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I. INTRODUCTION

Robotics has evolved from an industrial, repetitive frame-
work to application domains with much more variability of
tasks and increasing complexity in uncertain environment.
This is clearly the case for Service Robotics where the safety
of the interactions is also a major issue.

Based on these observations, part of the research activities
of the Motion & Perception group at the Intelligent Systems
and Robotics Institute (ISIR) from Université Pierre et Marie
Curie (UPMC) is dedicated to human motion analysis and
to motion generation and control for humanoid robots.

This abstract gives a quick overview of the approach we
are working on to solve the problem of motion generation
and control for humanoid robots. It also tries to show how
our approach relates to the existing literature in the domain
and why it seems to be a promising alternative within the
framework of Service Robotics and more generally in the
context of humanoid robots evolving in uncertain environ-
ments.

II. BACKGROUND

Humanoid robots are highly redundant, tree-structured,
poly-articulated systems for which motion generation strate-
gies and techniques are being developped using model-based
control either using reactive approaches as in [4] or planning
based techniques as in [8].

These approaches offer a well fitted framework to describe
tasks in a hierarchical manner and to handle the numerous
constraints associated to human(oid) motions. These con-
straints are either related to the motion of the system itself:
joint limits, balance or to its evolution in the environment:
multi-contacts, obstacle avoidance.

However, they assume good models of the system’s ve-
locity kinematics and dynamics as well as a good model
of the environment. These are strong assumptions and, as a
consequence, efficient control of such systems requires either
accurate models or control approaches that perform well in
the presence of model inaccuracies.

One way to obtain accurate models of a robot is through
expert system identification. This process is all the more
difficult and time consuming that the mechanical structure
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of the robot is prone to frictions and multiple sources of
noise. In fact, even if good models can be obtained, they
cannot account for uncertainties related to the knowledge of
the environment as well as for those related to the dynamic
aspect of the mission realization. Thus, one need a way to
take these uncertainties into account while still being able
to benefit from the well-suited framework offered by model-
based control approaches.

In order to reach this goal, we propose an approach
using reactive model-based control within the framework
of Operational Space Control ([1]) as well as incremental
model learning techniques. Incrementally learning the mod-
els required for the control of the system allows to take some
usually non modelled effects into account as well as to adapt
to changing conditions in the mission realization.

The next section briefly introduces how we combine Oper-
ational Space Control as well as model learning techniques.

III. MODEL BASED CONTROL USING LEARNT MODELS

Operational Space Control regroups a set of control tech-
niques relating, in a linearised fashion, the task space (ie.
the space where the task is naturally described (hand, eyes,
COG)) to the joints space. This linear relation can either be
described at the velocity level using the effector Jacobian
matrix or at the dynamics level using the projection of the
dynamics of the system in the task space using the system’s
Jacobian.

Such a description allows the use of Linear Algebra tools
and a Jacobian inverse can then be used to compute joints
velocities or torques given desired task twists or wrenches.
In the case of redundant systems, there exists an infinity
of solutions to the Jacobian inverse problem and one can
choose among this infinity in order to satisfy other tasks
or constraints. Tasks and constraints can be hierarchically
ordered using projectors on the null space of each task.

We propose to incrementally learn the various relations
allowing the control of redundant systems using the Op-
erational Space Control. To do so, we use LWPR ([7]).
LWPR is a function approximator which provides accurate
approximation in very large spaces in a O(m) complexity,
where m is the number of sample data. We use it here to learn
both the direct geometric model and velocity kinematics
(Jacobian) model of our robot.

LWPR uses a combination of linear models, which are
valid on an elliptic zone of the input spaces. The model
strength is weighted by a Gaussian curve. This space may
evolve during training to match the training data. Each model
is called a receptive field (RF). The prediction of an entire



LWPR model on an input vector is the weighed sum of the
results of all the active surrounding RFs.

The RFs of a model are created when new input data is not
part of any existing RF. Conversely, when a field overlaps
another, it is deleted.

Each RF first projects the input vector on the most
relevant dimensions for estimating the output vector by using
Partial Least Squares [5]. During each update, the projector
is updated and the algorithm checks whether increasing
the complexity by adding another dimension to the input
projection significantly reduces the estimation error. If it is
so, it modifies the projector accordingly. The projected vector
is then used in the n dimension linear model (n being the
output dimension) to give the output of the RF.

During prediction with an input vector, the distance be-
tween the vector and the receptive fields area is tested for
activation and only the significant RF are activated

IV. WORK IN PROGRESS

We have successfully implemented an Operational Space
Control scheme using a learnt Jacobian in simulation on a
planar mannequin realizing a crouch-to-stand task task ([3])
as well as on a Bioloid (see figure 1), a toy-like humanoid
robot ([6]).

Fig. 1. A picture of the Bioloid assembled as a humanoid robot

We are now working in simulation on the combination
of multiple tasks including balance of the mannequin. This
requires to build projectors on the null space of the different
tasks which can be computationally expensive since an
inverse of the Jacobian has to be computed at each control
step. We are planning to learn this inverse in order to reduce
the associated computation time.

We also would like to port our simulation work to the real
world case on the iCub robot (see figure 2) which is present
in our lab.

Finally, we are investigating the efficient learning of the
dynamics model of humanoid robots using LWPR.

Fig. 2. The iCub robot

V. CONCLUSION

This abstract gives a brief overview of our activity in
the domain of motion generation and control for humanoid
robots. Our method is based on the use of incrementally
learnt models within the framework of Operational Space
Control. It seems to be a promising approach within the
context of Service Robotics where robots evolve in unknown,
dynamics environment.
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