Variable Stiffness Actuation: Modeling and Control

Gianluca Palli

DEIS - University of Bologna
LAR - Laboratory of Automation and Robotics

Viale Risorgimento 2, 40136, Bologna
TEL: +39 0512093903
E-mail: gianluca.palli@unibo.it

October 24, 2008

Table of contents

(1) Why Variable Stiffness Actuation?
(2) Variable Joint Stiffness Robot Dynamics

- Robot Dynamic Model
(3) Inverse Dynamics of Variable Stiffness Robots
- Computing Actuator Commands

4. Feedback Linearization

- Static Feedback Linearization
- Dynamic Feedback Linearization
- Control Strategy
(5) Simulation of a two-link Planar Manipulator
(6) Application to Antagonistic Variable Stiffness Devices
- State Variables Reconstruction
- Compensation of external load
- Visco-elastic transmission system

DE K Writ

Why Variable Stiffness Actuation?

Improves the safety of the robotic device with respect to:

- interaction with unknown environment
- unexpected collisions
- limited controller and sensors bandwidth
- actuator failures
A. Bicchi and G. Tonietti. "Fast and soft arm tactics: Dealing with the safety-performance trade-off in robot arms design and control". IEEE Robotics and Automation Magazine, 2004.
G. Tonietti, R. Schiavi, and A. Bicchi. "Design and control of a variable stiffness actuator for safe and fast physical human/robot interaction". In Proc. IEEE Int. Conf. on Robotics and Automation, 2005.

Why Variable Stiffness Actuation?

Improves the safety of the robotic device with respect to:

- interaction with unknown environment
- unexpected collisions
- limited controller and sensors bandwidth
- actuator failures

Drawbacks of the Variable Stiffness Actuation:

- A more complex mechanical design
- The number of actuators increases
- Non-linear transmission elements must be used
- High non-linear and cross coupled dynamic model

Dynamic Model of Robots with Variable Joint Stiffness

- Robot dynamic equations

$$
\begin{aligned}
M(q) \ddot{q}+N(q, \dot{q})+K(q-\theta) & =0 \\
B \ddot{\theta}+K(\theta-q) & =\tau
\end{aligned}
$$

- The diagonal joint stiffness matrix is considered time-variant

$$
K=\operatorname{diag}\left\{k_{1}, \ldots, k_{n}\right\}, \quad K=K(t)>0
$$

- Alternative notation

$$
K(q-\theta)=\Phi k, \quad \Phi=\operatorname{diag}\left\{\left(q_{1}-\theta_{1}\right), \ldots,\left(q_{n}-\theta_{n}\right)\right\}, \quad k=\left[k_{1}, \ldots, k_{n}\right]^{T}
$$

Dynamic Model of Robots with Variable Joint Stiffness

- Robot dynamic equations

$$
\begin{aligned}
M(q) \ddot{q}+N(q, \dot{q})+K(q-\theta) & =0 \\
B \ddot{\theta}+K(\theta-q) & =\tau
\end{aligned}
$$

- The diagonal joint stiffness matrix is considered time-variant

$$
K=\operatorname{diag}\left\{k_{1}, \ldots, k_{n}\right\}, \quad K=K(t)>0
$$

- Alternative notation

$$
K(q-\theta)=\Phi k, \quad \Phi=\operatorname{diag}\left\{\left(q_{1}-\theta_{1}\right), \ldots,\left(q_{n}-\theta_{n}\right)\right\}, \quad k=\left[k_{1}, \ldots, k_{n}\right]^{T}
$$

(1) The joint stiffness k can be directly changed by means of a (suitably scaled) additional command τ_{k}

$$
k=\tau_{k}
$$

Dynamic Model of Robots with Variable Joint Stiffness

- Robot dynamic equations

$$
\begin{aligned}
M(q) \ddot{q}+N(q, \dot{q})+K(q-\theta) & =0 \\
B \ddot{\theta}+K(\theta-q) & =\tau
\end{aligned}
$$

- The diagonal joint stiffness matrix is considered time-variant

$$
K=\operatorname{diag}\left\{k_{1}, \ldots, k_{n}\right\}, \quad K=K(t)>0
$$

- Alternative notation

$$
K(q-\theta)=\Phi k, \quad \Phi=\operatorname{diag}\left\{\left(q_{1}-\theta_{1}\right), \ldots,\left(q_{n}-\theta_{n}\right)\right\}, \quad k=\left[k_{1}, \ldots, k_{n}\right]^{T}
$$

(1) The joint stiffness k can be directly changed by means of a (suitably scaled) additional command τ_{k}

$$
k=\tau_{k}
$$

(2) The variation of joint stiffness may be modeled as a second-order dynamic system

$$
\ddot{k}=\phi\left(x, k, \dot{k}, \tau_{k}\right)
$$

Dynamic Model of Robots with Variable Joint Stiffness

- The input u and the robot state x are:

$$
u=\left[\begin{array}{c}
\tau \\
\tau_{k}
\end{array}\right] \in \mathbb{R}^{2 n}, \quad x=\left[\begin{array}{llll}
q^{T} & \dot{q}^{T} & \theta^{T} & \dot{\theta}^{T}
\end{array}\right]^{T} \in \mathbb{R}^{4 n}
$$

- In all cases, the objective will be to simultaneously control the following set of outputs

Dynamic Model of Robots with Variable Joint Stiffness

- The input u and the robot state x are:

$$
u=\left[\begin{array}{c}
\tau \\
\tau_{k}
\end{array}\right] \in \mathbb{R}^{2 n}, \quad x=\left[\begin{array}{llll}
q^{T} & \dot{q}^{T} & \theta^{T} & \dot{\theta}^{T}
\end{array}\right]^{T} \in \mathbb{R}^{4 n}
$$

- In the case of second-order stiffness variation model, the state vector of the robot becomes:

$$
x_{e}=\left[\begin{array}{llllll}
q^{T} & \dot{q}^{T} & \theta^{T} & \dot{\theta}^{T} & k^{T} & \dot{k}^{T}
\end{array}\right]^{T} \in \mathbb{R}^{6 n}
$$

