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Why Variable Stiffness Actuation?

Improves the safety of the robotic device with respect to:

@ interaction with unknown environment
@ unexpected collisions
@ limited controller and sensors bandwidth

@ actuator failures

A. Bicchi and G. Tonietti. “Fast and soft arm tactics: Dealing with the
safety-performance trade-off in robot arms design and control”. IEEE Robotics
and Automation Magazine, 2004.

G. Tonietti, R. Schiavi, and A. Bicchi. “Design and control of a variable stiffness
actuator for safe and fast physical human/robot interaction”. In Proc. IEEE Int.
Conf. on Robotics and Automation, 2005.
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Why Variable Stiffness Actuation?

Improves the safety of the robotic device with respect to:

@ interaction with unknown environment
@ unexpected collisions

@ limited controller and sensors bandwidth
@ actuator failures

Drawbacks of the Variable Stiffness Actuation:

@ A more complex mechanical design
@ The number of actuators increases
@ Non-linear transmission elements must be used

@ High non-linear and cross coupled dynamic model
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Dynamic Model of Robots with Variable Joint Stiffness

@ Robot dynamic equations

M(q)G+ N(q,q) +K(qg—0) =
Bo+K(@O—-q) = 7

@ The diagonal joint stiffness matrix is considered time-variant
K =diag{ks, ..., kn}, K=K(t)>0
@ Alternative notation

K(q—0)=ok, &=dag{(qu—6) .. .(q0—00)}, k=lki, ... ko]
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Dynamic Model of Robots with Variable Joint Stiffness

@ Robot dynamic equations

M(q)G+ N(q,q) +K(qg—0) =
Bo+K(@O—-q) = 7

@ The diagonal joint stiffness matrix is considered time-variant
K =diag{ks, ..., kn}, K=K(t)>0
@ Alternative notation

K(q—0)=ok, &=dag{(qu—6) .. .(q0—00)}, k=lki, ... ko]

@ The joint stiffness k can be directly changed by means of a (suitably scaled)
additional command 7«

k:Tk
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Dynamic Model of Robots with Variable Joint Stiffness
@ Robot dynamic equations
M(a) G+ N(g.4) + K (a—0) =
BO+K@O—-q) = 7
@ The diagonal joint stiffness matrix is considered time-variant
K =diag{ks, ..., kn}, K=K(t)>0
9 Alternative notation

K(q—0)=ok, &=dag{(qu—6) .. .(q0—00)}, k=lki, ... ko]

@ The joint stiffness k can be directly changed by means of a (suitably scaled)
additional command 7«
k = Tk

@ The variation of joint stiffness may be modeled as a second-order dynamic
system PR
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Dynamic Model of Robots with Variable Joint Stiffness

@ The input u and the robot state x are:

u:[T]eRm’, x=[q7 4T 0T éT]TeRM
Tk
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Dynamic Model of Robots with Variable Joint Stiffness

@ The input u and the robot state x are:
. T
o [ T ] eR™ x=[qT ¢7 o7 6T ] eRr*
Tk
@ In the case of second-order stiffness variation model, the state vector of the

robot becomes:

Xe:[qT g7 0T 6T kT kT]TeRﬁ"
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Dynamic Model of Robots with Variable Joint Stiffness

@ The input u and the robot state x are:

u:[T]ER%, x=[q7 4T 0T éT]TeRM
Tk

@ In the case of second-order stiffness variation model, the state vector of the
robot becomes:

xe=[qT 47 o7 0T kT kT]TeRGn

@ In all cases, the objective will be to simultaneously control the following set

of outputs
_ q 2n
y= [ K ] eR

namely the link positions (and thus, through the robot direct kinematics, the
end-effector pose) and the joint stiffness
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Dynamic Inversion

@ The motion is specified in terms of a desired smooth position trajectory
q = qq4(t) and joint stiffness matrix K = Ky(t) (or, equivalently, of the
vector k = k4(t))
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Dynamic Inversion

