aimed at modeling flight dynamics and control for
aircraft. Since the earliest versions, JSBSim has benefited from the open source development
environment it has grown within and the wide variety of users that have contributed ideas for its
continued improvement.

About this document

This document is split up into several parts. There is a QuickStart section that explains how to
get started with JSBSim quickly. That is followed by Section One, which is a User’s Manual. The
User’s Manual explains how to use JSBSim to make simulation runs, to create aircraft models, to
write scripts, and how to perform various other tasks that do not involve changes to program code
in JSBSim itself. Section Two is a Programmer’s Manual. The Programmer’s Manual explains the
architecture of JSBSim – how the code is organized and how it works. Section Three is the
Formulation Manual which contains a description of the math model and algorithms used to
model a subsystem. Section Four is a collection of some examples and case studies showing
how JSBSim has been used.

What this document is and what it is not

This document is not an exhaustive reference on the derivation of the equations of motion and
flight dynamics. For a text on that, see (Stevens & Lewis, 2003), and (Zipfel, 2007). This
document is meant to be the authoritative document about JSBSim.

Conventions used

When XML definitions are given, items in brackets (“[]”) are optional.

TABLE OF CONTENTS

QUICKSTART ... 1

1.1 Getting the Source ... 1
1.2 Getting the Program .. 1
1.3 Building the Program ... 1
1.4 Running the Program .. 1

SECTION 1: USER'S MANUAL .. 3

1. OVERVIEW ... 4
1.1 What, exactly, is JSBSim? .. 4
1.2 Who is it for? ... 4
1.3 Frames of Reference .. 4
1.4 Units .. 5

2. CONCEPTS ... 7
2.1 Simulation .. 7
2.2 Properties .. 7
2.3 Math .. 9
2.4 Forces and Moments ... 13
2.5 Flight Control and Systems modeling .. 21

3. AUTHORING CONFIGURATION FILES .. 27
3.1 Aircraft ... 27
3.2 Engines .. 47
3.3 Thrusters .. 47
3.4 Initialization ... 47
3.5 Scripts .. 47

4. INPUT/OUTPUT ... 48
4.1 Socket I/O .. 48
4.2 File and Console I/O ... 48

5. SCRIPTING ... 49

SECTION 2: PROGRAMMER'S MANUAL .. 52

1. OVERVIEW ... 53
2. CLASS HEIRARCHY ... 56

2.1 Directory organization ... 57
2.2 Base class ... 57
2.3 Executive class ... 57
2.4 Manager classes .. 59
2.5 Model classes .. 59
2.6 Math classes .. 62
2.7 Initialization ... 62

3. INCORPORATING JSBSIM INTO YOUR SOFTWARE ... 63
3.1 FlightGear .. 63
3.2 OpenEaagles .. 63
3.3 JSBSim and Python... 65

4. EXTENDING JSBSIM ... 66

SECTION 3: FORMULATION MANUAL ... 67

1. OVERVIEW ... 68
2. EQUATIONS OF MOTION ... 69

2.1 Translational Acceleration ... 71
2.2 Angular Acceleration ... 72

2.3 Translational Velocity .. 73
2.4 Angular Velocity .. 74

SECTION 4: CASE STUDIES .. 77

1. OVERVIEW ... 78
2. SIMPLE BALL ... 79
3. BALL WITH PARACHUTE .. 82
4. PISTON AIRCRAFT WITH AUTOPILOT AND SCRIPTING .. 87

4.1 An Automatic Wing Leveler ... 87
4.2 A Heading Hold Autopilot .. 96

5. MODELING A WAYPOINT NAVIGATION SYSTEM ... 98
6. ROCKET WITH GNC AND SCRIPTING .. 106

6.1 Addressing the ground reactions ... 106
6.2 Simple rocket guidance .. 106
6.3 “Moding” and Timing .. 107
6.4 Where to Start? ... 108
6.5 Aerodynamics .. 108
6.6 Mass Properties ... 108

APPENDICES .. 110

NATIVE PROPERTIES .. 111

 JSBSim Reference Manual v1.0

 | Quickstart 1

1

Quickstart
1.1 Getting the Source

JSBSim can be downloaded as source code in a "release" - a bundled set of source code files
(a snapshot) that was taken at some point in time when the source code was thought to be
stable. A release is made at random times as the developers see fit. The code can be
downloaded as a release from the project web site at:

http://sourceforge.net/project/showfiles.php?group_id=19399
The source code can also be retrieved from the revision management storage location using a

tool called cvs (concurrent versions system). CVS is available as an optional tool in the Cygwin
environment under Windows, but is usually standard with Linux systems. Directions on
downloading JSBSim can be found at the project web site at http://www.jsbsim.org.

1.2 Getting the Program
At the same location, executable files for some platforms (Windows, Cygwin, Linux, IRIX, etc.)

may also be downloaded. It should be noted that at present (and unless otherwise stated in the
release notes for a release) the example aircraft and script files, etc. must be downloaded as part
of the source code release. Another alternative is to check out the files from the JSBSim cvs
repository.

1.3 Building the Program
JSBSim can be built using standard gnu tools, automake, autoconf, g++, make, etc. There

also exists a project file for building JSBSim using the Visual C++ development environment from
Microsoft. For a Unix environment, once you have the source code files, you should be able to
change directory ("cd") to the JSBSim base directory and type:

./autogen.sh
make

This should result in an executable being created under the src/ subdirectory.

1.4 Running the Program
There may be several options specified when running the standalone JSBSim application

provided with a JSBSim release:

 --help Returns a usage message
 --version Returns the version number
 --outputlogfile=<filename> Sets/replaces the name of the data log file
 --logdirectivefile=<filename> Sets name of data log directives file
 --root=<path> Sets the JSBSim root directory (where src/ resides)
 --aircraft=<filename> Sets the name of the aircraft to be modeled
 --script=<filename> Specifies a script to run

 JSBSim Reference Manual v1.0

 | Quickstart 2

2

 --realtime Specifies to run in actual real world time
 --nice Directs JSBSim to run at low CPU usage
 --suspend Specifies to suspend the simulation after initialization
 --initfile=<filename> Specifies an initialization file to use
 --catalog Directs JSBSim to list all properties for this model
 --end-time=<time (double)> Specifies the sim end time
NOTE: There can be no spaces around the = sign when an option is
followed by a filename

If you have built JSBSim from source code there will be an executable under the src/
subdirectory. You can run JSBSim by supplying the name of a script:

src/jsbsim --script=scripts/c1723.xml

You may have simply downloaded the executable. In this case, you should create the scripts/,
aircraft/, and engine, subdirectories. You should place aircraft models under the aircraft/
subdirectory, in another subdirectory that has the same name as the aircraft. For instance, if you
create a B-2 flight model, you would place that in the aircraft/B2/ subdirectory, and the aircraft
flight model name would be called B2.xml.

 J

S

JSBSim Refe

Sectio

erence Manu

on 1:

ual v1.0

 | Sectio

User'

on One: User’

's Man

’s Manual

nual

3

3

 JSBSim Reference Manual v1.0

 | Section One: User’s Manual 4

4

1. Overview

1.1 What, exactly, is JSBSim?
JSBSim is a collection of program code mostly written in the C++ programming language, but

some C language routines are included. Some of the C++ classes that comprise JSBSim model
physical entities such as the atmosphere, a flight control system, or an engine. Some of the
classes encapsulate concepts or mathematical constructs such as the equations of motion, a
matrix, or a vector. Some classes manage collections of other objects. Taken together, JSBSim
takes control inputs, calculates and sums the forces and moments that result from those control
inputs and the environment, and advances the state of the vehicle (velocity, orientation, position,
etc.) in discrete time steps.

JSBSim has been built and run on a wide variety of platforms such as a PC running Windows
or Linux, Apple Macintosh, and even the IRIX operating system from Silicon Graphics. The free
GNU g++ compiler easily compiles JSBSim, and other compilers such as those from Borland and
Microsoft also work well.

1.2 Who is it for?
The JSBSim architecture is meant to be reasonably easy to comprehend, and is designed to

be useful to advanced aerospace engineering students. Due to the ease with which it can be
configured, it has also proven to be useful to industry professionals in a number of ways. It has
been incorporated into larger, full-featured, flight simulation applications and architectures (such
as FlightGear and OpenEaagles), and has been used as a batch simulation tool in industry and
academia.

1.3 Frames of Reference
Before moving into a description of the configuration file syntax, one must understand some

basic information about the frames of reference used in describing the location of objects on the
aircraft.

Structural Frame This frame is a common manufacturer’s frame of reference and is used to
define points on the aircraft such as the center of gravity, the locations of all the wheels, the pilot
eye-point, point masses, thrusters, etc. Items in the JSBSim aircraft configuration file are located
using this frame. In the structural frame the X-axis increases from the nose towards the tail, the
Y-axis increases from the fuselage out towards the right (when looking forward from the cockpit),
and of course the Z-axis then is positive upwards. Typically, the origin for this frame is near the
front of the aircraft (at the tip of the nose, at the firewall, or in front of the nose some distance).
The X-axis is typically coincident with the fuselage centerline and passes through the propeller
hub (thrust axis). Positions along the X axis are referred to as stations. Positions along the Z axis
are referred to as waterline positions. Positions along the Y axis are referred to as buttline
positions.

 JSBSim Reference Manual v1.0

 | Section One: User’s Manual 5

5

Note that the origin can be anywhere for a JSBSim-modeled aircraft, because JSBSim
internally only uses the relative distances between the CG and the various objects – not the
discrete locations themselves.

Body frame As used in JSBSim, the body frame is similar to the structural frame, but rotated
180 degrees about the Y axis, with the origin coincident with the CG. This is the frame where the
aircraft forces and moments are summed and the resulting accelerations are integrated to get
velocities.

Stability frame This frame is similar to the body frame, except that the X-axis points into the
relative wind vector projected onto the XY plane of symmetry for the aircraft. The Y-axis still
points out the right wing, and the Z-axis completes the right-hand system.

Wind frame This frame is similar to the Stability frame, except that the X-axis points directly
into the relative wind. The Z-axis is perpendicular to the X-axis, and remains within the aircraft
body axis XZ plane (also called the reference plane). The Y-axis completes a right hand
coordinate system.

1.4 Units
JSBSim uses English units for internal calculations almost exclusively. However, it is possible

to input some parameters in the configuration file using different units. In fact, to avoid confusion,
it is recommended that the unit always be specified. Units are specified using the “unit” attribute.
For instance, the specification for the wingspan looks like this:

<wingspan unit="FT"> 35.8 </wingspan>

The above statement specifies a wingspan of 35.8 feet. The following statement specifying the
wingspan in meters would result in the wingspan being converted to 35.8 feet as it was read in:

<wingspan unit="M"> 10.91 </wingspan>

The two statements for wingspan are effectively equivalent.
The following conversions are currently supported [using the abbreviations: “M” – Meters, “FT”

– Feet, “IN” – Inches, “IN3” – Cubic inches, “CC” – Cubic centimeters, “M3” – Cubic meters, “FT3”
– Cubic feet, “LTR” – Liter, “M2” – Square meters, “FT2” – Square feet, “LBS” – Pounds, “KG” –
Kilogram, “SLUG*FT2” – Slug-ft2, “KG*M2” – Kilogram-meter2, “RAD” – Radian, “DEG” – Degree,
“LBS/FT” – pounds per foot, “N/M” – Newtons per meter, “LBS/FT/SEC” – pounds per foot per
second, “N/M/SEC” – Newtons per meter per second, “WATTS” – Watts, “HP” – Horsepower, “N”
– Newtons, “LBS” – Pounds, “KTS” – Knots, “FT/SEC” – Feet per second, “M/S” – Meters per
second, “FT*LBS” – Foot-pounds, “N*M” – Newton-meters, “INHG” – Inches of mercury, “PSF” –
Pounds per square foot, “ATM” – atmospheres, “PSI” – Pounds per square inch, “PA” – Pascals]:

Length
M FT
M IN

Area
M2 FT2

Volume
CC IN3
M3 FT3
LTR->IN3

Mass & Weight
KG LBS

 JSBSim Reference Manual v1.0

 | Section One: User’s Manual 6

6

Moments of Inertia
KG*M2 SLUG*FT2

Angles
RAD DEG
DEG RAD

Spring force
N/M LBS/FT

Damping force
N/M/SEC LBS/FT/SEC

Power
WATTS HP
HP WATTS

Force
N LBS

Velocity
KTS FT/SEC
M/S FT/SEC

Torque
N*M FT*LBS

Pressure
INHG PSF
ATM INHG
INHG ATM
PSF INHG
INHG PA
PA INHG
PSI INHG

 JSBSim Reference Manual v1.0

 | Section One: User’s Manual 7

7

2. Concepts

2.1 Simulation
While the JSBSim user does not need to know some of the finer details of the flight simulator

operation, it can be helpful to understand basically how JSBSim works. Some of the most
important concepts are described in this section.

The use of “Properties” permits JSBSim to be a generic simulator, providing a way to interface
the various systems with parameters (or variables). Properties are used throughout the
configuration files that describe aircraft and engine characteristics.

Obviously, math plays a big part in modeling flight physics. JSBSim makes use of data tables,
as flight dynamics characteristics are often stored in tables. Arbitrary algebraic functions can also
be set up in JSBSim, allowing broad freedom for describing aerodynamic and flight control
characteristics.

2.2 Properties
Simulation programs need to manage a large amount of state information. With especially

large programs, the data management task can cause problems:

• Contributors find it harder and harder to master the number of interfaces necessary
to make any useful additions to the program, so contributions slow down.

• Runtime configurability becomes increasingly difficult, with different modules using
different mechanisms (environment variables, custom specification files, command-
line options, etc.).

• The order of initialization of modules is complicated and brittle, since one module's
initialization routines might need to set or retrieve state information from an
uninitialized module.

• Extensibility through add-on scripts, specification files, etc. is limited to the state
information that the program provides, and non-code-writing developers often have to
wait too long for the developers to get around to adding a new variable.

The Property Manager system provides a single interface for chosen program state
information, and allows the creation of new properties dynamically at run-time. The latter
capability is especially important for the JSBSim FCS model because the components that make
up the control law definition for an aircraft exist only in a specification file. At runtime, after parsing
the component definitions, the components are instantiated, and the property manager creates a
property to store the output value of each component.

Properties themselves are like global variables with selectively limited visibility (read or
read/write) that are categorized into a hierarchical, tree-like structure that is similar to the
structure of a Unix file system. The structure of the property tree includes a root node, sub nodes,

 JSBSim Reference Manual v1.0

 | Section One: User’s Manual 8

8

(like subdirectories) and end-nodes (properties). Similar to a Unix file system, properties can be
referenced relative to the current node, or to the root node. Nodes can be grafted onto other
nodes similar to symbolically linking files or directories to other files or directories in a file system.
Properties are used throughout JSBSim and FlightGear to refer to specific parameters in program
code. Properties can be assigned from the command line, from specification files and scripts, and
– in the case of FlightGear – even via a socket interface. References to parameters as properties
look like position/h-sl-ft, and aero/qbar-psf.

To illustrate the power of using properties and configuration files, consider the case of a high-
performance jet aircraft model. Assume for a moment that a new switch has been added to the
control panel for the example aircraft that allows the pilot to override pitch limits in the FCS. For
FlightGear, the instrument panel is defined in a configuration file, and the switch is defined there
for visual display. A property name is also assigned to the switch definition. Within the flight
control portion of the JSBSim aircraft specification file, that same property name assigned to the
pitch override switch in the instrument panel definition file can be used to channel the control laws
through the desired path as a function of the switch position. No code needs to be touched.

Specific simulation parameters are available both from within JSBSim and in configuration file
specifications via properties. As mentioned earlier, properties are the term we use to describe
parameters that we can access or set.

Many properties are static properties – i.e. those properties that are always present for all
vehicles. The aerodynamic coefficients, engines, thrusters, and flight control/autopilot models will
also have dynamically defined properties. This is because the whole set of aerodynamic
coefficients, engines, etc. will not be known until after the relevant configuration file for an aircraft
is read. One must know the convention used to name the properties for these parameters in order
to access them. As an example, the flight control system for the X-15 model features the following
components, among others:

<flight_control name="X-15">

 <channel name="Pitch">

 <summer name="Pitch Trim Sum">
 <input>fcs/elevator-cmd-norm</input>
 <input>fcs/pitch-trim-cmd-norm</input>
 <clipto>
 <min>-1</min>
 <max>1</max>
 </clipto>
 </summer>

 <aerosurface_scale name="Pitch Command Scale">
 <input>fcs/pitch-trim-sum</input>
 <range>
 <min>-50</min>
 <max>50</max>
 </range>
 </aerosurface_scale>

 <pure_gain name="Pitch Gain 1">
 <input>fcs/pitch-command-scale</input>

 JSBSim Reference Manual v1.0

 | Section One: User’s Manual 9

9

 <gain>-0.36</gain>
 </pure_gain>

A close examination of the above series of components reveals a hint as to how the property
names are given to components that are defined at runtime. The first component above (“Pitch
Trim Sum”) takes input from two places, the known static properties, fcs/elevator-cmd-norm and
fcs/pitch-trim-cmd-norm. The next component takes as input the output from the first component.
The input property listed for the second component is fcs/pitch-trim-sum. The convention for
automatic naming of properties for the flight control system (FCS) and autopilot is that all non-
alphanumeric characters in a component name are replaced by hyphens (“-“). This includes
spaces and slashes. Additionally, all letters are made lower-case. Continuing with the above case
shows that the last component, “Pitch Gain 1”, takes as input the output from the preceding
component, “Pitch Command Scale”, which is given the property name (being in the FCS model),
fcs/pitch-command-scale.

So, now we have a way to access many parameters inside JSBSim. We know how the FCS is
assembled in JSBSim. The same components used in the FCS are also available to build an
autopilot, or other system.

2.3 Math
2.3.1 Functions

The function specification in JSBSim is a powerful and versatile resource that allows algebraic
functions to be defined in a JSBSim configuration file. The function syntax is similar in concept to
MathML (Mathematical Markup Language, www.w3.org/Math/), but it is simpler and more terse.

A function definition consists of an operation, a value, a table, or a property (which evaluates
to a value). The currently supported operations are:

• sum (takes n arguments)
• difference (takes n arguments)
• product (takes n arguments)
• quotient (takes 2 arguments)
• pow (takes 2 arguments)
• exp (takes 2 arguments)
• abs (takes n arguments)
• sin (takes 1 arguments)
• cos (takes 1 arguments)
• tan (takes 1 arguments)
• asin (takes 1 arguments)
• acos (takes 1 arguments)
• atan (takes 1 arguments)
• atan2 (takes 2 arguments)
• min (takes n arguments)
• max (takes n arguments)
• avg (takes n arguments)
• fraction (takes 1 argument)

 JSBSim Reference Manual v1.0

 | Section One: User’s Manual 10

10

• mod (takes 2 arguments)
• random (Gaussian random number, takes no arguments)
• integer (takes one argument)

An operation is defined in the configuration file as in the following example:

 <sum>
 <value> 3.14159 </value>
 <property> velocities/qbar </property>
 <product>
 <value> 0.125 </value>
 <property> metrics/wingarea </property>
 </product>
 </sum>

In the example above, the sum element contains three other items. What gets evaluated is
written algebraically as:

3.14159 + qbar + (0.125 * wingarea)

A full function definition, such as is used in the aerodynamics section of a configuration file
includes the function element, and other elements. It should be noted that there can be only one
non-optional (non-documentation) element - that is, one operation element - in the top-level
function definition. The <function> element cannot have more than one immediate child
operation, property, table, or value element. Almost always, the first operation within the function
element will be a product or sum. For example:

<function name="aero/coefficient/Clr">
 <description>Roll moment due to yaw rate</description>
 <product>
 <property>aero/qbar-area</property>
 <property>metrics/bw-ft</property>
 <property>aero/bi2vel</property>
 <property>velocities/r-aero-rad_sec</property>
 <table>
 <independentVar>aero/alpha-rad</independentVar>
 <tableData>
 0.000 0.08
 0.094 0.19
 </tableData>
 </table>
 </product>
</function>

The "lowest level" in a function definition is always a value or a property, which cannot itself
contain another element. As shown, operations can contain values, properties, tables, or other
operations.

Some operations take only a single argument. That argument, however, can be an operation
(such as sum) which can contain other items. The point to keep in mind is any such contained
operation evaluates to a single value - which is just what the trigonometric functions require
(except atan2, which takes two arguments).

Finally, within a function definition, there are some shorthand aliases that can be used for
brevity in place of the standard element tags. Properties, values, and tables are normally referred

 JSBSim Reference Manual v1.0

 | Section One: User’s Manual 11

11

to with the tags, <property>, <value>, and <table>. Within a function definition only, those
elements can be referred to with the tags, <p>, <v>, and <t>. Thus, the previous example could
be written to look like this:

<function name="aero/coefficient/Clr">
 <description>Roll moment due to yaw rate</description>
 <product>
 <p> aero/qbar-area </p>
 <p> metrics/bw-ft </p>
 <p> aero/bi2vel </p>
 <p> velocities/r-aero-rad_sec </p>
 <t>
 <independentVar> aero/alpha-rad </independentVar>
 <tableData>
 0.000 0.08
 0.094 0.19
 </tableData>
 </t>
 </product>
</function>

2.3.2 Tables
One, two, or three dimensional lookup tables can be defined in JSBSim for use in

aerodynamics and function definitions. For a single "vector" lookup table, the format is as follows:

<table name="property_name">
 <independentVar lookup="row"> property_name </independentVar>
 <tableData>
 key_1 value_1
 key_2 value_2

 key_n value_n
 </tableData>
</table>

The lookup="row" attribute in the independentVar element is optional in this case; it is
assumed that the independentVar is a row variable. A real example is as shown here:

<table>
 <independentVar lookup="row"> aero/alpha-rad </independentVar>
 <tableData>
 -1.57 1.500
 -0.26 0.033
 0.00 0.025
 0.26 0.033
 1.57 1.500
 </tableData>
</table>

The first column in the data table represents the lookup index (or breakpoints, or keys). In this
case, the lookup index is aero/alpha-rad (angle of attack in radians). If alpha is 0.26 radians, the
value returned from the lookup table would be 0.033.

The definition for a 2D table, is as follows:

<table name="property_name">

 JSBSim Reference Manual v1.0

 | Section One: User’s Manual 12

12

 <independentVar lookup="row"> property_name </independentVar>
 <independentVar lookup="column"> property_name </independentVar>
 <tableData>
 {col_1_key col_2_key ... col_n_key }
 {row_1_key} {col_1_data col_2_data ... col_n_data}
 {row_2_key} {... }
 { ... } {... }
 {row_n_key} {... }
 </tableData>
</table>

The data is in a gridded format. A real example is as shown below. Alpha in radians is the row
lookup (alpha breakpoints are arranged in the first column) and flap position in degrees is split up
in columns for deflections of 0, 10, 20, and 30 degrees):

<table>
 <independentVar lookup="row">aero/alpha-rad</independentVar>
 <independentVar lookup="column">fcs/flap-pos-deg</independentVar>
 <tableData>
 0.0 10.0 20.0 30.0
 -0.0523599 8.96747e-05 0.00231942 0.0059252 0.00835082
 -0.0349066 0.000313268 0.00567451 0.0108461 0.0140545
 -0.0174533 0.00201318 0.0105059 0.0172432 0.0212346
 0.0 0.0051894 0.0168137 0.0251167 0.0298909
 0.0174533 0.00993967 0.0247521 0.0346492 0.0402205
 0.0349066 0.0162201 0.0342207 0.0457119 0.0520802
 0.0523599 0.0240308 0.0452195 0.0583047 0.0654701
 0.0698132 0.0333717 0.0577485 0.0724278 0.0803902
 0.0872664 0.0442427 0.0718077 0.088081 0.0968405
 </tableData>
</table>

The definition for a 3D table in a coefficient would be (for example):

<table name="property_name">
 <independentVar lookup="row"> property_name </independentVar>
 <independentVar lookup="column"> property_name </independentVar>
 <tableData breakpoint="table_1_key">
 {col_1_key col_2_key ... col_n_key }
 {row_1_key} {col_1_data col_2_data ... col_n_data}
 {row_2_key} {... }
 { ... } {... }
 {row_n_key} {... }
 </tableData>
 <tableData breakpoint="table_2_key">
 {col_1_key col_2_key ... col_n_key }
 {row_1_key} {col_1_data col_2_data ... col_n_data}
 {row_2_key} {... }
 { ... } {... }
 {row_n_key} {... }
 </tableData>
 ...
 <tableData breakpoint="table_n_key">
 {col_1_key col_2_key ... col_n_key }
 {row_1_key} {col_1_data col_2_data ... col_n_data}
 {row_2_key} {... }
 { ... } {... }

 JSBSim Reference Manual v1.0

 | Section One: User’s Manual 13

13

 {row_n_key} {... }
 </tableData>
</table>

[Note the "breakpoint" attribute in the tableData element, above.] Here's an example:

<table>
 <independentVar lookup="row">fcs/row-value</independentVar>
 <independentVar lookup="column">fcs/column-value</independentVar>
 <independentVar lookup="table">fcs/table-value</independentVar>
 <tableData breakPoint="-1.0">
 -1.0 1.0
 0.0 1.0000 2.0000
 1.0 3.0000 4.0000
 </tableData>
 <tableData breakPoint="0.0000">
 0.0 10.0
 2.0 1.0000 2.0000
 3.0 3.0000 4.0000
 </tableData>
 <tableData breakPoint="1.0">
 0.0 10.0 20.0
 2.0 1.0000 2.0000 3.0000
 3.0 4.0000 5.0000 6.0000
 10.0 7.0000 8.0000 9.0000
 </tableData>
</table>

Note that table values are interpolated linearly, and no extrapolation is done at the table limits
– the highest value a table will return is the highest value that is defined.

