Planning and Acting

: : Planning Objectives/
Deliberation Other Oueries " Other
functions actors : s J:Mmages actors
Acting
Commmrdsl TPerceprs Commands‘i TPerreprs
Execution platform Execution platform
Actuations Signals Actuations Signals
J— JEENE 55N g
External World External World
(a) (b)

Prediction and search Receding horizon

Planning stage
Predict

Acting stage
§ %») <

Search — — AT | ee=e==== <I

Planning and Acting

Multiple levels of deliberation and representation

l'ESPOIId 1o user requests

bring o7 to room2

- e b e e e e e e e -,

I . . .

i | goto | [navigate | |fetch | |navigate | | deliver
\ |hallway| |to room1|| o7 | |to room2 o7
\

move to door| [open door| | get out| |close door| |

S e SN

move | |HRgrasp
identity ’ intai .
move e maintain
g1asp| | tum back

ype || close | |
of io knob | |knob pull pull

door || knob

Imouitorl |monitorl

- Hierarchically organized deliberation
- Continual online deliberation

Planning and Acting

Multiple levels of deliberation and representation

l'ESPOIId 1o user requests

bring o7 to room2

- e b e e e e e e e -,

I . . .

i | goto | [navigate | |fetch | |navigate | | deliver
\ |hallway| |to room1|| o7 | |to room2 o7
\

move to door| [open door| | get out| |close door| |

S e SN

move | |HRgrasp
identity ’ intai .
move e maintain
g1asp| | tum back

ype || close | |
of io knob | |knob pull pull

door || knob

Imouitorl |monitorl

- Hierarchically organized deliberation
- Continual online deliberation

Planner Hierarchy

* Hierarchical planning systems typically share a structured
and clearly identifiable subdivision of functionality regarding
distinct program modules that communicate with each
other in a predictable and predetermined manner.

* At a hierarchical planner’s highest level, the most global and
least specific plan is formulated (deliberative planner).

* At the lowest levels, rapid real-time response is required,
but the planner is concerned only with its immediate
surroundings and has lost the sight of the big picture.

39

Spatial Time

Scope Hierarchy of World Model Horizon
Planning Systems
Long - Term
Immediate
Vicinity

Actions Sensing Real - Time

40

Hierarchical Planners vs. BBS

Hierarchical Planners

Rely heavily on world models,
Can readily integrate world knowledge,
Have a broad perspective and scope.

BB Control Systems

afford modular development,

Real-time robust performance within a changing world,
Incremental growth

are tightly coupled with arriving sensory data.

41

Hybrid Control

The basic idea is simple: we want the best of both worlds
(if possible).

The goal is to combine closed-loop and open-loop
execution.

That means to combine reactive and deliberative control.

This implies combining the different time-scales and
representations.

This mix is called hybrid control.

Hybrid robotic architectures believe that a union of deliberative and
behavior-based approaches can potentially yield the best of both worlds.

42

Organizing Hybrid Systems

Planning and reaction can be tied: ~ More Deliberative

: . : Planner
A: hierarchical integration - - -

A

planning and reaction are involved
with different activities, time scales

Behavioral Advice
Configurations
Parameters

B: Planning to guide reaction -
configure and set parameters for
the reactive control system.

C: coupled - concurrent activities

A 4

More Reactive -

A B

43

Organizing Hybrid Systems

It was observed that the emerging architectural design of choice is:
— multi-layered hybrid comprising of
* a top-down planning system and
* a lower-level reactive system.

— the interface (middle layer between the two components) design is
a central issue in differentiating different hybrid architectures.

In summary, a modern hybrid system typically consists of three components:
¢ a reactive layer
¢ a planner
¢ a layer that puts the two together.

=> Hybrid architectures are often called three-layer architectures.

The Magic Middle: Executive Control

e The middle layer has a hard job:

1) compensate for the limitations of both the planner and the reactive
system

2) reconcile their different time-scales.

3) deal with their different representations.

4) reconcile any contradictory commands between the two.
e This is the challenge of hybrid systems

=> achieving the right compromise between the two ends.

45

Al Planning Paradigms

Classical Planning

Temporal Planning
Conditional Planning
Decision Theoretic Planning

Least-Commitment Planning
HTN planning

Three Main Types of Planners

1. Domain-specific
¢ Made or tuned for a specific planning domain
¢ Won’t work well (if at all) in other planning domains
2. Domain-independent
¢ In principle, works in any planning domain
¢ In practice, need restrictions on what kind of planning domain
3. Configurable
¢ Domain-independent planning engine
¢ Input includes info about how to solve problems in some domain

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Abstraction

@ Real world 1s absurdly complex, need to approximate

e State transition system X = (5.4.E.7)
¢ 5= {abstract states}

» e.g., states might include a robot’s location,
but not its position and orientation