@ The motion is specified in terms of a desired smooth position trajectory
q = qq4(t) and joint stiffness matrix K = Ky(t) (or, equivalently, of the
vector k = k4(t))

@ Assuming k = 7, we have simply 74 4 = kq(t) and only the computation of
the nominal motor torque 74 is of actual interest
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Dynamic Inversion

@ The motion is specified in terms of a desired smooth position trajectory
q = qq4(t) and joint stiffness matrix K = Ky(t) (or, equivalently, of the
vector k = k4(t))

@ Assuming k = 7, we have simply 74 4 = kq(t) and only the computation of
the nominal motor torque 74 is of actual interest

@ The robot dynamic equation is differentiated twice with respect to time

M(q)q® + M(q) 4+ N(q,4) + K(qg—0) + K(g—0) =0

and

M(q) g1 +2 M(q) gB + M(q) § + N(q, 4) +
+K@—0)+2K(G—0)+K(g—0)=0
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Dynamic Inversion

@ Reference motor position along the desired robot trajectory

g = qa + K3 (M(q4)da + N(q4, 4a)) -

@ Reference motor velocity

ba = G+ Ky* (Maa)al + M(a0)gs + N(a, a)
— Ky (M(4a)ia + N(gg, 4a))) -

@ Actuators dynamic model inversion

b=B""r—K(6—q),
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Actuator Torques Computation

@ Reference motor torque along the desired trajectory

Td = M(Qd)qd + N(qd7 Qd) + BKd_lad (qdquvaCh q¢[3?17 q¢[;117kd7i(d7kd>

@ Some minimal smoothness requirements are imposed

qa(t) €C* and ky(t) € C?

O e

/
PHFs

Gianluca Palli (University of Bologna) Human-Friendly Robotics, Napoli, IT October 24, 2008 8 /31




Actuator Torques Computation

@ Reference motor torque along the desired trajectory

Td = M(Qd)Qd + N(qd,i]d) + BKd_lad <qd7qdvad7q¢[j]7q¢[j]7kd7j{d7kd>

@ Some minimal smoothness requirements are imposed

qa(t) €C* and ky(t) € C?

@ Discontinuous models of friction or actuator dead-zones on the motor side
can be considered without problems
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Actuator Torques Computation

@ Reference motor torque along the desired trajectory

Td = M(Qd)Qd + N(qd,i]d) + BKd_lad <qd7qdvad7q¢[j]7q¢[j]7kd7kd7kd>

@ Some minimal smoothness requirements are imposed

qa(t) €C* and ky(t) € C?

@ Discontinuous models of friction or actuator dead-zones on the motor side
can be considered without problems

@ Discontinuous phenomena acting on the link side should be approximated by
a smooth model

O e

/
PHFs

Gianluca Palli (University of Bologna) Human-Friendly Robotics, Napoli, IT October 24, 2008 8 /31




Actuator Torques Computation

[

Reference motor torque along the desired trajectory
74 = M(q4)Ga + N(qa, Ga) + BK; ' ag (CId, qd, qd, CIE], ng, ke, ka, kd)

@ Some minimal smoothness requirements are imposed

qa(t) €C* and ky(t) € C?

Discontinuous models of friction or actuator dead-zones on the motor side
can be considered without problems

©

@ Discontinuous phenomena acting on the link side should be approximated by
a smooth model

[

The command torques 74 can be kept within the saturation limits by a
suitable time scaling of the manipulator trajectory

= Pur

Gianluca Palli (University of Bologna) Human-Friendly Robotics, Napoli, IT October 24, 2008 8 /31




Second-Order Stiffness Model

@ The dynamics of the joint stiffness k is written as a generic nonlinear
function of the system configuration

k= B(q,0) +7(q,0) 7%
@ Double differentiation wrt time of the robot dynamics
Mg +2MqPl+ Mg+ N
FK (G- B - K(0— q))
+2K(G—0)+o(B+vy7k) =0

where both the inputs 7 and 7 appear
@ Important notes

§=4(a,9), "' =q%(q,q), ¢ =q"(q,q)
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Feedback Linearized Model