2.4 Forces and Moments
2.4.1 Aerodynamics

There are several ways to model the aerodynamic forces and moments (torques) that act on
an aircraft. JSBSim started out by using the coefficient buildup method. In the coefficient buildup
method, the lift force (for instance) is determined by summing all of the contributions to lift. The
contributions differ depending on the aircraft and the fidelity of the model, but contributions to lift
can include those from:

• Wing
• Elevator
• Flaps

Aerodynamic coefficients are numbers which, when multiplied by certain other values (such as
dynamic pressure and wing area), result in a force or moment. The coefficients can be taken from
flight test reports or textbooks, or they can be calculated using software (such as Digital
DATCOM or other commercially available programs) or by hand calculations.

Eventually, JSBSim added support for aerodynamic properties specified as functions. Within
the <aerodynamics> section of a configuration file there are six subsections representing the 3
force and 3 moment axes (for a total of six degrees of freedom). The basic layout of the
aerodynamics section is as follows:

 JSBSim Reference Manual v1.0

 | Section One: User’s Manual 14

14

<aerodynamics>

 <axis name=”DRAG”>
 { force contributions …}
 </axis>

 <axis name=”SIDE”>
 { force contributions …}
 </axis>

 <axis name=”LIFT”>
 { force contributions …}
 </axis>

 <axis name=”ROLL”>
 { moment contributions …}
 </axis>

 <axis name=”PITCH”>
 { moment contributions …}
 </axis>

 <axis name=”YAW”>
 { moment contributions …}
 </axis>

</aerodynamics>

Individual axes are not all absolutely required. There are several standard grouped sets of
axes that are supported in JSBSim:

• DRAG, SIDE, LIFT (wind axes)
• X, Y, Z (body axes)
• AXIAL, SIDE, NORMAL (body axes)

All three systems accept ROLL, PITCH, YAW axis definitions. The axial systems cannot be
mixed.

Within the axis elements, functions are used to define individual force or moment contributions
to the total for that axis. Functions are used throughout JSBSim. In defining a force or moment,
functions can employ the use of tables, constants, trigonometric functions, or other standard C
library functions. Simulation parameters are referenced via properties. Here is an example:

<function name="aero/force/CLDf">
 <description>Lift contribution due to flap deflection</description>
 <product>
 <property>aero/function/ground-effect-factor-lift</property>
 <property>aero/qbar-area</property>
 <table>
 <independentVar>fcs/flap-pos-deg</independentVar>
 <tableData>
 0.0 0.0
 10.0 0.20
 20.0 0.30
 30.0 0.35
 </tableData>

 JSBSim Reference Manual v1.0

 | Section One: User’s Manual 15

15

 </table>
 </product>
</function>

In this case, a description in words of what the above does is as follows: CLDf (the
contribution of lift due to flap deflection) is the product of the ground-effect-factor-lift, qbar-area,
and the value determined by the table, which is indexed as a function of flap position in degrees.

All of the functions in an <axis> section are summed and applied to the aircraft in the
appropriate manner. There is some flexibility in this format, though. Functions that are specified
outside of any <axis> section are created and calculated, but they do not specifically contribute to
any force or moment total by themselves. However, they can be referenced by other functions
that are in an <axis> section. This technique allows calculations that might be applied to several
individual functions to be performed once and used several times. The technique can be taken
even further, with actual aerodynamic coefficients being calculated outside of an <axis> definition,
with the coefficients subsequently being multiplied within function definitions by the various
factors (properties) that turn them into forces and moments inside an <axis> definition.

As an example, let’s examine the lift force due to angle of attack (alpha). We know that
increasing the angle of attack increases lift – up to a point. Lift force is traditionally defined as the
product of dynamic pressure (qbar), wing area (Sw), and lift coefficient (CL). In this case, the lift
coefficient is determined via a lookup table, using alpha as an index into the table:

<function name="aero/coefficient/CLalpha">
 <description> Lift_due_to_alpha </description>
 <product>
 <property> aero/qbar-psf </property>
 <property> metrics/Sw-sqft </property>
 <table name=”CL”>
 <independentVar lookup="row"> aero/alpha-rad </independentVar>
 <tableData>
 -0.20 -0.720
 0.00 0.240
 0.22 1.300
 0.60 0.664
 </tableData>
 </table>
 </product>
</function>

The above function results in “CLalpha” being calculated many times per second as JSBSim
executes. The value of the function is the product of qbar, wing area, and lift coefficient as
determined by the lookup table. For instance, if alpha (in radians) is 0 degrees, the lift coefficient
is 0.240.

So, for the aircraft we are modeling, where do we get this information about the lift coefficient
– or any other aerodynamic data? An early task in modeling any aircraft is to collect the aircraft
characteristics information – a sort of “data farming” effort. One can begin with a search using the
NASA Technical Report Server search engine at: http://ntrs.nasa.gov. For instance, a search
phrase of “Beech 99” returned several documents, and one was available as a PDF file:

Stability and control derivative estimates obtained from flight data for the Beech 99
aircraft, Tanner, R. R.; Montgomery, T. D.

 JSBSim Reference Manual v1.0

 | Section One: User’s Manual 16

16

Lateral-directional and longitudinal stability and control derivatives were determined from
flight data by using a maximum likelihood estimator for the Beech 99 airplane. Data were
obtained with the aircraft in the cruise configuration and with one-third flap deflection. The
estimated derivatives show good agreement with the predictions of the manufacturer.

Next, one might search for an FAA Type Certificate Data Sheet (TCDS) at:
http://www.airweb.faa.gov/Regulatory_and_Guidance_Library/rgMakeModel.nsf/
A careful search led to “TYPE CERTIFICATE DATA SHEET NO. A14CE” for the Beech 99

aircraft.
Documents such as these can be helpful in crafting an aircraft aerodynamic model. If you are

unable to find stability and aerodynamic information about the aircraft you are interested in, try
finding a comparable aircraft. For instance, the CV-880, B747, and C-5 all have data published in
Aircraft Handling Qualities Data, by Heffley and Jewell.

First of all, the NASA Beech 99 Technical Memo mentioned above contains specific
information about the aerodynamic qualities of the aircraft. Let’s look at how to begin creating a
JSBSim aerodynamics specification for a specific aircraft.

As mentioned, JSBSim uses the coefficient buildup method for calculating aerodynamic forces
and moments on an aircraft. We have a nice report for the Beech 99 showing both the
manufacturer’s estimates and flight test data for the aerodynamic quantities:

Longitudinal coefficients (i.e. xz-plane symmetric coefficients, lift, pitch, drag)

(1)
0NeNNN CCCC

e
++= δα

δα

 (2)
02 memmmm CC

V
cqCCC

eq
+++= δα δα

(3) 2
0 LDD KCCC +=

Lateral coefficients (i.e. side force, roll, yaw)

(4)
0YrYaYYY CCCCC

ra
+++= δδβ δδβ

(5)
022 lrlalllll CCC

V
rbC

V
pbCCC

rarp
+++++= δδβ δδβ

(6)
022 nrnannnnn CCC

V
rbC

V
pbCCC

rarp
+++++= δδβ δδβ

The above equations are for (in order), normal force coefficient, pitch moment coefficient, drag
coefficient, side force coefficient, rolling moment coefficient, and yaw moment coefficient. There is
no lift coefficient specified. For low alpha, the normal and lift coefficients are very close.

The manufacturer’s estimates for the aerodynamic force and moment components are as
follows:

(7) cL TC ⋅+= 151.0096.0
α

 (per degree; no flaps)

(8) cL TC ⋅+= 151.0101.0
α

 (per degree; 1/3 flaps)

(9) 20625.00275.0 LD CC ⋅+=

 JSBSim Reference Manual v1.0

 | Section One: User’s Manual 17

17

(10) cm TC ⋅+= 010.0010.0
4/1,α

 (per degree)

(11) cm TC
e

⋅−−= 032.0034.0δ (per degree)

(12) 1.43−=
α&mC (per radian)

(13) 40.3−=
qmC (per radian)

(14) cn TC ⋅−= 0015.0014.0
β

 (per degree)

(15) 0023.0−=
βl

C (per degree)

(16) 010.0−=
βYC (per degree)

(17) 0014.0−=
rnC δ (per degree)

(18) αδ ⋅−= 000022.000017.0
rlC (per degree)

(19) 0026.0=
rYC δ (per radian)

(20) α⋅−−= 197.020.0
rnC (per radian)

(21) α⋅+= 623.005.0
rl

C (per radian)

(22) 394.0=
rYC (per radian)

(23) α⋅−= 762.00079.0
pnC (per radian)

(24) 515.0−=
pl

C (per radian)

(25) α⋅−−= 385.0199.0
pYC (per radian)

(26) 0027.0=
alC δ (per degree)

(27) 0015.0−=
anC δ (per degree)

The subscripts p, q, r, refer to rates about the
x, y, z, axes; δx (where x is a, r, e) refers to the
deflection of the aileron, rudder, or elevator,
respectively; l, m, n, refer to moments about the
x, y, z, axes; α, β, refer to angle of attack and
angle of sideslip; L, D, and Y, refer to lift, drag,
and side force. Tc refers to thrust coefficient, and
is defined as follows:

(28)
Sq

ThrustTc =

These coefficients and derivatives are not all
necessarily the last word on aerodynamic
modeling for the Beech 99 – the data comes from
testing that was done for a particular purpose that
is not necessarily supposed to result in a full Figure 1 Lift curve for NACA 4412 Wing Section (2D)

 JSBSim Reference Manual v1.0

 | Section One: User’s Manual 18

18

aerodynamic database for simulation modeling. So, we are left with data obtained within a fairly
narrow flight envelope. We can look at the coefficient and derivative data and make adjustments
on a one-by-one basis. But, not only are there adjustments that can be made to the set of
coefficients, but additional ones that can be added in.

Let’s consider CLα first. The symbol CLα is shorthand for δCL/δα, or the change in lift coefficient
with a change in alpha. This is just the slope of the lift coefficient curve (see Figure 1 for an
example). The lift curve slope for an ideal 2D airfoil section is 2π (per radian). For a cambered
airfoil, the lift curve does not pass through zero – that is, there is an inherent lift to the airfoil even
at zero angle of attack. Furthermore, a real wing (i.e. not a 2D airfoil section) is not as efficient as
an airfoil, and the slope of the lift curve will be somewhat less than 2π. Additionally, a real wing
will eventually stall at a particular angle of attack, perhaps around 12-16 degrees. The information
given in the Beech 99 report is valuable; however, some adjustments will have to be made to
account for stalling. The value of CLα defines a slope – a line that goes on forever! Knowing that
the lift attributable to alpha is complex – it’s not a straight line – we might instead consider
creating a lookup table or function that includes the behavior at stall. Unfortunately, little or no
information is given to us about stall in the document, but some searching suggests 73 kts (123
ft/sec) as the stall speed. Also, what about the post-stall behavior? Modeling post-stall and very
high alpha regimes is effectively beyond the scope of this discussion, but suffice it so say we
would like to provide plausible behavior in all regimes where possible. In this case, we can look to
a study done by Sandia Labs some years ago. The study resulted in data being collected that
showed the lift coefficient as it varied with angle of attack for symmetric airfoils of varying

thickness, across the entire alpha range of 0 to 180 degrees. Figure 2 shows the lift coefficient for
an airfoil for a full range of alpha. The thickness of the airfoil represented by the data in Figure 2
is 12%. The blended-airfoil wing used on the Beech 99 is 18% thick at the root and 12% thick at
the tip. We will assert that we can use the data for a 15% thick airfoil as representative of the
average characteristic of the wing.

 JSBSim Reference Manual v1.0

 | Section One: User’s Manual 19

19

Not including thrust effects at the moment, the lift coefficient of the wing can be written as:

Lift coefficient = 0.939 * {table value} + (0.25 * Df * 0.017) + 0.3

The lift force is just the above coefficient multiplied by qbar and area:

Lift force = qbar * wingarea * Lift_coefficient

The equation was developed by asserting that:

• the effect of camber on the airfoil data effectively adds 0.3 to the lift coefficient,
• for a 3-D wing the curve must be scaled (0.939),
• adding a flap setting in degrees (multiplied by 0.017 to convert it to a radian

measurement) multiplied by 0.25 gives the increase in lift coefficient from flaps

The JSBSim-ML representation of the lift of a wing using the 15% thick Sandia data and
information from “Theory of Wing Sections”, NACA wing data, etc. is shown as:

<function name="aero/force/CLalpha">
 <description> Lift force due to alpha </description>
 <product>
 <property>aero/qbar-psf</property>
 <property>metrics/Sw-sqft</property>
 <sum name=”aero/coefficient/CLalpha”>
 <value> 0.3 </value> <!-- Lift curve slope camber shift -->
 <product>
 <value> 0.25 </value> <!-- flap setting curve shift -->
 <property> fcs/flap-pos-deg </property>
 <value> 0.017 </value> <!-- convert degrees to radians -->
 </product>
 <product>
 <value> 0.939583333 </value> <!-- Lift curve scaling value -->
 <table name=”aero/coefficient/Clalpha”>
 <independentVar lookup="row">aero/alpha-deg</independentVar>
 <tableData>
 -180 0.0000
 -170 0.8500
 -160 0.6350
 -150 0.7700
 -140 0.9800
 -130 0.8500
 -120 0.6700
 -110 0.4500
 -100 0.1850

 60 0.8750
 70 0.6300
 80 0.3650
 90 0.0900
 100 -0.1850
 110 -0.4500
 120 -0.6700
 130 -0.8500
 140 -0.9800
 150 -0.7700
 160 -0.6350
 170 -0.8500

 JSBSim Reference Manual v1.0

 | Section One: User’s Manual 20

20

Wingspan 45.9 feet (13.98 meters)

Horizontal tail span 22.38 feet (6.82 meters)
Tail area 100 feet2 (9.29 meters2)

MAC 4.63 feet (1.41 meters)
Aspect Ratio 5.0

Sweep 17°

Dihedral 7°

2 Hartzell HC-B3TN-3 or HC-B3TN-3B hubs with
Hartzell T10173E-8 or T10173B-8 blades.
Diameter: 93-3/8 in.
Pitch settings at 30 in. sta.:
Reversing propeller:
Reverse - 11°
Feather - 87°

Flight idle propeller low pitch stop is set so that at
2000 r.p.m., torque shall be an indicated 600 +60
ft.-lb. corrected for sea level standard day.
Secondary flight idle stop shall be 210 +40
propeller r.p.m. higher than flight idle stop with a
gas generator speed of 70 percent.

Fuselage/Propeller clearance 3 inches (0.076 meters)

Engine thrust lines and wheelbase
span 13 feet (3.96 meters)

Flap total Area 37.8 ft2 (3.51 m2)
Flap span (each) 12.4 ft (3.78 m)
Flap chord 1.5 feet (0.46 m)

Beechcraft B99
Model A99A Airliner

Engines: Pratt & Whitney PT6A-27,
Shaft HP 680, Equiv. Shaft HP 715,
Jet thrust 76 lbs., Max. allowable
TIT 1337° F (725° C). Propeller
shaft speed 2100 rpm. Burns JP-4,
JP-5, JP-8, Jet A, Jet A-1, Jet B

Maximum operating speed: 260 mph (226 kts,
@ 15.5kft, for 15.5kft to 25kft decrease 4 kts
per 1kft)
Maneuvering speed: 195 mph (169 kts)
Flaps extend speed: 161 mph (140 kts)
Landing gear extend: 180 mph (156 kts)
Landing gear operating: 150 mph (130 kts)

Flaps Maximum 43°
Aileron up 18°, down 15°
Elevator up 12°, down 15°
Stabilizer up 4.25°, down 3.5°
Rudder right 26°, left 20°

Datum: 190” fwd of main spar

Weight
Empty equipped 5777 lbs. (2620 kg)
Full Fuel
Max takeoff 10,900 lbs. (4944 kg)
CG @ +179 to +195 in. (gear extended), 26% MAC
Ixx 12,464.8 slug-ft2 (16,900 kg-m2)
Iyy 17,627 slug-ft2 (23,900 kg-m2)
Izz 28,691 slug-ft2 (38,900 kg-m2)

Wing area 279.97 ft2 (26.01 meters2)
Wing chord (MAC) 6.5 feet (1.98 meters)
Aspect Ratio 7.54
Dihedral 6.8 degrees
Wing root airfoil NACA 23018
Wing tip airfoil NACA 23012

Elevator
Area 26.4 ft2 (2.45 m2)
MAC 0.39

Vertical tail
Area 44.9 ft2 (4.17 m2)
Span 7.6 ft (2.32 m)
MAC 6.3 ft (1.9 m)
AR 1.29
Sweep 19.5°

18 feet (5.48 meters)

Engine thrust offset 2°

Height 14.4
feet (4.38 m) Rudder

Area 12 ft2 (1.12 m2)
MAC 0.55

Aileron total area 13.9 ft2 (1.29 m2)
Aileron span (each) 7.9 ft (2.4 m)
Aileron chord 0.9 ft (0.28 m)

 180 0.0000
 </tableData>
 </table>
 </product>
 </sum>
 </product>
</function>

This specification should produce a fairly smoothly changing lift force in a wide range of
conditions. Note that this is a force calculation – the lift coefficient has been multiplied with qbar
and the area of the wing.

This function defining the lift force
on the wing due to angle of attack is
but one contribution to the total lift
force on the aircraft. When the
elevator is moved, it also changes the
lift force of the tail, which results in a
pitch moment on the aircraft – the
main purpose of the elevator – but the
change in lift force must be taken into
account in the total lift force
calculation.

Developing an accurate
aerodynamic model of an aircraft is an
art form in itself, and crafting more
accurate and detailed aerodynamic
models can involve great expense
and effort using wind tunnels and
computational facilities. But the first
step is to gather as much information
as is possible for the vehicle being
modeled.

2.4.2 Propulsion
Several different engine types are

modeled in JSBSim,

• Piston
• Rocket
• Turbine
• Turboprop
• Electric

They are generic models, because the characteristics that define a specific engine must be
entered in an engine configuration file. Any number of engines (the same or different) can be
included in an aircraft configuration file by referring to the name of the engine file, and specifying
placement information in the aircraft configuration file in the <engine> element. At runtime, the

 JSBSim Reference Manual v1.0

 | Section One: User’s Manual 21

21

forces and moments generated by each engine are calculated and summed together.

2.4.3 Ground reactions
2.4.4 External reactions
2.5 Flight Control and Systems modeling
2.5.1 System components

Flight control laws, stability augmentation systems, autopilots, and arbitrary aircraft systems
(avionics, electrical systems, etc.) can be modeled in JSBSim by creating chains of individual
control components. A suite of configurable components is available in JSBSim that includes
gains, filters, switches, etc. An aircraft system is specified as a string of components within the
<channel> element of a <system>, <autopilot>, or <flight_control> specification in the aircraft
configuration file. Groupings of components which perform a related task are placed in a
<channel> element. For example,

<autopilot name=”C172X Autopilot”>

 <!-- Wing leveler -->

 <channel name="Roll wing leveler">

 <pid name="fcs/roll-ap-error-pid">
 <input>attitude/phi-rad</input>
 <kp> 1.0 </kp>
 <ki> 0.01</ki>
 <kd> 0.1 </kd>
 </pid>

 <switch name="fcs/roll-ap-autoswitch">
 <default value="0.0"/>
 <test value="fcs/roll-ap-error-pid">
 ap/attitude_hold == 1
 </test>
 </switch>

 <pure_gain name="fcs/roll-ap-aileron-command-normalizer">
 <input>fcs/roll-ap-autoswitch</input>
 <gain>-1</gain>
 </pure_gain>

 </channel>

 <channel name=”Pitch attitude hold”>
 … components …
 </channel>

 … additional channels …

</autopilot>

A component will calculate its own output, and that value will be passed to another component
later on.

Historically, the flight control section was the first section to be implemented in JSBSim. Later,

 JSBSim Reference Manual v1.0

 | Section One: User’s Manual 22

22

the autopilot section was added, and then the system section, to support any arbitrary system.
Note that it is possible that the system section may replace the autopilot and flight control
sections. There can be any number of system sections. Also, any of the three sections may
include a reference to a filename, loading the system definition from a system file rather than
defining the system inline by specifying a value for the file attribute. For example:

<autopilot file="c172ap"/>

The file “c172ap.xml” will be searched for in the same directory as the aircraft file is found in.
Common system files are searched for in the systems/ directory.

Each of the system components is described in Section, 4.1.9.

2.5.2 Automatic Flight in JSBSim
One long-time goal of JSBSim has been to support automatic, scripted flights. Scripted flights

refer to the ability of JSBSim to run in a standalone mode (apart from visuals) and fly in a stable
manner to various targets, be they altitude and heading, or latitude and longitude, etc. This is a
useful feature for many reasons, among them being regression testing of JSBSim, aircraft flight
model performance testing, and control system development.

Some of the features that make capability possible include the incorporation of switch and
function components, sensors, and autopilot-related properties.

In implementing automatic flight in JSBSim, several files are involved:

• A script file directs the aircraft to turn on its engine, advance the throttle, and fly to a
target heading, altitude, and/or velocity. The script file and processing capability
takes the role of guidance.

• The aircraft configuration file defines the aircraft properties – including the flight
control system, and the interface to the autopilot (or it could even include the
autopilot itself).

• The autopilot definition file (if separate).

The job of an autopilot is to attain a state such as wings level, or a heading, or an altitude, and
hold it. Designing an autopilot for an aircraft is a science in itself – we will only gloss over the
design aspect, paying the most attention on how to implement one and use it in JSBSim.

As an example, we can set out to build a wing-leveler autopilot. Wings-level is by definition a
roll angle of zero (phi=0). Many forces will tend to disrupt a state of wings-level, such as engine
torque, atmospheric turbulence, fuel slosh, etc. To get to a phi of zero (assuming phi is initially
non-zero) we will need to attain a non-zero phi rate, which drives us towards wings-level. To get
the phi rate, we will need to attain a phi acceleration, which is controlled by aileron deflection.

One possibility is to simply command the ailerons based on the roll angle. This is called
proportional control, because the output is simply the input multiplied by a value – the output is
proportional to the input. The autopilot aileron command is sent to the main flight control system
and summed in to the aileron command channel. There are a couple of nuances to this autopilot
arrangement, however. For instance, it is always on. A better arrangement is shown on the next
page.

 JSBSim Reference Manual v1.0

 | Section One: User’s Manual 23

23

 Roll A/P ON
Also, the min, max, and K values must be chosen properly. As an example, we set up JSBSim

to run with this autopilot and see what the response is. Here is the autopilot we use, in JSBSim
format:

<channel name="AP Roll Wing Leveler">

 <pure_gain name="Roll AP Wing Leveler">
 <input> attitude/phi-rad </input>
 <gain>2.0</gain>
 <clipto>
 <min>-0.255</min>
 <max>0.255</max>
 </clipto>
 </pure_gain>

 <switch name="Roll AP Autoswitch">
 <default value="0.0"/>
 <test logic="AND" value="fcs/roll-ap-wing-leveler">
 ap/attitude_hold == 1
 </test>
 </switch>

 <pure_gain name="Roll AP Aileron Command Normalizer">
 <input>fcs/roll-ap-autoswitch</input>
 <gain>-1</gain>
 </pure_gain>
</channel>

There are a couple of points to make about the above listing. First, for the Roll A/P Wing
Leveler component, there could be a “<gain> 1 </gain>” line in the definition, however, gain is 1
by default for the pure gain component. Second, the output of the control is limited to ± 0.255
radians (15 degrees). This is about all the ailerons can produce anyhow. The ap/attitude_hold
property in the Roll A/P Autoswitch is functionally the Roll A/P ON switch shown in the previous
diagram.

It is seen in the graph that once the transient damps out there is a bias in the roll angle (phi).

 JSBSim Reference Manual v1.0

 | Section One: User’s Manual 24

24

That bias can be removed using an integrator:

This block diagram of a wing leveler using PI control is implemented in JSBSim-ML as follows:

<channel name="AP Roll Wing Leveler">

 <pure_gain name="Limited Phi">
 <input> attitude/phi-rad </input>
 <clipto>
 <min>-0.255</min>
 <max>0.255</max>
 </clipto>
 </pure_gain>

 <pure_gain name="Roll AP Wing Leveler">
 <input> fcs/limited-phi </input>
 <gain>2.0</gain>
 </pure_gain>

 <integrator name="Roll AP Error Integrator">
 <input> fcs/limited-phi </input>
 <c1> 0.125 </c1>
 </integrator>

 <summer name="Roll AP Error summer">
 <input> fcs/roll-ap-wing-leveler</input>
 <input> fcs/roll-ap-error-integrator</input>
 <clipto>
 <min>-1.0</min>
 <max> 1.0</max>
 </clipto>
 </summer>

 <switch name="Roll AP Autoswitch">
 <default value="0.0"/>
 <test logic="AND" value="fcs/roll-ap-error-summer">
 ap/attitude_hold == 1
 </test>
 </switch>

 <pure_gain name="Roll AP Aileron Command Normalizer">
 <input>fcs/roll-ap-autoswitch</input>
 <gain>-1</gain>
 </pure_gain>
</channel>

Making the same test run as before gives the following graph of phi and aileron command
against time:

 JSBSim Reference Manual v1.0

 | Section One: User’s Manual 25

25

The roll angle is seen in the above graph to settle out, now, to wings level. There is, however,

a good degree of overshoot initially. This is where the tweaking comes into play. One can vary
the relative contributions of the proportional and integral parts of the control command to achieve
different results. However, in turbulence, for instance, the response may be different than what is
expected, perhaps even unstable. Often, it is expected that the autopilot will be turned off in bad
weather.