¢ Only represent what the planner needs to reason about 5

+ A = {abstract actions} locl
» e€.g., “move robot from loc2 to loc1” may
need complex lower-level implementation -
o FE = {abstract exogenous events}
» Not under the agent’s control loc2

¢ y = state transition function
» Gives the next state, or possible next states, after an action or event
» SXxAUE)—S or . Sx(AUE)—>25
e In some cases, avoid ambiguity by writing Sy, Ay, Es, 7s

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Conceptual Model

Planning problem

4 1\
\locl | loc2 /
move2 movel
e
(
locl | loc2 /

l Description of £
Initial state
o

»| Planner
Objectives 2
Plans

Instructions to
the controller

Execution status

Carries out
the plan

Controller ﬁ
: Observations T lActions
' /] System X

Observation T Events
function

h:S—0

e Control may involve lower-level planning and/or

plan execution

¢ ¢.g., how to move from one location to another

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Plans

Classical plan: a sequence of
actions

(take, movel, load, move2)

Policy: partial function from S
mnto A4
{(s0, take),
(s;, movel),
(55, load),
(S,, move2)}

Path 1if avariited ctarting at o
12U, 11 VAVGVULLVUL OLudl uus at OO,
produce s,

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

(

take [
@_ h put - h
ocl loc2 -/ _loc1 T2
move2 movel move2 movel
- NS
take [
‘ ot ;
|) _loc1 loc2
unload load
r =
movel
._U -j , ‘movez U
_loc1 loc2) _loc1 loc2

Dock Worker Robots (DWR) example

Planning Versus Scheduling

l Description of £

Initial state

: | Planner
@ Scheduling Objectives
& Dec}de th:_ﬂ and how to | scheduler
perform a given set of actions T 7
» Time constraints Controller
b ' straints .
Res?our.ce c‘onsn:amts T l Aefions
» Objective functions
¢ Typically NP-complete System ¥
T Events

e Planning
¢ Decide what actions to use to achieve some set of objectives
¢ Can be much worse than NP-complete; worst case 1s undecidable

@ Scheduling problems may require replanning

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Restrictive Assumptions

A0: Finite system:
+ finitely many states, actions, events

A1: Fully observable: l Description of X

Initial state

¢ the controller always 2’s current state . > Planner
A2: Deterministic: Objectives
¢ each action has only one outcome - Plans

AJ3: Static (no exogenous events):

¢ no changes but the controller’s actions Controller

A4: Attainment goals: Observations T lActions
¢ aset of goal states S,
AS: Sequential plans: SUREHEE

¢ aplan is a linearly ordered sequence | Events

of actions (a,, a,, ... a,
A6: Implicit time:
¢ no time durations; linear sequence of instantaneous states
A7: Off-line planning:
¢ planner doesn’t know the execution status

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 12

Classical Planning (Chapters 2-9)

e Classical planning requires all eight restrictive assumptions

¢ Offline generation of action sequences for a deterministic, static, finite
system, with complete knowledge, attainment goals, and implicit time

@ Reduces to the following problem:
¢ Given a planning problem P = (Z, s,,, S,)
¢ Find a sequence of actions (a,, a,, ... a,) that produces
a sequence of state transitions (s, s, ..., S,
such that s, 15 in S,
® This 1s just path-searching in a graph
¢ Nodes = states
¢ Edges = actions

® Is this trivial?

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Classical Planning (Chapters 2-9)

® Generalize the earlier example:

5 locations, 4 %o)
3 robot vehicles, take
100 containers,
3 pallets to stack containers on [H/ put
¢ Then there are 10°77 states loc1 loc2 J
@ Number of particles in the universe move2 x J'movel

1s only about 1087
¢ The example is more than 10'° times as large

@ Automated-planning research has been heavily dominated by classical planning
¢ Dozens (hundreds?) of different algorithms

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Classical Planning Problem

Newell and Simon 1956
« (Given the acfions available in a task domain.
« Given a problem specified as:

— an initial state of the world,
— a set of goals to be achieved.

« Find a solution to the problem, i.e., a way to transform
the initial state into a new state of the world where the
goal statement is true.