@ The overall system can be written as

=L e ]

where Q(x.) is the decoupling matrix:

[ MTIKBTY M~ld~(q,0)
Q(Xe) N |: Onxn 'Y(qv 9) :|
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Feedback Linearized Model

@ The overall system can be written as

=L e ]

where Q(x.) is the decoupling matrix:

[ MTIKBTY M~ld~(q,0)
Q(Xe) N |: Onxn 'Y(qv 9) :|

@ Non-Singularity Conditions

ki >0
Vi=1,...,
vi(gi, 0 )#o} i n
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Feedback Linearized Model

@ The overall system can be written as

=L e ]

where Q(x.) is the decoupling matrix:

[ MTIKBTY M~ld~(q,0)
Q(Xe) N |: Onxn 'Y(qv 9) :|

@ Non-Singularity Conditions
ki >0 .
Vi=1,...,n
~i(gi,0i) # 0 }
@ By applying the static state feedback

T | _ -1 B a(xe) Vg
7= ([ 1))
the full feedback linearized model is obtained
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Dynamic Feedback Linearization

@ Considering the very simple stiffness variation model

k,' = Tk;

the dynamics of the system becomes:

El _ _M_lN on><n
[k]_[ Onscn }*{om
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Dynamic Feedback Linearization
@ Considering the very simple stiffness variation model
k,' = Tk;

the dynamics of the system becomes:
gl [ -MIN " Onxn —M~1o
k B Onxn Oan II‘IX"

Problem
The decoupling matrix of the system is structurally singular
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Tk
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Dynamic Feedback Linearization

@ Considering the very simple stiffness variation model

k,' = Tk;

the dynamics of the system becomes:
E] — _M_lN 4 on><n
k 0n><n 0n><n

Problem

—M~1o

/n><n

The decoupling matrix of the system is structurally singular

I

T
Tk

Solution
Dynamic extension on the input 7% is needed

%k:uk
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Feedback Linearized Model

@ The system dynamics can be then rewritten as:

%=l Jraca] ]

where

Oan In><n

o) = |

M-1KB-1 —M~1o }
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Feedback Linearized Model

@ The system dynamics can be then rewritten as:

=l e 4]
where

M-1KB-1 —M~1o }

Oan In><n

o) = |

@ By defining the control law:

(O N _ a(xe) Vg
PARCRCIG e K )
we obtain the feedback linearized model:
q ) [ v
k Vi /"‘”‘
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Control Strategy

9 A static state feedback in the state space of the feedback linearized system is
used:

,
_ . . 317 :
Zd—[ql o] 4l ay K kﬂ

@ The state vector z of the feedback linearized system and a suitable nonlinear
coordinate transformation are defined:

.
. .. T ;
z=[q" & & ¢ KT K] =)=

9
g
~M7L[N 4 ® K]
M1 [—l\'/IM*1 [N + & k] + N+¢i<+d>k]

k

k
I.“d
Pl

October 24, 2008 13 /31

Gianluca Palli (University of Bologna) Human-Friendly Robotics, Napoli, IT



Control System Architecture

Vf

Setpoint T > . q
Generatod & p + Y+ Feedback (ynamic Extension Robotic >
Zd K~ v¢ | Linearization | 1 | Manipulator [
‘ mallygiii ;
F T R Pk
=21 Vo =1 [ g7 67 6717
@ The controller can be then rewritten as:
Ve = v¢ + Plzg — 2] = v¢ + Plzg — V(xe)]
where
P = 'DCIo 'Dch 'qu 'DCI3 0n><" 0n><"
0n><n 0n><n 0n><n on><n Pko 'Dk1
/.M/(

ART )
ol purf
N
October 24, 2008 14 / 31

Human-Friendly Robotics, Napoli, IT

Gianluca Palli (University of Bologna)



