Real-world behavior is hierarchical

1. pour coffee £

: ?@ S.add milk G
= =1 2 add hot
4. stir y i cord

1. set water tem <00 _
i /?T@ wait 5sec
St

@1 2. get wet f/g/,f success
‘1'" L] 3. Shampoo
4. soap

5. turn off water

6. dry off

Hierarchical Reinforcement Learning

* Exploits domain structure to facilitate learning
— Policy constraints
— State abstraction

e Paradigms:
— Options
— HAMs
— MaxQ

Advantages of HRL

1. Faster learning
(mitigates scaling problem)

2. Structured exploration
(explore with sub-policies rather than primitive actions)

3. Transfer of knowledge from previous tasks
(generalization, shaping)

Semi-Markov Decision Process

Generalizes MDPs

Action a takes N steps to completeins
P(s'n| a,s),R(s’, N | a,s)

Bellman equation:

V™(s) = Y P(s,N|s, n(s)) {R(;.N s.m(s)) + 47 If]‘ .
s' N

Semi-Markov Decision Process

Generalizes MDPs

Action a takes N steps to completeins
P(s',n | a,s),R(s’,N | a,s)
Bellman equation:

V*(s) = max

a

[Q(I—I—Z;p

s,a)V*(s')

S, a man (s",D)

Gridworld environment with
stochastic cell-to-cell actions

ROO m Exa m p I e and room-to-room hallway

options. Two of the hallway
options are suggested by the
arrows ol and 02. G1 and G2
are goals

4 stochastic
primitive actions
up

. Fai 33%
o e of the time

down

8 multi-step options
(to each room's 2 hallways)

Sutton, Precup, Singh, 1999

Options

An optionis atriple o =< Z, 7,3 >
e 7: initiation set. preconditions

e 7:8 x A~ [0,1]: option’s policy behavior

e 7:S8S+— [0.1— - termination condition effect

Options

. /s h e
\"‘w i \'_\‘/r [State

Options ﬁ/ﬂ\ N\
over MDP \;/,cﬁ/ \'_,/-

¥4

Options

option’s policy: =;; global policy:
— reward part of option:

2 k
r(s,0) = E{'rt.,.l + Y ie2 + Y143 + oo Y Te4k|0, 8¢ = s}

— prediction-state part:

policy over options it : S x O — [0, 1]

V”(S) = E{'T‘t ¥+ YTe+1 . 72'rt+2....|p, St = S}
= E{'I‘H_l + TYTre42 + 727}4—3 4+ eee T+ ’Tk_
=E [r(s, 0) + Z P(Sisk

Stk

revk + YV (st 1y st = S}

s, 0)VH(s) |, 5 = s]

Options

option’s policy: =;; global policy:
— reward part of option:

r(s,0) = E{'rH_l + Yrevo + V2reea + o + Yorigklo, s = s}

— prediction-state part:

Zp ,k|s,0)y

policy over options it : S x O — [0, 1]

Q" (s,0) = E{?‘t + YPes1 + YTt 42....|op, st = s}

—1

= E{rt+1 + YTt+2 +72rt+3 + ...+ 'rk Tt4k +7kV#(3t+k)|ﬂ'$St = 5}

= E{rt+1 + YTri42 +7 r¢4+3 + .. +’r" 1rt+k
+ max #(3t+k70)Q“(3t+k30)op, sy = S}

= E{ s,0 +ZP(St+k|5 0) max#(st+kao)Q¥ (s¢4 k0)}

Options

Gridworld environment

4 stochastic

primitive actions
with stochastic cell-to-cell -
actions and roomjto- o o PSS
room hallway options.
down

Two of the hallway
options are suggested by
the arrows ol and 02. G1
and G2 are goals

8 multi-step options
(to each room's 2 hallways)

hallway options take the
hallway options Primitive agent from anywhere
e“ablezplanni‘;g o options within the room to one
proceed room-oby- —
room rather than O=A of the two hallway cells
cell-by-cell. leading out of the room

The area of the disk
is proportional to
the estimated value
of the state.

Hallway
options

O=H

. Target
Hallway

Initial Values lteration #1 Iteration #2

Options

Gridworld environment
with stochastic cell-to-cell
actions and room-to-
room hallway options.
Two of the hallway
options are suggested by
the arrows ol and 02. G1
and G2 are goals

hallway options
enables planning to
proceed room-by-
room rather than

cell-by-cell.