Dynamic Model of Robots with Variable Joint Stiffness

- The input u and the robot state x are:

$$
u=\left[\begin{array}{c}
\tau \\
\tau_{k}
\end{array}\right] \in \mathbb{R}^{2 n}, \quad x=\left[\begin{array}{llll}
q^{T} & \dot{q}^{T} & \theta^{T} & \dot{\theta}^{T}
\end{array}\right]^{T} \in \mathbb{R}^{4 n}
$$

- In the case of second-order stiffness variation model, the state vector of the robot becomes:

$$
x_{e}=\left[\begin{array}{llllll}
q^{T} & \dot{q}^{T} & \theta^{T} & \dot{\theta}^{T} & k^{T} & \dot{k}^{T}
\end{array}\right]^{T} \in \mathbb{R}^{6 n}
$$

- In all cases, the objective will be to simultaneously control the following set of outputs

$$
y=\left[\begin{array}{l}
q \\
k
\end{array}\right] \in \mathbb{R}^{2 n}
$$

namely the link positions (and thus, through the robot direct kinematics, the end-effector pose) and the joint stiffness

Dynamic Inversion

- The motion is specified in terms of a desired smooth position trajectory $q=q_{d}(t)$ and joint stiffness matrix $K=K_{d}(t)$ (or, equivalently, of the vector $\left.k=k_{d}(t)\right)$

Dynamic Inversion

- The motion is specified in terms of a desired smooth position trajectory $q=q_{d}(t)$ and joint stiffness matrix $K=K_{d}(t)$ (or, equivalently, of the vector $\left.k=k_{d}(t)\right)$
- Assuming $k=\tau_{k}$, we have simply $\tau_{k, d}=k_{d}(t)$ and only the computation of the nominal motor torque τ_{d} is of actual interest

Dynamic Inversion

- The motion is specified in terms of a desired smooth position trajectory $q=q_{d}(t)$ and joint stiffness matrix $K=K_{d}(t)$ (or, equivalently, of the vector $k=k_{d}(t)$)
- Assuming $k=\tau_{k}$, we have simply $\tau_{k, d}=k_{d}(t)$ and only the computation of the nominal motor torque τ_{d} is of actual interest
- The robot dynamic equation is differentiated twice with respect to time

$$
M(q) q^{[3]}+\dot{M}(q) \ddot{q}+\dot{N}(q, \dot{q})+\dot{K}(q-\theta)+K(\dot{q}-\dot{\theta})=0
$$

and

$$
\begin{aligned}
& M(q) q^{[4]}+2 \dot{M}(q) q^{[3]}+\ddot{M}(q) \ddot{q}+\ddot{N}(q, \dot{q})+ \\
& \quad+K(\ddot{q}-\ddot{\theta})+2 \dot{K}(\dot{q}-\dot{\theta})+\ddot{K}(q-\theta)=0
\end{aligned}
$$

Dynamic Inversion

- Reference motor position along the desired robot trajectory

$$
\theta_{d}=q_{d}+K_{d}^{-1}\left(M\left(q_{d}\right) \ddot{q}_{d}+N\left(q_{d}, \dot{q}_{d}\right)\right) .
$$

- Reference motor velocity

$$
\begin{aligned}
\dot{\theta}_{d}= & \dot{q}_{d}+K_{d}^{-1}\left(M\left(q_{d}\right) q_{d}^{[3]}+\dot{M}\left(q_{d}\right) \ddot{q}_{d}+\dot{N}\left(q_{d}, \dot{q}_{d}\right)\right. \\
& \left.-\dot{K}_{d} K_{d}^{-1}\left(M\left(q_{d}\right) \ddot{q}_{d}+N\left(q_{d}, \dot{q}_{d}\right)\right)\right) .
\end{aligned}
$$

- Actuators dynamic model inversion

$$
\ddot{\theta}=B^{-1}[\tau-K(\theta-q)],
$$

Actuator Torques Computation

- Reference motor torque along the desired trajectory

$$
\tau_{d}=M\left(q_{d}\right) \ddot{q}_{d}+N\left(q_{d}, \dot{q}_{d}\right)+B K_{d}^{-1} \alpha_{d}\left(q_{d}, \dot{q}_{d}, \ddot{q}_{d}, q_{d}^{[3]}, q_{d}^{[4]}, k_{d}, \dot{k}_{d}, \ddot{k}_{d}\right)
$$

- Some minimal smoothness requirements are imposed

$$
q_{d}(t) \in \mathbb{C}^{4} \quad \text { and } \quad k_{d}(t) \in \mathbb{C}^{2}
$$

Actuator Torques Computation

- Reference motor torque along the desired trajectory

$$
\tau_{d}=M\left(q_{d}\right) \ddot{q}_{d}+N\left(q_{d}, \dot{q}_{d}\right)+B K_{d}^{-1} \alpha_{d}\left(q_{d}, \dot{q}_{d}, \ddot{q}_{d}, q_{d}^{[3]}, q_{d}^{[4]}, k_{d}, \dot{k}_{d}, \ddot{k}_{d}\right)
$$

- Some minimal smoothness requirements are imposed

$$
q_{d}(t) \in \mathbb{C}^{4} \quad \text { and } \quad k_{d}(t) \in \mathbb{C}^{2}
$$

- Discontinuous models of friction or actuator dead-zones on the motor side can be considered without problems
a smooth model
- The command tor u es T_{d} can be kept within the saturation limits by a suitable time scaling of the manipulator trajectory

Actuator Torques Computation

- Reference motor torque along the desired trajectory

$$
\tau_{d}=M\left(q_{d}\right) \ddot{q}_{d}+N\left(q_{d}, \dot{q}_{d}\right)+B K_{d}^{-1} \alpha_{d}\left(q_{d}, \dot{q}_{d}, \ddot{q}_{d}, q_{d}^{[3]}, q_{d}^{[4]}, k_{d}, \dot{k}_{d}, \ddot{k}_{d}\right)
$$

- Some minimal smoothness requirements are imposed

$$
q_{d}(t) \in \mathbb{C}^{4} \quad \text { and } \quad k_{d}(t) \in \mathbb{C}^{2}
$$

- Discontinuous models of friction or actuator dead-zones on the motor side can be considered without problems
- Discontinuous phenomena acting on the link side should be approximated by a smooth model