Simulation of a two-link Planar Manipulator

Joint positions [rad] x10°° Position errors [rad|

Err Joint 1
Err Joint 2

0 2 4 6 8 10

x10°° Stiffness errors [N m rad 1]

Err Joint 1
— — —ErrJoint 2

4 6
Time [s]
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Application to Antagonistic Variable Stiffness Devices

@ Dynamic model of an antagonistic variable stiffness robot

M(q) G+ N(q,q)+ 1o —ns = 0
Béa—I—na = Tq
Bls+mns = 75
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Application to Antagonistic Variable Stiffness Devices

@ Dynamic model of an antagonistic variable stiffness robot

M(q) G+ N(q,q) +na —1s = O
B, + N = Ta
B ég +n3 = 718
@ By introducing the auxiliary variables
= @ positions of the generalized joint actuators

s=0,+0g state of the virtual stiffness actuators

F(s) generalized joint stiffness matrix (diagonal)
strictly monotonically increasing functions

gla—»p) (generalized joint displacements)

h(q — p,s)  such that h;(0,0) =0

T=Ta— T8 Tk = Ta + 73
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Application to Antagonistic Variable Stiffness Devices

@ Dynamic model of an antagonistic variable stiffness robot

M(q) G+ N(q,q)+ 1o —ns = 0
Béa—i—na = Tq
Bls+mns = 75

@ By introducing the auxiliary variables

_ 9a—0p
=72

s=0,+0g state of the virtual stiffness actuators

positions of the generalized joint actuators

F(s) generalized joint stiffness matrix (diagonal)
strictly monotonically increasing functions
(a-p) monotonica

(generalized joint displacements)
h(q — p,s)  such that h;(0,0) =0

T=Ta— T8 Tk = Ta + 73

oq

it is possible to write
M(q) G+ N(q,q) + F(s)g(q — p)
2Bp+F(s)glp—q) = 7 s

‘m Bs+ h(q —p,s) = T« II'“E“.!
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Some Considerations on the Antagonistic Model

@ The system is composed by 3N rigid bodies (N links and 2N actuators)
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Some Considerations on the Antagonistic Model

@ The system is composed by 3N rigid bodies (N links and 2N actuators)

@ The state space dimension is 6N (position and velocity of each rigid body)
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Some Considerations on the Antagonistic Model

@ The system is composed by 3N rigid bodies (N links and 2N actuators)

@ The state space dimension is 6N (position and velocity of each rigid body)

@ The input dimension is 2N (actuator torques)
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Some Considerations on the Antagonistic Model

@ The system is composed by 3N rigid bodies (N links and 2N actuators)
@ The state space dimension is 6N (position and velocity of each rigid body)
@ The input dimension is 2N (actuator torques)

@ The output dimension is 3N (joint and actuator positions)
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Some Considerations on the Antagonistic Model

[

The system is composed by 3N rigid bodies (N links and 2N actuators)

€

The state space dimension is 6N (position and velocity of each rigid body)

€

The input dimension is 2N (actuator torques)

©

The output dimension is 3N (joint and actuator positions)

@ y has dimension 2N (position and stiffness of each joint)
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Some Considerations on the Antagonistic Model

[

The system is composed by 3N rigid bodies (N links and 2N actuators)

€

The state space dimension is 6N (position and velocity of each rigid body)

€

The input dimension is 2N (actuator torques)

)
@ y has dimension 2N (position and stiffness of each joint)

J

The output dimension is 3N (joint and actuator positions)

The system has 2N DOF (N positioning DOF and N joint stiffnesses DOF)

O e

/
PHFs

Gianluca Palli (University of Bologna) Human-Friendly Robotics, Napoli, IT October 24, 2008 17 / 31




Assumptions

@ The actuators have uniform mass distribution and center of mass on the
rotation axis
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Assumptions

@ The actuators have uniform mass distribution and center of mass on the
rotation axis

@ The rotor kinetic energy is due only to their spinning angular velocity

—
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Assumptions

@ The actuators have uniform mass distribution and center of mass on the
rotation axis