Primitive
The area of the disk and
is proportional to hallway
the estimated value options
of the state. O=AUH

Iteration #3

Iteration #4

Iteration #5

4 stochastic
primitive actions
up

; Fail 33%
. g of the time

down

8 multi-step options
(to each room's 2 hallways)

hallway options take the
agent from anywhere
within the room to one
of the two hallway cells
leading out of the room

. Target
Hallway

Options

SMDP Q-learning: given the set of defined options.
— execute the current selected option (e.g use epsilon greedy Q(s. 0))

to termination.
— compute r(s¢, 0), then update Q(s¢, o) as Q-learning/SARSA.

O(s, 0) < QO(s, 0) +a[r +%* m > Q(s',0") Q(s.o)]

O"‘EC- Yy

If primitive actions are included as options, then optimal with options is like optimal
without options

1 . _ 1
a=g except with H,G; (a = 16)

1000 ¢ 1000

[
~\},, Goal A &\4 Goal

at G, vx; ata, and AU H, G, (@ =1)
Steps K 4
per 10K AuH b H
episode
n A

10 10
1 10 100 1000 10,000 1 10 100 1000 10,000

Episodes Episodes

Options

SMDP Q-learning: given the set of defined options.
— execute the current selected option (e.g use epsilon greedy Q(s, 0))

to termination.
— compute r(s¢,0), then update Q(s¢, 0) as Q-learning/SARSA.

Intra-option Q-learning: partially defined options
— after each primitive action, update all the options (off-policy learning).
— converge to correct values, "under same assumptions as 1-step

Q-learning” (Sutton)

Markov
Options with
deterministic

where policies

Qi 11(8,0) = (1 — o) Oy (5, 0) + 0 ["z+1 + }’Uk(-‘"no)]

Ui(s,0) = (1= B(5))Qs(s,0) + Bls) max 0y (s,0')

See [Sutton, Precup, Singh 1999]

Hierarchies of Abstract Machines

Partially specified Programs [Parr Russell 97]
- MDP State and Machine State (hierarchical abstract machines HAMSs)

Start

obstacle intersection

Choose

obstacle intersection

Ye ¢ Trctper Accumulated reward and discount
3. +— (33 since the previous choice point

back-off

For each choice point:
O[sc.mc).c) + O([sc.mc).c) +afre+ B * V([t.n]) — O([sc.mc]. c)]
re +— 0

B ¢ 1 Theorem 1 For any MDP M and HAM H, let C be the set of choice points in A o M. Then there exists an MDP, which
we will call reduce(H o M), with states C such that the optimal policy for reduce(H o M) corresponds to the
optimal policy for M that is consistent with H.

Theorem 2 For any MDP M and any HAM H, HAMQ-learning will converge to the optimal action choice for every
choice point in redice(H o M) with probability 1.

Task Hierarchy

MAXQ Task hierarchy [Dietterich 2000]
* Directed acyclic graph of subtasks

 Hierarchy of SMDS to be simultaneously learned
 Leaves are the primitive MDP actions

Traditionally, task structure is provided as prior
knowledge to the learning agent

Each task associated with termination, Actions, and
pseudo reward function: (T}, A;, R;)

Hierarchical policy is a set of policies, one for each
subtask

Taxi Domain
Motivational Example

. 4|R G
Reward: -1 actions, N ‘
-10 illegal, 20 mission. :
1
500 states [y =
Task Graph: 0 1 2 3 4

Root

-‘-\"““h—.
/ H‘"‘H
Get ﬁut

!_,r—""
o t/source /f’destmahon
)

Pickup Navigate(t Putdown

North | South East | West

HSMQ Alg. (Task Decomposition)

function HSMQ(state s, subtask p) returns float
Let Total Reward = ()
while p is not terminated do
Choose action a = 7, (s) according to exploration policy 7,
Execute a.
if a is primitive, Observe one-step reward r
else r := HSM(@)(s, a), which invokes subroutine a and
returns the total reward received while a executed.
Total Reward := Total Reward + r
Observe resulting state s’

Update Q(p,s,a) := (1 —a)Q(p,s,a) + a [T + max Q(p, 5’,{1’)]
end // while

return Total Reward
end

This algorithm converges to a recursively optimal policy for the original MDP provided that it is
GLIE and the learning rates a suitably decreases

MAXQ Alg. (Value Fun. Decomposition)

 Compactness in the representation of the
hierarchical value function (decomposition)

* Re-write Q(p, s, a) as
Q(p, s,a) =V(a,s)+ C(p,s,a)

Vi(p,s) = max [V(a,s) + C(p,s,a)]
{2

where V(aq, s) is the expected total reward while executing action a,

and C(p, s, a) is the expected reward of completing parent task p
after a has returned

