
Problems of RL
Curse of Dimensionality
In real world problems ist difficult/impossible to define discrete state-action spaces.

(Temporal) Credit Assignment Problem
RL cannot handle large state action spaces as the reward gets too much dilited
along the way.

Partial Observability Problem
In a real-world scenario an RL-agent will often not know exactly in what state it will
end up after performing an action. Furthermore states must be history independent.

State-Action Space Tiling
Deciding about the actual state- and action-space tiling is difficult as it is often
critical for the convergence of RL-methods. Alternatively one could employ a
continuous version of RL, but these methods are equally difficult to handle.

Non-Stationary Environments
As for other learning methods, RL will only work quasi stationary environments.

Large Scale RL
Large problems

• Backgammon: ଶstati
• Go: ଵstati
• Helicopter: continuous

Efficient approximation of value functions and policies

Estimates with a value function approximation:
గ

గ

Differentiable function approximations:
- Linear combination of features
- Neural Networks
- …

- Non-stationarity target f, not indep. identically distributed data, on-line, non-supervised learning
- More complex RL, many state affected by parameter changes
- but effective, may also work with partially observable problems

𝑄 𝑠, 𝑎ଵ , … , 𝑄(𝑠, 𝑎)𝑄 𝑠, 𝑎

𝑠, 𝑎 𝑠

Chapter 9, Barto
Section 9.1, 9.2, 9.3,
9.4, 9.6

Gradient Descent
Let be a differentiable function of parameter vector

The gradient of is

୵
ଵ

- To find the local minimum of adjust the parameters in the direction of the
gradient vector

- Find vector that minimize the mean-squared error between and గ

௪

గ గ
ଶ

𝛼 positive step-size parameter
୲ାଵ ୲

Supervised: oracle provides 𝑣గ 𝑠

Stochastic Gradient Descent
Let be a differentiable function of parameter vector

The gradient of is

୵
ଵ

- Find vector that minimize the mean-squared error between and గ

- Gradient descent:

- Stochastic gradient descent (SGD) samples the gradient (update on samples)

గ గ
ଶ

గ ୵ ୲ାଵ ୲

Supervised: oracle provides 𝑣గ 𝑠

ଵ

ଶ ௪ = గ గ ୵

Linear Case: Feature Vectors
We can represent the state as a feature vector

ଵ

- Value function as a linear combination of features

- Objective function is quadratic in parameters

- Gradient descent converges on global optimum
- Update rule is simple

గ గ
் ଶ

గ

்

௪

e.g., distances from landmarks

Convex

Gradient is the feature vector

update = step-size x prediction error x feature value

Table Lookup Features
Table lookup is a special case of linear value function approximation

- Table lookup features

- Parameter vector gives value of each individual state

௧ ்

௧
ଵ

These are the values in the table

Incremental Prediction
The value function గ is not available

- Substitute గ with an estimate

- For MC learning

- For TD(0) learning

- In MC is like generating “training data”, converges to the local optimum

- In TD is analogous and converges (close) to the local optimum

௧ ௧ ୵ ௧

௧ାଵ ௧ାଵ ௧ ୵ ௧

Unsupervised learning

Incremental Prediction
The value function గ is not available

- Substitute గ with an estimate

- For MC learning

௧ ௧ ୵ ௧
Similar to supervised learning: each
episode collects training data 𝐺௧ for 𝑆௧

Converges to local optimum

Incremental Prediction
The value function గ is not available

- Substitute గ with an estimate

- For TD(0) learning (semi-gradient method)

௧ାଵ ௧ାଵ ௧ ୵ ௧

Only an approximated prediction of 𝑣గ 𝑠
is available (biased sample of 𝑣గ 𝑠)

Training data:
(𝑆ଵ, 𝑅ଶ + 𝛾𝑣ො 𝑆ଶ, 𝑤) , (𝑆ଶ, 𝑅ଷ + 𝛾𝑣ො 𝑆ଷ, 𝑤) , …

85

Control with Function Approximation

• Policy Evaluation
– Approximate గ

• Policy Improvement
– -greedy

Policy impr.