Actuator Torques Computation

- Reference motor torque along the desired trajectory

$$
\tau_{d}=M\left(q_{d}\right) \ddot{q}_{d}+N\left(q_{d}, \dot{q}_{d}\right)+B K_{d}^{-1} \alpha_{d}\left(q_{d}, \dot{q}_{d}, \ddot{q}_{d}, q_{d}^{[3]}, q_{d}^{[4]}, k_{d}, \dot{k}_{d}, \ddot{k}_{d}\right)
$$

- Some minimal smoothness requirements are imposed

$$
q_{d}(t) \in \mathbb{C}^{4} \quad \text { and } \quad k_{d}(t) \in \mathbb{C}^{2}
$$

- Discontinuous models of friction or actuator dead-zones on the motor side can be considered without problems
- Discontinuous phenomena acting on the link side should be approximated by a smooth model
- The command torques τ_{d} can be kept within the saturation limits by a suitable time scaling of the manipulator trajectory

Second-Order Stiffness Model

- The dynamics of the joint stiffness k is written as a generic nonlinear function of the system configuration

$$
\ddot{k}=\beta(q, \theta)+\gamma(q, \theta) \tau_{k}
$$

- Double differentiation wrt time of the robot dynamics

$$
\begin{aligned}
& M q^{[4]}+2 \dot{M} q^{[3]}+\ddot{M} \ddot{q}+\ddot{N} \\
& \quad+K\left(\ddot{q}-B^{-1}[\tau-K(\theta-q)]\right) \\
& \quad+2 \dot{K}(\dot{q}-\dot{\theta})+\Phi\left(\beta+\gamma \tau_{k}\right)=0
\end{aligned}
$$

where both the inputs τ and τ_{k} appear

- Important notes

$$
\ddot{q}=\ddot{q}(\dot{q}, q), q^{[3]}=q^{[3]}(\dot{q}, q), q^{[4]}=q^{[4]}(\dot{q}, q)
$$

Feedback Linearized Model

- The overall system can be written as

$$
\left[\begin{array}{c}
q^{[4]} \\
\ddot{k}
\end{array}\right]=\left[\begin{array}{c}
\alpha\left(x_{e}\right) \\
\beta(q, \theta)
\end{array}\right]+Q\left(x_{e}\right)\left[\begin{array}{c}
\tau \\
\tau_{k}
\end{array}\right]
$$

where $Q\left(x_{e}\right)$ is the decoupling matrix:

$$
Q\left(x_{e}\right)=\left[\begin{array}{cc}
M^{-1} K B^{-1} & M^{-1} \Phi \gamma(q, \theta) \\
0_{n \times n} & \gamma(q, \theta)
\end{array}\right]
$$

- By applying the static state feedback
the full feedback linearized model is obtained

Feedback Linearized Model

- The overall system can be written as

$$
\left[\begin{array}{c}
q^{[4]} \\
\ddot{k}
\end{array}\right]=\left[\begin{array}{c}
\alpha\left(x_{e}\right) \\
\beta(q, \theta)
\end{array}\right]+Q\left(x_{e}\right)\left[\begin{array}{c}
\tau \\
\tau_{k}
\end{array}\right]
$$

where $Q\left(x_{e}\right)$ is the decoupling matrix:

$$
Q\left(x_{e}\right)=\left[\begin{array}{cc}
M^{-1} K B^{-1} & M^{-1} \Phi \gamma(q, \theta) \\
0_{n \times n} & \gamma(q, \theta)
\end{array}\right]
$$

- Non-Singularity Conditions

$$
\left.\begin{array}{l}
k_{i}>0 \\
\gamma_{i}\left(q_{i}, \theta_{i}\right) \neq 0
\end{array}\right\} \forall i=1, \ldots, n
$$

- By applying the static state feedback
the full feedback linearized model is obtained

Feedback Linearized Model

- The overall system can be written as

$$
\left[\begin{array}{c}
q^{[4]} \\
\ddot{k}
\end{array}\right]=\left[\begin{array}{c}
\alpha\left(x_{e}\right) \\
\beta(q, \theta)
\end{array}\right]+Q\left(x_{e}\right)\left[\begin{array}{c}
\tau \\
\tau_{k}
\end{array}\right]
$$

where $Q\left(x_{e}\right)$ is the decoupling matrix:

$$
Q\left(x_{e}\right)=\left[\begin{array}{cc}
M^{-1} K B^{-1} & M^{-1} \Phi \gamma(q, \theta) \\
0_{n \times n} & \gamma(q, \theta)
\end{array}\right]
$$

- Non-Singularity Conditions

$$
\left.\begin{array}{l}
k_{i}>0 \\
\gamma_{i}\left(q_{i}, \theta_{i}\right) \neq 0
\end{array}\right\} \forall i=1, \ldots, n
$$

- By applying the static state feedback

$$
\left[\begin{array}{c}
\tau \\
\tau_{k}
\end{array}\right]=Q^{-1}\left(x_{e}\right)\left(-\left[\begin{array}{c}
\alpha\left(x_{e}\right) \\
\beta(q, \theta)
\end{array}\right]+\left[\begin{array}{c}
v_{q} \\
v_{k}
\end{array}\right]\right)
$$

the full feedback linearized model is obtained

$$
\left[\begin{array}{c}
q^{[4]} \\
\ddot{k}
\end{array}\right]=\left[\begin{array}{c}
v_{q} \\
v_{k}
\end{array}\right]
$$

Dynamic Feedback Linearization

- Considering the very simple stiffness variation model

$$
k_{i}=\tau_{k_{i}}
$$

the dynamics of the system becomes:

$$
\left[\begin{array}{l}
\ddot{q} \\
k
\end{array}\right]=\left[\begin{array}{c}
-M^{-1} N \\
0_{n \times n}
\end{array}\right]+\left[\begin{array}{cc}
0_{n \times n} & -M^{-1} \Phi \\
0_{n \times n} & I_{n \times n}
\end{array}\right]\left[\begin{array}{c}
\tau \\
\tau_{k}
\end{array}\right]
$$