There is yet another kind of control action we can use, called derivative control. Derivative
control action produces a control command that is proportional to the rate of change of the error.
In our wing leveler case – where we seek zero roll angle – the rate of change of the error is
simply the roll rate, “p”. If that parameter is summed in, the resulting controller is a PID controller
(Proportional-Integral-Derivative).

If we play around with the gains we can tailor the wing leveler to give the best response. The
final control system block diagram for the wing leveler is:

This is represented in JSBSim as follows:

<channel name="AP Roll Wing Leveler">

 <pure_gain name="Limited Phi">
 <input> attitude/phi-rad </input>
 <clipto>
 <min>-0.255</min>
 <max>0.255</max>
 </clipto>
 </pure_gain>

 <pure_gain name="Roll AP Wing Leveler">
 <input> fcs/limited-phi </input>
 <gain>2.0</gain>
 </pure_gain>

 JSBSim Reference Manual v1.0

 | Section One: User’s Manual 26

26

 <integrator name="Roll AP Error Integrator">
 <input> fcs/limited-phi </input>
 <c1> 0.125 </c1>
 </integrator>

 <summer name="Roll AP Error summer">
 <input> velocities/p-rad_sec</input>
 <input> fcs/roll-ap-wing-leveler</input>
 <input> fcs/roll-ap-error-integrator</input>
 <clipto>
 <min>-1.0</min>
 <max> 1.0</max>
 </clipto>
 </summer>

 <switch name="Roll AP Autoswitch">
 <default value="0.0"/>
 <test logic="AND" value="fcs/roll-ap-error-summer">
 ap/attitude_hold == 1
 </test>
 </switch>

 <pure_gain name="Roll AP Aileron Command Normalizer">
 <input>fcs/roll-ap-autoswitch</input>
 <gain>-1</gain>
 </pure_gain>
</channel>

We see now that our wing leveler controller is performing as desired.

 JSBSim Reference Manual v1.0

 | Section One: User’s Manual 27

27

3. Authoring Configuration Files

3.1 Aircraft
3.1.1 File Header Information

The fileheader section of the configuration file includes information about who made the
aircraft model, when, which version it is, what the license is, which references were used in
creating the model, notes, and limitations. For example:

<fileheader>
 <author> Joe Public </author>
 <email> joe.public@hotmail.com </email>
 <organization>
 Department of Mechanical Engineering,
 University of Bath,
 UK
 </organization>
 <filecreationdate> 2003-01-01 </filecreationdate>
 <version> 1.0 </version>
 <description> Models a 1970 B747-100 with Pratt & Whitney JT9D-3
 turbofan engines.
 </description>
 <note> Since a moving stabilizer property is not available the
 speedbrake property is being used to emulate the Boeing
 747 trimmable horizontal stabilizer. </note>
 <note> Aircraft origin for measurements is the nose.</note>
 <limitation>
 Undercarriage Aerodynamic effects not modeled
 </limitation>
 <limitation> Undercarriage data approximated </limitation>
 <limitation> Spoilers not modeled </limitation>
 <reference
 refID="None"
 author="Hanke, C.R."
 title="The Simulation of a Large Jet Transport Aircraft, Vol I."
 date="1970"/>
 <reference
 refID="None"
 author="Hanke, C.R."
 title="The Simulation of a Large Jet Transport Aircraft, Vol. II"
 date="1970"/>
 <reference
 refID="None"
 author="Roskam, J."
 title="Airplane Flight Dynamics & Automatic Flight Control, Vol. I"
 date="1979"/>
 <reference
 refID="None"
 author="Jane's"

 JSBSim Reference Manual v1.0

 | Section One: User’s Manual 28

28

 title="Jane's All The World's Aircraft 1980-1981"
 date="1981"/>
</fileheader>

3.1.2 Metrics
The metrics section of the configuration file defines the characteristic measurements of the

vehicle and the locations of key points. For example:

<wingarea unit="FT2"> 174.0 </wingarea>
<wingspan unit="FT"> 35.8 </wingspan>
<chord unit="FT"> 4.9 </chord>
<htailarea unit="FT2"> 21.9 </htailarea>
<htailarm unit="FT"> 15.7 </htailarm>
<vtailarea unit="FT2"> 16.5 </vtailarea>
<vtailarm unit="FT"> 15.7 </vtailarm>
<location name="AERORP" unit="IN">
 <x> 43.2 </x>
 <y> 0.0 </y>
 <z> 59.4 </z>
</location>
<location name="EYEPOINT" unit="IN">
 <x> 37.0 </x>
 <y> 0.0 </y>
 <z> 48.0 </z>
</location>
<location name="VRP" unit="IN">
 <x> 42.6 </x>
 <y> 0.0 </y>
 <z> 38.5 </z>
</location>

The Visual Reference Point (VRP) is not really important to flight dynamics. If you are using
JSBSim within a larger simulation framework that includes a visual system, then it matters. When
placing a 3D model in the scene, you might ask yourself the question: given that my 3D model
can have it's origin at any arbitrary spot, how do I make sure I am placing the aircraft exactly
where the flight model specifies that it should be? When you are flying and are at high altitude,
the question might not seem all that critical. However, when you are on the ground, if model
placement is not correct, then the model may be seen to "hover", or to be embedded in the
ground. Or, when you rotate at takeoff, you may rotate into the ground.

So, correct placement is important.
The flight model calculates motion about the aircraft CG, and reports the current position of

the CG. The CG might be thought of as a good "origin" for the 3D model, but the CG moves as
fuel burns off.

The VRP is simply an agreed upon point on the aircraft, for which the flight model will provide
the latitude/longitude/altitude. The VRP is defined in JSBSim in the same structural frame in
which the landing gear, empty weight CG, etc. are defined. By convention, the nose of the aircraft
is usually taken to be the point to be reported as the VRP.

If you are using JSBSim as a standalone application, you do not need to define the VRP.

3.1.3 Mass/Balance
Within this section the mass properties of the aircraft are specified. Included are the empty

 JSBSim Reference Manual v1.0

 | Section One: User’s Manual 29

29

weight of the craft, the moments and products of inertia, the location of the center of gravity, and
definitions for any point masses that are included. Here’s an example:

<mass_balance>
 <documentation>
 The Center of Gravity location, empty weight, in aircraft's own
 structural coord system.
 </documentation>
 <ixx unit="SLUG*FT2"> 2.31442e+06 </ixx>
 <iyy unit="SLUG*FT2"> 1.34649e+06 </iyy>
 <izz unit="SLUG*FT2"> 3.59608e+06 </izz>
 <ixy unit="SLUG*FT2"> 0 </ixy>
 <emptywt unit="LBS"> 48400 </emptywt>
 <location name="CG" unit="IN">
 <x> 459.2 </x>
 <y> 0 </y>
 <z> -31.8 </z>
 </location>
 <pointmass name="payload">
 <weight unit="LBS"> 1500 </weight>
 <location name="POINTMASS" unit="IN">
 <x> 460.0 </x>
 <y> 0 </y>
 <z> -31.8 </z>
 </location>
 </pointmass>
</mass_balance>

Here’s the general format:

<mass_balance>
 <ixx unit="{SLUG*FT2 | KG*M2}"> {number} </ixx>
 <iyy unit="{SLUG*FT2 | KG*M2}"> {number} </iyy>
 <izz unit="{SLUG*FT2 | KG*M2}"> {number} </izz>
 <ixy unit="{SLUG*FT2 | KG*M2}"> {number} </ixy>
 <ixz unit="{SLUG*FT2 | KG*M2}"> {number} </ixz>
 <iyz unit="{SLUG*FT2 | KG*M2}"> {number} </iyz>
 <emptywt unit="{LBS | KG"> {number} </emptywt>
 <location name="CG" unit="{IN | M}">
 <x> {number} </x>
 <y> {number} </y>
 <z> {number} </z>
 </location>
 <pointmass name="{string}">
 <weight unit="{LBS | KG}"> {number} </weight>
 <location name="POINTMASS" unit="{IN | M}">
 <x> {number} </x>
 <y> {number} </y>
 <z> {number} </z>
 </location>
 </pointmass>
 ... other point masses ...
</mass_balance>

3.1.4 Buoyant Forces

 JSBSim Reference Manual v1.0

 | Section One: User’s Manual 30

30

Hot air balloons, buoyancy-assisted vehicles, and zeppelins can be modeled through the use
of gas cells and ballonets. The general format of a gas cell and ballonet definition is shown as:

<buoyant_forces>
 <gas_cell type="{HYDROGEN | HELIUM | AIR}">
 <location unit="{M | IN}">
 <x> {number} </x>
 <y> {number} </y>
 <z> {number} </z>
 </location>
 <x_{radius|width} unit="{M | IN}"> {number} </x_{radius|width}>
 <y_{radius|width} unit="{M | IN}"> {number} </y_{radius|width}>
 <z_{radius|width} unit="{M | IN}"> {number} </z_{radius|width}>
 <max_overpressure unit="{PA | PSI}"> {number} </max_overpressure>
 [<valve_coefficient unit="{M4*SEC/KG | FT4*SEC/SLUG}"> {number}
 </valve_coefficient>]
 [<fullness> {number} </fullness>]
 [<heat>
 {heat transfer coefficients} [lbs ft / sec]
 </heat>]
 [<ballonet>
 <location unit="{M | IN}">
 <x> {number} </x>
 <y> {number} </y>
 <z> {number} </z>
 </location>
 <x_{radius|width} unit="{M | IN}"> {number} </x_{radius|width}>
 <y_{radius|width} unit="{M | IN}"> {number} </y_{radius|width}>
 <z_{radius|width} unit="{M | IN}"> {number} </z_{radius|width}>
 <max_overpressure unit="{PA | PSI}"> {number} </max_overpressure>
 <valve_coefficient unit="{M4*SEC/KG | FT4*SEC/SLUG}"> {number}
 </valve_coefficient>
 [<fullness> {number} </fullness>]
 [<heat>
 {heat transfer coefficients} [lb ft / (sec R)]
 </heat>]
 [<blower_input>
 {input air flow function} [ft^3 / sec]
 </blower_input>]
 </ballonet>]
 </gas_cell>
</buoyant_forces>

The required attribute type in the <gas_cell> element defines the type of gas contained in the
gas cell, one of HYDROGEN, HELIUM or AIR. Presently the gas is always 100% pure.

The <location> element sets the placement of the cell center in the aircraft's structural frame.
Currently this is where the buoyancy and gravity forces of the cell are applied.

The elements <x_ radius>, <y_ radius>, <z_ radius>, <x_width>, <y_width>, and <z_width>
define the shape and volume of the fully inflated cell in the structural frame. The supported
shapes are ellipsoid (using x_ radius, y_radius, z_radius) and cylindrical along X axis (using
x_width and y_radius, z_radius). The cell shape is used to compute the inertia tensor due to the
mass of the contained gas.

The <fullness> element defines the initial fullness fraction of the cell, normally in the interval
(0-1). A fullness value greater than 1.0 initialize the cell at higher than ambient pressure.

 JSBSim Reference Manual v1.0

 | Section One: User’s Manual 31

31

The element <max_overpressure> defines the maximum allowed cell overpressure with
respect to the surrounding atmosphere. If the cell pressure is about to exceed this limit the
excess gas is automatically and instantly valved off. This models a pressure relief valve of
sufficient capacity mounted at the bottom of the cell.

The <valve_coefficient> element defines the capacity of the manual valve. The valve is
considered to be located at the top of the cell. The valve coefficient determine the flow out of the
cell according to:

݁݉ݑ݈݋ܸ݀
ݐ݀ ൌ ݊݁݌ܱ݁ݒ݈ܸܽ כ ݐ݂݂݊݁݅ܿ݅݁݋ܥ݁ݒ݈ܸܽ כ ݁ݎݑݏݏ݁ݎܲܽݐ݈݁ܦ

where DeltaPressure is the difference between the internal pressure at the top of the cell and
the surrounding atmosphere and ValveOpen is a non-negative number controlled by the user via
the property buoyant_forces/gas-cell[x]/valve_open.

The element <heat> can contain zero or more FGFunction elements describing the heat flow
from the atmosphere and surrounding environment into the gas cell. The unit is lb-ft/(sec-degR).

If there are no heat transfer functions at all the gas cell temperature will equal that of the
surrounding atmosphere. A constant function returning 0 results in adiabatic behavior (i.e. no
heat exchange at all with the environment).

The following is an example of how the heat flow due to conduction and radiation can be
modelled:

<heat>
 <function name="buoyant_forces/gas-cell/dU_conduction">
 <product>
 <value> 6282.25 </value> <!-- Surface area [ft2] -->
 <value> 0.05 </value> <!-- Conductivity [lb / (R ft sec)] -->
 <difference>
 <property> atmosphere/T-R </property>
 <property> buoyant_forces/gas-cell/temp-R </property>
 </difference>
 </product>
 </function>
 <function name="buoyant_forces/gas-cell/dU_radiation">
 <product>
 <value> 0.1714e-8 </value> <!-- Stefan-Boltzmann's constant
 [Btu / (h ft^2 R^4)] -->
 <value> 0.05 </value> <!-- Emissivity [0,1] -->
 <value> 6282.25 </value> <!-- Surface area [ft2] -->
 <difference>
 <pow>
 <property> atmosphere/T-R </property>
 <value> 4.0 </value>
 </pow>
 <pow>
 <property> buoyant_forces/gas-cell/temp-R </property>
 <value> 4.0 </value>
 </pow>
 </difference>
 </product>
 </function>
 </heat>

 JSBSim Reference Manual v1.0

 | Section One: User’s Manual 32

32

A <gas_cell> element may contain zero or more <ballonet> elements. A ballonet is an air bag
inside the gas cell in non-rigid or semi-rigid airships and is used to maintain the shape and
volume of the gas cell/envelope and keep its internal pressure higher than that of the surrounding
environment. It is common for such airships to have more than one ballonet, e.g. with one
ballonet in the forward part and one in the aft part of the envelope the pitch attitude of the airship
can be trimmed via the relative inflation of the two ballonets (as this moves part of the contained
air forward or aft, respectively).

In JSBSim ballonets are modeled as being completely contained inside the enclosing gas cell
(except for the inflow and outflow valves which serves air from and to the outside atmosphere).

3.1.5 Ground Reactions
<contact type="{BOGEY | STRUCTURE}" name="{string}">
 <location unit="{IN | M}">
 <x> {number} </x>
 <y> {number} </y>
 <z> {number} </z>
 </location>
 <static_friction> {number} </static_friction>
 <dynamic_friction> {number} </dynamic_friction>
 <rolling_friction> {number} </rolling_friction>
 <spring_coeff unit="{LBS/FT | N/M}"> {number} </spring_coeff>
 <damping_coeff unit="{LBS/FT/SEC | N/M/SEC}">
 {number}
 </damping_coeff>
 <damping_coeff_rebound unit="{LBS/FT/SEC | N/M/SEC}">
 {number}
 </damping_coeff_rebound>
 <max_steer unit="DEG"> {number | 0 | 360} </max_steer>
 <brake_group> {NONE|LEFT|RIGHT|CENTER|NOSE|TAIL} </brake_group>
 <retractable>{0 | 1}</retractable>
 <table type="{CORNERING_COEFF}">
 </table>
 <relaxation_velocity>
 <rolling unit="{FT/SEC | KTS | M/S}"> {number} </rolling>
 <side unit="{FT/SEC | KTS | M/S}"> {number} </side>
 </relaxation_velocity>
 <force_lag_filter>
 <rolling> {number} </rolling>
 <side> {number} </side>
 </force_lag_filter>
 <wheel_slip_filter> {number} </wheel_slip_filter>
</contact>

3.1.6 External Reactions
JSBSim can model externally or arbitrarily applied forces and moments. Such a capability

might be needed to model a catapult, hook and wire capture device, tow rope, or parachute.
Similar to the ground reactions specification, any external forces are defined in an
external_reactions section:

<external_reactions>

 <!-- Interface properties, a.k.a. property declarations -->

 JSBSim Reference Manual v1.0

 | Section One: User’s Manual 33

33

 [<property> ... <property>]

 <force name="name" frame="BODY|LOCAL|WIND" unit="unit">

 [<function> ... </function>]

 <location unit="units"> <!-- location -->
 <x> value </x>
 <y> value </y>
 <z> value </z>
 </location>
 [<direction> <!-- optional for initial direction vector -->
 <x> value </x>
 <y> value </y>
 <z> value </z>
 </direction>]
 </force>

</external_reactions>

Following initialization, the following properties are available:

external_reactions/{force name}/magnitude
external_reactions/{force name}/x
external_reactions/{force name}/y
external_reactions/{force name}/z

The x, y, and z properties define a unit vector in the chosen frame. You can thus define a
force magnitude and direct it an in any direction within the chosen frame (BODY, LOCAL, or
STABILITY).

An example of a parachute modeled using the external reactions specification is as follows:

<external_reactions>
 <!-- "Declare" the reefing term -->
 <property>fcs/parachute_reef_pos_norm</property>

 <force name="parachute" frame="WIND">
 <function>
 <product>
 <p> aero/qbar-psf </p>
 <p> fcs/parachute_reef_pos_norm </p>
 <v> 1.0 </v> <!-- Full drag coefficient -->
 <v> 20.0 </v> <!-- Full parachute area -->
 </product>
 </function>
 <!-- The location below is in structural frame (x positive
 aft), so this location describes a point 1 foot aft
 of the origin. In this case, the origin is the center. -->
 <location unit="FT">
 <x>1</x>
 <y>0</y>
 <z>0</z>
 </location>
 <!-- The direction describes a unit vector. In this case, since
 the selected frame is the WIND frame, the "-1" x component
 describes a direction exactly opposite of the direction

 JSBSim Reference Manual v1.0

 | Section One: User’s Manual 34

34

 into the wind vector. That is, the direction specified below
 is the direction that the drag force acts in. -->
 <direction>
 <x>-1</x>
 <y>0</y>
 <z>0</z>
 </direction>
 </force>
</external_reactions>

3.1.7 Propulsion
3.1.8 Aerodynamics
3.1.9 Systems, Autopilot, and Flight Control
3.1.9.1 Mechanization of Components

Note that in many cases “properties” are referred to in the text and in the definition of the
component. Properties are explained elsewhere, but suffice it to say for the moment that
properties are like variables that are categorized into a tree structure, and accessible from the
configuration file. Properties refer to various values within the simulation which serve an important
purpose, such as roll rate, air density, drag force, etc.

3.1.9.1.1 Filter Component
The filter component can simulate any first or second order filter, as well as an integrator. The

Tustin substitution is used to take filter definitions from Laplace space to the time domain. The
general format for a filter specification is:

<typename name=”name”>
 <input> property </input>
 <c1> number|property </c1>
 [<c2> number|property </c2>]
 [<c3> number|property </c3>]
 [<c4> number|property </c4>]
 [<c5> number|property </c5>]
 [<c6> number|property </c6>]
 [<clipto>
 <min> number|property </min>
 <max> number|property </max>
 </clipto>]
 [<output> property </output>]
</typename>

For a lag filter of the form,

ଵܥ
ݏ ൅ ଵܥ

the corresponding filter definition is:

<lag_filter name=”name”>
 <input> property </input>
 <c1> number|property </c1>
 [<clipto>
 <min> number|property </min>
 <max> number|property </max>

 JSBSim Reference Manual v1.0

 | Section One: User’s Manual 35

35

 </clipto>]
 [<output> property </output>]
</lag_filter>

As an example, for the specific filter:

600
ݏ ൅ 600

the corresponding filter definition could be:

<lag_filter name=”filter1”>
 <input> fcs/pitch-cmd </input>
 <c1> 600 </c1>
</lag_filter>

For a lead-lag filter of the form:

ݏଵܥ ൅ ଶܥ
ݏଷܥ ൅ ସܥ

The corresponding filter definition is:

<lead_lag_filter name=”name”>
 <input> property </input>
 <c1> number|property </c1>
 <c2> number|property </c2>
 <c3> number|property </c3>
 <c4> number|property </c4>
 [<clipto>
 <min> number|property </min>
 <max> number|property </max>
 </clipto>]
 [<output> property </output>]
</lead_lag_filter>

For a washout filter of the form:
ݏ

ݏ ൅ ଵܥ

The corresponding filter definition is:

<washout_filter name=”name”>
 <input> property </input>
 <c1> number|property </c1>
 [<clipto>
 <min> number|property </min>
 <max> number|property </max>
 </clipto>]
 [<output> property </output>]
</washout_filter>

For a second order filter of the form:

ଶݏଵܥ ൅ ݏଶܥ ൅ ଷܥ
ଶݏସܥ ൅ ݏହܥ ൅ ଺ܥ

The corresponding filter definition is:

 JSBSim Reference Manual v1.0

 | Section One: User’s Manual 36

36

<second_order_filter name=”name”>
 <input> property </input>
 <c1> number|property </c1>
 <c2> number|property </c2>
 <c3> number|property </c3>
 <c4> number|property </c4>
 <c5> number|property </c5>
 <c6> number|property </c6>
 [<clipto>
 <min> number|property </min>
 <max> number|property </max>
 </clipto>]
 [<output> property </output>]
</second_order_filter>

For an integrator of the form:

ଵܥ
ݏ

The corresponding definition is:

<integrator name=”name”>
 <input> property </input>
 <c1> number|property </c1>
 [<trigger> property </trigger>]
 [<clipto>
 <min> number|property </min>
 <max> number|property </max>
 </clipto>]
 [<output> property </output>]
</integrator>

The trigger element shown in the integrator definition is a device used to prevent integrator
wind-up. When the value of the property specified in the trigger element takes a non-zero value,
the integrator ceases to integrate.

3.1.9.1.2 Switch Component
The switch component models a switch – either an on/off or a multi-choice rotary switch. The

switch can represent a physical cockpit switch, or can represent a logical switch, where several
conditions might need to be satisfied before a particular state is reached. The value of the switch
– the output value – is chosen depending on the state of the switch. Each switch is comprised of
two or more tests. Each test has a value associated with it. The first test that evaluates to true will
set the output value of the switch according to the value parameter belonging to that test. Each
test contains one or more conditions, which each must be logically related (if there are more than
one) given the value of the logic parameter, and which takes the form:

property conditional property|value

e.g.

qbar GE 21.0

or,

roll_rate < pitch_rate

 JSBSim Reference Manual v1.0

 | Section One: User’s Manual 37

37

Within a test, additional tests can be specified, which allows for complex groupings of logical
comparisons. The format of the switch component is as follows:

<switch name=”name”>
 <default value=”{property|number}/>”
 <test logic=”{AND|OR}” value=”{property|number}”>
 {property} {conditional} {property|number}
 …
 [<test logic=”{AND|OR}” value=”{property|number}”>
 {property} {conditional} {property|number}
 …
 </test>]
 </test>
 …
 [<clipto>
 <min> number|property </min>
 <max> number|property </max>
 </clipto>]
 [<output> property </output>]
</switch>

Here’s an example:

<switch name=”Roll A/P Autoswitch”>
 <default value=”0.0”/>
 <test value=”fcs/roll-ap-error-summer”>
 ap/attitude_hold == 1
 </test>
</switch>

The above example specifies that the default value of the component (i.e. the output property
of the component, addressed by the property, ap/roll-ap-autoswitch) is 0.0 if or when the attitude
hold switch is selected (property ap/attitude_hold takes the value 1), the value of the switch
component will be whatever value fcs/roll-ap-error-summer has. There is no input element for the
switch component.

3.1.9.1.3 Sample and Hold Component
The switch component supports a sample-and-hold function. To effect this, an example is

presented:

<switch name="fcs/roll-sample-and-hold-test">
 <default value="attitude/psi-rad"/>
 <test value="fcs/roll-sample-and-hold-test">
 ap/heading_hold == 1
 </test>
</switch>

Look carefully and you will see that the test takes on a value of itself if the condition is
satisfied. In the example above, the default value is the heading (psi) in radians. Once the
condition is satisfied (ap/heading_hold == 1), then the component holds the heading value at the
time the condition was satisfied, and outputs that until such a time when the test condition is no
longer satisfied. Restated, the default value (attitude/psi-rad) is output unless the condition is
satisfied. If it is, then the test value (fcs/roll-sample-and-hold-test) is output. See the previous
section for more information on the switch component.

 JSBSim Reference Manual v1.0

 | Section One: User’s Manual 38

38

3.1.9.1.4 Summer Component
The Summer component sums two or more inputs. A bias can also be added in using the bias

keyword. The form of the summer component specification is:

<summer name=”name”>
 <input> [-]property </input>
 …
 <bias> number </bias>
 [<clipto>
 <min> number|property </min>
 <max> number|property </max>
 </clipto>]
 [<output> property </output>]
</summer>

Note that in the case of an input property the property name may be immediately preceded by
a minus sign.

Here’s an example of a summer component specification:

<summer name=”pid_sum”>
 <input> velocities/p-rad_sec </input>
 <input> -fcs/roll-ap-wing-leveler </input>
 <input> fcs/roll-ap-error-integrator </input>
 [<clipto>
 <min> -1.0 </min>
 <max> 1.0 </max>
 </clipto>]
</summer>

Note that there can be only one bias statement per component.

