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POMDPs

 MDPs policy: to find a mapping from 
states to actions

 POMDPs policy: to find a mapping 
from probability distributions (over 
states) to actions. 
 belief state: a probability distribution 

over states 
 belief space: the entire probability 

space, infinite



POMDPs

 Partially Observable MDPs

45
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POMDPs
 In POMDPs we apply the very same idea as in 

MDPs.

 Since the state is not observable, the agent has 
to make its decisions based on the belief state 
which is a posterior distribution over states.

 Let b be the belief of the agent about the state 
under consideration.

 POMDPs compute a value function over belief 
space:
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Problems

 Each belief is a probability distribution, thus, 
each value in a POMDP is a function of an 
entire probability distribution.

 This is problematic, since probability 
distributions are continuous.

 Additionally, we have to deal with the huge 
complexity of belief spaces.

 For finite worlds with finite state, action, and 
measurement spaces and finite horizons, 
however, we can effectively represent the 
value functions by piecewise linear 
functions. 
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A two state POMDP 

 represent the belief state with a single 
number p.

 the entire space of belief states can be 
represented as a line segment. 

belief space for a 2 state POMDP 
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belief state updating
 finite number of possible next belief states, 

given a belief state
 a finite number of actions 
 a finite number of observations 

 b’ = T(b’| b, a, z). Given a and z, b’ is fully 
determined.
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 the process of maintaining the belief 
state is Markovian: the next belief 
state depends only on the current 
belief state (and the current action 
and observation) 

 we are now back to solving a MDP 
policy problem with some adaptations
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 continuous space: 
value function is 
some arbitrary 
function 
 b: belief space 
 V(b): value function

 Problem: how we 
can easily 
represent this 
value function? Value function over 

belief space 
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Fortunately, the finite horizon value 
function is piecewise linear and convex 
(PWLC) for every horizon length.

Sample 
PWLC 
function



53

An Illustrative Example
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The Parameters of the Example
 The actions u1 and u2 are terminal actions.
 The action u3 is a sensing action that potentially 

leads to a state transition.
 The horizon is finite and =1.
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Payoff in POMDPs

 In MDPs, the payoff (or return) 
depended on the state of the system.

 In POMDPs, however, the true state is 
not exactly known.

 Therefore, we compute the expected 
payoff by integrating over all states: 
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Payoffs in Our Example (1)

 If we are totally certain that we are in state x1 and 
execute action u1, we receive a reward of -100

 If, on the other hand, we definitely know that we 
are in x2 and execute u1, the reward is +100.

 In between it is the linear combination of the 
extreme values weighted by the probabilities
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Payoffs in Our Example (2)
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The Resulting Policy for T=1

 Given we have a finite POMDP with 
T=1, we would use V1(b) to 
determine the optimal policy.

 In our example, the optimal policy 
for T=1 is

 This is the upper thick graph in the 
diagram.
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Piecewise Linearity, Convexity

 The resulting value function V1(b) is 
the maximum of the three functions 
at each point

 It is piecewise linear and convex.
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Pruning

 If we carefully consider V1(b), we see 
that only the first two components 
contribute. 

 The third component can therefore 
safely be pruned away from V1(b).
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Increasing the Time Horizon
 Assume the robot can make an observation before 

deciding on an action.  

V1(b)
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Increasing the Time Horizon
 Assume the robot can make an observation before 

deciding on an action.  
 Suppose the robot perceives z1 for which 

p(z1 | x1)=0.7 and p(z1| x2)=0.3. 
 Given the observation z1 we update the belief using 

Bayes rule. 
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Value Function

b’(b|z1)

V1(b)

V1(b|z1)
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Increasing the Time Horizon
 Assume the robot can make an observation before 

deciding on an action.  
 Suppose the robot perceives z1 for which 

p(z1 | x1)=0.7 and p(z1| x2)=0.3. 
 Given the observation z1 we update the belief using 

Bayes rule. 
 Thus V1(b |  z1) is given by 
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Expected Value after Measuring

 Since we do not know in advance what the 
next measurement will be, we have to 
compute the expected belief
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Expected Value after Measuring

 Since we do not know in advance what the 
next measurement will be, we have to
compute the expected belief
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Resulting Value Function

 The four possible combinations yield the 
following function which then can be simplified 
and pruned. 
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Value Function

b’(b|z1)

p(z1) V1(b|z1)

p(z2) V2(b|z2)
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State Transitions (Prediction)

 When the agent selects u3 its state 
potentially changes. 

 When computing the value function, we 
have to take these potential state 
changes into account.
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State Transitions (Prediction)
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Resulting Value Function after 
executing u3

 Taking the state transitions into account, 
we finally obtain.
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Value Function after executing 
u3
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Value Function for T=2

 Taking into account that the agent can 
either directly perform u1 or u2 or first u3
and then u1 or u2, we obtain (after 
pruning)
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Graphical Representation 
of V2(b)

u1 optimal u2 optimal

unclear

outcome of 
measurement 
is important 
here
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Deep Horizons and Pruning

 We have now completed a full backup in 
belief space.