Action Model, State, Goals

Classical Planning

Action Model: complete, deterministic, correct, rich
representation

State: single initial state, fully known

Goals: complete satisfaction

Several different planning algorithms

STRIPS Domain

STanford Research Institute Problem Solver [Fikes, Nilsson, 1971]

Pickup from table(b) Pickup from block(b, ¢)
Pre: Block(b). Handempty Pre: Block(b), Handempty
Clear(b). On(b, Table) Clear(b), On(b, c), Block(c)
Add: Holding(b) Add: Holding(b), Clear(c)
Delete: Handempty. Delete: Handempty,
On(b, Table) On(b. ¢)
Putdown_on_table(b) Putdown_on_block(b, ¢)
Pre: Block(b). Holding(b) Pre: Block(b), Holding(b)
Add: Handempty, Block(c), Clear(c). b =¢
On(b, Table) Add: Handempty, On(b. c)
Delete: Holding(b) Delete: Holding(b), Clear(c)

Init: On(a,Table), On(b,table), On(c,table) Goal: On(a,table),On(b,a), On(c,b)

STRIPS-like Domain

Observation-1

target —

instruments
=

Observation-2
Observation-3

Observation-4

— pointing

calibrated

Takelmage (?target, ?instr):
Pre: Status(?instr, Calibrated), Pointing(?target)
Eff: Image(?target)

Calibrate (?instrument):
Pre: Status(?instr, On), Calibration-Target(?target), Pointing(?target)
Eff. ~Status(?inst, On), Status(?instr, Calibrated)

Turn (?target):
Pre: Pointing(7direction), ?direction # ?target
Eff: =Pointing(?direction), Pointing(?target)

Representations: Motivation

® In most problems, far too many states to try to represent all of
them explicitly as s, s, 55, ...

® Represent each state as a set of features
¢cg.,
» a vector of values for a set of variables
» a set of ground atoms 1n some first-order language L

® Define a set of operators that can be used to compute state-
transitions

® Don’t give all of the states explicitly
¢ Just give the nitial state

¢ Use the operators to generate the other states as needed

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Classical Representation

® Arom: predicate symbol and args

¢ Use these to represent both fixed and dynamic relations
adjacent(/,/") attached(p,/) belong(%,/)

occupied(/) at(r,/)
loaded(r,¢) unloaded(r)
holding(%,c) empty(k)
IN(c,p) on(c,c’)
top(c,p) top(pallet.p)
® Ground expression: contains no variable symbols - e.g., in(c1,p3)

® Unground expression: at least one variable symbol - e.g., in(c1,x)

® Substitution: 0 = {x;<v,, X, < V,, ..., X, < V,}
¢ Each x; 1s a variable symbol; each v, 1s a term
® [nstance of e: result of applying a substitution & to e
¢ Replace variables of e simultaneously, not sequentially

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

States

® Srate: a set s of ground atoms
¢ The atoms represent the things that are true i one of X’s states
¢ Only finitely many ground atoms, so only finitely many possible states

T

cranel

e - ~
P2 ,
4 cl = ri
pl o—

locl ' loc2

s, = {attached(p1,loc1), in(c1,p1), in(c3,p1), top(c3,p1), on(c3,c1),
on(c1,pallet), attached(p2,loc1), in(c2,p2), top(c2,p2), on(c2,palet),
belong(crane1,loc1), empty(crane1), adjacent(loc1,loc2),
adjacent(loc2,loc1), at(r1,loc2), occupied(loc2, unloaded(r1)}

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Planning Problem

* Planning Domain:
— Operators as preconditions and effects
* Planning Problem:

— Initial State, Planning Domain, Goals

Initial Conditions: | P, P, P, P,

preq
Eﬁ1
= D
E'ﬁz

pre;

Operators:

Goals: Goal, Goal, Goal,

Planning Domain

* Frame Problem:
- How to represent unchanged facts?
- Example: 1 go from home (state S) to the store (state S’).InS’":
The house is still there, Rome is still the largest city in Italy, my

shoes are the same, etc..
- Path Planning has not this issue (sub-symbolic representation)

e Ramification Problem:
- How to represent indirect effect of the actions
- |l go from home (state S) to the store (state §’). In S’:
The number of people in the store went up by 1,
The contents of my pockets are now in the store, etc..

STRIPS Domain

States:
- Set of well-formed formulas (wffs: conjunction of literals)

Set of Actions, each represented with:

— Preconditions (list of predicates that should hold)

— Delete list (list of predicates that will become invalid)

— Add list (list of predicates that will become valid) Actions thus allow variables

A goal condition:
- Well-formed formula

P
- cranel
Actions = (=
cl s 4 ri
2
p o0°
take(k,l,c,d, p) loc1 | oc2

.; crane k at location [takes ¢ off of d in pile p
precond: belong(k, 1), attached(p, 1), empty(k), top(c,p),on(c, d)
effects: holding(k, ¢), ~empty(k), ~in(c,p), 2 top(c, p), mon(ec, d), top(d, p)

® An action 1s a ground 1nstance (via substitution) of an operator
¢ Let6 = {k<cranel,/<locl,c «<c3,d <cl1,p «<p1}
¢ Then (take(k/c,d p))0 1s the following action:
take(crane1,loc1,c3,c1,p1)

precond: belong(crane,loc1), attached(p1,loc1),
empty(crane1), top(c3,p1), on(c3,c1)

effects: holding(crane1,c3), —empty(crane1), -in(c3,p1),
-top(c3,p1), —on(c3,c1), top(c1,p1)