3.1.9.1.5 Gain Component
The gain component merely multiplies the input by a gain. The form of the gain component

specification is:

<pure_gain name="name">
 <input> [-]property </input>
 [<gain> {property|number} </gain>]
 [<clipto>
 <min> number|property </min>
 <max> number|property </max>
 </clipto>]
 [<output> property </output>]
</pure_gain>

The gain defaults to a value of 1.0 if not supplied.
Note: as is the case with the Summer component, the input property name may be

immediately preceded by a minus sign to invert that signal.

3.1.9.1.6 Aerosurface Scaling Component
This is a modified version of the simple gain component. The normal purpose for this

component is to take control inputs from a known domain and map them to a specified range.
The form of the aerosurface scaling component specification is:

<aerosurface_scale name="name">

 JSBSim Reference Manual v1.0

 | Section One: User’s Manual 39

39

 <input> [-]property </input>
 <zero_centered> {true|false} </zero_centered>
 [<domain>
 <min> number </min>
 <max> number </max>
 </domain>]
 <range>
 <min> number </min>
 <max> number </max>
 </range>
 [<gain> {property|number} </gain>]
 [<clipto>
 <min> number|property </min>
 <max> number|property </max>
 </clipto>]
 [<output> property </output>]
</aerosurface_scale >

The gain is optional and defaults to 1.0. If the domain is not supplied, min and max default to –
1.0 and +1.0, respectively. The “zero_centered” element specifies how the domain will be
mapped to the range. If the zero_centered element is set to true (which is the default if it is not
supplied) then the domain from the minimum (negative) value to zero is mapped to the range
minimum (negative) to zero. The domain from zero to maximum is linearly mapped into the range
from zero to the maximum range. Otherwise, the mapping is linear from the domain min-to-max
span into the range min-to-max span. The center value may not correspond to zero.

For instance, the normal and expected ability of a pilot to push or pull on a control stick is
about 50 pounds. The input to the pitch channel block diagram of a flight control system is in units
of pounds. Yet, the joystick control input is usually in a range from –1 to +1. The following
component definition takes joystick inputs from –1 to +1 and maps them to ±50.

<aerosurface_scale name="Pitch Command">
 <input> fcs/pitch-cmd-norm </input>
 <range>
 <min> -50 </min>
 <max> 50 </max>
 </range>
</aerosurface_scale >

Note: as is the case with the Summer component, the input property name may be
immediately preceded by a minus sign to invert that signal.

3.1.9.1.7 Scheduled Gain Component
The scheduled gain component multiplies the input by a variable gain that is dependent on

another property (such as qbar, altitude, etc.). The lookup mapping is in the form of a table. This
kind of component might be used, for example, in a case where aerosurface deflection must only
be commanded to acceptable settings – i.e at higher qbar the commanded elevator setting might
be attenuated. The form of the scheduled gain component specification is:

<scheduled_gain name="name">
 <input> {[-]property} </input>
 <table>
 <tableData>

 JSBSim Reference Manual v1.0

 | Section One: User’s Manual 40

40

 …
 </tableData>
 </table>
 [<clipto>
 <min> {[-]property|value} </min>
 <max> {[-]property|value} </max>
 </clipto>]
 [<gain> {property | value} </gain>]
 [<output> {property} </output>]
</scheduled_gain>

An overall <gain> may be supplied that is multiplicative with the scheduled gain.
Note: as is the case with the Summer component, the input property name may be

immediately preceded by a minus sign to invert that signal.
Here is an example of a scheduled gain component specification:

<scheduled_gain name="Pitch Scheduled Gain 1">
 <input>fcs/pitch-gain-1</input>
 <gain>0.017</gain>
 <table>
 <independentVar>fcs/elevator-pos-rad</independentVar>
 <tableData>
 -0.68 -26.548
 -0.595 -20.513
 -0.51 -15.328
 …
 0.527 -20.513
 0.612 -26.548
 0.697 -33.433
 </tableData>
 </table>
</scheduled_gain>

In the example above, there is a table – a function of elevator angle in radians – which outputs
a command in degrees. The overall GAIN value effects a degrees-to-radians conversion on the
output of the table.

3.1.9.1.8 Deadband Component
This is a component that allows for some “play” in a control path, in the form of a dead zone,

or deadband. The form of the deadband component specification is:

<deadband name="Windup Trigger">
 <input> [-]property </input>
 <width> number </width>
 [<clipto>
 <min> {[-]property|value} </min>
 <max> {[-]property|value} </max>
 </clipto>]
 [<output> {property} </output>]
</deadband>

The width value is the total deadband region within which an input will produce no output. For
example, say that the width value is 2.0. If the input is between –1.0 and +1.0, the output will be
zero.

 JSBSim Reference Manual v1.0

 | Section One: User’s Manual 41

41

3.1.9.1.9 Hysteresis Component
[not yet modeled]

3.1.9.1.10 Limiter Component
There is currently not a unique limiter component. However, the functionality of a limiter can

be achieved by using a gain component with the clipto argument set with the minimum and
maximum limits.

3.1.9.1.11 Positive or Negative Value Component
There exists no unique positive or negative value component. However, the functionality of

such a component can be achieved by using a gain component with the clipto argument set to 0.0
and a maximum limit (for a positive value component), or having the clipto argument set to the
minimum limit and 0.0 (for a negative value component). In this way, only half of the input domain
will be accepted (either the positive domain or the negative domain).

3.1.9.1.12 Absolute Value Component
The functionality of an absolute value component could be implemented by a modified gain

component, though such a modification has not yet been made. An absolute value could also be
achieved through the use of an FCS Function component.

3.1.9.1.13 Kinematic Component
This component models the action of a moving effector, such as an aerosurface or other

mechanized entity such as a landing gear strut for the purpose of effecting vehicle control or
configuration. The form of the component specification is:

<kinematic name="Gear Control">
 <input> [-]property </input>
 <traverse>
 <setting>
 <position> number </position>
 <time> number </time>
 </setting>
 …
 </traverse>
 [<clipto>
 <min> {[-]property|value} </min>
 <max> {[-]property|value} </max>
 </clipto>]
 [<gain> {property | value} </gain>]
 [<output> {property} </output>]
</kinematic>

The position is the position that the component takes, and the lag is the time it takes to get to
that position from an adjacent setting. For example:

<kinematic name="Gear Control">
 <input>gear/gear-cmd-norm</input>
 <traverse>
 <setting>
 <position>0</position>
 <time>0</time>
 </setting>
 <setting>

 JSBSim Reference Manual v1.0

 | Section One: User’s Manual 42

42

 <position>1</position>
 <time>5</time>
 </setting>
 </traverse>
 <output>gear/gear-pos-norm</output>
</kinematic>

In this case, it takes 5 seconds to get to a 1 setting. As this is a software mechanization of a
servo-actuator, there will often be an OUTPUT specified, such as to an elevator, gear actuator,
aileron, or other mechanism.

3.1.9.1.14 FCS Function Component
One of the most recent additions to the FCS component set is the FCS Function component.

This component allows a function to be created when no other component is suitable. The
function component is defined as follows:

<fcs_function name="Windup Trigger">
 [<input> [-]property </input>]
 <function>
 …
 </function>
 [<clipto>
 <min> {[-]property|value} </min>
 <max> {[-]property|value} </max>
 </clipto>]
 [<output> {property} </output>]
</ fcs_function >

The function definition itself can include a nested series of products, sums, quotients, etc. as
well as trig and other math functions. Here’s an example of a function (from an aero
specification):

<function name="aero/coefficient/CDo">
 <description>Drag_at_zero_lift</description>
 <product>
 <property>aero/qbar-psf</property>
 <property>metrics/Sw-sqft</property>
 <table>
 <independentVar>velocities/mach</independentVar>
 <tableData>
 0.0000 0.0220
 0.2000 0.0200
 0.6500 0.0220
 0.9000 0.0240
 0.9700 0.0500
 </tableData>
 </table>
 </product>
</function>

3.1.9.1.15 Actuator Component
The actuator can be modeled as a "perfect actuator", with the Output being set directly to the

input. The actuator can be made more "real" by specifying any/all of the following additional
effects that can be applied to the actuator. In order of application to the input signal, these are:

 JSBSim Reference Manual v1.0

 | Section One: User’s Manual 43

43

System lag (input lag, really)
Rate limiting
Deadband
Hysteresis (mechanical hysteresis)
Bias (mechanical bias)
Position limiting ("hard stops")
 There are also several malfunctions that can be applied to the actuator by setting a property

to true or false (or 1 or 0).
Syntax:

<actuator name=”name”>
 <input> {[-]property} </input>
 <lag> number </lag>
 <rate_limit> number <rate_limit>
 <bias> number </bias>
 <deadband_width> number </deadband_width>
 <hysteresis_width> number </hysteresis_width>
 [<clipto>
 <min> {[-]property|value} </min>
 <max> {[-]property|value} </max>
 </clipto>]
 [<output> {property} </output>]
</actuator>

Example:

<actuator name=”fcs/gimbal_pitch_position”>
 <input> fcs/gimbal_pitch_command </input>
 <lag> 60 </lag>
 <rate_limit> 0.085 <rate_limit> <!-- 5 degrees/sec -->
 <bias> 0.002 </bias>
 <deadband_width> 0.002 </deadband_width>
 <hysteresis_width> 0.05 </hysteresis_width>
 <clipto> <!-- +/- 10 degrees -->
 <min> -0.17 </min>
 <max> 0.17 </max>
 </clipto>
</actuator>

3.1.9.1.16 Sensor Component
When the flight control system uses “sensed” values such as qbar or orientation, the sensed

values are taken from the environment model, and are modeled as “perfect sensors”. That is, the
values were taken directly from the equations of motion, without attempting to make them look as
though they had come from a sensing device (gyro, pitot tube, etc.) – with the associated
imperfections that those devices can introduce. Imperfections can include noise, drift, and
truncation of precision, etc. A bias can be introduced; a bias is simply an offset introduced to the
sensor.

The sensor component models imperfections and increases the realism of the control system.
The only required element in the sensor definition is the input element. In that case, no
degradation would be modeled, and the output would simply be the input.

For adding noise, if the type is PERCENT, then the value supplied is understood to be a

 JSBSim Reference Manual v1.0

 | Section One: User’s Manual 44

44

percentage variance. That is, if the number given is 0.05, the variance is understood to be +/-0.05
percent maximum variance. So, the actual value for the sensor will be anywhere from 0.95 to
1.05 of the actual "perfect" value at any time - even varying all the way from 0.95 to 1.05 in
adjacent frames - whatever the delta time.

The format of the sensor specification is:

<sensor name=”name” >
 <input> property </input>
 <lag> number </lag>
 <noise variation={”PERCENT|ABSOLUTE”}> number </noise>
 <quantization name="name">
 <bits> number </bits>
 <min> number </min>
 <max> number </max>
 </quantization>
 <drift_rate> number </drift_rate>
 <bias> number </bias>
</sensor>

Example:

<sensor name=”aero/sensor/qbar” >
 <input> aero/qbar </input>
 <lag> 0.5 </lag>
 <noise variation=”PERCENT”> 2 </noise>
 <quantization name="aero/sensor/quantized/qbar">
 <bits> 12 </bits>
 <min> 0 </min>
 <max> 400 </max>
 </quantization>
 <bias> 0.5 </bias>
</sensor>

3.1.9.1.17 PID (Proportional-Integral-Derivative) Component
The PID component has a very simple specification:

<pid name=”name”>
 <input> property </input>
 <kp> number </kp>
 <ki> number </ki>
 <kd> number </kd>
 [<trigger> property </trigger>]
 [<clipto>
 <min> number </min>
 <max> number </max>
 </clipto>]
 [<output> property </output>]
</pid>

For example,

<pid name="fcs/roll-pi-controller">
 <input> fcs/heading-roll-error-switch </input>
 <kp> 1.0 </kp>
 <ki> 0.10 </ki>
</pid>

 JSBSim Reference Manual v1.0

 | Section One: User’s Manual 45

45

The pid component also has the ability to implement integrator wind-up protection. If the
property specified by the trigger element is non-zero, then the input to the integrator is set to zero,
and the integrator will not continue to build up.

For example, if the elevator for an aircraft extends outside a band of +/- 23 degrees (for a total
width of 46 degrees), then this deadband will pass out a non-zero value. The value of the
deadband component is used as the trigger for the wind-up protection in the pid component
definition that follows:

<deadband name="fcs/windup-trigger">
 <input> fcs/elevator-pos-deg </input>
 <width>46.0</width>
</deadband>

<pid name="fcs/altitude-hold-pid">
 <input> fcs/ap-alt-hold-switch </input>
 <kp> 0.031 </kp>
 <ki> 0.000028 </ki>
 <trigger> fcs/windup-trigger </trigger>
 <clipto> <min>-1.0</min>
 <max> 1.0</max> </clipto>
</pid>

3.1.10 Input
JSBSim has the capability to output data at runtime via a socket. The capability also exists to

connect to JSBSim via socket for data input. The capability is more suited for interaction and
debugging or investigations more than for interprocess communications. The aircraft
configuration file may contain the optional element that defines how an outside process can
connect to a running instance of JSBSim:

<input port=”port number”/>

The JSBSim input command interpreter can understand several commands:

get 'property_name'
set 'property_name'
hold
resume
info
help
quit

In the case of the ''get'' command, if the property name supplied is not found, JSBSim will
attempt to return the names of all properties that contain the supplied string – which provides a
rudimentary search capability.

One way that this capability can be used with JSBSim in a standalone mode is through the
use of the ''telnet'' command. The JSBSim standalone application can be started with some the
options: ''--realtime'', and ''--suspend''. These options are useful when running with the server
(Input) capability. The --realtime option causes JSBSim to run at realtime speed. The --suspend
option causes JSBSim to go into hold after initialization. This allows the user to connect from
another shell to the JSBSim "server", using telnet. Running JSBSim with a script and for use with
the server capability can be done as follows (all on one line):

 JSBSim Reference Manual v1.0

 | Section One: User’s Manual 46

46

src/jsbsim --script=scripts/c1723.xml --realtime --suspend

With the above command line, JSBSim will initialize and hold. A connection via telnet to
JSBSim from a different shell can then be made:

telnet host port

For example:

telnet localhost 1137

JSBSim responds over the socket:

$ telnet localhost 1137
Trying 127.0.0.1...
Connected to zeus.
Escape character is '^]'.
Connected to JSBSim server
JSBSim>

Typing ''info'' gives important information about the simulation run:

JSBSim> info
JSBSim version: 0.9.13
Config File version: 2.0
Aircraft simulated: Cessna C-172
Simulation time: 0.008

Property values can be set or retrieved using the get and set commands. If the exact property
name is unknown, the get command can also be used to search for all properties that contain the
given string (this capability can only be used while in hold):

JSBSim> get /inertia
inertia/mass-slugs
inertia/weight-lbs
inertia/cg-x-ft
inertia/cg-y-ft
inertia/cg-z-ft

The value for a specific property can be retrieved using the get command:

JSBSim> get inertia/cg-x-ft
inertia/cg-x-ft = 43.886700

Setting a property value is done as follows (for example):

JSBSim> set ap/elevator_cmd 1

Note that the “=” symbol is not used.

3.1.11 Output
An <output> specification in a vehicle configuration file is optional, but in order to get any data

logged during a run, the simulation must be told what to output, where to send the data, and at
what rate to output data.

The <output> section can optionally be included in the vehicle configuration file, or it can be
specified in a standalone file, the name of which can be supplied on the command line for the

 JSBSim Reference Manual v1.0

 | Section One: User’s Manual 47

47

standalone executable. This approach can be useful when different sets of variables are to be
logged on different occasions. The format of the <output> section is the same regardless of which
approach is taken.

3.2 Engines
3.2.1 Piston
3.2.2 Turbine
3.2.3 Turboprop
3.2.4 Rocket
3.2.5 Electric
3.3 Thrusters
3.3.1 Propeller
3.3.2 Nozzle
3.3.3 Direct
3.4 Initialization
3.5 Scripts

 JSBSim Reference Manual v1.0

 | Section One: User’s Manual 48

48

4. Input/output

4.1 Socket I/O
4.2 File and Console I/O

 JSBSim Reference Manual v1.0

 | Section One: User’s Manual 49

49

5. Scripting

JSBSim can be scripted to make runs automatically. Commands are specified using the
Scripting Directives for JSBSim. The script file is in XML format. A test condition (or conditions)
can be set up in an event in a script and when the condition evaluates to true, the specified
action[s] is/are taken. An event can be persistent, meaning that at all times when the test
condition evaluates to true the specified set actions take place. When the set of tests evaluates to
true for a given condition, an item may be set to another value. This value may be a value, or a
delta value, and the change from the current value to the new value can be either via a step
function, a ramp, or an exponential approach. The speed of a ramp or approach is specified via
the time constant. Here is an example that shows the format of the script file:

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl"
 href="http://jsbsim.sourceforge.net/JSBSimScript.xsl"?>

<runscript xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
 xsi:noNamespaceSchemaLocation=
 "http://jsbsim.sf.net/JSBSimScript.xsd"
 name="C172-01A takeoff run">

 <!--
 This run is for testing the C172 altitude hold autopilot
 -->

 <use aircraft="c172x" initialize="reset00"/>
 <run start="0.0" end="3000" dt="0.0083333">

 <property> simulation/notify-time-trigger </property>

 <event name="engine start">
 <description>Start the engine</description>
 <notify/>
 <condition>
 sim-time-sec >= 0.25
 </condition>
 <set name="fcs/throttle-cmd-norm" value="1.0" action="FG_RAMP" tc ="0.5"/>
 <set name="fcs/mixture-cmd-norm" value="0.87" action="FG_RAMP" tc ="0.5"/>
 <set name="propulsion/magneto_cmd" value="3"/>
 <set name="propulsion/starter_cmd" value="1"/>
 </event>

 <event name="Set heading hold">
 <description>Set Heading when 5 ft AGL is reached</description>
 <notify/>
 <condition>
 position/h-agl-ft >= 5

 JSBSim Reference Manual v1.0

 | Section One: User’s Manual 50

50

 </condition>
 <set name="ap/heading_setpoint" value="200"/>
 <set name="ap/attitude_hold" value="0"/>
 <set name="ap/heading_hold" value="1"/>
 </event>

 <event name="Set autopilot for 20 ft.">
 <description>Set Autopilot for 20 ft</description>
 <notify/>
 <condition>
 aero/qbar-psf >= 4
 </condition>
 <set name="ap/altitude_setpoint" value="100.0"/>
 <set name="ap/altitude_hold" value="1"/>
 <set name="fcs/flap-cmd-norm" value=".33"/>
 </event>

 <event name="Set autopilot for 4,000 ft.">
 <description>Set Autopilot for 4000 ft</description>
 <notify/>
 <condition>
 sim-time-sec >= 1500
 </condition>
 <set name="ap/altitude_setpoint" value="4000.0"/>
 </event>

 <event name="Set autopilot for 7000 ft.">
 <description>Set Autopilot for 7000 ft</description>
 <notify/>
 <condition>
 sim-time-sec >= 2500
 </condition>
 <set name="ap/altitude_setpoint" value="7000.0"/>
 </event>

 <event name="Time Notify" type="FG_DELTA" persistent="true">
 <description>Output message at 100 second intervals</description>
 <notify>
 <property>velocities/vc-kts</property>
 <property>position/h-agl-ft</property>
 </notify>
 <condition>
 sim-time-sec >= simulation/notify-time-trigger
 </condition>
 <set name="simulation/notify-time-trigger" value="100" type="FG_DELTA"/>
 </event>

 </run>

</runscript>

The first line must always be present - it identifies the file as an XML format file. The second
line identifies this file as a script file, and gives a descriptive name to the script file. Comments are
next, delineated by the <!-- and --> symbols. The aircraft and initialization files to be used are
specified in the "use" lines. Next, comes the "run" section, where the conditions are described in
"event" clauses.

 JSBSim Reference Manual v1.0

 | Section One: User’s Manual 51

51

A delay can be specified for an event, so that it executes a certain number of seconds after it
is triggered. An event can be a notify-only event. That is, you do not have to specify actions for an
event, it can exist to notify the user of some kind of event. The conditional tests are modeled
using a “standard” JSBSim conditional construct that is also used in the flight control switch
component. When coupled with the property declaration capability and the notify flag, some
interesting effects can be achieved. One of those is a repeating notification that is printed at time
or altitude intervals. See the Time Notify event in the above example.

Formal documentation for the JSBSim Script Language can be found at,
http://jsbsim.sourceforge.net/JSBSim/JSBSimScript.xsd.html

 JSBSim Reference Manual v1.0

 | Section Two: Programmer's Manual 52

52

Section 2: Programmer's Manual

 JSBSim Reference Manual v1.0

 | Section Two: Programmer's Manual 53

53

1. Overview

One of the specific intentions of JSBSim is to make sure it is relatively easy to incorporate into
a small or large simulation program. As often happens with simulation programs (and software
applications in general) "feature creep" sets in and the program code blossoms into a larger-than-
intended product. In the case of JSBSim, we have attempted to maintain the code base as small
as possible, but at first glance it can still be overwhelming.

Let’s think for a moment about what should be present in a simulator. Of course, the
aerodynamic characteristics of the vehicle need to be modeled – and that in turn depends on the
atmosphere. Winds can be modeled, too. Gravity needs to be modeled. Clearly, the environment
needs to be modeled. As for the aircraft itself, apart from the aerodynamic characteristics which
cause forces and moments to be applied, propulsive effects must be modeled, buoyancy, ground
reactions, ground contact, and other externally applied forces can be modeled. Flight control
characteristics must be modeled, and other systems can be modeled as well (such as an
autopilot, other Guidance, Navigation, and Control (GNC) systems, or even electric or hydraulic
systems). Finally, the forces and moments cause the aircraft or vehicle to move, and so the
location and orientation of the vehicle must be tracked and propagated over time. There are of
course a lot of models to keep track of, so some kind of model management or executive is
needed. It’s important to be able to input data to and extract data from the simulation, so an input
and output capability is needed. Lastly, there are convenience or utility functions such as
functions, tables, and quaternions, which facilitate the functioning of the models.

For JSBSim, the C++ programming language was chosen to implement the above mentioned
models and ideas in program code. Over the years, I have fielded questions from people who ask
why I chose that language instead of something else. Some old-timers have sworn by Fortran as
being the language of choice for engineering applications. More recently, some have suggested
to me that Java would be good for implementing a flight dynamics model. You could use any
language, I suppose, but given the current state of the standard C++ language across many
platforms, the ready availability of excellent compilers and IDEs (Integrated Development
Environments) – even free ones – and the similarity of C++ to the C programming language, the
choice of C++ seems natural. It is one of the more widely known and used languages today.
Object oriented programming is well supported by C++. I’ve also found that programming in C++
is fun.

The C++ programming language is ideal for use in flight simulation software in part because of
its support of the primary object-oriented concepts: polymorphism, inheritance, encapsulation,
and abstraction.

Polymorphism (i.e. “having many forms”) is a characteristic of objects that operate differently
internally, but have the same interface. For example, the JSBSim implementation of a flight
control system (FCS) consists of various classes of filters, switches, and gains that each have a
unique internal implementation. The public interface to the components consists of the Run() and

 JSBSim Reference Manual v1.0

 | Section Two: Programmer's Manual 54

54

GetOutput() methods, which are both virtual member functions of the component base class.
These two methods are overridden in derived classes that represent specific components with
unique behavior. Each instance of a component is referred to by the base class pointer, but the
behavior is determined by the logic defined within the Run() method of the specific derived
component class.

Inheritance is the derivation of a class from another in order to provide base class
characteristics to the derived class. Using the example of the JSBSim FCS component classes
again, each of the specific component classes (switch, summer, filter, etc.) is derived from a more
generic component class that features characteristics that all components share. Inheritance is a
common way to implement polymorphism.

Encapsulation is the concept of hiding and protecting data in a class, preventing corruption by
outside processes. For example, the output of the FCS components may only be retrieved, and
not modified. In addition, some of the JSBSim FCS components store past values. These should
never be accessible by any other part of the program. Abstraction is “the elimination of the
irrelevant and the amplification of the essential”. The FCS component base class, for instance,
provides the two simple functions Run() and GetOutput() that are used to operate a component.
The details of how each specific component operates do not need to be exposed.

The Standard Template Library (STL) is a library of containers and algorithms. The STL
provides containers such as the vector class that operate like arrays that shrink or grow as
needed. This capability is particularly useful in JSBSim, because the number of engines,
coefficients, FCS components, etc. is unknown until the program is executed.

In the simplest use, where JSBSim is to be called upon from a tiny application that simply runs
a command script for an aircraft, here is an example of how JSBSim could be used:

#include <FGFDMExec.h>

int main(int argc, char **argv)
{
 JSBSim::FGFDMExec FDMExec;

 FDMExec.LoadScript(argv[1]);

 while (FDMExec.Run());
}

The above code can actually be compiled and run. If the above code replaces the JSBSim.cpp
file in the basic JSBSim distribution, typing "make" should make the code. It could subsequently
be run by simply typing:

src/jsbsim scripts/my_script_name.xml

The "Executive" class object, "FGFDMExec" does most of the work in setting up and running
JSBSim. In words, the above program – when compiled and run – will create an instance of an
FGFDMExec object, load a script (which in turn loads an aircraft file and an initial conditions file),
and cyclically run the simulation until the simulation completes as specified in the script.

