
Off-Policy Learning
Evaluate target policy to compute or while following
another policy

• Learn from observing humans or other agents
• Learn from past policies, re-use experience from old policies
• Learn the optimal policy while following an exploration policy
• Learn multiple policies while following one policy

Chapter 6, Sutton Barto
Section 6.4, 6.5, 6.6

Off-Policy Learning
Evaluate target policy to compute or while following
another policy

• Importance sampling
• Q-learning

Off-Policy Learning
Evaluate target policy to compute or while following
another policy

• Importance sampling

Monte-Carlo Off-policy with importance sampling

• Importance along the whole episode

• Update towards the correct return

• Not practical, too high variance

/

/

Off-Policy Learning
Evaluate target policy to compute or while following
another policy

• Importance sampling

TD Off-policy with importance sampling

• Importance sampling correction at each step

• Lower variance than MC importance sampling
• Policies need to be similar over a single step

Off-Policy Learning
Evaluate target policy to compute or while following
another policy

• Q-Learning approach [Watkins, 1989]
o Suited for TD(0)
o No importance sampling
o Next action using the behavior policy 𝜇, i.e., 𝐴 ∼ 𝜇(⋅ |𝑆)
o Assess alternative successor action with policy 𝜋, i.e., 𝐴 ∼ 𝜋 ⋅ 𝑆)
o Update 𝑄(𝑆 , 𝐴) considering the alternative action

Q-Learning
Evaluate target policy to compute or while following
another policy

• The target policy is greedy with respect to

• The behavior policy is –greedy with respect to

Theorem
The Q-Learning converges towards the optimal action-value function with GLIE
and

61

Q-Learning
1. Start with initial Q-function (e.g., all zeros)
2. Take an action according to an explore/exploit policy

(should converge to greedy policy, i.e. GLIE)
3. Perform TD update

Q(s,a) is current estimate of optimal Q-function.
4. Goto 2

 Does not require model since we learn Q directly

 Uses explicit |S|x|A| table to represent Q

 Explore/exploit policy directly uses Q-values

SARSA vs Q-Learning
Cliff Walking (undiscounted, episodic task)

-greedy policy with
- Q-learning off-policy, more risky policy (because of -gready)

Optimal policy, but lower Reward (off-
policy). If 𝜖 is gradually reduced both
policies converge to the optimal one

63

Explore/Exploit Policies

• Boltzmann Exploration policy

– Select action a with probability,

– T is the temperature. Large T means that each action has about
the same probability. Small T leads to more greedy behavior.

– Typically start with large T and decrease with time

Aa

TasQ

TasQ
sa

'

/)',(exp

/),(exp
)|Pr(

Expected Sarsa
Analogous to Q-Learning, but update with respect to the expected value instead
of the maximum over next state actions

Cliff Walk
𝜖-greedy policy with 𝜖 = 0.1
asymptotic aver over 100000 eps, interim
over first 100, data are averages after
50.000 and 10 runs [van Seijen et al. 2009]

Double Learning
Maximization bias: a maximum over estimated values is used as an estimate of the
maximum value, which can lead to a positive bias

𝜖-greedy policy with 𝜖 = 0.1, with right reward is 0, with left rewards mean is -0.1, but
left may be preferred during the learning process

The same samples are used both to determine the maximizing action and to estimate its value.
Divide the plays in two sets and use them to learn two independent estimates

Chapter 6, Sutton
Barto, Section 6.7

Double Learning
Maximization bias: a maximum over estimated values is used as an estimate of the
maximum value, which can lead to a positive bias

67

Learning and Planning
Combine Model-based and Model-free methods

Model-free
- Learn value function and action-value function via experience

Model-based
- Learn the model via experience
- Use the model to generate the value function/policy (learn from simulated

experience)

Combined (Dyna)
- Learn the model via experience
- Learn and plan via real and simulated experience

Chapter 8, Sutton Barto
Section 8.1,8.2, 8.5

68

Learning and Planning
Combine Model-based and Model-free methods

Combined (Dyna)
- Learn the model via experience
- Learn and plan via real and simulated experience

69

Learning and Planning
Combine Model-based and Model-free methods

Combined (Dyna)
- Learn the model via experience
- Learn and plan via real and simulated experience

70

Learning and Planning
Combine Model-based and Model-free methods

Combined (Dyna)
- Learn the model via experience
- Learn and plan via real and simulated experience

R=1 if goal,
R=0 otherwise

Step-size
Exploration
Discount

71

Learning and Planning
Combine Model-based and Model-free methods

Combined (Dyna)
- Learn the model via experience
- Learn and plan via real and simulated experience

Policies found by planning and nonplanning
DynaQ halfway through the second episode.
Arrows are for greedy actions in each state

72

Learning and Planning
Combine Model-based and Model-free methods

Combined (Dyna)
- When the model is wrong …
- DynaQ+ has a bonus on the explorative behavior

After 1000 time
steps the short path
is blocked

Search for a
new path

73

Learning and Planning
Combine Model-based and Model-free methods

Combined (Dyna)
- When the model is wrong …
- DynaQ+ has a bonus on the explorative behavior

After 1000 time
steps the short path
is shorter

Dyna-Q does not
search for a new
path

DynaQ+ keeps
track of time
elapsed since
the action-state
pair was tried, a
bonus reward in
simulated
experience is
provided to test
past pair

Expected vs Sampled Updates
Diagrams of one-step updates

• Belman Expectation for 𝑣 (𝑠)
• Iterative Policy Evaluation (DP)
• TD Learning (Sampling)

• Belman Expectation for 𝑞 (𝑠, 𝑎)
• Q-Policy Iteration (DP)
• Sarsa (Sampling)

• Belman Optimality for 𝑞∗(𝑠, 𝑎)
• Q-Value Iteration (DP)
• Q-Learning (Sampling)

Expected = Model-based, Dynamic Programming
Sampled = Model-free, Learning

DP vs TD
Relationship between DP and TD

• Belman Expectation for 𝑣 (𝑠)
• Iterative Policy Evaluation (DP)
• TD Learning (Sampling)

• Belman Expectation for 𝑞 (𝑠, 𝑎)
• Q-Policy Iteration (DP)
• Sarsa (Sampling)

• Belman Optimality for 𝑞∗(𝑠, 𝑎)
• Q-Value Iteration (DP)
• Q-Learning (Sampling)

Problems of RL
Curse of Dimensionality
In real world problems ist difficult/impossible to define discrete state-action spaces.

(Temporal) Credit Assignment Problem
RL cannot handle large state action spaces as the reward gets too much dilited
along the way.

Partial Observability Problem
In a real-world scenario an RL-agent will often not know exactly in what state it will
end up after performing an action. Furthermore states must be history independent.

State-Action Space Tiling
Deciding about the actual state- and action-space tiling is difficult as it is often
critical for the convergence of RL-methods. Alternatively one could employ a
continuous version of RL, but these methods are equally difficult to handle.

Non-Stationary Environments
As for other learning methods, RL will only work quasi stationary environments.