¢ i.e., crane crane1 at location loc1 takes ¢3 off of ¢1 1n pile p1

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Applicability

® Lets bea state and a be an action /‘
® «a1s applicable to (or executable 1n) cranel
if s satisfies precond(a) =) _;;_
¢ precond*(a) Cs == 3 =
¢ precond(a) Ns= I - : —
® An action: ® A state it’s applicable to

t k 1;' 1; 3’ 1’ 1 .
ake(crane1,loc1,c3,c1,p1) s, = {attached(p1,loc1), in(c1,p1),

in(c3,p1), top(c3,p1), on(c3,c1),
on(c1,pallet), attached(p2,loc1),
in(c2,p2), top(c2,p2), on(c2,palet),

precond: belong(crane,loc1),
attached(p1,loc1),
empty(crane1), top(c3,p1),

on(c3,c1) = p.
effects: holding(crane1,c3), ereno’:lg:(c(;;anr::l), oc1),
-empty(crane1), e ’

adjacent(loc1,loc2),
adjacent(loc2,loc1), at(r1,loc2),

_ | occupied(loc2, unloaded(r1)}
Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

-in(c3,p1), —~top(c3,p1),
-on(c3,c1), top(c1,p1)

Planning Problems

® Given a planning domain (language L, operators Q)

¢ Statement of a planning problem: a triple P=(0,s,,g)
» O 1s the collection of operators
» 5, 1s a state (the 1nitial state)
» g1s a set of literals (the goal formula)

¢ Planning problem: 2 = (2,s,,5,)
» S, = Initial state
» S, = set of goal states

y 2= (5,4, y) 1s a state-transition system that satisfies all of the
restrictive assumptions i Chapter 1

» § = {all sets of ground atoms in L}
» A = {all ground 1nstances of operators in O}
» y= the state-transition function determined by the operators
® ['ll often say “planning problem” to mean the statement of the problem

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

14

Plans and Solutions

® Let P=(0,s,g) be aplanning problem

® Plan: any sequence of actions T = (a,, d,, ..., a,) such that
each a, 1s an instance of an operator in O

® 7 1s a solution for P=(0,s,g) if 1t 1s executable and achieves g
¢ 1.¢., if there are states s, s, ..., s, such that
» y(Spa) = s
» y(s,a,) =S,
» ...
» yis. :8.)=5,

» s, satisties g

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Set-Theoretic Representation

® Like classical representation, but restricted to propositional logic
¢ Equivalent to a classical representation in which all of the atoms are ground

¢
cranel
c2
5 2
n))—
pl @) (00
locl loc2

® States:
¢ Instead of ground atoms, use propositions (boolean variables):

{on(c1,pallet), on(c1,r1), on(c1,c2), ..., at(r1,11), at(r1,12), ...}

U

{on-c1-pallet, on-c1-r1, on-c1-c2, ..., at-r1-l1, at-r1-12, ...}

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Exponential Blowup

® Suppose the language contains ¢ constant symbols

® Lecto be a classical operator with & parameters

® Then there are ¢* ground instances of o
Hence ¢ set-theoretic actions

@ Example: l
take(crane1,loc1,c3,c1,p1) cranel

. k=3 : =7

. cl - r1
¢ | crane, 2 locations, Pl o OOZ
3 containers, 2 piles
locl loc2

» 8 constant symbols
& 8 =32768 ground instances
® Can reduce this by assigning data types to the parameters
» e.g., first arg must be a crane, second must be a location, etc.
» Number of ground instances is now 1 *2 * 3 * 3 * 2 = 36
¢ Worst case 1s still exponential

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

20

Example: The Blocks World

Infinitely wide table, finite number of children’s blocks
Ignore where a block 1s located on the table
A block can sit on the table or on another block

There’s a robot gripper that can hold at most one block

Want to move blocks from one configuration to another

® cg., |
a

d
initial state C goal

a ‘b‘ ‘:‘ C

® Like a special case of DWR with one location, one crane, some containers,
and many more piles than you need

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Classical Operators

unstack(x,y)
Precond: on(x,y), clear(x), handempty
Effects: -on(x,y), ~clear(x), ~handempty,
holding(x). clear(y)

stack(x,y)
Precond: holding(x), clear(y)
Effects: —holding(x), —clear(y),
on(x,y), clear(x), handempty

pickup(x)
Precond: ontable(x), clear(x), handempty
Effects: -ontable(x), —clear(x),
-handempty. holding(x)

putdown(x)
Precond: holding(x)
Effects: —holding(x), ontable(x),
clear(x), handempty