For creating an application that runs inside a larger simulation program, where command
inputs are made via joystick and outputs drive a visual scene, the following code excerpt shows
how this can be done:

 JSBSim Reference Manual v1.0

 | Section Two: Programmer's Manual 55

55

int initialize_flight_dynamics(char *name) {
 FDMExec = new FGFDMExec();
 FDMExec->LoadAircraft(name);
 FDMExec->DoTrim(mode);
}

int run_flight_dynamics() {
 copy_inputs_to_jsbsim();
 FDMExec->Run();
 copy_outputs_from_jsbsim();
}

The above two functions would be linked into the main program code, with the initialization
function being called (as the name suggests) at initialization, and the latter function being called
cyclically during runtime. The "copy_inputs_to_jsbsim" and "copy_outputs_from_jsbsim" functions
are separate functions that would need to be written. Those two functions would take care of
providing inputs to and extracting outputs from JSBSim. That process will be discussed later.

In the following sections, the layers and processes will be looked at from a high level, followed
by a more detailed look.

 JSBSim Reference Manual v1.0

 | Section Two: Programmer's Manual 56

56

2. Class Heirarchy

There are roughly 70 C++ classes that comprise JSBSim. The code files themselves are
distributed into subdirectories based on function. There are math classes, classes that aid
input/output and initialization, model
classes, and basic classes. There are
some key inheritance relationships that
should be understood. For instance,
there is a model class (FGModel), from
which specific model classes inherit,
and base FGEngine,
FGFCSComponent, FGThruster, and
FGParameter classes. These
inheritance relationships are shown in
Figure 1.

The collection of classes that make
up the JSBSim framework resembles a
“family tree” with a common parent at
the head of the hierarchy. This
graphically illustrates the concept of
inheritance and – indirectly – code
reuse. An entire class framework does
not necessarily have to conform to a
completely hierarchical arrangement.
In JSBSim, several classes represent
generic objects or concepts that are
each fully realized in derived classes.
These base classes can be viewed as
providing the abstract interface that is
used to access each of the derived
objects. There are also operations and
attributes (a fancy name for class
member variables) that are common to
almost all classes, so it makes sense
to implement those characteristics in a
common base class. For instance, the
framework base class (FGJSBBase)
implements a messaging capability, Figure 1 JSBSim class heirarchy

 JSBSim Reference Manual v1.0

 | Section Two: Programmer's Manual 57

57

providing message handling methods and storage. Any descendant class can put a message on
the queue to be retrieved and processed by the parent application, or by any class instance that
is also derived from the base class. Unit conversion routines and constants also reside in the
base class, available through inheritance to any of the many descendant classes that need them.

One of the key challenges faced in creating a generic FDM is in designing it to permit the
modeling of completely arbitrary vehicle configurations. The framework needs to be able to
transparently handle modeling craft ranging from a simple ball (useful for testing purposes, see
Case Study 1), to a missile, an aircraft, rocket, hybrid vehicle, a rotorcraft, and so on. These craft
could feature different propulsion systems, ground reaction mechanisms, aerodynamic
characteristics, and control systems (if any). All four of the previously mentioned object oriented
design characteristics played a part in addressing this challenge. These classes will be discussed
in the sections that follow.

2.1 Directory organization
The code is located in directories that contain related groups of files. The sourec directory, src,

is the root directory for the code. Within that directory are the executive class source and header
files (FGFDMExec), the standalone JSBSim source file (JSBSim.cpp), the base class for many of
the other classes (FGJSBBase), and the state class (FGState). Underneath the src/ directory are
additional subdirectories,

• initialization
• input_output
• math
• models
• simgear
• utilities

2.2 Base class
2.3 Executive class

The FGFDMExec class encapsulates the JSBSim simulation Executive. All other simulation
classes are instantiated, "owned", initialized, and run through the Executive. When integrated with
FlightGear (or other flight simulator) this class is typically instantiated by an interface class on the
simulator side.

At the time of simulation initialization, the interface class (or, broadly: the application that is
"calling" JSBSim) creates an instance of this executive class. The executive is subsequently
directed to load the chosen aircraft configuration file:

fdmex = new FGFDMExec(…); // (1) Instantiation
result = fdmex->LoadModel(…); // (2) Model loading

When FGFDMExec is instantiated (see (1), in the above code snippet), several actions are
taken within the FGFDMExec class as the constructor for FGFDMExec is called, creating an
instance of FGFDMExec:

• The subsystem model classes (Atmosphere, Propulsion, Aircraft, etc.) are
instantiated and initialized.

 JSBSim Reference Manual v1.0

 | Section Two: Programmer's Manual 58

58

• The subsystem models are scheduled - that is a list of models is made that will be
called in order when each frame is cyclically processed.

After the Executive is created, the aircraft model is loaded. When an aircraft model is loaded,
the config file (the name of which is supplied in the LoadModel() function of the Executive class)
is parsed and for each of the sections of the config file (propulsion, flight control, etc.) the
corresponding Load() method is called (e.g. FGFCS::Load() is called to load the flight control
system parameters).

Subsequent to the creation of the executive and loading of the model, initialization is
performed. Initialization involves copying control inputs from the controlling application
(FlightGear, or the main() application in the case of JSBSim standalone) into the appropriate
JSBSim data storage locations, configuring it for the set of user-supplied initial conditions, and
then copying state variables from JSBSim, back into the controlling application. The state
variables are used to drive the instrument displays and to place the vehicle model in world space
for visual rendering:

copy_to_JSBsim(); // copy control inputs to JSBSim
fdmex->RunIC(); // loop JSBSim once w/o integrating
copy_from_JSBsim(); // update the bus

Once initialization is complete, cyclic execution proceeds:

copy_to_JSBsim(); // copy control inputs to JSBSim
fdmex->Run(); // execute JSBSim
copy_from_JSBsim(); // update the bus

Figure 2 The JSBSim FGFDMExec class and initialization process.

 JSBSim Reference Manual v1.0

 | Section Two: Programmer's Manual 59

59

JSBSim can be used in a standalone mode by creating a compact stub program that
effectively performs the same progression of steps as outlined above for the integrated version,
but with two exceptions. First, the copy_to_JSBSim() and copy_from_JSBSim() functions are not
used because the control inputs are handled directly by the scripting facilities and outputs are
handled by the output (data logging) class. Second, the name of a script file can be supplied to
the stub program. Scripting (see FGScript) provides a way to supply command inputs to the
simulation:

FDMExec = new JSBSim::FGFDMExec();
FDMExec->LoadScript(ScriptName); // the script loads the aircraft and
ICs
result = FDMExec->Run();
while (result) { // cyclic execution
 result = FDMExec->Run(); // execute JSBSim
}

The standalone mode has been useful for verifying changes before committing updates to the
source code repository. It is also useful for running sets of tests that reveal some aspects of
simulated aircraft performance, such as range, time-to-climb, takeoff distance, etc.

2.4 Manager classes
2.5 Model classes

When it comes down to it, the job of a 6DoF flight dynamics model (FDM) is to answer these
questions at the end of each cyclic frame:

• Where am I (latitude, longitude, altitude)?
• Which way am I oriented (pitch, yaw, roll)?

In accomplishing this, the FDM needs to know the forces and moments that are acting on the
aircraft at any moment. As a prerequisite to this, the FDM must know the environmental
characteristics, control inputs, etc.

JSBSim is comprised of classes that include specific model classes. Model classes are those
classes that descend from the FGModel class, are executed in order during each cyclic frame,
and which represent real physical objects, or which manage collections of real, physical objects.
The FGPropulsion class, for instance, manages a collection of engines (FGEngine objects), the
FGFCS class manages a collection of flight control components (FGFCSComponent objects), the
FGGroundReactions class manages a collection of landing gear (FGLGear objects),and the
FGAerodynamics class manages a list of aerodynamic forces and moments (FGFunction
objects). The list of model classes is as follows (presented in order of execution):

• Input
• Atmosphere
• FCS (a collection manager class)
• Propulsion (a collection manager class)
• MassBalance
• Aerodynamics (a collection manager class)
• Inertial
• GroundReactions (a collection manager class)

 JSBSim Reference Manual v1.0

 | Section Two: Programmer's Manual 60

60

• Aircraft
• Propagate
• Auxiliary
• Output

The Executive class (FGFDMExec) both stores its own private-access pointers to the
instances of these classes, and manages sequential and cyclical execution of each class
instance over each frame.

A description of the above mentioned Model class objects is presented in the following
sections.

2.5.1 Input
The FGInput class implements the input capability for JSBSim, and is the first FGModel-

derived object scheduled for execution in the frame.
After the model classes are instantiated and initialized, the aircraft files are loaded. As part of

that process, the Load() method for FGInput is called - '''if''' there is an <input> element in the
aircraft configuration file being loaded.

The FGInput::Load() method creates an instance of an FGfdmSocket class, passing the port
number as an argument. This socket sets up the communication interface and begins listening so
it is ready to accept a connection request from another process.

At runtime, the FGInput::Run() method is called. If data has been received through the socket,
the data is processed, parsed and examined for the presence of known keywords. If those
keywords are found, the appropriate action is taken.

2.5.2 Atmosphere
The Atmosphere model (FGAtmosphere class) models the 1976 standard atmosphere. It also

models winds and turbulence, but that portion is experimental at this time.
The atmosphere class can either calculate the basic properties (pressure, density,

temperature) or those parameters can be set from an external process. The atmospheric
properties are calculated in the Run() method, executed each frame. If the atmospheric properties
are supplied by an external source, the CalculateDerived() function is called. If the standard
properties are calculated by the FGAtmosphere class itself (the normal approach), then the
current altitude is first retrieved, and then the Calculate() function is called to determine the
current pressure, density, and temperature. Subsequent to that, the CalculateDerived() function is
called to compute additional values that depend on the standard atmospheric values. Among the
additional parameters that are calculated within the CalculateDerived() function are speed of
sound and density altitude.

The FGAtmosphere class also serves as a base class for other atmosphere models. There is
a subdirectory, atmosphere/, under which can be found two additional atmosphere models,
FGMSIS and FGMars. These are experimental, but FGMSIS has been tested and works well.

2.5.3 FCS (Flight Control System)
The FCS class (FGFCS) encapsulates the Flight Control System (FCS) functionality. This

class owns and contains (manages) the list of FGFCSComponent-derived objects that define the
control system for the loaded aircraft. FGFCS also provides function calls to read and set various

 JSBSim Reference Manual v1.0

 | Section Two: Programmer's Manual 61

61

standard flight control parameters.
The constructor for FGFCS initializes various parameters and also calls bind(), which binds

property names (text strings) with access methods (methods that get and set values, such as
GetThrottleCmd() and SetThrottlePos() for getting and setting throttle values). The Property
System is what allows property names to be specified in configuration files and accessed at run
time.

When FGFCS::Load() is called, the section of the aircraft configuration file demarked by the
<flight_control> element tags is parsed. The flight control definition can have any number of
channels, each of which contains a sequence of FCS component definitions. When each of the
component definitions is parsed, it creates an instance of the associated class object, and a
pointer to that object is pushed onto a storage "array" - actually, a Standard Template Library
vector container.

Three separate vector containers are used, because there are two flight control objects can be
specified for any aircraft model: an autopilot, and a flight control system. The third vector may
contain pointers to sensor objects. This allows sensor values to be calculated first, and then an
entire set of flight control components (representing a set of control laws) may be executed
before a second set of components is run.

At runtime, the list of components is executed in sequential order, with each component Run()
method being called.

2.5.4 Propulsion
The propulsion class (FGPropulsion) manages a collection of zero or more engine objects of

any type or combination of types. At initialization, the propulsion section of the configuration file is
read and, if any engines are encountered, an instance of that engine is created and added to the
engine array. At runtime, the propulsion class runs each engine in the list in sequence. Each
engine calculates the engine parameters, fuel usage, etc. and finally returns the forces and
moments that the engine exerts on the airframe. Fuel/propellants are subtracted from the tanks
(FGTank).

Several different engine types are modeled in JSBSim:

• Piston engine (which supports turbocharging), FGPiston class
• Turbine engine, FGTurbine class
• Turboprop engine, FGTurboProp class
• Rocket engine, FGRocket class
• Electric engine, FGElectric class

The engine-specific parameters are defined in the engine configuration file in XML format.
Each engine "owns" a thruster object that is used to turn the engine power into a force. The
thruster may be a propeller, a nozzle, or a direct pass-through object.

2.5.5 Mass & Balance
Weight and balance modeling for JSBSim includes the calculation of moments of inertia,

center of gravity, and mass quantities. The FGMassBalance class handles mass properties
calculations.

At initialization, the mass_balance section of the configuration file is read and values

 JSBSim Reference Manual v1.0

 | Section Two: Programmer's Manual 62

62

assigned. Point masses may be specified in the configuration file. If they are specified, they are
added to an array of point mass objects. At runtime during each pass the total weight of the
aircraft is calculated by summing the empty weight, the point mass weight[s] (if any), and the fuel
weight. Similarly, the center of gravity and moments of inertia are calculated from the initial empty
values, and the sum of the individual parts.

2.5.6 Aerodynamics
The aerodynamics class (FGAerodynamics), like the flight controls and ground reactions

classes, is a collection manager class, storing individual force and moment definitions in any of
six arrays. At initialization, the aerodynamics section of the configuration file is read, and
individual force or moment values are read in. At runtime, each force or moment function
definition is processed, resulting in a force or moment quantity for each of the axes defined.

2.5.7 Inertial
The FGInertial class is a very lightweight class that initializes the radius and reference

acceleration values. At runtime, it calculates the current acceleration due to gravity, as a function
of where the aircraft is at the moment (altitude).

2.5.8 Ground Reactions
One of the toughest parts of aircraft simulation is ground reactions. It is more difficult for

JSBSim because we must model for the general case – there can be any number of bogies and
they can be skids or wheels, steerable, or not, etc.

2.6 Math classes
2.7 Initialization

 JSBSim Reference Manual v1.0

 | Section Two: Programmer's Manual 63

63

3. Incorporating JSBSim into Your Software

3.1 FlightGear
3.2 OpenEaagles

OpenEaagles is an open source C++ framework designed to support the rapid construction of
virtual (human-in-the-loop) and constructive simulation applications. It has been used extensively
to build DIS compliant distributed simulation systems. It is based upon EAAGLES (Extensible
Architecture for the Analysis and Generation of Linked Simulations), a popular simulation
framework developed and maintained by the U.S. Air Force to support a multitude of simulation
activities.

As a framework, OpenEaagles provides a design pattern for how to construct a simulation.
The goal is to provide an application developer a solid foundation so that robust, scalable, virtual,
constructive, stand-alone, and distributed simulation applications can easily be built. It leverages
modern object-oriented software design principles while incorporating fundamental real-time
system design techniques to meet human interaction requirements.

By providing abstract representations of system components (that the object-oriented design
philosophy promotes), multiple levels of fidelity can be easily intermixed and selected for optimal
runtime performance. Abstract representations of systems allow a developer to tune the
application to run efficiently so that human-in-the-loop interaction latency deadlines can be met.
On the flip side, constructive-only simulation applications, that do not need to meet time-critical
deadlines, can use models with even higher levels of fidelity.

The bulk of the development for the EAAGLES software has been performed at the Simulation
and Analysis Facility (SIMAF) located at Wright Patterson AFB, Ohio. SIMAF participates in a
number of distributed events each year. The vast majority of the distributed simulation software
used in the facility has been “home grown” utilizing the EAAGLES framework. Applications built
utilizing the framework include cockpits (F-16), ground control stations (Predator MQ-9), threat
Integrated Air Defense Systems (IADS) and a futuristic battle manager.

OpenEaagles has been released as public domain code. This was done to encourage its use
throughout the community. OpenEaagles closely tracks and incorporates new enhancements to
EAAGLES, but does not include some functionality.

3.2.1 Interfacing to JSBSim
OpenEaagles is a framework that serves as a simulation design pattern as shown in Figure 1.

Most of the elements that are needed to build a full-up simulation application exist within the
framework, with one notable exception, the function main(). This function resides with the
executable application, not the framework.

Typically main() is closely associated with the Station class which connects the simulation
models to graphics and device I/O. The Station class also contains a Simulation class which

 JSBSim Reference Manual v1.0

 | Section Two: Programmer's Manual 64

64

takes care of basic simulation activities such as managing a list of Players/Entities of interest. A
Player can have many components and systems attached to it. Of particular interest related to
JSBSim is a Players dynamics class. Each Player can have an associated dynamic model.

OpenEaagles provides a dynamic model that serves as an interface class, but unfortunately,
specific flight models could not be included in the public domain release. Because JSBSim is a
mature model it made sense for the OpenEaagles project to utilize it. Since JSBSim is also coded
in C++, extending the included dynamics class to utilize JSBSim was fairly straightforward.

Since JSBSim can be configured to represent several aero propulsion systems, we have
refined the OpenEaagles dynamics class to include features never before considered. For
example, most of the aerodynamic models we have encountered, treat multiple engines as one.
We did include the capability to model multiple engines in the dynamics class but it had never
been tested. Attributes associated with engines other than jet turbines also needed to be
considered. Specifically, the Propeller and TurboProp engines which requires additional controls
(fuel mixture, prop pitch, etc).

3.2.2 Calling JSBSim
OpenEaagles is a frame-based system in which code is partitioned to support the

development of real-time systems. As a frame-based system, delta time is passed as an
argument to models so proper calculations involving time can be performed. Having models rely
on delta time for calculation means the frequency of the entire system can change without having
to change each and every model (so long as Nyquist rates are met). Additional time related
information is recorded in terms of cycles (16 frames or sometimes called a major frame) and
phases. Phases sequence the flow of data throughout a model. Four phases are currently
defined:

• Dynamics -- update player or system dynamics including aerodynamic, propulsion,

Figure 1. The OpenEaagles Simulation Framework

 JSBSim Reference Manual v1.0

 | Section Two: Programmer's Manual 65

65

and sensor positions (e.g., antennas, IR seekers).
• Transmit -- R/F emissions, which may contain datalink messages, are sent during

this phase. The parameters for the R/F range equation, which include transmitter
power, antenna pattern, gains and losses, are computed.

• Receive -- Incoming emissions are processed and filtered, and the detection reports
or datalink messages are queued for processing.

• Process -- Used to process datalink messages, sensor detection reports and tracks,
and to update state machines, on-board computers, shoot lists, guidance computers,
autopilots or any other player or system decision logic.

JSBSim is currently being called in the dynamics phase at a rate of 50Hz.

3.2.3 Building Applications
Building an application with OpenEaagles consists of extending select classes of interest and

writing a mainline. Typically, the mainline will call an OpenEaagles provided parser that will read
an input file, and create the object hierarchy which is the simulation application. The input file
describes in a simple language, the objects to create and the attributes to set.

Wherever a Player is defined, the creation of a JSBSimModel object (which was subclassed
off of the DynamicsModel class) can be specified as the dynamics model of choice. The
OpenEaagles inputs associated with the JSBSimModel class include the root directory for the
JSBSim data files and a string that specifies the model of interest. With this information the
interface class will call JSBSim, thus allowing it to process its own input files.

Thanks to C++ and the object-oriented nature of OpenEaagles and JSBSim, multiple
instantiations of JSBSim (i.e. multiple Players) can easily be created and utilized within the same
simulation application.

We see JSBSim being utilized as a high fidelity aero model driven by a human operator. The
example fighter cockpit application, as shown in Figure 2, is a full-up simulation application where
the pilot is controlling or flying one of the players in the player list. All stick and throttle inputs as
well as graphic outputs are associated with the Player through the use of an “ownship” pointer
that exists in the Station class. This connection is typically made by extending the Station class
and customizing it for the application being built.

3.3 JSBSim and Python

 JSBSim Reference Manual v1.0

 | Section Two: Programmer's Manual 66

66

4. Extending JSBSim

 JSBSim Reference Manual v1.0

 | Section Three: Formulation Manual 67

67

Section 3: Formulation Manual

 JSBSim Reference Manual v1.0

 | Section Three: Formulation Manual 68

68

1. Overview

 JSBSim Reference Manual v1.0

 | Section Three: Formulation Manual 69

69

2. Equations of Motion

The core purpose of a flight dynamics model is to propagate and track the path of a flying craft
over the surface of the Earth (or another planet), given the forces and moments that act on the
vehicle. We know the characteristics of the aircraft, and we know the characteristics of the planet
(gravity, rotation rate, etc.). And it is expected that the reader is familiar with rigid body dynamics,
where moving reference frames are involved. Still, putting all of the pieces together in a flight
simulator can be overwhelming and tedious.

This section discusses aerospace vehicle equations of motion, as implemented in
JSBSim::FGPropagate, and as related to the rigid body equations of motion as presented in
Stevens and Lewis, “Aircraft Control and Simulation”, Second Edition (2003), and similarly in
many other books.

The notation used in this document is the same that Stevens and Lewis use:

• The lower right subscript (e.g. vCM/e) describes the the object or frame relationship of
the parameter. In the example given, vCM/e, we refer to the velocity of the CM (center
of mass) with respect to the ECEF frame.

• The upper right superscript (e.g. vb) refers to a coordinate system. That is, it states
which coordinate system the motion is expressed in.

• The left superscript specifies the frame in which a derivative is taken.

There are several ω contributions to consider in the equations that follow. The subscripts refer
to four frames of interest:

v, or l The vehicle-carried NED frame, with the origin at the vehicle CM, the X axis pointing
North, the Y axis pointing east, and the Z axis positive downward by the right hand
rule. This is very similar to
the local frame in JSBSim.
[need diagram]

b The body-fixed frame, with
the X axis positive forwards
out the nose of the aircraft,
the Y axis positive out the
right side of the aircraft, and
the Z axis positive
downwards. [need diagram]

e The Earth Centered, Earth
Fixed (ECEF) frame, with the
Z axis coincident with the
spin axis and positive north,
the X axis positive through 0
longitude and 0 latitude. This

Illustration courtesy of
Agostino De Marco

 JSBSim Reference Manual v1.0

 | Section Three: Formulation Manual 70

70

frame rotates with the Earth at a constant rate and does not translate.
i The Earth Centered Inertial (ECI) frame is fixed in celestial space with the Z axis

positive north and coincident with the spin axis, with the X and Y axes located in the
equatorial plane. At time T=0 the ECI and ECEF frames are coincident.

Examining the ω contributions:

ωb/v The angular velocity vector of the body-fixed frame relative to the vehicle-carried
NED frame. Note that when the vehicle is not manuevering, this angular velocity
vector is zero.

ωb/e The angular velocity vector of the body-fixed frame relative to the ECEF frame. Note
that when the vehicle is at rest on the runway, this angular velocity vector is zero.

ωv/e The angular velocity vector of the vehicle-carried NED frame relative to the ECEF
frame. Note that this angular velocity vector is independent of the vehicle rotational
motion, and it is a function of the vehicle velocity relative to the ECEF frame – the
speed at which the frame travels across the curved surface of the Earth – which of
course implies it has an angular velocity of its own.

ωe/i The angular velocity vector of the ECEF frame relative to the ECI frame. This is
simply the angular velocity of the Earth about its spin axis.

We will see the use of the cross-product matrix in the equations that follow. The cross-product
matrix (Ω) is the skew-symmetric matrix:

൥
0 െܴ ܳ
ܴ 0 െܲ
െܳ ܲ 0

൩ (A)

where P, Q, and R are the body rates relative to the inertial frame, expressed in the body
frame.