Dynamic extension on the input τ_{k} is needed

Dynamic Feedback Linearization

- Considering the very simple stiffness variation model

$$
k_{i}=\tau_{k_{i}}
$$

the dynamics of the system becomes:

$$
\left[\begin{array}{c}
\ddot{q} \\
k
\end{array}\right]=\left[\begin{array}{c}
-M^{-1} N \\
0_{n \times n}
\end{array}\right]+\left[\begin{array}{cc}
0_{n \times n} & -M^{-1} \Phi \\
0_{n \times n} & I_{n \times n}
\end{array}\right]\left[\begin{array}{c}
\tau \\
\tau_{k}
\end{array}\right]
$$

Problem

The decoupling matrix of the system is structurally singular
\square

Dynamic Feedback Linearization

- Considering the very simple stiffness variation model

$$
k_{i}=\tau_{k_{i}}
$$

the dynamics of the system becomes:

$$
\left[\begin{array}{c}
\ddot{q} \\
k
\end{array}\right]=\left[\begin{array}{c}
-M^{-1} N \\
0_{n \times n}
\end{array}\right]+\left[\begin{array}{cc}
0_{n \times n} & -M^{-1} \Phi \\
0_{n \times n} & I_{n \times n}
\end{array}\right]\left[\begin{array}{c}
\tau \\
\tau_{k}
\end{array}\right]
$$

Problem

The decoupling matrix of the system is structurally singular

Solution

Dynamic extension on the input τ_{k} is needed

$$
\ddot{\tau}_{k}=u_{k}
$$

Feedback Linearized Model

- The system dynamics can be then rewritten as:

$$
\left[\begin{array}{c}
q^{[4]} \\
\ddot{k}
\end{array}\right]=\left[\begin{array}{c}
\alpha\left(x_{e}\right) \\
0_{n \times n}
\end{array}\right]+Q\left(x_{e}\right)\left[\begin{array}{c}
\tau \\
u_{k}
\end{array}\right]
$$

where

$$
Q\left(x_{e}\right)=\left[\begin{array}{cc}
M^{-1} K B^{-1} & -M^{-1} \Phi \\
0_{n \times n} & I_{n \times n}
\end{array}\right]
$$

- By defining the control law:
we obtain the feedback linearized model:

Feedback Linearized Model

- The system dynamics can be then rewritten as:

$$
\left[\begin{array}{c}
q^{[4]} \\
\ddot{k}
\end{array}\right]=\left[\begin{array}{c}
\alpha\left(x_{e}\right) \\
0_{n \times n}
\end{array}\right]+Q\left(x_{e}\right)\left[\begin{array}{c}
\tau \\
u_{k}
\end{array}\right]
$$

where

$$
Q\left(x_{e}\right)=\left[\begin{array}{cc}
M^{-1} K B^{-1} & -M^{-1} \Phi \\
0_{n \times n} & I_{n \times n}
\end{array}\right]
$$

- By defining the control law:

$$
\left[\begin{array}{c}
\tau \\
u_{k}
\end{array}\right]=Q^{-1}\left(x_{e}\right)\left(-\left[\begin{array}{c}
\alpha\left(x_{e}\right) \\
0_{n \times n}
\end{array}\right]+\left[\begin{array}{c}
v_{q} \\
v_{k}
\end{array}\right]\right)
$$

we obtain the feedback linearized model:

$$
\left[\begin{array}{c}
q^{[4]} \\
\ddot{k}
\end{array}\right]=\left[\begin{array}{l}
v_{q} \\
v_{k}
\end{array}\right]
$$

Control Strategy

- A static state feedback in the state space of the feedback linearized system is used:

$$
\begin{gathered}
v_{c}=\left[\begin{array}{c}
v_{q} \\
v_{k}
\end{array}\right], \quad v_{f}=\left[\begin{array}{c}
q_{d}^{[4]} \\
\dot{k}_{d}
\end{array}\right] \\
z_{d}=\left[\begin{array}{llllll}
q_{d}^{T} & \dot{q}_{d}^{T} & \ddot{q}_{d}^{T} & q_{d}^{[3]^{T}} & k_{d}^{T} & \dot{k}_{d}^{T}
\end{array}\right]^{T}
\end{gathered}
$$

- The state vector z of the feedback linearized system and a suitable nonlinear coordinate transformation are defined:

$$
z=\left[\begin{array}{llllll}
q^{T} & \dot{q}^{T} & \ddot{q}^{T} & q^{[3]^{T}} & k^{T} & \dot{k}^{T}
\end{array}\right]^{T}=\Psi\left(x_{e}\right)=
$$

$$
\left[\begin{array}{c}
q \\
\dot{q} \\
-M^{-1}[N+\Phi k] \\
-M^{-1}\left[-\dot{M} M^{-1}[N+\Phi k]+\dot{N}+\Phi \dot{k}+\dot{\Phi} k\right] \\
k \\
\dot{k}
\end{array}\right]
$$

Control System Architecture

- The controller can be then rewritten as:

$$
v_{c}=v_{f}+P\left[z_{d}-z\right]=v_{f}+P\left[z_{d}-\Psi\left(x_{e}\right)\right]
$$

where

$$
P=\left[\begin{array}{cccccc}
P_{q_{0}} & P_{q_{1}} & P_{q_{2}} & P_{q_{3}} & 0_{n \times n} & 0_{n \times n} \\
0_{n \times n} & 0_{n \times n} & 0_{n \times n} & 0_{n \times n} & P_{k_{0}} & P_{k_{1}}
\end{array}\right]
$$

Simulation of a two-link Planar Manipulator

Application to Antagonistic Variable Stiffness Devices

- Dynamic model of an antagonistic variable stiffness robot

$$
\begin{aligned}
M(q) \ddot{q}+N(q, \dot{q})+\eta_{\alpha}-\eta_{\beta} & =0 \\
B \ddot{\theta}_{\alpha}+\eta_{\alpha} & =\tau_{\alpha} \\
B \ddot{\theta}_{\beta}+\eta_{\beta} & =\tau_{\beta}
\end{aligned}
$$