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

c []
difaf]|b
unstack(c,a) sta@,a)

e Tl
dlla]||b
e |_b—|
di|a
putdown(b) pic@(b)
c |
dila||b

Set-Theoretic Actions

60 actions
50 1f we
exclude
nonsensical
ones, €.g.,
unstack-e-e

Here are
four of
them:

unstack-c-a
Pre: on-c-a, clear-c, handempty

Del: on-c-a, clear-c, handempty
Add: holding-c, clear-a
stack-c-a

Pre: holding-c, clear-a

Del: holding-c, clear-a
Add: on-c-a, clear-c, handempty
pickup-b

Pre: ontable-b, clear-b, handempty

Del: ontable-b, clear-b, handempty
Add: holding-b
putdown-b
Pre: holding-b
Del: holding-b
Add: ontable-b, clear-b, handempty

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

ellc
dila ‘ b ‘
unstack-c-a gtackle-a
Te]
difal|b
ellc
T 1
dl|la
| —————————————
putdown-b pici p-b

State-Variable Representation: Symbols

® Constant symbols:

a,b,cde of type block |4|—|
0, 1, table, nil of type other

o
® State variables: 115
pos(x) =y if block x 1s on block y _U—E—

pos(x) = table if block x 1s on the table

pos(x) = nil if block x 1s being held

clear(x) =1 if block x has nothing on it

clear(x) =0 if block x 1s being held or has another block on 1t
holding = x if the robot hand 1s holding block x

holding = nil if the robot hand 1s holding nothing

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: hitp://creativecommons.org/licenses/by-nc-sa/2.0/

27

Expressive Power

® Any problem that can be represented in one representation can also be
represented 1n the other two

® Can convert in linear time and space 1n all cases except one:
¢ Exponential blowup when converting to set-theoretic

Trivial:
Each proposition is
a O-ary predicate

P)
becomes
fo(Xq,...,X,)=1

Set-theoretic Classical State-variable
representation representation representation

Write all of
the ground
Instances

f(X4,....X,)=Y
becomes

P s Y

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons org/licenses/by-nc-sa/2 0/ 29

Comparison

® C(lassical representation
¢ The most popular for classical planning, partly for historical reasons

® Set-theoretic representation
¢ Can take much more space than classical representation
¢ Useful 1n algorithms that manipulate ground atoms directly
» e.g., planning graphs (Chapter 6), satisfiability (Chapters 7)
¢ Useful for certain kinds of theoretical studies

@ State-variable representation
¢ Equivalent to classical representation in expressive power
¢ Less natural for logicians, more natural for engineers and most computer
scientists

¢ Useful 1n non-classical planning problems as a way to handle numbers,
functions, time

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

30

PDDL Domain

Planning Domain Definition Language
(standard language for classical Al planning)

Components of a PDDL planning task:

e Objects: Things of interest

* Predicates: Relevant properties of objects (can be true or false)
e |nitial state: The initial state of the world

e Goal specification: Desiderata

e Actions/Operators: Means to change the state of the world

Planning Domain: predicates and actions.
Planning Problem: initial state and goal specification.

PDDL Domain

Planning Domain Definition Language
(standard language for classical Al planning)

Planning Domain:

(define (domain <domain name>)
<PDDL code for predicates>
<PDDL code for first action>

[...]

<PDDL code for last action>

)

Planning Problem

(define (problem <problem name>)
(:domain <domain name>)

<PDDL code for objects>

<PDDL code for initial state>
<PDDL code for goal specification>

)

(:objects rooma roomb balll ball2 ball3 ball4
left right)

(:predicates (ROOM ?x) (BALL ?x) (GRIPPER
?Xx) (at-robby ?x) (at-ball ?x ?y) (free ?x) (carry

?x ?y))

(:init (ROOM rooma) (ROOM roomb) (BALL
ball1) (BALL ball2) (BALL ball3) (BALL ball4)
(GRIPPER left) (GRIPPER right) (free left) (free
right) (at-robby rooma) (at-ball ball1l rooma)
(at-ball ball2 rooma) (at-ball ball3 rooma) (at-
ball ball4 rooma))

(:goal (and (at-ball balll roomb) (at-ball ball2
roomb) (at-ball ball3 roomb) (at-ball ball4
roomb)))

PDDL Domain

Planning Domain Definition Language
(standard language for classical Al planning)

Planning Domain:

(define (domain <domain name>)
<PDDL code for predicates>
<PDDL code for first action>

[...]

