Probabilistic Robotics:

Probabilistic Planning and
MDPs
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Planning: Classical Situation
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MDP-Style Planning

heaven hell
(Al v
TTTT ‘ﬂ
i v\‘\'\v\\vv\\ et
AR
A X
| tha » World stochastic
* Policy N - State observable
* Universal Plan ©
 Navigation function t 1
t1y
TTT
th
e
AR AR

[Koditschek 87, Barto et al. 89]



Stochastic, Partially Observable
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Stochastic, Partially Observable
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Stochastic, Partially Observable
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A Quiz

# states sensors

3 perfect
3 perfect
3 abstract states
3 stochastic
3 none
1-dim  stochastic
continuous
1-dim stochastic
continuous

co-dim stochastic
continuous

actions Size belief space?

deterministic  3:S;, S,, S3

stochastic 3:5;, Sy, S3

deterministic 23-1:S;, S,, S3, S15, S13, S23, S123
deterministic 2-dim continuous: p(S=s;), p(S=s,)
stochastic ~ 2-dim continuous: p(S=s,), p(S=S,)

deterministic co-dim continuous

stochastic co-dim continuous

stochastic aargh!



MDP Planning

m Solution for Planning problem
= Noisy controls
m Perfect perception
m Generates “universal plan” (=policy)



What is the problem?

m Consider a non-deterministic
robot/environment.

m Actions have desired outcome with a
probability less then 1.

m What is the best action for a robot under
this constraint?

m Fxample: a mobile robot does not
exactly perform the desired action.

‘ Uncertainty about performing actions!



Example (1)

+1

Siart

m Bumping to wall “reflects” robot.

m "Reward” for free cells -0.04 (travel
cost).

m What is the best way to reach the cell
labeled with +1 without moving to -1 ?



Example (2)

m Deterministic Transition Model:
move on the shortest path!

+1

Start




Example (3)

m But now consider the non-deterministic
transition model (N/E/ S/ W):

(desired action)
p=0.8

&

- -
p=0.1 p=0.1

m What is now the best way?



Example (4)

+1

Start

m Use a longer path with lower probability to
move to the cell labeled with -1.

m This path has the highest overall utility!



Utility and Policy

m Compute for every state a utility:
"What is the usage (utility) of this state
for the overall task?”

m A Policy is a complete mapping from
states to actions ("In which state should
I perform which action?”).

policy . States — Actions



Markov Decision Problem (MDP)

m Compute the optimal policy in an
accessible, stochastic environment with
known transition model.

Markov Property:

m The transition probabilities depend only
the current state and not on the history
of predecessor states.

Not every decision
problem is a MDP.



Markov Decision Process (MDP)
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Markov Decision Process (MDP)

A MDP is a 4-tuple (S,A,P,,R,)

Given:

States x € S

Actions u € A

Transition probabilities P,(x',x) = p(x'|u, x)
Reward / payoff function R, (x) = r(u,x)

o Wanted:
e Policy n(x) that maximizes the future
expected reward
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Rewards and Policies

m Policy (general case):
o Zy sty —> Y,

m Policy (fully observable case):
T, X —> U

m Expected cumulative payoff:

- _
RT :E ZQ/TI/;H'
| =1 _

m T=1: greedy policy
m T>1: finite horizon case, typically no discount

s T=infty: infinite-horizon case, finite reward if discount < 1
19



Policies contd.

m Expected cumulative payoff of policy:

T
]%’v’ (xt) =L Z 7/ T’?H‘ | ut+r =7 (let+r—lulzt+r—1)
| =l

m Optimal policy:
7 =argmax R’ (x)

m 1-step oﬂptimal policy:
7 (x)=argmax r(x,u)

= Value function of 1-step optimal policy:
/1) =y maxr(x,u)
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2-step Policies
m Optimal policy:

7,0 =argmax [r(xu) + [ V(¢)p(|u, )|
m Value function:

V=ymax [+ (1)l
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T-step Policies
m Optimal policy:

7, () =argmax |r(uu)+ [V, (¢)p(xu, )|

m Value function:

V9 =pmax [+ [V (2)pte] s 2)
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Infinite Horizon

m Optimal policy:

V,(@)=ymax |r0u)+[V,0¢)p(x] 0]
m Bellman equation
m Fix point is optimal policy

m Necessary and sufficient condition
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Value Iteration
m for all x do
V(x) i

m endfor

m repeat until convergence
m forall x do

V(x) <ymax {r(x, u) +j V(x' (x| u, x)dx"