@ The rotor kinetic energy is due only to their spinning angular velocity

@ Each joint is independently actuated by 2 motors in an antagonistic
configuration (fully antagonistic kinematic chain)
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Assumptions

@ The actuators have uniform mass distribution and center of mass on the
rotation axis

@ The rotor kinetic energy is due only to their spinning angular velocity

@ Each joint is independently actuated by 2 motors in an antagonistic
configuration (fully antagonistic kinematic chain)

@ Transmission elements with static force-compression characteristic are
considered
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Assumptions

@ The actuators have uniform mass distribution and center of mass on the
rotation axis

@ The rotor kinetic energy is due only to their spinning angular velocity

@ Each joint is independently actuated by 2 motors in an antagonistic
configuration (fully antagonistic kinematic chain)

@ Transmission elements with static force-compression characteristic are
considered

@ No unmodeled external forces are considered
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Assumptions

@ The actuators have uniform mass distribution and center of mass on the
rotation axis

@ The rotor kinetic energy is due only to their spinning angular velocity

@ Each joint is independently actuated by 2 motors in an antagonistic
configuration (fully antagonistic kinematic chain)

@ Transmission elements with static force-compression characteristic are
considered

@ No unmodeled external forces are considered

@ All the state variables are known (full state feedback)
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Actual Variable Stiffness Joint Implementations

@ For antagonistic actuated robot with exponential force/compression
characteristic (Palli et al. 2007)

fi(s)) = €%
gi(qi—pi) = bsinh(c(qi — pi))
hilai = pi. i) d [cosh(c (g — pi)) €% — 1]
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Actual Variable Stiffness Joint Implementations

@ For antagonistic actuated robot with exponential force/compression
characteristic (Palli et al. 2007)

fi(s)) = €%
gi(gi—pi) = bsinh(c(qi—pi))
hi(qi — pi,si) = d[cosh(c(qi — p;)) e*5 — 1]

@ If transmission elements with quadratic force/compression characteristic are
considered (Migliore et al. 2005)

fi(si) = aisi+ a
gi(qi - Pi) = qi—pi
hi(qi — pi,si) = bis? + b (qi — pi)?
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Actual Variable Stiffness Joint Implementations

@ For antagonistic actuated robot with exponential force/compression
characteristic (Palli et al. 2007)

\ 9 fils) = e
% gi(gi—pi) = bsinh(c(qi—pi))
hi(qi — pi,si) = d[cosh(c(qi — p;)) e*5 — 1]

@ If transmission elements with quadratic force/compression characteristic are
considered (Migliore et al. 2005)

]

asi+ a
= qi— pi

2 2
by si + b2 (i — pi)

@ For the variable stiffness actuation joint (VSA), using a third-order polynomial
approximation of the transmission model (Boccadamo, Bicchi et al. 2006)

fi(si)
gi(qi - Pi)
hi(qi — pi, si)

fi(si) = a1s?+axsi+ a3
gi(CIi - Pi) = qgi—pi
hi(gi — pi,si) = bis; + b2(qi — pi)’si + bss;

/
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Assumptions

@ The actuators have uniform mass distribution and center of mass on the
rotation axis

@ The rotor kinetic energy is due only to their spinning angular velocity

@ Each joint is independently actuated by 2 motors in an antagonistic
configuration (fully antagonistic kinematic chain)

@ Transmission elements with static force-compression characteristic are
considered

@ No unmodeled external forces are considered

State reconstruction J

o All the state variables are known (full state feedback)
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State Reconstruction

The whole state of the system can be reconstructed by means of:

@ State Observers

> Increase the complexity of the system

» Parameters adaptation is needed

» Require a measure (or a estimation) of the external forces
@ Filtering of position information

» Generates noisy velocity signals

> High-speed acquition and computation system

@ Tachometers

> Increase costs
» Difficulties due to the integration into the system
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Assumptions

@ The actuators have uniform mass distribution and center of mass on the
rotation axis