<PDDL code for last action>

)
Planning Problem:

(define (problem <problem name>)
(:domain <domain name>)

<PDDL code for objects>

<PDDL code for initial state>
<PDDL code for goal specification>

)

(:action move :parameters (?x ?y)
:precondition (and (ROOM ?x) (ROOM ?y) (at-
robby ?x)) :effect (and (at-robby ?y) (not (at-
robby ?x))))

(:action pick-up :parameters (?x ?y ?z)
:precondition (and (BALL ?x) (ROOM ?y)
(GRIPPER ?z) (at-ball ?x ?y) (at-robby ?y) (free
?z)) :effect (and (carry ?z ?x) (not (at-ball ?x
?y)) (not (free ?z))))

Motivation

@ Nearly all planning procedures are search procedures
® Different planning procedures have different search spaces
¢ Two examples:
® State-space planning
¢ Each node represents a state of the world
» A plan 1s a path through the space
® Plan-space planning

¢ Each node 1s a set of partially-instantiated operators, plus some
constraints

» Impose more and more constraints, until we get a plan

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Forward-search(O, s, g)

S 50

m «— the empty plan

loop
if s satisfies g then return 7
E «— {a|a is a ground instance an operator in O,

and precond(a) is true in s}

if E = () then return failure
nondeterministically choose an action a € E
s — (s, a)
T — 7.

take ¢3

cranel loc1 loc2

A
— o 1,
)

1 -
> = take c2
locl / loc2 ,
move r1

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Properties

@ Forward-search 1s sound

¢ for any plan returned by any of its nondeterministic traces, this
plan 1s guaranteed to be a solution

e Forward-search also 1s complete

¢ 1f a solution exists then at least one of Forward-search’s
nondeterministic traces will return a solution.

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Deterministic Implementations

® Some deterministic implementations

of forward search: a Sy
¢ breadth-first search
= Sp S LW Sg
¢ depth-first search 2 3 S5 -
5

& best-first search (e.g., A*)
¢ greedy search
® Breadth-first and best-first search are sound and complete
¢ But they usually aren’t practical because they require too much memory
¢ Memory requirement 1s exponential in the length of the solution
® In practice, more likely to use depth-first search or greedy search
¢ Worst-case memory requirement 1s linear in the length of the solution
¢ In general, sound but not complete
» But classical planning has only finitely many states
» Thus, can make depth-first search complete by doing loop-checking

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommaons.org/licenses/by-nc-sa/2.0/

Branching Factor of Forward Search

ay
initial state goal

® Forward search can have a very large branching factor
¢ E.g.. many applicable actions that don’t progress toward goal
® Why this 1s bad:

¢ Deterministic implementations can waste time trying lots of
irrelevant actions

® Need a good heuristic function and/or pruning procedure

¢ See Section 4.5 (Domain-Specific State-Space Planning)
and Part III (Heuristics and Control Strategies)

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Backward Search

@ For forward search, we started at the mitial state and computed state
transitions

¢ new state = y(s,a)

® [or backward search, we start at the goal and compute 1nverse state
transitions

¢ new set of subgoals =vy~!(g,a)
® To define y!(g,a), must first define relevance:
¢ An action a 1s relevant for a goal g 1f
» a makes at least one of g’s literals true
e g N eftects(a) # J
» a does not make any of g’s literals false
e g" Neffects(a) = D and g N eftects™(a) =

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2 .0/

Inverse State Transitions

® If @ 1s relevant for g, then
¢ v !(ga)=(g—eftects(a)) U precond(a)
® Otherwise y~!(g,a) 1s undefined

® [xample: suppose that
¢ g = {on(b1,b2), on(b2,b3)}
¢ o = stack(b1,b2)

® What s y(g,a)?

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Backward-search(O, s¢, g)
m «— the empty plan
loop
If sy satisfies g then return =
A — {ala is a ground instance of an operator in O

and 7 !(g,a) is defined}
if A= () then return failure
nondeterministically choose an action a € A
m e a.m

g —~ (g,a)

Jds

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

10

Efficiency of Backward Search

e |

b,

b, | [b,| [bs| ... [bg
initial state goal

@ Backward search can also have a very large branching factor

¢ E.g.. an operator o that 1s relevant for ¢ may have many ground
instances a,, a,, ..., a_ such that each a.’s mput state might be
unreachable from the nitial state

® As before, deterministic implementations can waste lots of time
trying all of them

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

ontable(b,)

on(b,by)

on(b,,b,) +unstack(b,,b,) holding(b,)

on(b4,bsp)

® Can reduce the branching factor of backward search if we partially
instantiate the operators

¢ this 1s called /ifting ontable(b,)

' b
::% holding(b,)
on(b,,y) ack(by,y)
Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Lifted Backward Search

® More complicated than Backward-search
¢ Have to keep track of what substitutions were performed

@ But it has a much smaller branching factor

Lifted-backward-search(O, s, g)
m «— the empty plan
loop
if so satisfies g then return
A «— {(0,0)|o is a standardization of an operator in O,
6 is an mgu for an atom of g and an atom of effects™ (o),
and v 1(A(g),0(0)) is defined}
if A = () then return failure
nondeterministically choose a pair (0,0) € A
7 «— the concatenation of #(0) and #(7)

g —~'(6(g),0(0))