Now, some discussion is needed of the variables used in JSBSim:

vUVW The body-fixed frame velocity vector of the vehicle relative to the ECEF frame,
expressed in the body-fixed frame. With zero winds, and while the aircraft is at rest
on the runway, this 3 element column vector will show zero velocity. A vehicle in a
stable, equatorial, low Earth orbit will show a total magnitude for vUVW that is less
than that required to maintain the orbit, but the total magnitude of the velocity relative
to the inertial frame will show the true, inertial orbital velocity. In Stevens and Lewis
notation, this is: ܞ௕/௘௕

vPQR The body-fixed frame angular velocity vector of the vehicle relative to the ECEF
frame, expressed in the body frame. While the aircraft is at rest on the runway, this 3
element column vector will show zero angular velocity. In Stevens and Lewis
notation, this is: ࣓௕/௘

௕

vVel The body-fixed frame velocity vector of the vehicle relative to the ECEF frame,
expressed in the vehicle-carried NED (local) frame. In Stevens and Lewis notation,
this is: ܞ௕/௘௩

JSBSim provides several rotation matrices for use in moving from one reference frame to
another. For instance, the “Tec2b” matrix (represented in JSBSim through the use of an

 JSBSim Reference Manual v1.0

 | Section Three: Formulation Manual 71

71

FGMatrix33 object) is the transformation matrix from ECEF to body. This matrix is represented in
Stevens and Lewis as Cb/e – or the transformation matrix relating the body frame orientation with
respect to the ECEF frame.The matrices provided in JSBSim are:

Tec2b The ECEF to body frame matrix (defines the orientation of the body frame with
respect to the ECEF frame)

Tb2ec The transpose of the Tec2b matrix
Ti2b The ECI (inertial) to body frame matrix (defines the orientation of the body frame with

respect to the ECI frame). This is represented in Stevens and Lewis notation as Cb/i.
Tb2i The transpose of the Ti2b matrix
Ti2ec The ECI (inertial) to ECEF frame matrix (defines the orientation of the ECEF frame

with respect to the ECI frame)
Tec2i The transpose of the Ti2ec matrix
Tec2l The ECI (inertial) to local (North, East, Down) frame matrix (defines the orientation of

the local NED frame with respect to the ECI frame)
Tl2ec The transpose of the Tec2l matrix
Tb2l The body to local (North, East, Down) frame matrix (defines the orientation of the

local NED frame with respect to the body frame)
Tl2b The transpose of the Tb2l matrix

2.1 Translational Acceleration
The derivative of the translational velocity is found from ΣF=ma in the body-fixed frame, and

employing what is sometimes referred to as the Equation of Coriolis. [See “Aircraft Control and
Simulation” (Stevens & Lewis, 2003) for the full set of derivations.] The equation for the derivative
of velocity is written (rearranging ΣF=ma and recalling that we are solving for acceleration in a
rotating frame):

ሶ࢜ ஼ெ/௘௕ ൌ ಲ,೅ࡲ
್

௠
െ ൫Ω௕/௜௕ ൅ Ω௘/௜௕ ൯ܞ஼ெ/௘௕ ൅ C௕/௜܏௜௕ (1.5-16d)

We can look at this equation another way (with all terms below expressed in the body
coordinate system, so the “b” superscript is omitted):

ሶ࢜ ஼ெ/௘ ൌ
ಲ,೅ࡲ
௠

െ ൫ω௕/௜ ൅ ω௘/௜൯ ൈ ஼ெ/௘ܞ ൅ ௕܏ (1.5-12)
Splitting up the angular velocities (which are additive):

ሶ࢜ ஼ெ/௘ ൌ
ಲ,೅ࡲ
௠

െ ൫ω௕/௩ ൅ ω௩/௘ ൅ 2ω௘/௜൯ ൈ ஼ெ/௘ܞ ൅ ௕܏ (1.5-13)
For our purposes in JSBSim – since we track and propagete the angular velocity of the vehicle

with respect to the ECEF frame (ωb/e) – we modify 1.5-13 by combining the first two angular
velocities on the right side of 1.5-13 to get:

ሶ࢜ ஼ெ/௘ ൌ
ಲ,೅ࡲ
௠

െ ൫ω௕/௘ ൅ 2ω௘/௜൯ ൈ ஼ெ/௘ܞ ൅ ௕܏ (1.5-13 modified)
In JSBSim, this is effectively what we have now:

void FGPropagate::CalculateUVWdot(void)
{
 double mass = MassBalance->GetMass(); // mass

 JSBSim Reference Manual v1.0

 | Section Three: Formulation Manual 72

72

 const FGColumnVector3& vForces = Aircraft->GetForces(); // forces

 const FGColumnVector3
 vGravAccel(0.0, 0.0, Inertial->GetGAccel(VehicleRadius));

 // Begin to compute body frame accelerations based on
 // the current body forces
 vUVWdot = vForces/mass - VState.vPQR * VState.vUVW;

 // Include Coriolis acceleration.
 vUVWdot -= 2.0 * (Tec2b *vOmega) * VState.vUVW;

 // Include Centrifugal acceleration.
 if (!GroundReactions->GetWOW()) {
 vUVWdot -= Tec2b*vOmega*(vOmega*VState.vLocation);
 }

 // Include Gravitation accel
 vUVWdot += Tl2b*vGravAccel;
}

2.2 Angular Acceleration
Angular acceleration is given in Stevens and Lewis as follows

ሶ߱ ௕/௜௕௕ ൌ ሺܬ௕ሻିଵൣࡹ஺,்
࢈ െ Ωୠ/୧ୠ ௕߱௕/௜ܬ

௕ ൧ (1.5-16e)
This reads, the derivative of the angular velocity of the body relative to the inertial frame and

taken in the body-fixed frame is determined by the non-gravitational moments, the cross-product
matrix, the inertia matrix, and the angular velocity of the body relative to the inertial frame, and
measured in the body system.

The angular velocity of the body (relative to the inertial frame) is physically the body rate of the
aircraft plus the angular velocity of the Earth as it spins.

The calculations in JSBSim are as follows:

void FGPropagate::CalculatePQRdot(void)
{
 const FGColumnVector3& vMoments = Aircraft->GetMoments(); // moments
 const FGMatrix33& J = MassBalance->GetJ(); // inertia matrix
 const FGMatrix33& Jinv = MassBalance->GetJinv(); // inverse matrix

 // Compute the body frame rotational accelerations based on the
 // current body moments and the total inertial angular velocity
 // expressed in the body frame.
 vPQRdot = Jinv*(vMoments - vPQRi*(J*vPQRi));
}

J, and Jinv are the inertia and inverse inertia matrices
vOmega is the angular rotation rate vector of the Earth
vPQRi is the inertial body rate measured in the body-fixed frame

Note that in JSBSim, the use of the “*” operator has been overloaded to often act as a cross
product operator when needed.

In the case of JSBSim, the multiplication of the vPQRi vector with the (J*vPQRi) term yields

 JSBSim Reference Manual v1.0

 | Section Three: Formulation Manual 73

73

the expected result. This is due to the way that a vector is multiplied against another vector
through the use of overloaded operators in the vector class. For readability and to be most
accurate, however, it might be better to create an actual cross-product matrix and use that, which
would create a closer relationship between the JSBSim code and popular reference material.
However, it would introduce some inefficiency in execution.

The result of this calculation is the angular acceleration of the vehicle relative to the inertial
frame (see eqn. 1.5-16e). What we eventually want is the angular velocity of the vehicle relative
to the ECEF frame – that’s what vPQR represents (expressed in the body frame). We will use the
fact that angular velocities are additive to look at the integration of angular acceleration in
understanding the JSBSim algorithm.

Starting with the integration of angular acceleration (where the t0 and t1 left hand subscripts
represent the values at an initial timestep, and the subsequent timestep Δt seconds later):

߱௧ଵ ௕/௜
௕ ൌ ߱௧଴ ௕/௜

௕ ൅ ሶ߱ ௕/௜௕௕ · (B) ݐ∆
Equation B, above, essentially says that the new angular velocity is calculated by summing

the old angular velocity (at t0) and the incremental change – the angular acceleration of the body
frame relative to the inertial frame (times the time-step duration).

In JSBSim we track and propagate the angular velocity relative to the ECEF frame. So, we
need to know how to use the angular acceleration to propagate the angular rate.

Since angular velocities are additive within the same system, the angular velocity of the body
frame relative to the inertial frame can be expressed as the sum of two other angular velocities:

߱௕/௜
௕ ൌ ߱௕/௘

௕ ൅ ߱௘/௜
௕ (C)

Replacing the angular velocities in (B) with the angular velocity on the right side in (C) we
have:

߱௧ଵ ௕/௘
௕ ൅ ߱௧ଵ ௘/௜

௕ ൌ ߱௧଴ ௕/௘
௕ ൅ ߱௧଴ ௘/௜

௕ ൅ ሶ߱ ௕/௜௕௕ · (D) ݐ∆
Since the angular velocity of the Earth relative to the inertial frame is constant, that term can

be removed from each side of equation (D), leaving:

߱௧ଵ ௕/௘
௕ ൌ ߱௧଴ ௕/௘

௕ ൅ ሶ߱ ௕/௜௕௕ · (E) ݐ∆
In other words, the incremental change in angular velocity of the body frame relative to the

inertial frame (and expressed in the body frame) can be used to propagate the angular velocity of
the body relative to the ECEF frame (expressed in the body frame). This is due to the fact that the
Earth frame (ECEF) does not accelerate relative to the inertial (ECI) frame.

Equation E, above, is represented in JSBSim code as follows (for the Euler integrator):

 case eRectEuler: VState.vPQR += dt*vPQRdot;
 break;

2.3 Translational Velocity
The translational position derivative (velocity) in JSBSim is found from integrating the

acceleration vector. The position vector derivative is given in Stevens and Lewis as:

ሶܘ ஼ெ/ை௜ ൌ C௜/௕ܞ஼ெ/௘௕ ൅ Ω௘/௜௜ ஼ெ/ை௜௜ܘ (1.5-16c, Stevens and Lewis)
Examining this equation, we can see that this is essentially the equation of Coriolis, which

 JSBSim Reference Manual v1.0

 | Section Three: Formulation Manual 74

74

calculates the inertial frame vehicle velocity as the sum of the vehicle velocity in the ECEF frame
with the velocity represented by the angular motion of the ECEF frame with respect to the inertial
frame. In the program code below, vLocationDot represents “ܘሶ ” on the left side of the equation
above.

void FGPropagate::CalculateLocationdot(void)
{
 // Transform the vehicle velocity relative to the ECEF frame,
 // expressed in the body frame, to be expressed in the ECEF frame.
 vLocationDot = Tb2ec * VState.vUVW;

 // Now, transform the velocity vector of the body relative to the
 // origin (Earth center) to be expressed in the inertial frame, and
 // add the vehicle velocity contribution due to the rotation of the
 // planet. The above velocity is only relative to the rotating ECEF
 // frame.
 // Reference: See Stevens and Lewis, "Aircraft Control and
 // Simulation", Second edition (2004), eqn 1.5-16c (page 50)

 vInertialVelocity = Tec2i * vLocationDot
 + (vOmega * (Tec2i * VState.vLocation));
}

2.4 Angular Velocity
The angular position derivative (angular velocity) is found as described in (Stevens & Lewis,

2003). We can define a quaternion that describes the orientation of one frame relative to another
through a set of Euler rotations (ψ, θ, φ – or a Z axis rotation, then a Y axis rotation, then one
about the X axis). For instance, we can define a quaternion that gives us the orientation of the
body frame (Fb) relative to the geographic local, vehicle-carried, NED frame (Fv):

q[0] = cos(φ/2)·cos(θ/2) ·cos(ψ/2) + sin(φ/2) ·sin(θ/2) ·sin(ψ/2)
q[1] = sin(φ/2) ·cos(θ/2) ·cos(ψ/2) - cos(φ/2) ·sin(θ/2) ·sin(ψ/2)
q[2] = cos(φ/2) ·sin(θ/2) ·cos(ψ/2) + sin(φ/2) ·cos(θ/2) ·sin(ψ/2)
q[3] = cos(φ/2) ·cos(θ/2) ·sin(ψ/2) - sin(φ/2) ·sin(θ/2) ·cos(ψ/2)

Leaving the derivation of the quaternion derivative to Stevens and Lewis (and others), and

knowing the angular velocity ω of the body with respect to the reference frame (the body frame
with respect to the ECEF frame, in our case) we assert that the derivative of the quaternion, qሶ , is
defined as follows:

qሶ = ଵ
ଶ
ቂ0 െ்߱

߱ െΩ
ቃ ቂ
଴ݍ
ܙ ቃ

or, expanded,

൦

qሶ ଴
qሶ ଵ
qሶ ଶ
qሶ ଷ

൪ = ଵ
ଶ
൦

0 െܲ
ܲ 0

െܳ െܴ
ܴ െܳ

ܳ െܴ
ܴ ܳ

0 ܲ
െܲ 0

൪ ቎

଴ݍ
ଵݍ
ଶݍ
ଷݍ

቏

Then, the quaternion can be propagated by integrating it, for example,
qn+1 = qn + qሶdt

 JSBSim Reference Manual v1.0

 | Section Three: Formulation Manual 75

75

The calculation of the quaternion derivative is performed (as are other quaternion operations)
in the class FGQuaternion:

FGQuaternion FGQuaternion::GetQDot(const FGColumnVector3& PQR) const
{
 double norm = Magnitude();

 if (norm == 0.0) return FGQuaternion::zero();

 double rnorm = 1.0/norm;

 FGQuaternion QDot;
 QDot(1) = -0.5*(Entry(2)*PQR(eP) + Entry(3)*PQR(eQ)
 + Entry(4)*PQR(eR));
 QDot(2) = 0.5*(Entry(1)*PQR(eP) + Entry(3)*PQR(eR)
 - Entry(4)*PQR(eQ));
 QDot(3) = 0.5*(Entry(1)*PQR(eQ) + Entry(4)*PQR(eP)
 - Entry(2)*PQR(eR));
 QDot(4) = 0.5*(Entry(1)*PQR(eR) + Entry(2)*PQR(eQ)
 - Entry(3)*PQR(eP));
 return rnorm*QDot;
}

It should be noted that we can do this for any two frames if we know the initial orientation of one
body frame with respect to the reference frame, and know the angular velocity of the body frame
with respect to the reference frame.

In the specific case of JSBSim, the initial orientation of the vehicle is given in an ordered
sequence of Euler angles. The standard aerospace sequence is used (yaw, then pitch, then roll).
The Euler angles define the orientation of the vehicle relative to the local NED frame. The
initialization of the vehicle state quaternion (owned by FGPropagate and contained in the VState
structure) is handled from within the FGPropagate::SetInitialState() function, which passes the
Euler angles to the quaternion constructor, which itself subsequently creates the quaternion and
initializes the four quaternion elements using the equations for q[0], q[1], q[2], q[3] previously
presented.

At runtime, the quaternion derivative is calculated using the angular velocity of the body
relative to the local NED frame:

߱௩/௘ ൌ ߱௕/௘ െ ߱௕/௩
In the code, below, vOmegaLocal is the calculated angular velocity of the local NED frame, Fv.

void FGPropagate::CalculateQuatdot(void)
{
 FGColumnVector3 vOmegaLocal(
 radInv*vVel(eEast),
 -radInv*vVel(eNorth),
 -radInv*vVel(eEast)*VState.vLocation.GetTanLatitude()
);

 // Compute quaternion orientation derivative on current body rates
 vQtrndot = VState.vQtrn.GetQDot(VState.vPQR - Tl2b*vOmegaLocal);
}

 JSBSim Reference Manual v1.0

 | Section Three: Formulation Manual 76

76

Once the quaternion derivative is calculated it is integrated.

 JSBSim Reference Manual v1.0

 | Section Four: Case Studies 77

77

Section 4: Case Studies

 JSBSim Reference Manual v1.0

 | Section Four: Case Studies 78

78

1. Overview

 JSBSim Reference Manual v1.0

 | Section Four: Case Studies 79

79

2. Simple ball

We’ll start with the simplest of all possible cases, modeling a ball flying through the air. This
ball will have no control or propulsion systems, will exhibit only aerodynamic drag, and will have a
single contact point. The definition of the ball is as follows:

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl"
href="http://jsbsim.sourceforge.net/JSBSim.xsl"?>
<fdm_config name="BALL" version="2.0" release="BETA"
 xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
 xsi:noNamespaceSchemaLocation=
 "http://jsbsim.sourceforge.net/JSBSim.xsd">

 <fileheader>
 <author> Joe Public </author>
 <filecreationdate> 2004-06-01 </filecreationdate>
 <version> Version 1.0 </version>
 <description> Ball vehicle test file </description>
 </fileheader>

 <metrics>
 <wingarea unit="FT2"> 1 </wingarea>
 <wingspan unit="FT"> 1 </wingspan>
 <chord unit="FT"> 1 </chord>
 <htailarea unit="FT2"> 0 </htailarea>
 <htailarm unit="FT"> 0 </htailarm>
 <vtailarea unit="FT2"> 0 </vtailarea>
 <vtailarm unit="FT"> 0 </vtailarm>
 <location name="AERORP" unit="IN">
 <x> 0 </x>
 <y> 0 </y>
 <z> 0 </z>
 </location>
 </metrics>

 <mass_balance>
 <ixx unit="SLUG*FT2"> 10 </ixx>
 <iyy unit="SLUG*FT2"> 10 </iyy>
 <izz unit="SLUG*FT2"> 10 </izz>
 <ixy unit="SLUG*FT2"> -0 </ixy>
 <ixz unit="SLUG*FT2"> -0 </ixz>
 <iyz unit="SLUG*FT2"> -0 </iyz>
 <emptywt unit="LBS"> 50 </emptywt>
 <location name="CG" unit="IN">
 <x> 0 </x>
 <y> 0 </y>
 <z> 0 </z>
 </location>

 JSBSim Reference Manual v1.0

 | Section Four: Case Studies 80

80

 </mass_balance>

 <ground_reactions>
 <contact type="BOGEY" name="NOSE_CONTACT">
 <location unit="IN">
 <x> 0 </x>
 <y> 0 </y>
 <z> 0 </z>
 </location>
 <static_friction> 0 </static_friction>
 <dynamic_friction> 0 </dynamic_friction>
 <rolling_friction> 0 </rolling_friction>
 <spring_coeff unit="LBS/FT"> 10000 </spring_coeff>
 <damping_coeff unit="LBS/FT/SEC"> 200000 </damping_coeff>
 <max_steer unit="DEG"> 0.0 </max_steer>
 <brake_group> NONE </brake_group>
 <retractable>0</retractable>
 </contact>
 </ground_reactions>

 <propulsion/>

 <flight_control name="FGFCS"/>

 <aerodynamics>
 <axis name="DRAG">
 <function name="aero/coefficient/CD">
 <description>Drag</description>
 <product>
 <property>aero/qbar-psf</property>
 <property>metrics/Sw-sqft</property>
 <value>0.0001</value>
 </product>
 </function>
 </axis>
 </aerodynamics>

</fdm_config>

This file represents a ball with a reference area of 1 square foot, a lateral reference length
(“wingspan”) of 1 foot, and a longitudinal reference length (“chord”) of 1 foot.

The ball description is not the only file that we need, however. We also have to tell the
simulation where to begin – what the initial conditions of the simulation run will be. We can define
initial values for various parameters in an initialization file. An example of such a file is as follows:

<?xml version="1.0"?>
<initialize name="Cannonball example">
 <!—
 This file sets up a cannonball example.
 -->
 <ubody unit="FT/SEC"> 500.0 </ubody>
 <latitude unit="DEG"> 0.0 </latitude>
 <longitude unit="DEG"> -90.0 </longitude>
 <theta unit="DEG"> 60.0 </theta>
 <psi unit="DEG"> 40.0 </psi>
 <altitude unit="FT"> 1.0 </altitude>

 JSBSim Reference Manual v1.0

 | Section Four: Case Studies 81

81

</initialize>

The file above sets the ball up with an initial velocity of 500 feet per second along its own X
axis, and an angle of 60 degrees above the horizon, at a heading of 40 degrees east of north.
The initial location is on the equator at 90 degrees west longitude.

A simulation run can be made using this command line (assuming that the jsbsim executable
is in your path):

jsbsim --aircraft=ball --initfile=cannonball_init

The “.xml” extension does not need to be given, nor should the full path to the files. The chart
above shows the altitude versus time curve that results from this run.

0

500

1000

1500

2000

2500

3000

3500

0 5 10 15 20 25 30

A
lt
it
ud

e
(f
t)

Time

Altitude vs. Time

 JSBSim Reference Manual v1.0

 | Section Four: Case Studies 82

82

3. Ball with parachute

We can go one step further over the previous example and add a parachute. This is made
possible using the external reactions capability. The ball example is modified by adding the
parachute as follows (see the external_reactions element):

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl"
 href="http://jsbsim.sourceforge.net/JSBSim.xsl"?>
<fdm_config name="BALL" version="2.0" release="BETA"
 xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
 xsi:noNamespaceSchemaLocation=
 "http://jsbsim.sourceforge.net/JSBSim.xsd">

 <fileheader>
 <author> Jon Berndt </author>
 <filecreationdate> 2004-06-01 </filecreationdate>
 <version> Version 1.0 </version>
 <description> Test file </description>
 </fileheader>

 <metrics>
 <wingarea unit="FT2"> 1 </wingarea>
 <wingspan unit="FT"> 1 </wingspan>
 <chord unit="FT"> 1 </chord>
 <htailarea unit="FT2"> 0 </htailarea>
 <htailarm unit="FT"> 0 </htailarm>
 <vtailarea unit="FT2"> 0 </vtailarea>
 <vtailarm unit="FT"> 0 </vtailarm>
 <location name="AERORP" unit="IN">
 <x> 0 </x>
 <y> 0 </y>
 <z> 0 </z>
 </location>
 </metrics>

 <mass_balance>
 <ixx unit="SLUG*FT2"> 10 </ixx>
 <iyy unit="SLUG*FT2"> 10 </iyy>
 <izz unit="SLUG*FT2"> 10 </izz>
 <emptywt unit="LBS"> 50 </emptywt>
 <location name="CG" unit="IN">
 <x> 0 </x>
 <y> 0 </y>
 <z> 0 </z>
 </location>
 </mass_balance>

 JSBSim Reference Manual v1.0

 | Section Four: Case Studies 83

83

 <ground_reactions>
 <contact type="BOGEY" name="CONTACT">
 <location unit="IN">
 <x> 0 </x>
 <y> 0 </y>
 <z> 0 </z>
 </location>
 <static_friction> 0 </static_friction>
 <dynamic_friction> 0 </dynamic_friction>
 <rolling_friction> 0 </rolling_friction>
 <spring_coeff unit="LBS/FT"> 10000 </spring_coeff>
 <damping_coeff unit="LBS/FT/SEC"> 200000 </damping_coeff>
 <max_steer unit="DEG"> 0.0 </max_steer>
 <brake_group> NONE </brake_group>
 <retractable>0</retractable>
 </contact>
 </ground_reactions>

 <external_reactions>

 <!—
 "Declare" the reefing term that will be set
 in the script.
 -->

 <property> fcs/parachute_reef_pos_norm </property>

 <force name="parachute" frame="WIND">

 <function>
 <product>
 <property> aero/qbar-psf </property>
 <property> fcs/parachute_reef_pos_norm </property>
 <value> 1.0 </value> <!-- Full drag coefficient -->
 <value> 20.0 </value> <!-- Full parachute area -->
 </product>
 </function>

 <!—
 The location below is in structural frame (x positive
 aft), so this location describes a point 1 foot aft
 of the origin. In this case, the origin is the center.
 -->

 <location unit="FT">
 <x>1</x>
 <y>0</y>
 <z>0</z>
 </location>

 <!—
 The direction describes a unit vector. In this case, since
 the selected frame is the WIND frame, the "-1" x component
 describes a direction exactly opposite of the direction
 into the wind vector. That is, the direction specified
 below is the direction that the drag force acts in.

 JSBSim Reference Manual v1.0

 | Section Four: Case Studies 84

84

 -->

 <direction>
 <x>-1</x>
 <y>0</y>
 <z>0</z>
 </direction>

 </force>
 </external_reactions>

 <propulsion/>

 <flight_control name="FGFCS"/>

 <aerodynamics>
 <axis name="DRAG">
 <function name="aero/coefficient/CD">
 <description>Drag</description>
 <product>
 <property>aero/qbar-psf</property>
 <property>metrics/Sw-sqft</property>
 <value>0.0001</value>
 </product>
 </function>
 </axis>
 </aerodynamics>

 <output name="JSBBallOut.csv" type="CSV" rate="10">
 <property> gear/unit[0]/WOW </property>
 <rates> ON </rates>
 <velocities> ON </velocities>
 <forces> ON </forces>
 <moments> ON </moments>
 <position> ON </position>
 </output>
</fdm_config>

The above configuration describes a ball that has a parachute that pops out attached to the
“back” end. The force magnitude is defined by the function. The run script used is shown
following. Note the deployment of the parachute in reefing stages. The initial conditions are
different from those in the previous case study:

<?xml version="1.0"?>
<initialize name="reset00">
 <!--
 This file sets up the ball initial conditions.
 -->
 <ubody unit="FT/SEC"> 500.0 </ubody>
 <vbody unit="FT/SEC"> 0.0 </vbody>
 <wbody unit="FT/SEC"> 0.0 </wbody>
 <latitude unit="DEG"> 0.0 </latitude>
 <longitude unit="DEG"> 90.0 </longitude>
 <phi unit="DEG"> 0.0 </phi>
 <theta unit="DEG"> 40.0 </theta>
 <psi unit="DEG"> 40.0 </psi>

 JSBSim Reference Manual v1.0

 | Section Four: Case Studies 85

85

 <altitude unit="FT"> 10000.0 </altitude>
 <winddir unit="DEG"> 0.0 </winddir>
 <vwind unit="FT/SEC"> 0.0 </vwind>
</initialize>

In words, the script below will,

• Deploy the parachute, reefed at 20%, when the ball descends below 5000 feet,
• Disreef the parachute to 60% open when the ball descends below 4000 feet,
• Disreef the parachute to 100% (fully open) when the ball descends below 2000 feet.