@ The rotor kinetic energy is due only to their spinning angular velocity

@ Each joint is independently actuated by 2 motors in an antagonistic
configuration (fully antagonistic kinematic chain)

@ Transmission elements with static force-compression characteristic are
considered

Disturbance compensation

@ No unmodeled external forces are considered

State reconstruction

o All the state variables are known (full state feedback)
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Disturbance decoupling problem

@ The vector relative degrees of the outputs with respect to the input w is:

Lag = Onxwn ; LaF(s) = Onxn
Lalrq = M) . LoleF(s) = M(q) t2elge)
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Disturbance decoupling problem

@ The vector relative degrees of the outputs with respect to the input w is:

Lag = Onxwn ; LaF(s) = Onxn
Lalrq = M) . LoleF(s) = M(q) t2elge)

@ The disturbance decoupling problem can't be solved
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Disturbance decoupling problem

@ The vector relative degrees of the outputs with respect to the input w is:

Lag = Onxwn ; LaF(s) = Onxn
Lalrq = M) . LoleF(s) = M(q) t2elge)

@ The disturbance decoupling problem can't be solved
@ The joint positions can't be decoupled from the disturbance
» The external load can be compensated only in steady state conditions

@ The effects of the disturbance on the joint stiffnesses can be compensated
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External load estimation

@ The dynamic equation of the robot manipulator can be rewritten to take into
account for external load

M(q)g+ N(q,q) +1a — 13 = Text

I.h./(
PHFs
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External load estimation

@ The dynamic equation of the robot manipulator can be rewritten to take into
account for external load

M(q)g+ N(q,q) +1a — 13 = Text

@ The generalized momenta of the robotic arm is:
p=M(q)q

p = M(q)g+ M(q)g = M(q)g — N(q,q) — N +1p + Text
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External load estimation

@ The dynamic equation of the robot manipulator can be rewritten to take into
account for external load

M(q)g+ N(q,q) +1a — 13 = Text

@ The generalized momenta of the robotic arm is:
p=M(q)q

p = M(q)g+ M(q)g = M(q)g — N(q.q) = 110 + 13 + Text
@ Recalling the general property

q"[M(q) —2C(q.4)lg=0 = M(q) = C(q,9)+ C"(q,9)
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External load estimation

@ The dynamic equation of the robot manipulator can be rewritten to take into
account for external load

M( )q+N(q7 )+77a_ T3 = Text

@ The generalized momenta of the robotic arm is:

p = M(q)q

p = M(q)qg+ M(q)g = M(q)g — N(q,q) — na + 13 + Text
@ Recalling the general property

q"[M(q) —2C(q,9)la=0 = M(q) = C(q,4) + C"(q,4)
we obtain
p= _CT(qv q)q - Dq - g(q) —Na + N3 + Text = N(q7 q) — Tq + Text
N(g,q)=~C"(q,9)a —Dg—g(q) . ma—13=7q
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External load estimation

9 Defining the external load estimation as:

ot = L| [ (12~ (a.6) = ) i + 5

whit positive defined (diagonal) L, the torque extimation dynamic is:

Text = —LText + LText
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External load estimation
9 Defining the external load estimation as:
Text = L |:/ (Tq - N(CL q) - %ext) dt + p
whit positive defined (diagonal) L, the torque extimation dynamic is:

Text = —LText + LText

@ It is possible to define the transfer function between the real and the
observed external torques:

L;
s+ L;

%ext,-(s) = TeXti(s)
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External load estimation

9 Defining the external load estimation as:

Text = L |:/ (Tq - N(q, q) - %ext) dt + p
whit positive defined (diagonal) L, the torque extimation dynamic is:

Text = —LText + LText

@ It is possible to define the transfer function between the real and the
observed external torques:

A L;
7'ext,-(s) = S+—L TeXti(s)

9 A generalized momenta observer can be defined as:

p = N(a,g) —7g+Lp—p)
p \ Text L(p - p) aw,
- Pus
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Assumptions

