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Why Variable Stiffness Actuation?

Improves the safety of the robotic device with respect to:

interaction with unknown environment

unexpected collisions

limited controller and sensors bandwidth

actuator failures

A. Bicchi and G. Tonietti. “Fast and soft arm tactics: Dealing with the
safety-performance trade-off in robot arms design and control”. IEEE Robotics
and Automation Magazine, 2004.

G. Tonietti, R. Schiavi, and A. Bicchi. “Design and control of a variable stiffness
actuator for safe and fast physical human/robot interaction”. In Proc. IEEE Int.
Conf. on Robotics and Automation, 2005.
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Why Variable Stiffness Actuation?

Improves the safety of the robotic device with respect to:

interaction with unknown environment

unexpected collisions

limited controller and sensors bandwidth

actuator failures

Drawbacks of the Variable Stiffness Actuation:

A more complex mechanical design

The number of actuators increases

Non-linear transmission elements must be used

High non-linear and cross coupled dynamic model

Gianluca Palli (University of Bologna) Human-Friendly Robotics, Napoli, IT October 24, 2008 3 / 31



Dynamic Model of Robots with Variable Joint Stiffness

Robot dynamic equations

M(q) q̈ + N(q, q̇) + K (q − θ) = 0

B θ̈ + K (θ − q) = τ

The diagonal joint stiffness matrix is considered time-variant

K = diag{k1, . . . , kn}, K = K (t) > 0

Alternative notation

K (q − θ) = Φk , Φ = diag{(q1 − θ1), . . . , (qn − θn)}, k = [k1, . . . , kn]
T

1 The joint stiffness k can be directly changed by means of a (suitably scaled)
additional command τk

k = τk

2 The variation of joint stiffness may be modeled as a second-order dynamic
system

k̈ = φ(x , k , k̇ , τk)
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Dynamic Model of Robots with Variable Joint Stiffness

The input u and the robot state x are:

u =

[

τ

τk

]

∈ R
2n, x =

[

qT q̇T θT θ̇T
]T

∈ R
4n

In the case of second-order stiffness variation model, the state vector of the
robot becomes:

xe =
[

qT q̇T θT θ̇T kT k̇T
]T

∈ R
6n

In all cases, the objective will be to simultaneously control the following set
of outputs

y =

[

q

k

]

∈ R
2n

namely the link positions (and thus, through the robot direct kinematics, the
end-effector pose) and the joint stiffness
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Dynamic Inversion

The motion is specified in terms of a desired smooth position trajectory
q = qd(t) and joint stiffness matrix K = Kd(t) (or, equivalently, of the
vector k = kd(t))

Assuming k = τk , we have simply τk,d = kd(t) and only the computation of
the nominal motor torque τd is of actual interest

The robot dynamic equation is differentiated twice with respect to time

M(q) q[3] + Ṁ(q) q̈ + Ṅ(q, q̇) + K̇ (q − θ) + K (q̇ − θ̇) = 0

and

M(q) q[4] + 2 Ṁ(q) q[3] + M̈(q) q̈ + N̈(q, q̇) +

+ K (q̈ − θ̈) + 2 K̇ (q̇ − θ̇) + K̈ (q − θ) = 0
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Dynamic Inversion

Reference motor position along the desired robot trajectory

θd = qd + K−1
d (M(qd)q̈d + N(qd , q̇d )) .

Reference motor velocity

θ̇d = q̇d + K−1
d

(

M(qd)q
[3]
d + Ṁ(qd)q̈d + Ṅ(qd , q̇d)

− K̇dK−1
d (M(qd )q̈d + N(qd , q̇d))

)

.