Policy eval. ୵ గ

Starting ௪
 ∗

-Greedy policy

Chapter 10, Sutton Barto
Section 10.1, 10.2

Action-Value Function Approx
Approximate the action-value function

- Minimize the mean-squared error

- Stochastic Gradient Descent samples the gradient

గ గ
ଶ

గ ୵

గ

Action-Value Feature Vectors
We can represent the state as a feature vector

ଵ

- Value function as a linear combination of features

- Objective function is quadratic in parameters

- Gradient descent converges on global optimum
- Update rule is simple

గ గ
் ଶ

గ

்

௪

Incremental Control
- Substitute గ with an estimate

- For MC learning

- For TD(0) learning

௧ ௧ ௧ ୵ ௧ ௧

௧ାଵ ௧ାଵ ௧ାଵ ௧ ௧ ୵ ௧ ௧

Mountain Car Task
Underpowered car, gravity is stronger than the car's engine, the only solution is to
first move away from the goal and up the opposite slope on the left.

Reward -1 on all time step until the goal is not reached

Three actions: full throttle forward, reverse, zero
Simplified physics:

Velocity reset to zero when the left bound is reached
Each episode from a random position and zero velocity
Linear approximation

negative of the value function (the cost-to-go function)

Mountain Car Task
Underpowered car, gravity is stronger than the car's engine, the only solution is to
first move away from the goal and up the opposite slope on the left.

Reward -1 on all time step until the goal is not reached

Three actions: full throttle forward, reverse, zero
Simplified physics:

Velocity reset to zero when the left bound is reached
Each episode from a random position and zero velocity
Linear approximation

tile-coding function approximation
and "-greedy action selection

Chapter 9, Sutton Barto
Section 9.5

Chapter 10, Sutton Barto
Section 10.2

Convergence of Evaluation

• On-Policy
• MC learning

• Converge with table lookup, linear/non-linear approx
• TD(0)\TD() learning

• Converge with table lookup and linear approx.
• Gradient TD (follows true gradient)

• Converge with table lookup, linear/non-linear approx

• Off-Policy
• MC learning

• Converge with Table, Linear/Non-linear approx
• TD(0)\TD() learning

• Converge with table lookup
• Gradient TD (follows true gradient)

• Converge with table lookup, linear/non-linear approx

Convergence of Control

• Control Algorithm
• MC learning

• Converge with table lookup, (linear approx)
• SARSA learning

• Converge with table lookup, (linear approx.)
• Q-learning

• Converge with lookup
• Gradient Q-learning

• Converge with table lookup, linear approx

(chatters around the near-optimal function)

Batch RL

• Gradient descent is appealing
• It is not sample efficient
• Batch methods try to find the best fitting of the value

function given the experience (“training data”)

Least Squares Prediction

• Function approximation

• Experience

• Parameters for the best fitting value

• Least squares algorithms to find the minimizing the sum-
squared error between and

௧ୀଵ...்

௧
గ

௧
ଶ

 ௧
గ

௧
ଶ

Gradient Descent with Experience Replay

• Store experience

• Repeat
• Sample

గ from the experience
• Apply stochastic gradient descent update towards the target

గ

௪

Like supervised learning

Converges to least squares solution

గ
௪

Experience Replay in DQN

Deep Q-Networks uses experience replay and fixed Q-target

• Take an action ௧ according to an -greedy policy
• Store transition ௧ ௧ ௧ାଵ ௧ାଵ in memory
• Sample mini-batch transitions from
• Compute Q-learning targets w.r.t. old fixed parameters ି

• Optimize MSE between Q-network and Q-learning targets:

• Minimize the loss with stochastic gradient descent
• After N iteration copy the actual parameters in the target
• Repeat for M episodes

• Key points to stabilize the process:
• Decouple the policy and the learning data (mini-batch)
• Decouple the fixed (old and frozen) Q-target and the Q-network
• After a while switch old and new parameters …

 ௦,,,௦ᇲ∼
ᇲ

ᇱ ᇱ

ି

ଶ

Experience Replay in DQN

Deep Q-Networks uses experience replay and fixed Q-target

Atari 2600 Playing:
Input: 84 x 84 x 4 image produced by the preprocessing (gray-scale and down-
sampling, crop), Atari frames are 210x160 pixel images, 128 color, 4 images

Position, direction, velocity, acceleration

Playing Atari with Deep Reinforcement
Learning [NIPS 2013]