- By introducing the auxiliary variables

Application to Antagonistic Variable Stiffness Devices

- Dynamic model of an antagonistic variable stiffness robot

$$
\begin{aligned}
M(q) \ddot{q}+N(q, \dot{q})+\eta_{\alpha}-\eta_{\beta} & =0 \\
B \ddot{\theta}_{\alpha}+\eta_{\alpha} & =\tau_{\alpha} \\
B \ddot{\theta}_{\beta}+\eta_{\beta} & =\tau_{\beta}
\end{aligned}
$$

- By introducing the auxiliary variables

$$
\begin{array}{ll}
p=\frac{\theta_{\alpha}-\theta_{\beta}}{2} & \text { positions of the generalized joint actuators } \\
s=\theta_{\alpha}+\theta_{\beta} & \text { state of the virtual stiffness actuators } \\
F(s) & \text { generalized joint stiffness matrix (diagonal) } \\
g(q-p) & \text { strictly monotonically increasing functions } \\
h(q-p, s) & \text { (generalized joint displacements) } \\
\tau=\tau_{\alpha}-\tau_{\beta}, & \tau_{k}=\tau_{\alpha}+\tau_{\beta}(0,0)=0
\end{array}
$$

Application to Antagonistic Variable Stiffness Devices

- Dynamic model of an antagonistic variable stiffness robot

$$
\begin{aligned}
M(q) \ddot{q}+N(q, \dot{q})+\eta_{\alpha}-\eta_{\beta} & =0 \\
B \ddot{\theta}_{\alpha}+\eta_{\alpha} & =\tau_{\alpha} \\
B \ddot{\theta}_{\beta}+\eta_{\beta} & =\tau_{\beta}
\end{aligned}
$$

- By introducing the auxiliary variables

$$
\begin{array}{ll}
p=\frac{\theta_{\alpha}-\theta_{\beta}}{2} & \text { positions of the generalized joint actuators } \\
s=\theta_{\alpha}+\theta_{\beta} & \text { state of the virtual stiffness actuators } \\
F(s) & \begin{array}{l}
\text { generalized joint stiffness matrix (diagonal) } \\
g(q-p)
\end{array} \\
\begin{array}{ll}
\text { strictly monotonically increasing functions } \\
\text { (generalized joint displacements) }
\end{array} \\
h(q-p, s) & \text { such that } h_{i}(0,0)=0 \\
\tau=\tau_{\alpha}-\tau_{\beta}, \tau_{k}=\tau_{\alpha}+\tau_{\beta}
\end{array}
$$

it is possible to write

$$
\begin{aligned}
M(q) \ddot{q}+N(q, \dot{q})+F(s) g(q-p) & =0 \\
2 B \ddot{p}+F(s) g(p-q) & =\tau \\
B \ddot{s}+h(q-p, s) & =\tau_{k}
\end{aligned}
$$

Some Considerations on the Antagonistic Model

- The system is composed by 3 N rigid bodies (N links and 2 N actuators)
- The state space dimension is 6N (position and velocity of each rigid body) - The input dimension is 2 N (actuator torques)

Some Considerations on the Antagonistic Model

- The system is composed by 3 N rigid bodies (N links and 2 N actuators)
- The state space dimension is 6 N (position and velocity of each rigid body)
- The input dimension is 2 N (actuator torques)
- The output dimension is 3N (joint and actuator positions)

Some Considerations on the Antagonistic Model

- The system is composed by 3 N rigid bodies (N links and 2 N actuators)
- The state space dimension is 6 N (position and velocity of each rigid body)
- The input dimension is 2 N (actuator torques)
- The output dimension is 3N (joint and actuator positions) - y has dimension 2N (position and stiffness of each joint)

Some Considerations on the Antagonistic Model

- The system is composed by 3 N rigid bodies (N links and 2 N actuators)
- The state space dimension is 6 N (position and velocity of each rigid body)
- The input dimension is 2 N (actuator torques)
- The output dimension is 3 N (joint and actuator positions)
- y has dimension 2 N (position and stiffness of each joint)
- The system has 2N DOF (N positioning DOF and N joint stiffnesses DOF)

Some Considerations on the Antagonistic Model

- The system is composed by 3 N rigid bodies (N links and 2 N actuators)
- The state space dimension is 6 N (position and velocity of each rigid body)
- The input dimension is 2 N (actuator torques)
- The output dimension is 3 N (joint and actuator positions)
- y has dimension 2 N (position and stiffness of each joint)
- The system has 2N DOF (N positioning DOF and N joint stiffnesses DOF)

Some Considerations on the Antagonistic Model

- The system is composed by 3 N rigid bodies (N links and 2 N actuators)
- The state space dimension is 6 N (position and velocity of each rigid body)
- The input dimension is 2 N (actuator torques)
- The output dimension is 3 N (joint and actuator positions)
- y has dimension 2 N (position and stiffness of each joint)
- The system has 2 N DOF (N positioning DOF and N joint stiffnesses DOF)

Assumptions

- The actuators have uniform mass distribution and center of mass on the rotation axis
- The rotor kinetic energy is due only to their spinning angular velocity
- Each joint is independently actuated by 2 motors in an antagonistic configuration (fully antagonistic kinematic chain)

Assumptions

- The actuators have uniform mass distribution and center of mass on the rotation axis
- The rotor kinetic energy is due only to their spinning angular velocity
- Each joint is independently actuated by 2 motors in an antagonistic configuration (fully antagonistic kinematic chain)
- Transmission nloments with static foren communssion characteristic are considered

Assumptions

- The actuators have uniform mass distribution and center of mass on the rotation axis
- The rotor kinetic energy is due only to their spinning angular velocity
- Each joint is independently actuated by 2 motors in an antagonistic configuration (fully antagonistic kinematic chain)
- Transmission elements with static force-compression characteristic are
- No unmodeled external forces are considered

Assumptions

- The actuators have uniform mass distribution and center of mass on the rotation axis
- The rotor kinetic energy is due only to their spinning angular velocity
- Each joint is independently actuated by 2 motors in an antagonistic configuration (fully antagonistic kinematic chain)
- Transmission elements with static force-compression characteristic are considered
- No unmodeled external forces are considered
- All the state variables are known (full state feedback)