Actuators dynamic model inversion

θ̈ = B−1 [τ − K (θ − q)] ,
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Actuator Torques Computation

Reference motor torque along the desired trajectory

τd = M(qd)q̈d + N(qd , q̇d) + BK−1
d αd

(

qd , q̇d , q̈d , q
[3]
d , q

[4]
d , kd , k̇d , k̈d

)

Some minimal smoothness requirements are imposed

qd(t) ∈ C
4

and kd(t) ∈ C
2

Discontinuous models of friction or actuator dead-zones on the motor side
can be considered without problems

Discontinuous phenomena acting on the link side should be approximated by
a smooth model

The command torques τd can be kept within the saturation limits by a
suitable time scaling of the manipulator trajectory
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Second-Order Stiffness Model

The dynamics of the joint stiffness k is written as a generic nonlinear
function of the system configuration

k̈ = β(q, θ) + γ(q, θ) τk

Double differentiation wrt time of the robot dynamics

M q[4] + 2 Ṁ q[3] + M̈ q̈ + N̈

+ K
(

q̈ − B−1 [τ − K (θ − q)]
)

+ 2 K̇ (q̇ − θ̇) + Φ (β + γ τk ) = 0

where both the inputs τ and τk appear

Important notes

q̈ = q̈(q̇, q), q[3] = q[3](q̇, q), q[4] = q[4](q̇, q)
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Feedback Linearized Model
The overall system can be written as

[

q[4]

k̈

]

=

[

α(xe)
β(q, θ)

]

+ Q(xe)

[

τ

τk

]

where Q(xe) is the decoupling matrix:

Q(xe) =

[

M−1KB−1 M−1Φ γ(q, θ)
0n×n γ(q, θ)

]

Non-Singularity Conditions

ki > 0
γi(qi , θi) 6= 0

}

∀ i = 1, . . . , n

By applying the static state feedback
[

τ

τk

]

= Q−1(xe)

(

−

[

α(xe)
β(q, θ)

]

+

[

vq

vk

])

the full feedback linearized model is obtained
[

q[4]

k̈

]

=

[

vq

vk

]
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Dynamic Feedback Linearization

Considering the very simple stiffness variation model

ki = τki

the dynamics of the system becomes:

[

q̈

k

]

=

[

−M−1N

0n×n

]

+

[

0n×n −M−1Φ
0n×n In×n

] [

τ

τk

]

Problem

The decoupling matrix of the system is structurally singular

Solution

Dynamic extension on the input τk is needed

τ̈k = uk
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Feedback Linearized Model

The system dynamics can be then rewritten as:

[

q[4]

k̈

]

=

[

α(xe)
0n×n

]

+ Q(xe)

[

τ

uk

]

where

Q(xe) =

[

M−1KB−1 −M−1Φ
0n×n In×n

]

By defining the control law:
[

τ

uk

]

= Q−1(xe)

(

−

[

α(xe)
0n×n

]

+

[

vq

vk

])

we obtain the feedback linearized model:
[

q[4]

k̈

]

=

[

vq

vk

]
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Control Strategy

A static state feedback in the state space of the feedback linearized system is
used:

vc =

[

vq

vk

]

, vf =

[

q
[4]
d

k̈d

]

zd =
[

qT
d q̇T

d q̈T
d q

[3]T

d kT
d k̇T

d

]T

The state vector z of the feedback linearized system and a suitable nonlinear
coordinate transformation are defined:

z =
h

qT q̇T q̈T q[3]T kT k̇T

iT

= Ψ(xe) =
2

6

6

6

6

6

6

6

4

q

q̇

−M−1 [N + Φ k]

−M−1
h

−Ṁ M−1 [N + Φ k] + Ṅ + Φ k̇ + Φ̇ k
i

k

k̇

3

7

7

7

7

7

7

7

5
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Control System Architecture

xe
[qT q̇T θT θ̇T ]T

z

τkτ̇k

uk

∫ ∫

vc
zd

vf

+ ++

−

q

k

τ

Ψ

P
Feedback

Linearization
Robotic

Manipulator

Setpoint
Generator Dynamic Extension

The controller can be then rewritten as:

vc = vf + P[zd − z] = vf + P[zd − Ψ(xe)]

where

P =

[

Pq0 Pq1 Pq2 Pq3 0n×n 0n×n

0n×n 0n×n 0n×n 0n×n Pk0 Pk1

]
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Simulation of a two-link Planar Manipulator
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Application to Antagonistic Variable Stiffness Devices
Dynamic model of an antagonistic variable stiffness robot