Experience Replay in DQN

Deep Q-Networks uses experience replay and fixed Q-target

Atari 2600 Playing:
Hidden: 3 hidden conv. layers and a fully-connected hidden layer.
1. 16 8x8 filters, stride 4, rectifier
2. 32 4x4 filters, stride 2, rectifier
3. 256 hidden fully connected rectifier units

Output:
One for each possible
action (4 to 18)

Experience Replay in DQN

Deep Q-Networks uses experience replay and fixed Q-target

Atari 2600 Playing:
Hidden: 3 hidden conv. layers and a fully-connected hidden layer.
1. 16 8x8 filters, stride 4, rectifier
2. 32 4x4 filters, stride 2, rectifier
3. 256 hidden fully connected rectifier units

Output:
One for each possible
action (4 to 18)

Experience Replay in DQN

Deep Q-Networks uses experience replay and fixed Q-target

Atari 2600 Playing:
Hidden: 3 hidden conv. layers and a fully-connected hidden layer.
1. 16 8x8 filters, stride 4, rectifier
2. 32 4x4 filters, stride 2, rectifier
3. 256 hidden fully connected rectifier units

Output:
One for each possible
action (4 to 18)

Sarsa algorithm uses linear policies
on hand-engineered feature sets.
Contingency uses a similar approach
with augmented the feature sets
learned representation

Experience Replay in DQN

100 x (DQN score – random play score) / (human score – random play score)

Human-level control through deep reinforcement learning, Nature Letter 2015

Value-based vs Policy-based RL

• Value function
– learnt and implicit policy, e.g., -greedy

• Policy learnt,
– no value function, learnt policy ఏ

• Actor-Critic
– Learnt value function and policy

Value-based Policy-basedActor-Critic

Policy-based RL

• Advantages:
– Better convergence properties
– Effective in high-dimentional/continuous spaces
– Can learn stochastic policies

• Es. games like rock-paper-scissors,
• Partial observable domain

• Disadvantages:
– Typically converge to a local
– Evaluating a policy may be inefficient with naive methods

Policy Objective Function

• Given a policy with parameters find the best
• How do we measure the quality of a policy?

• Episodic
– ଵ

గഇ
ଵ గഇ ଵ

• Continuing (average)
– ௩

గഇ గഇ
௦

• Continuing per time-step (average per time-step)
– ௩ோ

గഇ
ఏ ௦

௦

Same policy gradient

Policy Optimization

• Policy based RL is an optimization problem
• Find that maximizes
• Gradient and not gradient methods
• We focus on gradient methods

– Gradient ascent method
– Find a local maximum of by ascending the gradient of the policy

ఏ

௧ାଵ ௧ ఏ

Policy Optimization

• If the action state is discrete
– Parametrized preferences ఏ …
– … actions with the high preference have high probability to be selected

– ఏ
ୣ୶୮(௦,,ఏ)

∑ ୣ୶୮ ((௦,,ఏ))್

– ் , with feature vector

Score Function
• Assume policy differentiable with gradient

• Given the following

– ఏ ఏ ఏ
∇ഇగഇ ௦,

గഇ ௦, ఏ ఏ ఏ

• The score function is ఏ ఏ

• Likelihood ratios ఏ ఏ ఏ

– E.g., gaussian policy 𝑎 ∼ 𝑁(𝜇 𝑠 , 𝜎ଶ), with mean linear combination of features 𝜇 𝑠 = 𝜙்𝜃

score function ∇ఏ𝑙𝑜𝑔 𝜋ఏ 𝑠, 𝑎 =
ିఓ ௦ థ(௦)

ఙమ

One-Step MDPs

• MDP,
– start in state
– End after one action with ௦,

• Policy
– గ ఏ ௦,௦

• Policy gradient
– ఏ ఏ௦ ఏ ఏ ௦, గഇ ఏ ఏ

Policy Gradient Theorem

• Multi-sep MDPs
• Replace instantaneous reward with

• For any differentiable policy , for any policy objective
function the policy gradient

– ఏ గഇ ఏ ఏ
గഇ

MC Policy Gradient
• Update parameters by stochastic gradient ascent
• Exploit policy gradient theorem
• Use ௧ as unbiased sample of గഇ

௧ ௧

– ௧ ఏ ఏ ௧

Algorithm REINFORCE
Initialise arbitrarily
for each episode ଵ ଵ ଶ ்ିଵ ்ିଵ ் do

for t=1 to T – 1 do

ఏ ఏ ௧

end for
end for
return

end

Actor-Critic

• MC policy gradient has high variance
• Use a Critic to estimate action-value function