= endfor
m endrepeat

7r(x)=argmax {r(x, u)+ I V(x' )p(X | u, x)d)é‘
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The Value Iteration Algorithm

function VALUE-ITERATION(M, R) returns a utility function
inputs: M, a transition model
R. a reward function on states
local variables: U, utility function, initially identical to R
U', utility function, initially identical to R

repeat
Ue—U
for each state i do
U'[i] — R[] + max, ZJ. M;; Ulj]
end

until CLOSE-ENOUGH(U, U")
t U a — - :
return M’ij — p(SJ |a, S;)

U(j) = V(sj)




Value Iteration for Motion
Planning
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Another Example

Map Value Function and Plan



Another Example

Map Value Function and Plan



Convergence “close-enough”

m Different possibilities to detect
convergence:

m RMS error — root mean square error
m Policy Loss



Convergence-Criteria: RMS

. |18
RMS = — . D) — U (7))?
X1 \i;(U() U'(4))

m CLOSE-ENOUGH (U,U’) in the algorithm can
be formulated by:

RMS(U,U") < e



Example: RMS-Convergence
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Value Iteration Example

m Calculate utility of the center cell

U1 (i) = R(i) + mngM;; U (j)
J

(desired action=North) u=10
p=0.8
& u=5 | r=1 | u=-8
=i} fie-- _
p=0 .1 p=0.1 u=1
Transition Model State Space

(u=utility, r=reward)



Value Iteration Example

Up+1(7) = R(i) + max Y M5 - Ui(5)
j

reward 4+ max{
0.1-140.8-540.1-10 (),
0.1-54+0.8-10+4+0.1--8 (1),
0.1-10408--840.1-1 (—),
0.1--84+08-14+0.1-5 (|)}
1 + max{5.1(+),7.7 (1),
—5.3(—),0.5(1)}

147.7

8.7




From Utilities to Policies

m Computes the optimal utility function.

m Optimal Policy can easily be computed
using the optimal utility values:

policy™ (i) = arggwaxZij - U™ (4)
J

m Value Iteration is an optimal solution to
the Markov Decision Problem!



Example: Value Iteration

+1

1. The given
environment.



Example: Value Iteration
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Example: Value Iteration

+1

1. The given
environment.

3. Extract optimal

policy.
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2. Calculate Utilities.




Example: Value Iteration

+1 0.81210.868(|0.912] +1

0660( -1

0.705)0.665|0.611]0.388

1. T_he given 2. Calculate Utilities.
environment.

4. Execute actions.

3. Extract optimal
policy.



Example: Value Iteration
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The The optimal
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m (3,2) has higher utility than (2,3). Why
does the polity of (3,3) points to the left?



Example: Value Iteration

0.81210.868(|0.912 +1 — | = | = | .1

0.660( -1 }

0.762

0.705)|0.665|0611]0.388 T - | - | -

The The optimal
Utilities. policy.

m (3,2) has higher utility than (2,3). Why
does the policy of (3,3) points to the left?

m Because the Policy is not the gradient!
Itis: policy™ (i) = argmaxZMf’j -U(9)
Y




Convergence of Policy and Utilities

m In practice: policy converges faster than
the utility values.

m After the relation between the utilities are
correct, the policy often does not change
anymore (because of the argmax).

m s there an algorithm to compute the
optimal policy faster?



Policy Iteration

m Idea for faster convergence of the policy:

1. Start with one policy.

2. Calculate utilities based on the current
policy.

3. Update policy based on policy formula.

4. Repeat Step 2 and 3 until policy is
stable.



The Policy Iteration Algorithm

function POLICY-ITERATION(M, R) returns a policy
inputs: M, a transition model
R, a reward function on states
local variables: U, a utility function, initially identical to R
P, a policy, initially optimal with respectto U

repeat
U — VALUE-DETERMINATION(P, U, M, R)
unchanged? — true
for each state i do .
if max, > M¢ U[j] > Z M Ulj] then
j

P[i] +— arg max, Z M” Ulj]

i Value Determination
unchanged? — fd]qe

end U(s:) = R(s:) + &, PE0U(s))
until unchanged?

return P U'(s,) — R[]+ 5, PIPU(s))