M(q) q̈ + N(q, q̇) + ηα − ηβ = 0

B θ̈α + ηα = τα

B θ̈β + ηβ = τβ

By introducing the auxiliary variables

p =
θα−θβ

2 positions of the generalized joint actuators

s = θα + θβ state of the virtual stiffness actuators

F (s) generalized joint stiffness matrix (diagonal)

g(q − p)
strictly monotonically increasing functions
(generalized joint displacements)

h(q − p, s) such that hi(0, 0) = 0

τ = τα − τβ , τk = τα + τβ

it is possible to write

M(q) q̈ + N(q, q̇) + F (s)g(q − p) = 0

2Bp̈ + F (s)g(p − q) = τ

Bs̈ + h(q − p, s) = τk
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Some Considerations on the Antagonistic Model

The system is composed by 3N rigid bodies (N links and 2N actuators)

The state space dimension is 6N (position and velocity of each rigid body)

The input dimension is 2N (actuator torques)

The output dimension is 3N (joint and actuator positions)

y has dimension 2N (position and stiffness of each joint)

The system has 2N DOF (N positioning DOF and N joint stiffnesses DOF)
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Assumptions

The actuators have uniform mass distribution and center of mass on the
rotation axis

The rotor kinetic energy is due only to their spinning angular velocity

Each joint is independently actuated by 2 motors in an antagonistic
configuration (fully antagonistic kinematic chain)

Transmission elements with static force-compression characteristic are
considered

No unmodeled external forces are considered

All the state variables are known (full state feedback)
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Actual Variable Stiffness Joint Implementations
For antagonistic actuated robot with exponential force/compression
characteristic (Palli et al. 2007)

fi (si ) = ea si

gi(qi − pi ) = b sinh
(

c (qi − pi )
)

hi (qi − pi , si ) = d
[

cosh
(

c (qi − pi )
)

ea si − 1
]

If transmission elements with quadratic force/compression characteristic are
considered (Migliore et al. 2005)

fi(si ) = a1 si + a2

gi(qi − pi) = qi − pi

hi(qi − pi , si) = b1 s2
i + b2 (qi − pi)

2

For the variable stiffness actuation joint (VSA), using a third-order polynomial
approximation of the transmission model (Boccadamo, Bicchi et al. 2006)

fi (si ) = a1 s2
i + a2 si + a3

gi(qi − pi) = qi − pi

hi(qi − pi , si) = b1 s3
i + b2 (qi − pi)

2si + b3 si
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Assumptions

The actuators have uniform mass distribution and center of mass on the
rotation axis

The rotor kinetic energy is due only to their spinning angular velocity

Each joint is independently actuated by 2 motors in an antagonistic
configuration (fully antagonistic kinematic chain)

Transmission elements with static force-compression characteristic are
considered

No unmodeled external forces are considered

State reconstruction

All the state variables are known (full state feedback)
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State Reconstruction

The whole state of the system can be reconstructed by means of:

State Observers
◮ Increase the complexity of the system
◮ Parameters adaptation is needed
◮ Require a measure (or a estimation) of the external forces

Filtering of position information
◮ Generates noisy velocity signals
◮ High-speed acquition and computation system

Tachometers
◮ Increase costs
◮ Difficulties due to the integration into the system
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Assumptions

The actuators have uniform mass distribution and center of mass on the
rotation axis

The rotor kinetic energy is due only to their spinning angular velocity

Each joint is independently actuated by 2 motors in an antagonistic
configuration (fully antagonistic kinematic chain)

Transmission elements with static force-compression characteristic are
considered

Disturbance compensation

No unmodeled external forces are considered

State reconstruction

All the state variables are known (full state feedback)
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Disturbance decoupling problem

The vector relative degrees of the outputs with respect to the input w is:

Ldq = 0N×N , LdF (s) = 0N×N

LdLf q = M(q)−1 , LdLf F (s) = M(q)−1 ∂g(q−p)
∂q

The disturbance decoupling problem can’t be solved

The joint positions can’t be decoupled from the disturbance
◮ The external load can be compensated only in steady state conditions

The effects of the disturbance on the joint stiffnesses can be compensated
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External load estimation