 This process can be applied recursively. 
 The value functions for T=10 and T=20 are
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Deep Horizons and Pruning
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 |S| = 3
 Hyper-planes
 Finite number 

of regions over 
the simplex

Sample value function for |S| = 3
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 Repeat the process for value 
functions of 3-horizon,…, and k-
horizon POMDP
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Alternate Value function 
interpretation

 A decision tree
 Nodes represent an action decision
 Branches represent observation made

 Too many trees to be generated!
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Why Pruning is Essential
 Each update introduces additional linear 

components to V.

 Each measurement squares the number of 
linear components. 

 Thus, an un-pruned value function for T=20 
includes more than 10547,864 linear functions.  

 At T=30 we have 10561,012,337 linear functions.

 The pruned value functions at T=20, in 
comparison, contains only 12 linear components.

 The combinatorial explosion of linear components 
in the value function are the major reason why 
POMDPs are impractical for most 
applications.
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POMDP Summary

 POMDPs compute the optimal action in 
partially observable, stochastic domains.

 For finite horizon problems, the resulting 
value functions are piecewise linear and 
convex. 

 In each iteration the number of linear 
constraints grows exponentially.
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POMDP Approximations

 QMDPs

 Point-based value iteration

 AMDPs
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QMDPs

 QMDPs only consider state 
uncertainty in the first step

 After that, the world becomes fully 
observable.

“One drawback is that these policies will not take actions to gain 
information” [Littman Cassandra Kaelbling 1995]
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Point-based Value Iteration

 Maintains a set of example beliefs
 Only considers constraints that maximize 

value function for at least one of the 
examples

 Occasionally add new belief points
 Can do point updates in polytime, no 

pruning
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Point-based Value Iteration

Exact value function                 PBVI

Value functions for T=30



88

Example Application
The goal is to search for and tag a moving opponent [Rosencrantz et al., 2003]

Opponent moves stochastically with a fixed policy

870 states

cross-product of Robot  and 
Opponent states

Robot deterministic and fully observable

Opponent 
observable only on 
the same cell
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Example Application
“PBVI performs best when its belief set is uniformly dense in the set B of 
reachable beliefs. So, we initialize the set B to contain the initial belief b0 
and expand B by greedily choosing new reachable beliefs that improve the 
worst-case density as rapidly as possible” [Pineau, Gordon, Thrun 2003]

“PBVI tries to generate one new belief from each previous belief; so, B at 
most doubles in size on each expansion” [Pineau, Gordon, Thrun 2003]
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Dimensionality Reduction on 
Beliefs
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Augmented MDPs

 Augmentation adds uncertainty 
component to state space, e.g.,

 Planning is performed by MDP in 
augmented state space

 Transition, observation and payoff 
models must be learned
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Due fasi: learning 
(2-19) e value 
iteration (20-27)

n campioni per 
ogni b- e u

b(x) è gaussiana 
simmetrica

Aggiornamento 
basato su 
frequenza

Value Iteration
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Coastal Navigation

No measure 
uncertainty 

Uncertainty 
measure
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Coastal Navigation

No measure 
uncertainty 

Uncertainty 
measure



 Dialogue manager

 Dialogue state estimation according to the interaction history
 User intentions recognition from context and disambiguation of 

multiple hypotheses arising due to noisy or ambiguous situations.
 Dialogue coordination and action execution

Multimodal Communication

A Dialogue System for Multimodal Human-Robot Interaction , L. Lucignano, F. Cutugno, S. 
Rossi, A. Finzi, In Proc. ACM International Conference on Multimodal Interaction - ICMI 2013



 Dialogue manager
 The system is provided with a set of interaction models named 

“dialogue flows”, which describe how the dialogue can develop

Multimodal Communication

current state 
of the 

conversation

user actions 
observed with 

associated 
probabilities

Edges between 
nodes, belonging 

to different 
graphs, are also 

allowed

machine action 
expected by user



 Dialogue manager
 The system is provided with a set of interaction models named 

“dialogue flows”, which describe how the dialogue can develop

Multimodal Communication

XML description
of a dialogue

flow



 Dialogue manager 
 The Dialogue is represented by a Partially Observable Markov 

Decision Problem [Young10, Jurafsky00] extended to the 
multimodal case [Lucignano et al. 2013]

 POMDP state is a tuple

 POMDP soved using approximation methods:
 Point Based Value Iteration [Pineau et al. 2003], that approximates 

the value function only at a finite set of belief points 
 Augmented MDP, that performs the optimization in a summary space 

rather than in the original space [Roy et al. 2000]

Multimodal Communication
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Monte Carlo POMDPs

 POMDPs with continuous state and 
action spaces

 Represent beliefs by samples
 Estimate value function on sample 

sets
 Simulate control and observation 

transitions between beliefs
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