@ The actuators have uniform mass distribution and center of mass on the
rotation axis

@ The rotor kinetic energy is due only to their spinning angular velocity
@ Each joint is independently actuated by 2 motors in an antagonistic

configuration (fully antagonistic kinematic chain)
Visco-elastic transmission elements

@ Transmission elements with static force-compression characteristic are considered

v

Disturbance compensation

@ No unmodeled external forces are considered

State reconstruction

o All the state variables are known (full state feedback)

v

e
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Feedback linearization problem

The sum of the vector relative degrees is not equal to the state dimension J
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Feedback linearization problem

The sum of the vector relative degrees is not equal to the state dimension J

The full state linearization problem can’t be solved J

Only input-output linearization can be achieved via static (critical) or dynamic
(regular) feedback
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Assumptions

@ The actuators have uniform mass distribution and center of mass on the
rotation axis

Kinetic energy coupling J

@ The rotor kinetic energy is due only to their spinning angular velocity

@ Each joint is independently actuated by 2 motors in an antagonistic
configuration (fully antagonistic kinematic chain)

Visco-elastic transmission elements

@ Transmission elements with static force-compression characteristic are considered

v

Disturbance compensation

@ No unmodeled external forces are considered

State reconstruction

o All the state variables are known (full state feedback)

D ———— ‘
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Feedback linearization of the complete model

@ Complete dynamic model of the antagonistic actuated arm:

M(q)d + Ho 0o+ Hp 05 + N(q,3) + 10 — 15 = Text
Béa'i'HaT g+ na
Bl + Hy G+ s

To

e

7—95

with upper-triangular matrices H, and Hpg
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Feedback linearization of the complete model

@ Complete dynamic model of the antagonistic actuated arm:

M(q)d + Ha 0o + Hg 05+ N(q.4) + 10 — 15 = Teu
Béa+HaTE7+"7a
Bé,g-l—Hgé-i-T)ﬁ

To

e

7—05

with upper-triangular matrices H, and Hpg
@ Full feedback linearization can be achieved via dynamic state feedback
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Feedback linearization of the complete model

@ Complete dynamic model of the antagonistic actuated arm:

M(q)d + Ha 0o + Hg 05+ N(q.4) + 10 — 15 = Teu
Béa‘f'HaTE]""fla
Bé5+Hgé+ﬂﬁ

I
N

|
3
@

with upper-triangular matrices H, and Hpg

@ Full feedback linearization can be achieved via dynamic state feedback

@ A suitable dynamic extension algorithm can be used (similar to the case of
linear elastic joints)
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Assumptions

@ The actuators have uniform mass distribution and center of mass on the
rotation axis

Kinetic energy coupling

@ The rotor kinetic energy is due only to their spinning angular velocity

Analysis of different configurations

@ Each joint is independently actuated by 2 motors in an antagonistic configuration
(fully antagonistic kinematic chain)

Visco-elastic transmission elements

@ Transmission elements with static force-compression characteristic are considered

Disturbance compensation

@ No unmodeled external forces are considered

State reconstruction
& All the state variables are known (full state feedback)
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Conclusions

@ The feedforward control action needed to perform a desired motion profile
has been computed

@ The feedback linearization problem with decoupled control has been solved
taking into account different stiffness variation models

@ The simultaneous asymptotic trajectory tracking of both the position and the
stiffness has been achieved by means of an outer linear control loop

@ These results can be easily extended to the mixed rigid/elastic case

@ The proposed approach has been used to model several actual
implementation of variable stiffness devices

= Pur
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Conclusions

@ The feedforward control action needed to perform a desired motion profile
has been computed

@ The feedback linearization problem with decoupled control has been solved
taking into account different stiffness variation models

@ The simultaneous asymptotic trajectory tracking of both the position and the
stiffness has been achieved by means of an outer linear control loop

@ These results can be easily extended to the mixed rigid/elastic case

@ The proposed approach has been used to model several actual
implementation of variable stiffness devices

Questions?

Thank you for your attention...

X puf
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