Assumptions

- The actuators have uniform mass distribution and center of mass on the rotation axis
- The rotor kinetic energy is due only to their spinning angular velocity
- Each joint is independently actuated by 2 motors in an antagonistic configuration (fully antagonistic kinematic chain)
- Transmission elements with static force-compression characteristic are considered
- No unmodeled external forces are considered
- All the state variables are known (full state feedback)

Assumptions

- The actuators have uniform mass distribution and center of mass on the rotation axis
- The rotor kinetic energy is due only to their spinning angular velocity
- Each joint is independently actuated by 2 motors in an antagonistic configuration (fully antagonistic kinematic chain)
- Transmission elements with static force-compression characteristic are considered
- No unmodeled external forces are considered
- All the state variables are known (full state feedback)

Actual Variable Stiffness Joint Implementations

- For antagonistic actuated robot with exponential force/compression characteristic (Palli et al. 2007)

$$
\begin{aligned}
f_{i}\left(s_{i}\right) & =e^{a s_{i}} \\
g_{i}\left(q_{i}-p_{i}\right) & =b \sinh \left(c\left(q_{i}-p_{i}\right)\right) \\
h_{i}\left(q_{i}-p_{i}, s_{i}\right) & =d\left[\cosh \left(c\left(q_{i}-p_{i}\right)\right) e^{a s_{i}}-1\right]
\end{aligned}
$$

Actual Variable Stiffness Joint Implementations

- For antagonistic actuated robot with exponential force/compression characteristic (Palli et al. 2007)

$$
\begin{aligned}
f_{i}\left(s_{i}\right) & =e^{a s_{i}} \\
g_{i}\left(q_{i}-p_{i}\right) & =b \sinh \left(c\left(q_{i}-p_{i}\right)\right) \\
h_{i}\left(q_{i}-p_{i}, s_{i}\right) & =d\left[\cosh \left(c\left(q_{i}-p_{i}\right)\right) e^{a s_{i}}-1\right]
\end{aligned}
$$

- If transmission elements with quadratic force/compression characteristic are considered (Migliore et al. 2005)

$$
\begin{aligned}
f_{i}\left(s_{i}\right) & =a_{1} s_{i}+a_{2} \\
g_{i}\left(q_{i}-p_{i}\right) & =q_{i}-p_{i} \\
h_{i}\left(q_{i}-p_{i}, s_{i}\right) & =b_{1} s_{i}^{2}+b_{2}\left(q_{i}-p_{i}\right)^{2}
\end{aligned}
$$

Actual Variable Stiffness Joint Implementations

- For antagonistic actuated robot with exponential force/compression characteristic (Palli et al. 2007)

$$
\begin{aligned}
f_{i}\left(s_{i}\right) & =e^{a s_{i}} \\
g_{i}\left(q_{i}-p_{i}\right) & =b \sinh \left(c\left(q_{i}-p_{i}\right)\right) \\
h_{i}\left(q_{i}-p_{i}, s_{i}\right) & =d\left[\cosh \left(c\left(q_{i}-p_{i}\right)\right) e^{a s_{i}}-1\right]
\end{aligned}
$$

- If transmission elements with quadratic force/compression characteristic are considered (Migliore et al. 2005)

$$
\begin{aligned}
f_{i}\left(s_{i}\right) & =a_{1} s_{i}+a_{2} \\
g_{i}\left(q_{i}-p_{i}\right) & =q_{i}-p_{i} \\
h_{i}\left(q_{i}-p_{i}, s_{i}\right) & =b_{1} s_{i}^{2}+b_{2}\left(q_{i}-p_{i}\right)^{2}
\end{aligned}
$$

- For the variable stiffness actuation joint (VSA), using a third-order polynomial approximation of the transmission model (Boccadamo, Bicchi et al. 2006)

$$
\begin{aligned}
f_{i}\left(s_{i}\right) & =a_{1} s_{i}^{2}+a_{2} s_{i}+a_{3} \\
g_{i}\left(q_{i}-p_{i}\right) & =q_{i}-p_{i} \\
h_{i}\left(q_{i}-p_{i}, s_{i}\right) & =b_{1} s_{i}^{3}+b_{2}\left(q_{i}-p_{i}\right)^{2} s_{i}+b_{3} s_{i}
\end{aligned}
$$

Assumptions

- The actuators have uniform mass distribution and center of mass on the rotation axis
- The rotor kinetic energy is due only to their spinning angular velocity
- Each joint is independently actuated by 2 motors in an antagonistic configuration (fully antagonistic kinematic chain)
- Transmission elements with static force-compression characteristic are considered
- No unmodeled external forces are considered

State reconstruction

- All the state variables are known (full state feedback)

Gianluca Palli (University of Bologna)

State Reconstruction

The whole state of the system can be reconstructed by means of:

- State Observers
- Increase the complexity of the system
- Parameters adaptation is needed
- Require a measure (or a estimation) of the external forces
- Filtering of position information
- Generates noisy velocity signals
- High-speed acquition and computation system
- Tachometers
- Increase costs
- Difficulties due to the integration into the system

Assumptions

- The actuators have uniform mass distribution and center of mass on the rotation axis
- The rotor kinetic energy is due only to their spinning angular velocity
- Each joint is independently actuated by 2 motors in an antagonistic configuration (fully antagonistic kinematic chain)
- Transmission elements with static force-compression characteristic are considered

Disturbance compensation

- No unmodeled external forces are considered

State reconstruction

- All the state variables are known (full state feedback)

Disturbance decoupling problem

- The vector relative degrees of the outputs with respect to the input w is:

$$
\begin{aligned}
& L_{d} q=0_{N \times N} \quad, \quad L_{d} F(s)=\quad 0_{N \times N} \\
& L_{d} L_{f} q=M(q)^{-1} \quad, \quad L_{d} L_{f} F(s)=M(q)^{-1} \frac{\partial g(q-p)}{\partial q}
\end{aligned}
$$

- The disturbance decoupling problem can't be solved
- The joint positions can't be decoupled from the disturb ance - The external load can be compensated only in steady state conditions