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl"
 href="http://jsbsim.sf.net/JSBSimScript.xsl"?>

<runscript xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
 xsi:noNamespaceSchemaLocation=
 "http://jsbsim.sf.net/JSBSimScript.xsd" name="ball test">

 <description>Simplest of all tests</description>

 <use aircraft="ball" initialize="reset01"/>
 <run start="0.0" end="600" dt="0.008333">

 <event name="Reef 1">
 <description> Test of parachute reefing </description>
 <condition>
 <test>
 position/h-agl-ft lt 5000
 </test>
 </condition>
 <set name="fcs/parachute_reef_pos_norm" value="0.2"
 action="FG_RAMP" tc="1.0"/>
 <notify>
 <property>sim-time-sec</property>
 </notify>
 </event>

 <event name="Reef 2">
 <description> Test of parachute reefing </description>
 <condition>
 <test>
 position/h-agl-ft lt 4000
 </test>
 </condition>
 <set name="fcs/parachute_reef_pos_norm" value="0.6"
 action="FG_RAMP" tc="1.0"/>
 <notify>
 <property>sim-time-sec</property>
 </notify>
 </event>

 <event name="Reef Final">
 <description> Test of parachute reefing </description>
 <condition>
 <test>

 JSBSim Reference Manual v1.0

 | Section Four: Case Studies 86

86

 position/h-agl-ft lt 2000
 </test>
 </condition>
 <set name="fcs/parachute_reef_pos_norm" value="1.0"
 action="FG_RAMP" tc="1.0"/>
 <notify>
 <property>sim-time-sec</property>
 </notify>
 </event>

 <event name="Terminate">
 <description> End condition </description>
 <condition>
 <test>
 gear/unit[0]/WOW eq 1
 </test>
 </condition>
 <set name="simulation/terminate" value="1.0"/>
 <notify>
 <property>sim-time-sec</property>
 </notify>
 </event>

 </run>
</runscript>

The plot of velocity and altitude versus time is shown:

0

100

200

300

400

500

600

700

800

0

2000

4000

6000

8000

10000

12000

14000

0 200 400 600 800 1000

V
el
oc
it
y
(f
t/
se
c)

A
lt
it
ud

e
(f
t)

Time

Altitude and Velocity vs. Time

Altitude (ft)
Velocity

 JSBSim Reference Manual v1.0

 | Section Four: Case Studies 87

87

4. Piston Aircraft with Autopilot and Scripting

For a more involved example, we’ll look at modeling a wing leveler autopilot and the flight
control roll model for a small general aviation aircraft. Following that, we’ll also examine a
heading hold autopilot. We’ll refer to this aircraft model as the c172x. The entire XML file that
describes the c172x will not be shown here. See the JSBSim distribution for that.

4.1 An Automatic Wing Leveler
We will assume that we have an aircraft model already at our disposal: the c172x, and that the

mass properties, aerodynamics, propulsion, etc. are already determined. We begin this case
study by asking the question, how can we give the aircraft flight model the capability to hold a
wings-level attitude during a scripted flight? We know that if we want to hold a roll attitude of zero
(wings-level), we’ll have to generate a roll command that acts to remove the non-zero roll angle
and return to wings-level flight. Such an autopilot will have to control the ailerons.

The autopilot control components can either go in the <autopilot> element in the aircraft
configuration file, or they can be put in a separate file, which permits easier reuse. This time, we’ll
put the component descriptions in the aircraft configuration file, in the <autopilot> element. The
relevant part of the configuration file is as follows:

<autopilot name=”C172 A/P”>

 <channel name=”Roll”>
 … component definitions …
 </channel>

</autopilot>

<flight_control name=”C172 FCS”>

 <channel name=”roll”>
 … component definitions …
 </channel>

</flight_control>

Let’s make one more assumption at this point: let’s assume that the normal roll flight control
channel is already constructed, and that the inputs to the roll channel are:

• Roll trim
• Roll command (from the pilot joystick)
• Roll command (from the autopilot)

The “normal roll flight control” channel is the set of components that takes the above inputs
(which range from -1 to +1 individually and as a sum total), processes the signal as needed, and

 JSBSim Reference Manual v1.0

 | Section Four: Case Studies 88

88

outputs an aileron command.
We will use a PID controller to process the roll angle error and output an aileron command

that will keep the wings level. What is a PID controller? From Wikipedia:
A proportional–integral–derivative controller (PID controller) is a generic control loop

feedback mechanism widely used in industrial control systems. A PID controller attempts to
correct the error between a measured process variable and a desired setpoint by calculating
and then outputting a corrective action that can adjust the process accordingly.

The PID controller calculation (algorithm) involves three separate parameters; the
Proportional, the Integral and Derivative values. The Proportional value determines the
reaction to the current error, the Integral determines the reaction based on the sum of recent
errors and the Derivative determines the reaction to the rate at which the error has been
changing. The weighted sum of these three actions is used to adjust the process via a control
element such as the position of a control valve or the power supply of a heating element.

A diagram of our wing leveler control law is shown below:

In JSBSim-ML, this looks like (with example gains thrown in):

 <pid name="fcs/roll-ap-error-pid">
 <input> attitude/phi-rad </input>
 <kp> 50.0 </kp>
 <ki> 5.0 </ki>
 <kd> 17.0 </kd>
 <output> ap/aileron_cmd </output>
 </pid>

It doesn’t get much simpler than this, does it? However, there is more that needs to be done.
The autopilot of course is not going to be on at all times. And any time the PID controller is getting
a non-zero input and the integrator gain is non-zero, the integrator output will be building up. So,
it’s important to make sure that the integrator is properly used. We can modify the above
controller to use a switch that controls the integrator state, and another switch to actually use the
output.

This is a good place to explain the wind-up protection in the integrators that JSBSim provides
in the flight control components. If a trigger property is specified via the <trigger> element in the
PID control specification, the operation of the integrator is determined by the value of the
property. If the value of the property is zero (actually, if the absolute value of the property is less
that 0.000001) then the integrator operates normally. If the value of the trigger property is

Kp

Ki∫e(t)

Kdė(t)

PID Controller

Roll angle (rad) Aileron command (rad)

 JSBSim Reference Manual v1.0

 | Section Four: Case Studies 89

89

anything else, then the integrator contribution at that time is zero – that is, the integrator output
remains at its current value. Additionally, if the value of the trigger property is less than zero, the
integrator output is reset to zero.

The full roll autopilot specification then looks schematically like this:

In JSBSim-ML the specification looks like this:

 <switch name="fcs/wing-leveler-ap-on-off">
 <default value="-1"/>
 <test value="0">
 ap/attitude_hold == 1
 </test>
 </switch>

 <pid name="fcs/roll-ap-error-pid">
 <input>attitude/phi-rad</input>
 <kp> 50.0 </kp>
 <ki> 5.0 </ki>
 <kd> 17.0 </kd>
 <trigger> fcs/wing-leveler-ap-on-off </trigger>
 </pid>

 <switch name="fcs/roll-ap-autoswitch">
 <default value="0.0"/>
 <test value="-fcs/roll-ap-error-pid">
 ap/attitude_hold == 1
 </test>
 </switch>

The next question you might ask is, “but how do I determine the gains to use in the PID
controller?”. There’s an art and science to that, as well. One approach is the Ziegler-Nichols
method. Tuning the PID controller using the Ziegler-Nichols method will require an error to be
instantly introduced to the controller. Additionally, the Integral and Derivative gains (ki and kd,
respectively) should initially be set to zero. The best way to begin tuning the PID gains is to
create a script that sets the aircraft up flying trimmed at a given altitude, allowing it to build up a
roll error, and then turning on the wing leveler autopilot. The following script accomplishes that:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl"
 href="http://jsbsim.sf.net/JSBSimScript.xsl"?>
<runscript xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

AP ON
AP ON

0.0

Kp

Ki∫e(t)

Kdė(t)

PID Controller

Roll angle (rad)

Aileron command (rad) ‐1.0
0.0

This switch value is ‐1, or 0.0
if the roll autopilot is turned
on.

 JSBSim Reference Manual v1.0

 | Section Four: Case Studies 90

90

 xsi:noNamespaceSchemaLocation=http://jsbsim.sf.net/JSBSimScript.xsd
 name="At-altitude autopilot test setup.">

 <use aircraft="c172x" initialize="reset01"/>
 <run start="0.0" end="30" dt="0.00833333">

 <!-- Start the engine -->
 <event name="Engine start">
 <condition>sim-time-sec ge 0.25</condition>
 <set name="fcs/throttle-cmd-norm" value="0.65"/>
 <set name="fcs/mixture-cmd-norm" value="0.87"/>
 <set name="propulsion/magneto_cmd" value="3"/>
 <set name="propulsion/starter_cmd" value="1"/>
 <set name="ap/heading_hold" value="0"/>
 <notify>
 <property>velocities/vc-kts</property>
 <property>position/h-agl-ft</property>
 </notify>
 </event>

 <!—Trim the aircraft -->
 <event name="Trim">
 <condition>sim-time-sec ge 0.50</condition>
 <set name="simulation/do_simple_trim" value="0"/>
 <notify>
 <property>velocities/vc-kts</property>
 <property>position/h-agl-ft</property>
 </notify>
 </event>

 <!-- Turn on the roll autopilot after a roll “error”
 has developed (5 seconds) -->
 <event name="Set roll autopilot">
 <condition>sim-time-sec ge 5.0</condition>
 <set name="ap/attitude_hold" value="1"/>
 <notify>
 <property>velocities/vc-kts</property>
 <property>position/h-agl-ft</property>
 </notify>
 </event>

 </run>
</runscript>

Running JSBSim with this script, then plotting the roll angle versus time will show how the PID
controller is working to reduce the roll angle error. The Ziegler-Nichols method can be employed
as follows:

1) Make repeated runs, increasing the proportional gain Kp until the control action is seen to
cause a sustained oscillatory control output. That gain is referred to as the ultimate gain,
Ku, or the critical gain. Note also the peak-to-peak period of the oscillation. That is referred
to as the critical oscillation period, Tc.

2) Knowing Kc and Tc, the PID gains can be set depending on whether a P, PI, or PID
controller is needed. The gains are set according to the following table:

 JSBSim Reference Manual v1.0

 | Section Four: Case Studies 91

91

Control Type Kp Ki Kd

P 0.5 Kc 0 0

PI 0.45 Kc 1.2Kp/Tc 0

PID 0.6 Kc 2 Kp/Tc KpTc/8

Let’s walk through this. A series of ten runs will be made with the integrator and derivative

gains set to zero. The proportional gain will be set to 5 initially and increased by five for each
subsequent run. This process is carried out with a shell script that runs JSBSim repeatedly, with
gain values specified on the command line. First, the PID controller is modified to have its gains
specified as properties. This allows the gains to be set somewhere else (such as from a script):

<autopilot name="C-172X Autopilot">

<!-- INTERFACE PROPERTIES -->

 …

<!-- INITIAL GAIN VALUES -->

 <property value="50.0"> ap/roll-pid-kp </property>
 <property value="5.0"> ap/roll-pid-ki </property>
 <property value="17.0"> ap/roll-pid-kd </property>
 …
<channel name="Roll wing leveler">

 …

 <pid name="fcs/roll-ap-error-pid">
 <input>attitude/phi-rad</input>
 <kp> ap/roll-pid-kp </kp>
 <ki> ap/roll-pid-ki </ki>
 <kd> ap/roll-pid-kd </kd>
 <trigger> fcs/wing-leveler-ap-on-off </trigger>
 </pid>

The shell script that makes the multiple runs is,

src/jsbsim --script=scripts/c1722 \
 --property=ap/roll-pid-kp=5 \
 --property=ap/roll-pid-ki=0 \
 --property=ap/roll-pid-kd=0 \
 --logdirectivefile=output.xml \
 --outputlogfile=pid_test_0.csv
…
src/jsbsim --script=scripts/c1722 \
 --property=ap/roll-pid-kp=50 \
 --property=ap/roll-pid-ki=0 \
 --property=ap/roll-pid-kd=0 \
 --logdirectivefile=output.xml \
 --outputlogfile=pid_test_9.csv

This shell script also shows that JSBSim is being told to take the output specification from the

 JSBSim Reference Manual v1.0

 | Section Four: Case Studies 92

92

file output.xml. That file contains a property element, directing the program to output only roll
angle in radians (attitude/phi-rad). The logged output data itself is sent to the named file,
pid_test_#.csv, where “#” represents a number from 0 to 9.

When all the data is plotted together, the response to the different value of Kp is seen. The plot
begins the same for all cases: the aircraft begins flying at altitude, and begins a slow roll to the
left (left wingtip down). The controller is turned on at five seconds.

From the plot above, one can determine that the system response began to oscillate when the

gain Kp was set to 50 – this is Kc – the critical gain. The peak-to-peak period of the oscillation is
0.667 seconds – this is Tc. Given the gain chart shown in step 2 of the Ziegler-Nichols method
description, if a proportional only control is used, the gain Kp should be set to 0.5 Kc, or, 25. If we
make the same run using that arrangement, the roll angle behavior looks like that shown in the
plot:

 JSBSim Reference Manual v1.0

 | Section Four: Case Studies 93

93

The plot shows the roll angle being corrected, but with significant overshoot and a steady state
error. So, let’s try to use PI control and eliminate the bias. Again referring to the Ziegler-Nichols
chart from step 2, we get a value for Kp of 22.5 and so the value for Ki is calculated from that to
be 1.2 Kp/Tc = 40.48. When we run the simulation with this setup, we get this roll angle behavior:

 JSBSim Reference Manual v1.0

 | Section Four: Case Studies 94

94

The roll angle action is more oscillatory, but the steady state error is about zero. Let’s try adding
derivative control, to make a full PID controller, and see if that helps. Looking at the third line in
the Ziegler-Nichols chart, we calculate the gains as follows: Kp = 0.6 Kc = 30, Ki = 2 Kp/Tc = 90, Kd
= Kp Tc/8 = 2.5. Making a run with these values results in this roll angle behavior:

 JSBSim Reference Manual v1.0

 | Section Four: Case Studies 95

95

There is significant overshoot here, too, but it’s less than before, and the oscillation is gone. The
roll angle snaps to the wings-level position very rapidly – perhaps too rapidly! We might like to try
and reduce the overshoot. But, which gain or gains do we adjust? Here’s a table that shows the
response to increasing any of the gains on the controller output:

Effects of increasing parameters

Parameter Rise Time Overshoot Settling Time S.S. Error

Kp Decrease Increase Small Change Decrease

Ki Decrease Increase Increase Eliminate

Kd Small Decrease Decrease Decrease None

From the chart above, it looks like we might want to increase the derivative gain, which would
decrease the overshoot and the settling time. After some additional tweaking, we arrive at gains,
Kp=50, Ki=6, Kd=18. The plot of the response (roll angle) to the controller is shown below:

 JSBSim Reference Manual v1.0

 | Section Four: Case Studies 96

96

Further testing for this PID controller might include introducing turbulence or wind gusts into

the simulation, to see the response of the wing leveler to upsets.
This wing leveler controller has only a single loop. The position error is processed and an

aileron command is output, resulting in a roll rate. However, in this situation, the roll rate is not
limited – the roll position error is eliminated as fast as possible. A better solution might involve
limiting the roll rate. The roll position error could be processed to result in a controlled and limited
roll rate, and that roll rate could subsequently be compared to the actual roll rate to calculate an
aileron command that would drive the roll rate error to zero. That is a good exercise for the
reader!

4.2 A Heading Hold Autopilot
For the heading hold autopilot, we’d like to specify some requirements. The autopilot must

cause the aircraft to,

• Acquire the specified compass heading if it has not done so, or if the desired heading
changes

• Maintain a specified heading
• Maintain altitude (accomplished with an altitude hold autopilot)
• When acquiring the heading, the aircraft must make a coordinated turn
• The aircraft must not bank in excess of a specified angle

The input to the autopilot will be the heading error, that is, the difference between the desired
heading and the current heading. Differently than the previous wing leveler example, however,

 JSBSim Reference Manual v1.0

 | Section Four: Case Studies 97

97

the error will not be fed into a PID controller and directly result in a control surface command, but
will instead be turned into a roll position command. The roll position command will be compared
with the current bank angle and the difference (the error) will then be fed into another PID
controller, and the output from that controller will be a roll rate command – which will be
accomplished using the ailerons. In words, if there is a heading error, let’s roll towards the desired
heading, but let’s keep our roll rate below a specified limit and keep the bank at an angle no
greater than 30 degrees. Schematically, our heading hold autopilot will look like
this:

ψdesired

ψactual

Kp

Ki∫e(t)

Kdė(t)

PID Controller

Heading
error calc.

Limiter

φactual

Kp

Ki∫e(t)

Kdė(t)

PID Controller

Limiter

-

Heading Error Roll Position

δa,cmd

Kp

Ki∫e(t)

Kdė(t)

PID Controller

Roll Rate

Limiter

-

pactual

 JSBSim Reference Manual v1.0

 | Section Four: Case Studies 98

98

5. Modeling a Waypoint Navigation System

The flight control model in JSBSim is completely configurable and includes many components
that can be strung together to model specific control laws. Various automatic flight capabilities
have already been modeled for some aircraft to help with testing the aircraft outside of FlightGear
or other simulator. The C-172x model in the JSBSim distribution has an attitude hold, altitude
hold, and heading hold capability built up.

A specific capability is needed for this case study: a waypoint navigation system (WNS) that
would allow a user to enter latitude and longitude coordinates (in radians) that the aircraft would
then fly to. An algorithm is developed based on the Haversine forumulas ,

Haversine Formulas

R = Earth radius (5.1)
Δlat = lat2 – lat1 (5.2)
Δlong = long2 – long1 (5.3)
a = sin2(Δlat/2) + cos(lat1)·cos(lat2)·sin2(Δlong/2) (5.4)
c = 2·atan2(√a, √(1−a)) (5.5)
distance = R·c (5.6)
Φ = atan2(sin(Δlong)·cos(lat2),
 cos(lat1)·sin(lat2) − sin(lat1) ·cos(lat2)·cos(Δlong)) (5.7)

There does exist a file in the C310 directory in the default JSBSim CVS release that includes a
modified version of the autopilot functions developed for testing the C172x aircraft model. The
C310ap.xml file contains a heading hold, wing leveler, and altitude-hold functionality. Since the
WNS calculates a heading that should be flown to, it can supply the existing heading hold
autopilot with the correct heading – that is, it can feed a heading hold sub-mode. This is our
assumed starting point.

The first task we will take on will be to add a set of calculations in the C310ap.xml file that will
calculate the heading to a specified waypoint. First, some preliminary calculations will need to be
made: delta latitude, and delta longitude. These are defined in JSBSim-ML as seen in Listing 5.1,
below:

Listing 5.1

<fcs_function name="fcs/delta-lat-rad">
 <!-- Delta latitude in radians -->
 <function>
 <difference>
 <property>ap/wp_latitude_rad</property>
 <property>position/lat-gc-rad</property>
 </difference>
 </function>
</fcs_function>

 JSBSim Reference Manual v1.0

 | Section Four: Case Studies 99

99

<fcs_function name="fcs/delta-lon-rad">
 <!-- Delta longitude in radians -->
 <function>
 <difference>
 <property>ap/wp_longitude_rad</property>
 <property>position/long-gc-rad</property>
 </difference>
 </function>
</fcs_function>

 The JSBSim properties for geocentric latitude and longitude are:

• position/lat-gc-rad
• position/long-gc-rad

The properties for desired latitude and longitude (the waypoint) are:

• ap/wp_latitude_rad
• ap/wp_longitude_rad

The function definitions above result in the creation of new properties at runtime, representing
the difference between the desired position and the actual position. The automatically generated
properties that represent the output of the calculations above are:

• fcs/delta-lon-rad
• fcs/delta-lat-rad

The above two property values represent equations 5.2 and 5.3. The actual heading from the
current position to the desired location (specified by the waypoint) is given by the solution to
equation 5.7. In JSBSim-ML, the definition looks like that given in Listing 5.2,

Listing 5.2

<fcs_function name="fcs/heading-to-waypoint-rad">
 <function>
 <atan2> <!-- atan2 (deltaY, deltaX)-->
 <product>
 <sin><property>fcs/delta-lon-rad</property></sin>
 <cos><property>ap/wp_latitude_rad</property></cos>
 </product>
 <difference>
 <product>
 <cos><property>position/lat-gc-rad</property></cos>
 <sin><property>ap/wp_latitude_rad</property></sin>
 </product>
 <product>
 <sin><property>position/lat-gc-rad</property></sin>
 <cos><property>ap/wp_latitude_rad</property></cos>
 <cos><property>fcs/delta-lon-rad</property></cos>
 </product>
 </difference>
 </atan2>
 </function>
</fcs_function>

The next task is to calculate the distance to the waypoint from the current position. There are

 JSBSim Reference Manual v1.0

 | Section Four: Case Studies 100

100

additional preliminary calculations that need to be made, for equations 5.4 and 5.5. Equation 5.4
is described in JSBSim-ML format in Listing 5.3,

Listing 5.3

<fcs_function name="WP Distance A">
 <function>
 <sum>
 <pow>
 <sin>
 <quotient>
 <property>fcs/delta-lat-rad</property>
 <value>2.0</value>
 </quotient>
 </sin>
 <value>2</value>
 </pow>
 <product>
 <cos>
 <property>position/lat-gc-rad</property>
 </cos>
 <cos>
 <property>ap/wp_latitude_rad</property>
 </cos>
 <pow>
 <sin>
 <quotient>
 <property>fcs/delta-lon-rad</property>
 <value>2.0</value>
 </quotient>
 </sin>
 <value>2.0</value>
 </pow>
 </product>
 </sum>
 </function>
</fcs_function>

Equations 5.5 and 5.6 are combined in the next fcs_function definition, described in Listing
5.4. The distance is calculated in feet, because the radius is given in feet (as noted).

Listing 5.4

<fcs_function name="fcs/wp-distance">
 <function>
 <product>
 <value>2.0</value>
 <atan2>
 <pow>
 <property>fcs/wp-distance-a</property>
 <value>0.5</value>
 </pow>
 <pow>
 <difference>
 <value>1.0</value>
 <property>fcs/wp-distance-a</property>

 JSBSim Reference Manual v1.0

 | Section Four: Case Studies 101

101

 </difference>
 <value>0.5</value>
 </pow>
 </atan2>
 <!-- 21144000 is the Earth’s radius in feet -->
 <value>21144000</value>
 </product>
 </function>
</fcs_function>

Finally, there are three remaining short component definitions that need to be added to
complete the WNS (see Listing 5.5). The summer component adds 2*pi to the heading command
computed by the function component presented in Listing 2, for possible use in the next step. The
switch component that follows the function component includes a conditional test of the heading-
to-waypoint-rad command. If the heading-to-waypoint-rad value is already positive, then the
switch takes as its output value the value specified by the heading-to-waypoint-rad property.
Otherwise, the switch takes on the default value specified in the switch, heading-to-waypoint-
positive, calculated previously in the summer component. Thus, the output from the switch is a
positive heading command in radians. The last of these three components takes as input the
switch output calculated just previously, and multiplies it by 57.3, thus turning it into a heading
command in degrees.

Listing 5.5

<summer name="fcs/heading-to-waypoint-positive">
 <input> fcs/heading-to-waypoint-rad </input>
 <bias> 6.283 </bias>
</summer>

<switch name="fcs/wp-heading-corrector">
 <default value="fcs/heading-to-waypoint-positive"/>
 <test value="fcs/heading-to-waypoint-rad">
 fcs/heading-to-waypoint-rad gt 0.0
 </test>
</switch>

<pure_gain name="fcs/wp-heading-deg">
 <input> fcs/wp-heading-corrector </input>
 <gain> 57.3 </gain>
</pure_gain>

The heading command can be fed into the previously developed heading autopilot. So, the
heading autopilot can now actually take either a direct heading command, or the command
calculated from the WNS.

At this point we’d like to consider testing. The test involves the creation of a script to set
waypoints, and a way to display the results to verify that the performance is as expected.

The test script is written in XML format. The basic format of a JSBSim script is:

<use aircraft=“name” initialize=“file”/>
<run start=“0” end=“time” dt=“0.0833”>

 <event>

 JSBSim Reference Manual v1.0

 | Section Four: Case Studies 102

102

 … condition[s] …
 … action[s] …
 </event>

 … more events …

</run>

 In this test, we need to do several things:

1. Start the engines.
2. Set the autopilot mode to “heading hold”.
3. Set the initial waypoint latitude and longitude.
4. Set the initial target altitude.
5. Activate the altitude autopilot on cue.
6. Raise the landing gear on cue.
7. Head to the first waypoint on cue.
8. Head to subsequent waypoints on cue.
9. Terminate on cue.

The script directs the actions as expected, but there is one feature of scripting that needs to
be considered carefully: order of execution. Inputs to the script are calculated once per frame, so
each test will see the same input value. For instance, prior to evaluating the tests for each event,
inputs will have been calculated (such as current latitude, or the distance to a waypoint). Each
property that is set in an event will take effect immediately (such as for active_waypoint). Since
events are stored in program memory sequentially as they are found in the script file—and since
they are likewise executed sequentially—it is possible for carelessly crafted sequential events to
have their conditions evaluate to true in a single frame, in effect experiencing a cascading
sequential execution. In this script, that could happen when a waypoint is reached and an event is
triggered due to proximity to the target waypoint. The action taken in this test script when a
waypoint is reached is to set the active waypoint to the index of the next waypoint. But, when the
next waypoint test is evaluated, the distance value previously calculated may be less than the
threshold distance specified for the next waypoint. With the active waypoint set to the next
waypoint, the test will immediately be triggered. Subsequent events may also be triggered
immediately. The solution is to list the affected events in reverse order in the script file. What
happens in this case is that events which evaluate to true are followed by events that have
already been triggered and executed.

The script specifies that the C310.xml file should be used. We also need to provide an
initialization file that describes where to start the flight, and the initial orientation, etc. Since I am
familiar with the area, Ellington Field near Houston, Texas was selected as the starting point for
the scripted test flight.

Using the Google Earth application (which can be downloaded freely at
http://earth.google.com) I inspected the region and picked out a few locations through which I
wanted the aircraft to fly. The initial point, however, is the important one for the initialization file,
representing Ellington field. The additional points are on the approach to one of the runways at
Houston Hobby Airport, past that same runway, at the southwest end of Galveston Island, and at
the northeast end of Galveston Island.