– ௪
గഇ

௧ ௧

• Actor-Critic algorithms maintain two sets of parameters
– Critic updates action-value function
– Actor updates policy parameters in the direction suggest by the Critic

• Approximate policy gradient
– ఏ గഇ ఏ ఏ ୵

– ఏ ఏ ௪

Actor-Critic

• Approximate policy gradient
– ఏ గഇ ఏ ఏ ୵

– ఏ ఏ ௪

• How to assess ?
– Monte-Carlo policy evaluation
– Temporal-Difference learning
– TD()
– …

Actor Critic Method

• Policy structure (actor): it selects the actions,
• Value function (critic): it criticizes the actions made by the actor.

• Explicit representation of
policy as well as value
function

• Minimal computation to
select actions

• Can learn an explicit
stochastic policy

• Can put constraints on
policies

• Appealing as psychological
and neural models

Actor Critic Method

• Policy structure (actor): it selects the actions,
• Value function (critic): it criticizes the actions made by the actor.

• Explicit representation of
policy as well as value
function

• Minimal computation to
select actions

• Can learn an explicit
stochastic policy

• Can put constraints on
policies

• Appealing as psychological
and neural models

- two parts of the striatum - dorsal and ventral subdivisions – may work as actor and critic
- TD error has the dual role of being the reinforcement signal for both the actor and the critic, with different

influence

115

Actor-Critic

TD-error is used to evaluate actions:

 t rt 1 V (st 1) V (st)

If actions are determined by preferences, p(s,a), as follows:

t (s,a) Pr at a st s ep(s, a)

e p(s ,b)

b

,

then you can update the preferences like this :

p(st , at) p(st ,at) t

(softmax)

p(s, a) tendency to select
(preference for) each action

Actor-Critic
• Action-value critic
• Linear value function approximation

– 𝑄௪ 𝑠, 𝑎 = 𝜙 𝑠, 𝑎 ்𝑤
– Critic updates 𝑤 by linear TD(0)
– Actor updates 𝜃by policy gradient

Algorithm QAC
Initialise s, 𝜃 arbitrarily
Sample 𝑎 ∼ 𝜋ఏ

for each step do
Sample reward 𝑟 = 𝑅௦ᇱ

 and transition 𝑠ᇱ ∼ 𝑃௦

Sample action 𝑎ᇱ ∼ 𝜋ఏ 𝑠ᇱ, 𝑎
𝛿 = 𝑟 + 𝛾𝑄௪ 𝑠ᇱ, 𝑎ᇱ − 𝑄௪(𝑠, 𝑎)
𝜃 = 𝜃 + 𝛼∇ఏ𝑙𝑜𝑔𝜋ఏ 𝑠, 𝑎 𝑄௪(𝑠, 𝑎)
𝑤 ← 𝑤 + 𝛽𝛿𝜙(𝑠, 𝑎)
𝑎 ← 𝑎ᇱ, 𝑠 ← 𝑠′

end for
return 𝜃

end

Actor-Critic
• Action-value critic
• Linear value function approximation

– 𝑄௪ 𝑠, 𝑎 = 𝜙 𝑠, 𝑎 ்𝑤
– Critic updates 𝑤 by linear TD(0)
– Actor updates 𝜃by policy gradient

Algorithm QAC
Initialise s, 𝜃 arbitrarily
Sample 𝑎 ∼ 𝜋ఏ

for each step do
Sample reward 𝑟 = 𝑅௦ᇱ

 and transition 𝑠ᇱ ∼ 𝑃௦

Sample action 𝑎ᇱ ∼ 𝜋ఏ 𝑠ᇱ, 𝑎′
𝛿 = 𝑟 + 𝛾𝑄௪ 𝑠ᇱ, 𝑎ᇱ − 𝑄௪(𝑠, 𝑎)
𝜃 = 𝜃 + 𝛼∇ఏ𝑙𝑜𝑔𝜋ఏ 𝑠, 𝑎 𝑄௪(𝑠, 𝑎)
𝑤 ← 𝑤 + 𝛽𝛿𝜙(𝑠, 𝑎)
𝑎 ← 𝑎ᇱ, 𝑠 ← 𝑠′

end for
return 𝜃

end