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

13

The Search Space is Still Too Large

e Lifted-backward-search generates a smaller search space than
Backward-search, but it still can be quite large

¢ Suppose actions a, b, and ¢ are independent, action ¢ must
precede all of them, and there’s no path from s, to d’s input
state

¢ We’'ll try all possible orderings of a, b, and ¢ before realizing
there 1s no solution

¢ More about this in Chapter 5 (Plan-Space Planning)
d a b
>
d b a

5 d b a > b goal
d a
d

b C
a
d c b
Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

STRIPS

® Basic idea: given a compound goal g = {g,, g, ...}, try to solve each g;
separately

¢ Works if the goals are serializable (can be solved in some linear order)

1 < the empty plan

do a modified backward search from g:
instead of y-!(s,a), each new set of subgoals is just precond(a)
whenever you find an action that’s executable 1n the current state,

go forward on the current search path as far as possible,
executing actions and appending them to &

repeat until all goals are satisfied

= (7,,7,) Or (7,7} @ - \ab\
Ty = ()1, 71,G,) OF (13, 7T11,0) W#@\\%

Ty = (a7.ay))
Ty, = (a;.as) @ 7 s/ [45 P\

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Linear Planning

* Alinear planner is a classical planner such that:
— no importance distinction of goals
— all (sub)goals are assumed to be independent
— (sub)goals can be achieved in arbitrary order

* Plans that achieve subgoals are combined by placing all steps
of one subplan before or after all steps of the others
(=non-interleaved)

Linear Planning

 Means-Ends analysis
— What means (operators) are available to achieve the ends (goals)
— Difference between goal and current state
— Operator to reduce the difference
— Means-ends analysis on new subgoals

STRIPS Planning

« STRIPS (initial-state, goals)
— state = initial-state. plan =[] stack =[]
— Push goals on stack
— Repeat until stack 1s empty
 Iftop of stack 1s that matches state, then pop stack
 Else 1f top of stack 1s a g. then
— Select an ordering for the subgoals of g. and push them on
stack
 Else if top of stack 1s a simple goal sg, then
— Choose an operator o whose add-list matches goal sg
— Replace goal sg with operator o
— Push the preconditions of o on the stack
* Else 1f top of stack 1s an operator o, then
— state = apply(o, state)
— plan = [plan: o]

Simmons. Veloso : Fall 2001

Linear Planning

* Advantage:
— Goals are solved one at a time (ok if independent)
— Sound

 Disadvantage
— Suboptimal solutions (number of operators in the plan)
— incomplete

The “Sussman Anomaly”

1. Stack State State
T B w1 | e Clu®
- Clear(C) Clear(C)
On(C. A) On(C. A)
- On(A., Table) On(A. Table)
On(B. Table) On(B, Table)
IJ_l Handempty Handempty
rh
B
Goal Initial State

Planning. Execution & Leaming: Linear & Non 21 Simmons. Veloso : Fall 2001

The “Sussman Anomaly”

State

Clear(B)
Clear(C)
On(C. A)
On(A. Table)
On(B. Table)
Handempty

4. Stack

State

Clear(B)
Clear(C)
On(C. A)
On(A. Table)
On(B, Table)
Handempty

Planning. Execution & Leaming: Linear & Non 22 Simmons, Veloso : Fall 2001

The “Sussman Anomaly”

. Stack State 6. Stack State

Clear(C) Clear(C)
On(A, Table) - On(A. Table)

On(B. Table)
Holding(C)

On(B, Table)
Holding(C)

[Pick(C,A)]

[Pick(C,A)]

The “Sussman Anomaly”

j 2 Stack State 8. Stack State
On(A, B) On(B, C) Clear(C) On(A, B) On(B, C) On(C. Table)

- On(B. Table) Pick(C.A): PutT(C)- Clear(B)

On(C. Table) [Pick(C.A); PutI(C); | ~jear(a)

PickT(A); Put(A, B);

X On(A. Table)
Pick(A, B); PutT(A);

[Pick(C,A); PutT(C); Clear(A)

: g On(A. B) On(B. C)
PickT(A); Put(A, B . -
il (. Handempty PickTI(B); Put(B, C)] Handempty
B
n = 2
Stack State 10. Stack State
On(A, B) On(B, C) On(C. Table) On(A, B) On(B, C) On(C. Table)
Clear(B) Clear(A)
Clear(A) [Pick(C,A); PutT(C); On(B. C)
On(A. Table) PickT(A); Put(A, B); | On(A.B)
[Pick(C,A); PutT(C); | OnB.C) Pick(A, B); PutT(A); | Handempty
PickT(A); Put(A, B); | Handempty PickT(B); Put(B, C);
Pick(A, B); PutT(A); PickT(A); Put(A, B)]

