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Planning: Classical Situation

hellheaven

• World deterministic
• State observable



MDP-Style Planning

hellheaven

• World stochastic
• State observable

[Koditschek 87, Barto et al. 89]

• Policy
• Universal Plan
• Navigation function



Stochastic, Partially Observable
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[Sondik 72] [Littman/Cassandra/Kaelbling 97]
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A Quiz

-dim continuousstochastic1-dim
continuous

stochastic

actions# states size belief space?sensors

3: s1, s2, s3deterministic3 perfect

3: s1, s2, s3stochastic3 perfect

23-1: s1, s2, s3, s12, s13, s23, s123deterministic3 abstract states

deterministic3 stochastic

2-dim continuous: p(S=s1), p(S=s2)stochastic3 none

2-dim continuous: p(S=s1), p(S=s2)

-dim continuousdeterministic1-dim
continuous

stochastic

aargh!stochastic-dim
continuous

stochastic



MDP Planning

 Solution for Planning problem
 Noisy controls
 Perfect perception 
 Generates “universal plan” (=policy)



What is the problem?

 Example: a mobile robot does not 
exactly perform the desired action.

 Consider a non-deterministic 
robot/environment.

 Actions have desired outcome with a 
probability less then 1.

 What is the best action for a robot under 
this constraint?

Uncertainty about performing actions!



Example (1)

 Bumping to wall “reflects”  robot.
 “Reward” for free cells -0.04 (travel 

cost).

 What is the best way to reach the cell 
labeled with +1 without moving to –1 ?



Example (2)

 Deterministic Transition Model:
move on the shortest path!



Example (3)

 But now consider the non-deterministic 
transition model (N / E / S / W):

(desired action)

 What is now the best way?



Example (4)

 Use a longer path with lower probability to 
move to the cell labeled with –1. 

 This path has the highest overall utility!



Utility and Policy

 Compute for every state a utility:
“What is the usage (utility) of this state 
for the overall task?”

 A Policy is a complete mapping from 
states to actions (“In which state should 
I perform which action?”). 



Markov Decision Problem (MDP)

 Compute the optimal policy in an 
accessible, stochastic environment with 
known transition model.  

Markov Property:

 The transition probabilities depend only 
the current state and not on the history 
of predecessor states.

Not every decision 
problem is a MDP.
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Markov Decision Process (MDP)
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Markov Decision Process (MDP)

• A MDP is a 4-tuple 
• Given:
• States 
• Actions 
• Transition probabilities 
• Reward / payoff function 

• Wanted:
• Policy p(x) that maximizes the future 

expected reward
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Rewards and Policies
 Policy (general case):

 Policy (fully observable case):

 Expected cumulative payoff:

 T=1: greedy policy
 T>1: finite horizon case, typically no discount
 T=infty: infinite-horizon case, finite reward if discount < 1
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Policies contd.
 Expected cumulative payoff of policy:

 Optimal policy:

 1-step optimal policy:

 Value function of 1-step optimal policy:
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2-step Policies
 Optimal policy:

 Value function:

  '),|'()'(),(argmax)( 12 dxxuxpxVuxrx
u

p
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u


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T-step Policies
 Optimal policy:

 Value function:

   '),|'()'(),(argmax)( 1 dxxuxpxVuxrx T
u

Tp
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Infinite Horizon

 Optimal policy:

 Bellman equation

 Fix point is optimal policy

 Necessary and sufficient condition

    '),|'()'(),(max)( dxxuxpxVuxrxV
u


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Value Iteration
 for all x do

 endfor

 repeat until convergence
 for all x do

 endfor

 endrepeat

  '),|'()'(ˆ),(max)(ˆ dxxuxpxVuxrxV
u



min)(ˆ rxV 

  '),|'()'(ˆ),(argmax)( dxxuxpxVuxrx
u

p



The Value Iteration Algorithm
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Value Iteration for Motion 
Planning



Another Example

Value Function and PlanMap



Another Example

Value Function and PlanMap



Convergence “close-enough”

 Different possibilities to detect 
convergence:
 RMS error – root mean square error
 Policy Loss
 …



Convergence-Criteria: RMS

 CLOSE-ENOUGH(U,U’) in the algorithm can 
be formulated by:



Example: RMS-Convergence



Value Iteration Example 

 Calculate utility of the center cell

u=10

u=-8u=5

u=1

r=1

(desired action=North)

Transition Model State Space 
(u=utility, r=reward)



Value Iteration Example 

u=10

u=-8u=5

u=1

r=1



From Utilities to Policies

 Computes the optimal utility function.

 Optimal Policy can easily be computed 
using the optimal utility values:

 Value Iteration is an optimal solution to 
the Markov Decision Problem!



Example: Value Iteration

1. The given 
environment.



Example: Value Iteration

1. The given 
environment.

2. Calculate Utilities.



Example: Value Iteration

1. The given 
environment.

2. Calculate Utilities.

3. Extract optimal 
policy.



Example: Value Iteration

1. The given 
environment.

2. Calculate Utilities.

4. Execute actions.3. Extract optimal 
policy.



Example: Value Iteration

The 
Utilities.

The optimal 
policy.

 (3,2) has higher utility than (2,3). Why 
does the polity of (3,3) points to the left?



Example: Value Iteration

The 
Utilities.

The optimal 
policy.

 (3,2) has higher utility than (2,3). Why 
does the policy of (3,3) points to the left?

 Because the Policy is not the gradient! 
It is:



Convergence of Policy and Utilities

 In practice: policy converges faster than 
the utility values. 

 After the relation between the utilities are 
correct, the policy often does not change 
anymore (because of the argmax).

 Is there an algorithm to compute the 
optimal policy faster?



Policy Iteration

 Idea for faster convergence of the policy:

1. Start with one policy.
2. Calculate utilities based on the current 

policy.
3. Update policy based on policy formula.
4. Repeat Step 2 and 3 until policy is 

stable.



The Policy Iteration Algorithm

Value Determination