Disturbance decoupling problem

- The vector relative degrees of the outputs with respect to the input w is:

$$
\begin{aligned}
& L_{d} q=0_{N \times N} \quad, \quad L_{d} F(s)=\quad 0_{N \times N} \\
& L_{d} L_{f} q=M(q)^{-1} \quad, \quad L_{d} L_{f} F(s)=M(q)^{-1} \frac{\partial g(q-p)}{\partial q}
\end{aligned}
$$

- The disturbance decoupling problem can't be solved
- The joint positions can't be decoupled from the disturbance
- The effects of the disturbance on the joint stiffnesses can be compensated

Disturbance decoupling problem

- The vector relative degrees of the outputs with respect to the input w is:

$$
\begin{aligned}
& L_{d} q=0_{N \times N} \quad, \quad L_{d} F(s)=\quad 0_{N \times N} \\
& L_{d} L_{f} q=M(q)^{-1} \quad, \quad L_{d} L_{f} F(s)=M(q)^{-1} \frac{\partial g(q-p)}{\partial q}
\end{aligned}
$$

- The disturbance decoupling problem can't be solved
- The joint positions can't be decoupled from the disturbance
- The external load can be compensated only in steady state conditions

Disturbance decoupling problem

- The vector relative degrees of the outputs with respect to the input w is:

$$
\begin{aligned}
& L_{d} q=0_{N \times N} \quad, \quad L_{d} F(s)=\quad 0_{N \times N} \\
& L_{d} L_{f} q=M(q)^{-1} \quad, \quad L_{d} L_{f} F(s)=M(q)^{-1} \frac{\partial g(q-p)}{\partial q}
\end{aligned}
$$

- The disturbance decoupling problem can't be solved
- The joint positions can't be decoupled from the disturbance
- The external load can be compensated only in steady state conditions
- The effects of the disturbance on the joint stiffnesses can be compensated

External load estimation

- The dynamic equation of the robot manipulator can be rewritten to take into account for external load

$$
M(q) \ddot{q}+N(q, \dot{q})+\eta_{\alpha}-\eta_{\beta}=\tau_{e x t}
$$

- Recalling the general property

External load estimation

- The dynamic equation of the robot manipulator can be rewritten to take into account for external load

$$
M(q) \ddot{q}+N(q, \dot{q})+\eta_{\alpha}-\eta_{\beta}=\tau_{e x t}
$$

- The generalized momenta of the robotic arm is:

$$
\begin{aligned}
& p=M(q) \dot{q} \\
& \dot{p}=\dot{M}(q) \dot{q}+M(q) \ddot{q}=\dot{M}(q) \dot{q}-N(q, \dot{q})-\eta_{\alpha}+\eta_{\beta}+\tau_{e x t}
\end{aligned}
$$

- Recalling the general property

External load estimation

- The dynamic equation of the robot manipulator can be rewritten to take into account for external load

$$
M(q) \ddot{q}+N(q, \dot{q})+\eta_{\alpha}-\eta_{\beta}=\tau_{e x t}
$$

- The generalized momenta of the robotic arm is:

$$
\begin{aligned}
& p=M(q) \dot{q} \\
& \dot{p}=\dot{M}(q) \dot{q}+M(q) \ddot{q}=\dot{M}(q) \dot{q}-N(q, \dot{q})-\eta_{\alpha}+\eta_{\beta}+\tau_{\text {ext }}
\end{aligned}
$$

- Recalling the general property

$$
q^{T}[\dot{M}(q)-2 C(q, \dot{q})] q=0 \Rightarrow \dot{M}(q)=C(q, \dot{q})+C^{T}(q, \dot{q})
$$

External load estimation

- The dynamic equation of the robot manipulator can be rewritten to take into account for external load

$$
M(q) \ddot{q}+N(q, \dot{q})+\eta_{\alpha}-\eta_{\beta}=\tau_{e x t}
$$

- The generalized momenta of the robotic arm is:

$$
\begin{aligned}
& p=M(q) \dot{q} \\
& \dot{p}=\dot{M}(q) \dot{q}+M(q) \ddot{q}=\dot{M}(q) \dot{q}-N(q, \dot{q})-\eta_{\alpha}+\eta_{\beta}+\tau_{\text {ext }}
\end{aligned}
$$

- Recalling the general property

$$
q^{T}[\dot{M}(q)-2 C(q, \dot{q})] q=0 \Rightarrow \dot{M}(q)=C(q, \dot{q})+C^{T}(q, \dot{q})
$$

we obtain

$$
\begin{gathered}
\dot{p}=-C^{T}(q, \dot{q}) \dot{q}-D \dot{q}-g(q)-\eta_{\alpha}+\eta_{\beta}+\tau_{\text {ext }}=\bar{N}(q, \dot{q})-\tau_{q}+\tau_{\text {ext }} \\
\bar{N}(q, \dot{q})=-C^{T}(q, \dot{q}) \dot{q}-D \dot{q}-g(q), \quad \eta_{\alpha}-\eta_{\beta}=\tau_{q}
\end{gathered}
$$

External load estimation

- Defining the external load estimation as:

$$
\hat{\tau}_{e x t}=L\left[\int\left(\tau_{q}-\bar{N}(q, \dot{q})-\hat{\tau}_{e x t}\right) d t+p\right]
$$

whit positive defined (diagonal) L, the torque extimation dynamic is:

$$
\dot{\hat{\tau}}_{e x t}=-L \hat{\tau}_{e x t}+L \tau_{e x t}
$$

- A generalized momenta observer can be defined as:

External load estimation

- Defining the external load estimation as:

$$
\hat{\tau}_{e x t}=L\left[\int\left(\tau_{q}-\bar{N}(q, \dot{q})-\hat{\tau}_{e x t}\right) d t+p\right]
$$

whit positive defined (diagonal) L, the torque extimation dynamic is:

$$
\dot{\hat{\tau}}_{e x t}=-L \hat{\tau}_{e x t}+L \tau_{e x t}
$$

- It is possible to define the transfer function between the real and the observed external torques:

$$
\hat{\tau}_{e x t_{i}}(s)=\frac{L_{i}}{s+L_{i}} \tau_{e x t_{i}}(s)
$$

- A generalized momenta observer can be defined as:

External load estimation

- Defining the external load estimation as:

$$
\hat{\tau}_{e x t}=L\left[\int\left(\tau_{q}-\bar{N}(q, \dot{q})-\hat{\tau}_{e x t}\right) d t+p\right]
$$

whit positive defined (diagonal) L, the torque extimation dynamic is:

$$
\dot{\hat{\tau}}_{e x t}=-L \hat{\tau}_{e x t}+L \tau_{e x t}
$$

- It is possible to define the transfer function between the real and the observed external torques:

$$
\hat{\tau}_{\text {ext }}^{i}(s)=\frac{L_{i}}{s+L_{i}} \tau_{\text {ext }}^{i}(s)
$$

- A generalized momenta observer can be defined as:

$$
\begin{aligned}
\dot{\hat{p}} & =\bar{N}(q, \dot{q})-\tau_{q}+L(p-\hat{p}) \\
\hat{\tau}_{\text {ext }} & =L(p-\hat{p})
\end{aligned}
$$

Assumptions

- The actuators have uniform mass distribution and center of mass on the rotation axis
- The rotor kinetic energy is due only to their spinning angular velocity
- Each joint is independently actuated by 2 motors in an antagonistic configuration (fully antagonistic kinematic chain)

Visco-elastic transmission elements

- Transmission elements with static force-compression characteristic are considered

Disturbance compensation

- No unmodeled external forces are considered

State reconstruction

- All the state variables are known (full state feedback)

Feedback linearization problem

The sum of the vector relative degrees is not equal to the state dimension

The full state linearization problem can't be solved

Feedback linearization problem

The sum of the vector relative degrees is not equal to the state dimension

The full state linearization problem can't be solved

Feedback linearization problem

The sum of the vector relative degrees is not equal to the state dimension

The full state linearization problem can't be solved

Only input-output linearization can be achieved via static (critical) or dynamic (regular) feedback

Assumptions

- The actuators have uniform mass distribution and center of mass on the rotation axis

Kinetic energy coupling

- The rotor kinetic energy is due only to their spinning angular velocity
- Each joint is independently actuated by 2 motors in an antagonistic configuration (fully antagonistic kinematic chain)

Visco-elastic transmission elements

- Transmission elements with static force-compression characteristic are considered

Disturbance compensation

- No unmodeled external forces are considered

State reconstruction

- All the state variables are known (full state feedback)

Feedback linearization of the complete model

- Complete dynamic model of the antagonistic actuated arm:

$$
\begin{aligned}
M(q) \ddot{q}+H_{\alpha} \ddot{\theta}_{\alpha}+H_{\beta} \ddot{\theta}_{\beta}+N(q, \dot{q})+\eta_{\alpha}-\eta_{\beta} & =\tau_{e x t} \\
B \ddot{\theta}_{\alpha}+H_{\alpha}^{T} \ddot{q}+\eta_{\alpha} & =\tau_{\theta_{\alpha}} \\
B \ddot{\theta}_{\beta}+H_{\beta}^{T} \ddot{q}+\eta_{\beta} & =\tau_{\theta_{\beta}}
\end{aligned}
$$

with upper-triangular matrices H_{α} and H_{β}

Feedback linearization of the complete model

- Complete dynamic model of the antagonistic actuated arm:

$$
\begin{aligned}
M(q) \ddot{q}+H_{\alpha} \ddot{\theta}_{\alpha}+H_{\beta} \ddot{\theta}_{\beta}+N(q, \dot{q})+\eta_{\alpha}-\eta_{\beta} & =\tau_{e x t} \\
B \ddot{\theta}_{\alpha}+H_{\alpha}^{T} \ddot{q}+\eta_{\alpha} & =\tau_{\theta_{\alpha}} \\
B \ddot{\theta}_{\beta}+H_{\beta}^{T} \ddot{q}+\eta_{\beta} & =\tau_{\theta_{\beta}}
\end{aligned}
$$

with upper-triangular matrices H_{α} and H_{β}

- Full feedback linearization can be achieved via dynamic state feedback
\square

Feedback linearization of the complete model

- Complete dynamic model of the antagonistic actuated arm:

$$
\begin{aligned}
M(q) \ddot{q}+H_{\alpha} \ddot{\theta}_{\alpha}+H_{\beta} \ddot{\theta}_{\beta}+N(q, \dot{q})+\eta_{\alpha}-\eta_{\beta} & =\tau_{e x t} \\
B \ddot{\theta}_{\alpha}+H_{\alpha}^{T} \ddot{q}+\eta_{\alpha} & =\tau_{\theta_{\alpha}} \\
B \ddot{\theta}_{\beta}+H_{\beta}^{T} \ddot{q}+\eta_{\beta} & =\tau_{\theta_{\beta}}
\end{aligned}
$$

with upper-triangular matrices H_{α} and H_{β}

- Full feedback linearization can be achieved via dynamic state feedback
- A suitable dynamic extension algorithm can be used (similar to the case of linear elastic joints)

Assumptions

- The actuators have uniform mass distribution and center of mass on the rotation axis

Kinetic energy coupling

- The rotor kinetic energy is due only to their spinning angular velocity

Analysis of different configurations

- Each joint is independently actuated by 2 motors in an antagonistic configuration (fully antagonistic kinematic chain)

Visco-elastic transmission elements

- Transmission elements with static force-compression characteristic are considered

Disturbance compensation

- No unmodeled external forces are considered

State reconstruction

d All the state variables are known (full state feedback)

Conclusions

- The feedforward control action needed to perform a desired motion profile has been computed
- The feedback linearization problem with decoupled control has been solved taking into account different stiffness variation models
- The simultaneous asymptotic trajectory tracking of both the position and the stiffness has been achieved by means of an outer linear control loop
- These results can be easily extended to the mixed rigid/elastic case
- The proposed approach has been used to model several actual implementation of variable stiffness devices

Conclusions

- The feedforward control action needed to perform a desired motion profile has been computed
- The feedback linearization problem with decoupled control has been solved taking into account different stiffness variation models
- The simultaneous asymptotic trajectory tracking of both the position and the stiffness has been achieved by means of an outer linear control loop
- These results can be easily extended to the mixed rigid/elastic case
- The proposed approach has been used to model several actual implementation of variable stiffness devices

Questions?

Thank you for your attention...