PickT(B); Put(B, C)]

Planning. Execution & Leaming: Linear & Non 24 Simmons, Veloso : Fall 2001

The Register Assignment Problem

® Interchange the values stored in two registers
¢ State-variable formulation:
» registers r1, r2, r3

so. {value(r1)=3, value(r2)=5, value(r3)=0}
g {value(r1)=5, value(r2)=3}

Operator: assign(r,v,7’v')
precond: value(r)=v, value(r)=v’
effects: value(r)=v'

® STRIPS cannot solve this problem at all

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons org/licenses/by-nc-sa/2 0/

Block-Stacking Algorithm

® All of the possible situations in which a block x needs to be moved:

+ s contains ontable(x) and g contains on(x,)) - eg.a
+ s contains on(x,y) and g contains ontable(x) - eg.d
¢ s contains on(x,y) and g contains on(x,z) for some y#Zz - e.g2..C
s contains on(x,y) and y needs to be moved -eg.e

loop
if there 1s a clear block x that needs to be moved
and x can be moved to a place where 1t won’t need to be moved
then move x to that place

else 1f there’s a clear block x that needs to be moved '_|_|

then move x to the table i a
else if the goal 1s satistied then return the plan ollic 2
else return failure al b q
. initial state goal

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Non-Linear Planning

* Basic ldea
— Goal set instead of goal stack
— Search space all possible subgoal orderings
— Goal interactions by interleaving

 Advantages

— Sound, complete, can be optimal with respect to plan length
(depending on search strategy employed)

* Disadvantages
— Larger search space

Non-Linear Planning

NLP (initial-state, goals)
— state =initial-state;, plan = []; goalset = goals: opstack = []
— Repeat until goalset 1s empty
* Choose a goal g from the goalset
« If g does not match szate, then
— Choose an operator o whose add-list matches goal ¢
— Push o on the opstack
— Add the preconditions of o to the goalset

» While all preconditions of operator on top of opstack
are met 1n sfate

— Pop operator o from top of opstack
— state = apply(o, state)

— p/ﬂl? = [p/an; 0] Simmons, Veloso : Fall 2001

Heuristics for Forward-Chaining Planning

Several classical planning style are available:
- http://icaps-conference.org/index.php/Main/Competitions

Forward-chaining planners:
- solving an abstraction of the original, hard, planning problem

The most widely used abstraction involves planning using ‘relaxed actions', where the
delete effects of the original actions are ignored.

Examples:

FF [Hoffmann & Nebel 2001], HSP [Bonet & Geffner 2000], UnPOP [McDermott 1996]
use relaxed actions as the basis for their heuristic estimates

FF was the first to count the number of relaxed actions in a relaxed plan connecting
the goal to the initial state

ROSPIlan

The ROSPlan framework provides a collection of tools for Al Planning in a ROS system.
ROSPlan has a variety of nodes which encapsulate planning, problem generation, and
plan execution

domain/*
Interface
https://kcl-planning.github.io/ROSPlan/ il
problem instance
domain_path
problem_path
Interface
Base planner output
domain/*
state/*
* Knowledge Base stores a PDDL model query_state
* Problem Interface used to generate a PDDL problem, plan
publish it on a topic, or write it to file
* Planner Interface used to call a planner and publish the Plan
plan to a topic, or write it to file Gl e @
* Parsing Interface used to convert a PDDL plan into ROS
messages, ready to be executed. action feedback

* Plan Dispatch encapsulates plan execution.

action dispatch

STRIPS and Games

Behavior of Non Player Characters (NPCs) can be described by abstract actions defined in
a symbolic world model, e.g. First-Person Shooter (FPS) games

F.E.A.R. (short for First Encounter Assault Recon) is a horror-themed first- person shooter
developed by Monolith Productions

— Gamespot’s Best Al Award in 2005

— Ranked 2nd in the list of most influential Al games

The agents’ behavior is a function of the generated plans based on goals, state, and
available actions

Jeff Orkin: Three States and a Plan: The Al of F.E.A.R. Proceedings of the Game Developer's Conference (GDC)

Olivier Bartheye and Eric Jacopin: A PDDL-Based Planning Architecture to Support Arcade Game Playing

Summary

@ If classical planning 1s extended to allow function symbols

¢ Then we can encode arbitrary computations as planning problems
» Plan existence 1s semidecidable

» Plan length 1s decidable
® Ordinary classical planning 1s quite complex
» Plan existence 1s EXPSPACE-complete
» Plan length 1s NEXPTIME-complete
+ But those are worsft case results

» If we can write domain-specific algorithms. most well-known planning
problems are much easier

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons. org/licenses/by-nc-sa/2.0/

14