The dynamic equation of the robot manipulator can be rewritten to take into
account for external load

M(q)q̈ + N(q, q̇) + ηα − ηβ = τext

The generalized momenta of the robotic arm is:

p = M(q)q̇

ṗ = Ṁ(q)q̇ + M(q)q̈ = Ṁ(q)q̇ − N(q, q̇) − ηα + ηβ + τext

Recalling the general property

qT [Ṁ(q) − 2C (q, q̇)]q = 0 ⇒ Ṁ(q) = C (q, q̇) + CT (q, q̇)

we obtain

ṗ = −CT (q, q̇)q̇ − Dq̇ − g(q) − ηα + ηβ + τext = N̄(q, q̇) − τq + τext

N̄(q, q̇) = −CT (q, q̇)q̇ − Dq̇ − g(q) , ηα − ηβ = τq
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qT [Ṁ(q) − 2C (q, q̇)]q = 0 ⇒ Ṁ(q) = C (q, q̇) + CT (q, q̇)

we obtain
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External load estimation

Defining the external load estimation as:

τ̂ext = L

[
∫

(

τq − N̄(q, q̇) − τ̂ext

)

dt + p

]

whit positive defined (diagonal) L, the torque extimation dynamic is:

˙̂τext = −Lτ̂ext + Lτext

It is possible to define the transfer function between the real and the
observed external torques:

τ̂ext i
(s) =

Li

s + Li

τext i
(s)

A generalized momenta observer can be defined as:

˙̂p = N̄(q, q̇) − τq + L(p − p̂)

τ̂ext = L(p − p̂)
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Assumptions

The actuators have uniform mass distribution and center of mass on the
rotation axis

The rotor kinetic energy is due only to their spinning angular velocity

Each joint is independently actuated by 2 motors in an antagonistic
configuration (fully antagonistic kinematic chain)

Visco-elastic transmission elements

Transmission elements with static force-compression characteristic are considered

Disturbance compensation

No unmodeled external forces are considered

State reconstruction

All the state variables are known (full state feedback)
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Feedback linearization problem

The sum of the vector relative degrees is not equal to the state dimension

The full state linearization problem can’t be solved

Only input-output linearization can be achieved via static (critical) or dynamic
(regular) feedback
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Assumptions

The actuators have uniform mass distribution and center of mass on the
rotation axis

Kinetic energy coupling

The rotor kinetic energy is due only to their spinning angular velocity

Each joint is independently actuated by 2 motors in an antagonistic
configuration (fully antagonistic kinematic chain)

Visco-elastic transmission elements

Transmission elements with static force-compression characteristic are considered

Disturbance compensation

No unmodeled external forces are considered

State reconstruction
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Feedback linearization of the complete model

Complete dynamic model of the antagonistic actuated arm:

M(q)q̈ + Hα θ̈α + Hβ θ̈β + N(q, q̇) + ηα − ηβ = τext

B θ̈α + HT
α q̈ + ηα = τθα

B θ̈β + HT
β q̈ + ηβ = τθβ

with upper-triangular matrices Hα and Hβ

Full feedback linearization can be achieved via dynamic state feedback

A suitable dynamic extension algorithm can be used (similar to the case of
linear elastic joints)
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Assumptions
The actuators have uniform mass distribution and center of mass on the
rotation axis

Kinetic energy coupling

The rotor kinetic energy is due only to their spinning angular velocity

Analysis of different configurations

Each joint is independently actuated by 2 motors in an antagonistic configuration
(fully antagonistic kinematic chain)

Visco-elastic transmission elements

Transmission elements with static force-compression characteristic are considered

Disturbance compensation

No unmodeled external forces are considered

State reconstruction

All the state variables are known (full state feedback)
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Conclusions

The feedforward control action needed to perform a desired motion profile
has been computed

The feedback linearization problem with decoupled control has been solved
taking into account different stiffness variation models

The simultaneous asymptotic trajectory tracking of both the position and the
stiffness has been achieved by means of an outer linear control loop

These results can be easily extended to the mixed rigid/elastic case

The proposed approach has been used to model several actual
implementation of variable stiffness devices

Questions?
Thank you for your attention...
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