Hierarchical Structure

* MDP decomposed in task Mo, ..., Mn

Theorem 1 Given a task graph over tasks M. M, and a hierarchical policy w, each
subtask M, defines a semi-Markov decision process wnith states S;. actions A;. probability
transition function P*(s', N'|s,a), and expected reward function R(s,a) = V™ (a,s), where
Vi™(a, s) ws the projected value function for child task M, wn state s. If a s a primative
action, V7™ (a.s) is defined as the expected immediate reward of executing a in s: V7™ (a,s) =

> o P(8'|s,a)R(s'|s,a).
e Qforthe subtaski

Q7(i,s,a) = V™(a,s) + 3 PF(s', N|s,a)y" Q7 (i, &', m(s")),
gl

Q" (i,s,a) = V™(a,s) + C"(i, 5,0),

Value Decomposition

Definition 6 The completion function, C7™(i. s.a). is the expected discounted cumulative
reward of completing subtask M; after mvoking the subroutine for subtask M, in state s.
The reward is discounted back to the point in time where a begins execution.

0™ (i, 5, a) ZP' i Nigan™ Qr G ns') (9)

With this definition. we can express the () function recursively as
Q" (i,s,a) =V™(a,s) + C" (i, s,a). (10)
Finally, we can re-express the definition for V7™(i, s) as

Q" (i, s, mi(s) if 7 is composite

) . Lbtlscompo (11)
Yoo P(s'|s,i)R(s'|s,4) if i is primitive |

Value Decomposition

* The value function can be decomposed as
follows

VT0,8) = VT(am.8)+C (am-1.8.am)+ ...+ C"(ay.s,a2) + C"(0.s.a1)

V™(Root.s;) = V™(North,s;)+ C"(Navigate(RR), s;. North) +
C'"(Get, s1, Navigate(R?)) + C"(Root, 51, Get) V(0. 8)
= =l 12 e
— J_U .E-'T[;H_[N ‘-]
.—-—"-‘-A\-R'-
_4-‘"—-'(-—-’ - AT
Vi lamcss)
/ \\
I_'TI:H.,-,.,.-‘:':I ("T[:r'f.,,., 1,5, () ('Tl:rf.l..':'.rr.g) ('TI:[J..E'.rr.l]
1 I ra 14 rs o s ra rin 11 . 13

MAXQ Alg.

* An example

7 7
Tamx Task WViroots)
-5 =5
Get Passenger Fimish ViGet.s) Ciroot.s.Get)
Taxi Task o
12
12
-4 -4
Navigate{Y) Finish VilNavigate(Y).5) C{Get.s Nav(Y))
Get -1
-1
West Finizh ViWest,s) C(Naw(Y).s5. West)
Navigate(Y) -1 1

-1 -3

Fig. 5. An example of the MAXQ value function decomposition for the state in which
the taxi is at location (2,2), the passenger is at (0,0), and wishes to get to (3,0). The
left tree gives English descriptions, and the right tree uses formal notation.

MAXQ Alg.

V(root, s) = V(west, s) + C'(navigate(Y'), s, west)
+ C'(get, s, navigate(Y'))
+ C(root, s, get).

Passenger at Y Passenger In Taxi
4110|198 |7 |6 4 1G|18]13]12(11
311({1009 |8 |7 3118(1714(13]12
2112|11110(9 | 8 2 117116151413
1 J13]10(98 |7
0149|876

2 4

Fig. 4. Value function for the case where the passenger is at (0.0) (location Y) and
wishes to get to (0.4) (location R).

MAXQQ Alg.

function MAXQQ(state s, subtask p) returns float
Let Total Reward = (
while p is not terminated do
Choose action a = w,(s) according to exploration policy
Execute a.
if @ is primitive, Observe one-step reward r
else r := M AXQQ)(s,a), which invokes subroutine a and
returns the total reward received while a executed.
Total Reward := Total Reward + r
Observe resulting state s'
if a is a primitive
Via,s):=(1—-a)V(a,s)+ar
else a is a subroutine
C(p,a,s) := (1 —a)C(p,s,a) + amaxy [V(d',s') + C(p,s',a’)]
end // while

return Total Reward
end

This algorithm converges to a recursively optimal policy for the original MDP provided that it is
GLIE and the learning rates a suitably decreases

Optimality in HRL

Hierarchically optimal vs. recursively optimal

Hierarchical optimality: The learnt policy is the best policy

consistent with the given hierarchy. Task’s policy depends not
only on its children’s policies, but also on its context.

Recursive optimality: The policy for a parent task is optimal
given the learnt policies of its children. (Context-free task’s

policy).