 JSBSim Reference Manual v1.0

 | Section Four: Case Studies 103

103

 The script that performs the test is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl"
href="http://jsbsim.sf.net/JSBSimScript.xsl"?>
<runscript xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
 xsi:noNamespaceSchemaLocation=http://jsbsim.sf.net/JSBSimScript.xsd
 name="C310-01A takeoff run">

 <description>For testing autopilot capability</description>

 <use aircraft="c310" initialize="Ellington"/>
 <run start="0.0" end="3600" dt="0.00833333">

 <event name="Start engine">
 <description>
 Start engine and set initial heading and waypoints,
 turn on heading-hold mode.
 </description>
 <condition>sim-time-sec ge 0.25</condition>
 <set name="fcs/mixture-cmd-norm[0]" value="0.87"/>
 <set name="fcs/mixture-cmd-norm[1]" value="0.87"/>
 <set name="fcs/advance-cmd-norm[0]" value="1.0"/>
 <set name="fcs/advance-cmd-norm[1]" value="1.0"/>
 <set name="propulsion/magneto_cmd" value="3"/>
 <set name="fcs/throttle-cmd-norm[0]" value="1.0"/>
 <set name="fcs/throttle-cmd-norm[1]" value="1.0"/>
 <set name="propulsion/starter_cmd" value="1"/>
 <set name="ap/altitude_setpoint" action="FG_EXP" value="1000" tc="10"/>
 <set name="ap/attitude_hold" value="0"/>
 <set name="ap/wp_latitude_rad" value="0.517238"/>
 <set name="ap/wp_longitude_rad" value="-1.662727"/>
 <set name="ap/heading_setpoint" value="355"/>
 <set name="ap/heading-setpoint-select" value="0"/>
 <set name="ap/heading_hold" value="1"/>
 <set name="ap/active-waypoint" value="0"/>
 <notify/>
 </event>

 <event name="Set altitude for 1,000 ft.">
 <condition>velocities/vc-fps ge 135.0</condition>
 <set name="ap/altitude_hold" value="1"/>
 <notify/>
 </event>

 <event name="Raise landing gear">
 <condition>position/h-agl-ft ge 20</condition>
 <set name="gear/gear-cmd-norm" value="0"/>
 <notify/>
 </event>

 <event name="Head to first waypoint">
 <description>
 Set heading hold to selected waypoint (setpoint) instead of
 previously specified heading when altitude surpasses 800 feet.
 </description>

 JSBSim Reference Manual v1.0

 | Section Four: Case Studies 104

104

 <condition>position/h-agl-ft ge 800</condition>
 <set name="ap/heading-setpoint-select" value="1"/>
 <set name="ap/active-waypoint" value="1"/>
 <notify>
 <property>fcs/wp-distance</property>
 </notify>
 </event>

 <event name="Terminate">
 <description>
 When the aircraft arrives back at Ellington
 Field (fifth waypoint) then terminate the simulation.
 </description>
 <condition>
 fcs/wp-distance lt 100
 ap/active-waypoint eq 5
 </condition>
 <set name="simulation/terminate" value="1"/>
 <notify/>
 </event>

 <event name="Set last waypoint">
 <description>
 When the distance to the fourth waypoint (northeast end of
 Galveston Island) is less than 100 feet, then set the last
 waypoint (back to Ellington Field).
 </description>
 <condition>
 fcs/wp-distance lt 100
 ap/active-waypoint eq 4
 </condition>
 <set name="ap/wp_latitude_rad" value="0.516512"/>
 <set name="ap/wp_longitude_rad" value="-1.660922"/>
 <set name="ap/active-waypoint" value="5"/>
 <notify>
 <property>fcs/wp-distance</property>
 </notify>
 </event>

 <event name="Set fourth waypoint">
 <description>
 When the distance to the third waypoint (southwest end of
 Galveston Island) is less than 800 feet, then set the fourth
 waypoint (northeast end of Galveston Island).
 </description>
 <condition>
 fcs/wp-distance lt 800
 ap/active-waypoint eq 3
 </condition>
 <set name="ap/wp_latitude_rad" value="0.511661"/>
 <set name="ap/wp_longitude_rad" value="-1.653510"/>
 <set name="ap/active-waypoint" value="4"/>
 <notify>
 <property>fcs/wp-distance</property>
 </notify>
 </event>

 JSBSim Reference Manual v1.0

 | Section Four: Case Studies 105

105

 <event name="Set third waypoint">
 <description>
 When the distance to the second waypoint (Hobby Airport) is
 less than 300 feet, then set the third waypoint.
 </description>
 <condition>
 fcs/wp-distance lt 300
 ap/active-waypoint eq 2
 </condition>
 <set name="ap/wp_latitude_rad" value="0.507481"/>
 <set name="ap/wp_longitude_rad" value="-1.660062"/>
 <set name="ap/active-waypoint" value="3"/>
 <notify>
 <property>fcs/wp-distance</property>
 </notify>
 </event>

 <event name="Set second waypoint">
 <description>
 When the distance to the first waypoint (Hobby
 Airport threshold) is less than 700 feet, then
 set the second waypoint.
 </description>
 <condition>
 fcs/wp-distance lt 700
 ap/active-waypoint eq 1
 </condition>
 <set name="ap/wp_latitude_rad" value="0.517533"/>
 <set name="ap/wp_longitude_rad" value="-1.663076"/>
 <set name="ap/active-waypoint" value="2"/>
 <notify>
 <property>fcs/wp-distance</property>
 </notify>
 </event>

 </run>
</runscript>

[Article in-work …]

 JSBSim Reference Manual v1.0

 | Section Four: Case Studies 106

106

6. Rocket with GNC and Scripting

For a long time now, rocket-propelled flight models in JSBSim have been possible (the X-15
was the first vehicle modeled for JSBSim), but in actually making a vertical, guided, rocket flight
model, some new capabilities were added to support rocket flight. This section will cover some of
the techniques used in executing rocket flight in JSBSim.

Some of the major differences in modeling vertical rocket flight (compared to modeling aircraft)
are:

• Takeoff is vertical; ground reactions are tougher because they are stiffer.
• Guidance in first stage (often corresponding roughly to the atmospheric flight phase)

is typically open loop, with second stage flight following a more complicated guidance
scheme such as “Powered Explicit Guidance” (PEG).

• Control involves gimbaled effectors (thrusters, or nozzles).
• Control is normally completely automatic.
• Aerodynamic modeling is different.
• Sensor modeling can be more complicated, since sensors such as accelerometers

cannot necessarily be placed at the center of mass (which may be inside a propellant
tank!)

At this time, it is easy to model single stage rocket flight using JSBSim, but multi-stage flight is
more cumbersome.

6.1 Addressing the ground reactions
For a vertically launched rocket, a way was needed to keep the vehicle firmly attached to one

spot, as if it was mounted on a launch platform. It was not easy to make the standard ground
reactions work well, particularly after the engines had been started, but before thrust had built up
to the point where the vehicle lifted off the platform. So, a new flag was created (a property)
which, if set, causes a ground reaction force equal and opposite to the aerodynamic,
gravitational, and propulsive forces, and so the vehicle stays put. The property name for the hold-
down flag is forces/hold-down.

6.2 Simple rocket guidance
The path a rocket takes in vertical flight is not normally manually flown, because the total

angle of attack must be kept low to keep structural loads small, and to minimize aerodynamic
drag. One key measurement tracked is q*alpha – that is, dynamic pressure multiplied by the
angle of attack.

There are several phases of flight for a rocket ascending:

• The vertical rise phase
• The kick angle or tilt phase

 JSBSim Reference Manual v1.0

 | Section Four: Case Studies 107

107

• The gravity turn phase

During the vertical rise period, the vehicle ascends straight up to clear the launch platform and
then rolls to the alight to the appropriate heading. Sometimes, as it was in the case of the Apollo
Saturn V, a slight yaw is introduced away from the launch tower just after liftoff. In the kick angle
phase, the vehicle is commanded to an initial pitch angle, after which it begins the zero-lift (zero-
alpha) gravity turn phase as it flies through the lower, most dense portion of the atmosphere at an
increasingly higher velocity. Control during these phases is normally exercised by gimballing the
main rocket engines, and/or through the use of auxiliary reaction control jets (RCS).

In JSBSim, we encounter a few new situations that must be addressed when modeling vertical
rocket flight. First of all, in the vertical rise period, the question can be asked: how do we
command the vehicle to roll to the appropriate heading, since the vehicle is pointed vertically?
The frames of interest here are the local frame, which is a frame that is always underneath the
aircraft, with the X axis pointing north, the Y axis pointing East, and the Z axis pointing downward.
The origin of the local frame is at sea level. The vehicle body frame has the X axis along the
vehicle centerline pointing forward out the nose, the Y axis pointing out the “right”, and the Z axis
pointing “down” out the bottom of the vehicle. For a rocket, the Y and Z directions seem
somewhat arbitrary. Placing the rocket initially on a launch pad at Kennedy Space Center,
Kourou, or Baikonur (for example), involves setting the initial latitude, longitude, and altitude, and
orienting the vehicle on the launch pad. Since the order of rotations used in JSBSim to describe
the orientation of a vehicle (that is, the orientation of the body frame for the vehicle) relative to the
local frame is yaw, then pitch, then roll, it can be seen that the vehicle orientation can be
described as having a pitch angle of +90 degrees relative to the local frame. If the vehicle has a
particular roll orientation on the pad, the vehicle can be rolled after it is initially pitched. The initial
orientation can be specified in the initialization file as having a particular psi, theta, and phi (Euler
angles).

During the vertical rise period, the vehicle is pointed nearly straight upwards, which can cause
problems in any guidance we might use to keep the vehicle pointed straight up, and also to roll it
to a particular heading. One way to get around this is to simply devise a controller that both keeps
the pitch and yaw rates at zero (which keeps the vehicle pointed up), and commands a roll rate to
achieve the desired heading once the pitchover begins. The roll rate needs to be carefully
controlled to ramp up, then back down to zero, prior to beginning to pitch over.

Control of the vehicle is performed (as mentioned before) by gimballing engines (for pitch and
yaw) or using RCS jets (for roll). For the vertical rise period, it is not too hard to set up a control
law for the pitch and yaw axes that take the pitch (or yaw) rate as input and generates a pitch (or
yaw) engine gimbal command to counter that and bring the respective rate back to zero.

6.3 “Moding” and Timing
A question can be addressed at this time regarding how to command the various portions of

the flight – that is, when should the vertical rise, or the tilt, or the gravity turn phases be initiated?
This is related in a way to the subject of how to organize the guidance, navigation, and control
(referred to as GNC) aspects of a simulated rocket in JSBSim. We could call this the simulated
“flight software” (FSW), which is really what is being represented. The question to address can be
summed up: is the timing of the mode changes during the flight controlled from the ground (which

 JSBSim Reference Manual v1.0

 | Section Four: Case Studies 108

108

might be modeled in a script), or onboard the launch vehicle? If it originates on the launch
vehicle, we might assert that the timing is part of the flight software. The various modes are then,
in fact, initiated from aboard the vehicle itself. It’s the safest approach; think of what would
happen in the case of a momentary communications loss.

So, for first stage flight we need a vertical rise phase, followed by a tilt phase, followed by a
gravity turn phase – all controlled from the launch vehicle itself. For JSBSim that means we need
the sequencing function to be present in the flight control or system section of the vehicle
configuration file.

The system section is new in the latest version of JSBSim. Any number of systems can be
defined, and they use the same syntax as the flight control section. The system section is useful
when a guidance, or navigation, or electrical system is desired to be modeled in JSBSim using
the suite of system components.

6.4 Where to Start?
As with all JSBSim aircraft models, vehicle characteristics will need to be known:

• Mass properties
• Geometry
• Control
• Propulsion
• Aerodynamics
• Ground contacts

Geometry is almost always quite easy. Mass properties are little bit harder, but one can make
fairly good guesses at this. [Note: for some historic rockets such as the Saturn V or Saturn IB,
there may be reference material available on the web and/or in technical papers.] Fuel burn-off
might be a complicating factor because the CG may shift, there may be fuel slosh (for liquid
propellant rockets), and moments of inertia will change. Control (Guidance, Navigation, and
Control, actually) is the most involved part of modeling a rocket, I think. Propulsion for rockets can
be modeled rather simply in JSBSim. Aerodynamics is second to control as far as level of
difficulty. Ground contacts are straightforward.

6.5 Aerodynamics
Let’s look at aerodynamics first. We can determine the aerodynamic characteristics of a

simple axisymmetric body using DATCOM+ (see www.holycows.net), or – if you have access to it
– Missile DATCOM. There are other software titles out there as well. We will use the lift and drag
curves for the V-2 missile (as found in Sutton’s Rocket Propulsion Elements book) to model our
example rocket. We will also assume that the aerodynamics will be completely modeled by
proper placement of the aerodynamic center of pressure, coupled with the lift and drag curves,
and that the side force is the same as the lift force.

6.6 Mass Properties
Since we know the mass characteristics of the Little Joe, we will scale the moments and

products of inertia of that vehicle once we specify the weight of our example rocket.

 JSBSim Reference Manual v1.0

 | Section Four: Case Studies 109

109

[Article in-work …]

 JJSBSim Refeerence Manu

Appe

ual v1.0

endic

 | Ap

ces

ppendices 110

110

 JSBSim Reference Manual v1.0

 | Appendices 111

111

Native properties
accelerations/Nz
accelerations/a-pilot-x-ft_sec2
accelerations/a-pilot-y-ft_sec2
accelerations/a-pilot-z-ft_sec2
accelerations/n-pilot-x-norm
accelerations/n-pilot-y-norm
accelerations/n-pilot-z-norm
accelerations/pdot-rad_sec2
accelerations/qdot-rad_sec2
accelerations/rdot-rad_sec2
accelerations/udot-ft_sec2
accelerations/vdot-ft_sec2
accelerations/wdot-ft_sec2
aero/alpha-deg
aero/alpha-max-rad
aero/alpha-min-rad
aero/alpha-rad
aero/alpha-wing-rad
aero/alphadot-deg_sec
aero/alphadot-rad_sec
aero/beta-deg
aero/beta-rad
aero/betadot-deg_sec
aero/betadot-rad_sec
aero/bi2vel
aero/ci2vel
aero/cl-squared
aero/h_b-cg-ft
aero/h_b-mac-ft
aero/mag-beta-deg
aero/mag-beta-rad
aero/qbar-area
aero/qbar-psf
aero/qbarUV-psf
aero/qbarUW-psf
aero/stall-hyst-norm
atmosphere/P-psf

atmosphere/P-sl-psf
atmosphere/T-R
atmosphere/T-sl-R
atmosphere/T-sl-dev-F
atmosphere/a-fps
atmosphere/a-ratio
atmosphere/a-sl-fps
atmosphere/crosswind-fps
atmosphere/delta
atmosphere/delta-T
atmosphere/density-altitude
atmosphere/gust-down-fps
atmosphere/gust-east-fps
atmosphere/gust-north-fps
atmosphere/headwind-fps
atmosphere/p-turb-rad_sec
atmosphere/psiw-rad
atmosphere/q-turb-rad_sec
atmosphere/r-turb-rad_sec
atmosphere/rho-sl-slugs_ft3
atmosphere/rho-slugs_ft3
atmosphere/sigma
atmosphere/theta
atmosphere/turb-gain
atmosphere/turb-rate
atmosphere/turb-rhythmicity
atmosphere/wind-from-cw
attitude/heading-true-rad
attitude/phi-rad
attitude/pitch-rad
attitude/psi-rad
attitude/roll-rad
attitude/theta-rad
fcs/aileron-cmd-norm
fcs/center-brake-cmd-norm
fcs/elevator-cmd-norm
fcs/elevator-pos-deg

 JSBSim Reference Manual v1.0

 | Appendices 112

112

fcs/elevator-pos-norm
fcs/elevator-pos-rad
fcs/flap-cmd-norm
fcs/flap-pos-deg
fcs/flap-pos-norm
fcs/flap-pos-rad
fcs/left-aileron-pos-deg
fcs/left-aileron-pos-norm
fcs/left-aileron-pos-rad
fcs/left-brake-cmd-norm
fcs/mag-elevator-pos-rad
fcs/mag-left-aileron-pos-rad
fcs/mag-right-aileron-pos-rad
fcs/mag-rudder-pos-rad
fcs/mag-speedbrake-pos-rad
fcs/mag-spoiler-pos-rad
fcs/pitch-trim-cmd-norm
fcs/right-aileron-pos-deg
fcs/right-aileron-pos-norm
fcs/right-aileron-pos-rad
fcs/right-brake-cmd-norm
fcs/roll-trim-cmd-norm
fcs/rudder-cmd-norm
fcs/rudder-pos-deg
fcs/rudder-pos-norm
fcs/rudder-pos-rad
fcs/speedbrake-cmd-norm
fcs/speedbrake-pos-deg
fcs/speedbrake-pos-norm
fcs/speedbrake-pos-rad
fcs/spoiler-cmd-norm
fcs/spoiler-pos-deg
fcs/spoiler-pos-norm
fcs/spoiler-pos-rad
fcs/steer-cmd-norm
fcs/yaw-trim-cmd-norm
flight-path/gamma-rad
flight-path/psi-gt-rad
forces/fbx-aero-lbs
forces/fbx-gear-lbs
forces/fbx-prop-lbs
forces/fbx-total-lbs
forces/fby-aero-lbs

forces/fby-gear-lbs
forces/fby-prop-lbs
forces/fby-total-lbs
forces/fbz-aero-lbs
forces/fbz-gear-lbs
forces/fbz-prop-lbs
forces/fbz-total-lbs
forces/fwx-aero-lbs
forces/fwy-aero-lbs
forces/fwz-aero-lbs
forces/hold-down
forces/lod-norm
gear/gear-cmd-norm
gear/gear-pos-norm
gear/num-units
ic/alpha-deg
ic/alpha-rad
ic/beta-deg
ic/beta-rad
ic/gamma-deg
ic/gamma-rad
ic/h-agl-ft
ic/h-sl-ft
ic/lat-gc-deg
ic/lat-gc-rad
ic/long-gc-deg
ic/long-gc-rad
ic/mach
ic/p-rad_sec
ic/phi-deg
ic/phi-rad
ic/psi-true-deg
ic/psi-true-rad
ic/q-rad_sec
ic/r-rad_sec
ic/roc-fpm
ic/roc-fps
ic/sea-level-radius-ft
ic/terrain-altitude-ft
ic/theta-deg
ic/theta-rad
ic/u-fps
ic/v-fps

 JSBSim Reference Manual v1.0

 | Appendices 113

113

ic/vc-kts
ic/vd-fps
ic/ve-fps
ic/ve-kts
ic/vg-fps
ic/vg-kts
ic/vn-fps
ic/vt-fps
ic/vt-kts
ic/vw-bx-fps
ic/vw-by-fps
ic/vw-bz-fps
ic/vw-dir-deg
ic/vw-down-fps
ic/vw-east-fps
ic/vw-mag-fps
ic/vw-north-fps
ic/w-fps
inertia/cg-x-in
inertia/cg-y-in
inertia/cg-z-in
inertia/empty-weight-lbs
inertia/mass-slugs
inertia/weight-lbs
metrics/Sh-sqft
metrics/Sv-sqft
metrics/Sw-sqft
metrics/aero-rp-x-in
metrics/aero-rp-y-in
metrics/aero-rp-z-in
metrics/bw-ft
metrics/cbarw-ft
metrics/eyepoint-x-in
metrics/eyepoint-y-in
metrics/eyepoint-z-in
metrics/iw-deg
metrics/iw-rad
metrics/lh-ft
metrics/lh-norm
metrics/lv-ft
metrics/lv-norm
metrics/runway-radius
metrics/vbarh-norm

metrics/vbarv-norm
metrics/visualrefpoint-x-in
metrics/visualrefpoint-y-in
metrics/visualrefpoint-z-in
moments/l-aero-lbsft
moments/l-gear-lbsft
moments/l-prop-lbsft
moments/l-total-lbsft
moments/m-aero-lbsft
moments/m-gear-lbsft
moments/m-prop-lbsft
moments/m-total-lbsft
moments/n-aero-lbsft
moments/n-gear-lbsft
moments/n-prop-lbsft
moments/n-total-lbsft
output-norm
position/distance-from-start-lat-mt
position/distance-from-start-lon-mt
position/distance-from-start-mag-mt
position/epa-rad
position/geod-alt-ft
position/h-agl-ft
position/h-sl-ft
position/h-sl-meters
position/lat-gc-deg
position/lat-gc-rad
position/lat-geod-deg
position/lat-geod-rad
position/long-gc-deg
position/long-gc-rad
position/radius-to-vehicle-ft
position/terrain-elevation-asl-ft
propulsion/active_engine
propulsion/cutoff_cmd
propulsion/fuel_dump
propulsion/magneto_cmd
propulsion/pt-lbs_sqft
propulsion/refuel
propulsion/set-running
propulsion/starter_cmd
propulsion/starter_cmd
propulsion/tat-c

 JSBSim Reference Manual v1.0

 | Appendices 114

114

propulsion/tat-r
propulsion/total-fuel-lbs
sim-time-sec
simulation/cycle_duration
simulation/do_simple_trim
simulation/do_trim_analysis
simulation/frame_start_time
simulation/integrator/position/rotational
simulation/integrator/position/translational
simulation/integrator/rate/rotational
simulation/integrator/rate/translational
simulation/terminate
simulation/write-state-file
systems/stall-warn-norm
velocities/eci-velocity-mag-fps
velocities/h-dot-fps
velocities/mach
velocities/machU
velocities/p-aero-rad_sec
velocities/p-rad_sec
velocities/phidot-rad_sec
velocities/psidot-rad_sec
velocities/q-aero-rad_sec
velocities/q-rad_sec
velocities/r-aero-rad_sec
velocities/r-rad_sec
velocities/thetadot-rad_sec
velocities/u-aero-fps
velocities/u-fps
velocities/v-aero-fps
velocities/v-down-fps
velocities/v-east-fps
velocities/v-fps
velocities/v-north-fps
velocities/vc-fps
velocities/vc-kts
velocities/ve-fps
velocities/ve-kts
velocities/vg-fps
velocities/vt-fps
velocities/w-aero-fps
velocities/w-fps

 JSBSim Reference Manual v1.0

 | Appendices 115

INDEX

<
<actuator> 43
<aero_centered> 39
<aerodynamics> 14
<aerosurface_scale> 8, 38, 39
<author>................................. 79
<autopilot> 21, 22
<axis> 14, 15
<bias> 38, 43, 44
<bits> 44
<c1> 34, 35, 36
<c2> 35
<c3> 35
<c4> 35
<channel>8, 21
<clipto>8, 34
<condition> 49
<deadband_width> 43
<deadband> 40
<default> 21, 37
<description> 10, 11, 49
<domain> 39
<drift_rate> 44
<event> 49
<fcs_function> 42
<filecreationdate> 79
<fileheader> 79
<flight_control>8, 21
<function> 10, 11, 14, 15, 19, 42
<gain> 9, 21, 39, 40
<hysteresis_width> 43
<independentVar> 10, 11, 15, 19,

40, 42
<input>8, 21
<integrator> 36
<kd> 21
<ki>.. 21
<kinematic> 41
<kp> 21
<lag_filter> 34, 35
<lag> 43, 44
<lead_lag_filter> 35
<max> 34, 44
<metrics> 79
<min> 34, 44
<noise_variation> 44
<notify> 49
<pid> 21
<position> 41
<product> 10, 11, 15, 19, 42
<property> 10, 11, 15, 19, 49
<pure_gain> 8, 21, 38
<quantization> 44
<range>8, 39
<rate_limit> 43
<run> 49
<runscript> 49

<scheduled_gain> 39, 40
<second_order_filter> 36
<sensor> 44
<set> ... 49
<setting> 41
<sum> 10
<summer> 8, 38
<switch> 21, 37
<system> 21
<table>10, 11, 14, 15, 19, 39, 40,

42
<tableData> ... 10, 11, 15, 19, 39,

40, 42
<test> 21, 37
<time> 41
<traverse> 41
<trigger> 36
<use> 49
<value> 10
<version> 79
<washout_filter> 35
<width> 40
<wingspan> 5

A
Aerodynamic coefficients 13
Aerodynamics 13
Autopilot

Wing leveler 87
axis elements 14

B
Body frame See Frames of

reference
Building JSBSim 1

C
Class heirarchy 56
Coefficient buildup method 16
CVS .. 1

D
Downloading 1

E
ECEF (Earth-Centered, Earth-

Fixed) See Frames of
reference

ECI (Earth-Centered, Inertial)
 See Frames of reference

English Units See Units
Equations of Motion 69

F
Flight control components

Absolute value 41
Actuator 42
Aerosurface scaling 38
Deadband 40
Filters 34
Function 42
Gain 38
Hysteresis 41
Integrator 36
Kinematic 41
Lag filter 34
Lead-lag filter 35
Limiter 41
Positive or negative value . 41
Sample and hold 37
Scheduled gain 39
Second order filter 35
Sensor 43
Summer 38
Switch 36
Washout filter 35

Frames of reference
Body frame 5
Body-fixed 69
ECEF 69
ECI 70
NED 69
Stability frame 5
Structural frame 4
Wind frame 5

Functions 9

M
Math

Tables 11
Metric Units See Units

N
NED (North-East-Down) See

Frames of reference

P
PID controller............. 25, 44, 88

tuning 89
Properties 7

R
Reference frames . See Frames of

reference
Running JSBSim 1

 JSBSim Reference Manual v1.0

 | Appendices 116

S
Scripts 49
Stability frame See Frames of

reference
Structural frame ... See Frames of

reference
System components 21

T
Tables See Math
TCDS (Type Certificate Data

Sheet) 16

U
Units ... 5

W
Wind frame See Frames of

reference
Wing leveler See Autopilot

