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Abstract—Physical human-robot interaction requires the
development of safe and dependable robots. This involves the
mechanical design of lightweight and compliant manipulators
and the definition of motion control laws that allow to

combine compliant behavior in reaction to possible collisions,
while preserving accuracy and performance of rigid robots
in free space. In this talk, a basic control study for a
general class of multi-dof manipulators with variable joint
stiffness is presented. It is shown that nonlinear control laws,
based either on static or dynamic state feedback, are able
to exactly linearize the closed loop equations and allow to
simultaneously impose a desired behavior to the robot motion
and to the joint stiffness in a decoupled way.

Index Terms—Robot Manipulators, Elastic Joints, Variable
Stiffness, Feedback Linearization, Nonlinear Systems.

I. INTRODUCTION

It has been shown in [1] how the intrinsic safety of

robotic arms can be improved, besides maintaining a low

level of inertia, introducing also an high compliance at

the mechanical level both in the joints of the robot and

in the interface between the robot and the environment. In

order to obtain also an adequate level of both static and

dynamic performances, the use of variable stiffness devices

allows to satisfy all the requirements for a safe and accurate

interaction with humans and unknown environments.

This talk aims to show how the full state lineariza-

tion and simultaneous control of both the position and

the stiffness of a robotic manipulator with variable joint

stiffness can be achieved via static or dynamic feedback.

We suppose that the mechanical stiffness of the joint can

be modulated by means of external control inputs.

II. DYNAMIC MODEL OF THE SYSTEM

The model of a n-DOF robotic manipulator with elastic

joints is composed by the dynamics of 2n rigid bodies (n

links and n actuators), coupled through the elastic joints.

Let q ∈ R
n and θ ∈ R

n be, respectively, the generalized

coordinates of the driven links and of the driving actuators.

Under the simplifying modeling assumption used in [2] ,

the dynamic model can be written as:

M(q) q̈ + N(q, q̇) + K (q − θ) = 0 (1)

B θ̈ + K (θ − q) = τ, (2)

where M(q) is the inertia matrix of the robot links, vector

N(q, q̇) contains the centrifugal, Coriolis, and gravity

forces, K = diag{k1, . . . , kn} > 0 is the joint stiffness

matrix, B = diag{b1, . . . , bn} is the inertia matrix of the

actuators, and τ ∈ R
n are the motor torques. Damping

at the joints can be also included —see, e.g., [3]. In the

following, we will also use the equivalent notation

K (q − θ) = Φk, (3)

with matrix

Φ = diag{(q1 − θ1), (q2 − θ2), . . . , (qn − θn)} (4)

and vector k =
[

k1 . . . kn

]T
∈ R

n.

Here, the joint stiffness matrix K in eqs. (1–2) will not

be considered constant but, in general, a function of time:

K = K(t) > 0 ∀t. (5)

The simplest situation is when the joint stiffness ki

can be directly changed by means of a (suitably scaled)

additional command τki
, for i = 1, . . . , n. In vector form,

k = τk. (6)

Therefore, the overall available input u and the robot state

x are:

u =
[

τ τk

]T
∈ R

2n, x =
[

q q̇ θ θ̇
]T

∈ R
4n.

Indeed, the dynamics of change of the stiffness of the

joints may not be neglected. In this case, we can model

the variation of joint stiffness as a second-order dynamic

system

k̈ = φ(x, k, k̇, τk), (7)

in which the dependence include also the stiffness and their

time derivatives. In this case, equations (1–2) should be

complemented by (7) in order to represent the complete

dynamic model of a robot with variable joint stiffness.

As a result, the state vector of the robot is extended and

becomes:

xe =
[

qT q̇T θT θ̇T kT k̇T
]T

∈ R
6n, (8)

so that eq. (7) can be rewritten as:

k̈ = φ(xe, τk). (9)

In all cases, the objective will be to simultaneously

control the following set of outputs

y =
[

q k
]T

∈ R
2n,

namely the link positions and the joint stiffness.

III. FEEDBACK LINEARIZATION

It is possible to write the joint stiffness k as generic

nonlinear functions of the system state variables q and θ:

k̈ = β(q, θ) + γ(q, θ) τk. (10)

Then, the overall system can be written in a more

compact form:
[

q[4]

k̈

]

=

[

α(xe)
β(q, θ)

]

+ Q(xe)

[

τ

τk

]

(11)
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Fig. 1. Scheme of the feedback linearization controller with dynamic extension.

where

α(xe) = −M−1
[

2 Ṁ q[3] + (M̈ + K) q̈ + N̈

+KB−1K (θ − q) + 2 K̇ (q̇ − θ̇) + Φ β
]

(12)

and Q(xe) is the so called decoupling matrix:

Q(xe) =

[

M−1KB−1 M−1Φ γ(q, θ)
0n×n γ(q, θ)

]

(13)

By defining the static control law:
[

τ

τk

]

= Q−1(xe)

(

−

[

α(xe)
β(q, θ)

]

+

[

vq

vk

])

(14)

we obtain the full linearized form of the overall system:
[

q[4]

k̈

]

=

[

vq

vk

]

where vq and vk are the new inputs of the linearized system

used to control, respectively, the positions and the stiffness

of the joints of the manipulator. By taking into account the

following very simple stiffness variation model:

ki = τki
(15)

the full state linearization problem cannot be solved by

means of a static state feedback.

Then, we define the auxiliary control input uk by adding

a chain of two integrators on the input τk (see also Fig. 1):

τ̈k = uk

By substituting τk and τ̇k with k and k̇ respectively, the

system can be then rewritten as:
[

q[4]

k̈

]

=

[

α(xe)
0n×n

]

+ Q(xe)

[

τ

uk

]

(16)

where

Q(xe) =

[

M−1KB−1 −M−1Φ
0n×n In×n

]

(17)

α(xe) = −M−1
[

2 Ṁ q[3] + (M̈ + K) q̈

+ N̈ + 2 Φ̇ τ̇k + KB−1K (θ − q)
]

, (18)

from which it follows that the decoupling matrix is non-

singular if K is non-singular, or, in other words, if the

joint stiffness are strictly positive. By defining the control

law:
[

τ

uk

]

= Q−1(xe)

(

−

[

α(xe)
0n×n

]

+

[

vq

vk

])

(19)

we obtain the linearized form of the (16):
[

q[4]

k̈

]

=

[

vq

vk

]

Both the positions and the stiffness of the joint of the robot

can be now controlled by means of a static state feedback

plus feedforward action:

vc = vf + P [zd − z] = vf + P [zd − Ψ(xe)] (20)

where

P =

[

Pq0
Pq1

Pq2
Pq3

0n×n 0n×n

0n×n 0n×n 0n×n 0n×n Pk0
Pk1

]

A scheme of the proposed controller is depicted in

Fig. 1, while in Fig.2 the simulative results of a two-link

planar manipulator are reported.

IV. CONCLUSIONS

In this talk, the feedforward control action needed to

perform a desired motion profile on a robotic manipulator

with joint variable stiffness has been computed and the

problem of feedback linearization of these devices has been

analyzed.

The simultaneous non-interactive stiffness-position con-

trol can be implemented by means of an outer linear

control loop, that can be seen as a static state feedback

in the state space of the linearized system. The asymptotic

trajectory tracking problem can then be solved with arbi-

trary dynamics if the position and the stiffness trajectories

are continuous together with their time derivatives up to

the 4th and 2nd order respectively.
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Fig. 2. Full state linearization via dynamic feedback: (a) Joint positions,
(b) position errors, (c) joint stiffness and (d) stiffness errors.
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