
Behavior Trees

A Behavior Tree (BT) is a way to structure the switching between
different tasks in an autonomous agent, such as a robot or a
virtual entity in a computer game

M. Colledanchise and P. Ogren Behavior Trees in Robotics and AI. An Introduction

Behavior Trees

Developed in the computer game industry to increase modularity in
the control structures of Non-Player Characters (NPCs)

At Carnegie Mellon University, BTs have been used extensively to do
robotic manipulation

FSMs have long been the standard choice when designing a task
switching structure, but they lack of modularity and flexibility

M. Colledanchise and P. Ogren Behavior Trees in Robotics and AI. An Introduction

Behavior Trees
The execution starts from the root which sends enabling signals (ticks) that allows
the execution of a child
- A node is executed if and only if it receives ticks.
- The child immediately returns Running to the parent, if its execution is under way,

Success if it has achieved its goal, or Failure otherwise.

Nodes classified as root, control flow nodes, or execution nodes:
- Control flow nodes (Sequence, Fallback, Parallel, and Decorator)
- Execution nodes (Action and Condition)

M. Colledanchise and P. Ogren Behavior Trees in Robotics and AI. An Introduction

Behavior Trees
The execution starts from the root which sends enabling signals (ticks) that allows
the execution of a child

Nodes classified as root, control flow nodes, or execution nodes:
- Control flow nodes (Sequence, Fallback, Parallel, and Decorator)
- Execution nodes (Action and Condition)

M. Colledanchise and P. Ogren Behavior Trees in Robotics and AI. An Introduction

Behavior Trees
The execution starts from the root which sends enabling signals (ticks) that allows
the execution of a child

Nodes classified as root, control flow nodes, or execution nodes:
- Control flow nodes (Sequence, Fallback, Parallel, and Decorator)
- Execution nodes (Action and Condition)

M. Colledanchise and P. Ogren Behavior Trees in Robotics and AI. An Introduction

Behavior Trees
The execution starts from the root which sends enabling signals (ticks) that allows
the execution of a child

Pack-man example

M. Colledanchise and P. Ogren Behavior Trees in Robotics and AI. An Introduction

Behavior Trees
Pick and Place scenario in CoppeliaSim https://btirai.github.io/

M. Colledanchise and P. Ogren Behavior Trees in Robotics and AI. An Introduction

Behavior Trees
The execution starts from the root which sends enabling signals (ticks) that allows
the execution of a child

M. Colledanchise and P. Ogren Behavior Trees in Robotics and AI. An Introduction

Behavior Trees
Amazon Picking Competition
The Amazon Robotics/Picking Challenge http://amazonpickingchallenge.org/

M. Colledanchise and P. Ogren Behavior Trees in Robotics and AI. An Introduction

BTs vs FSMs

M. Colledanchise and P. Ogren Behavior Trees in Robotics and AI. An Introduction

Finite State Machines
– Maintainability: Adding or removing states requires the re-evaluation a
potentially large number of transitions and internal states of the FSM

– Scalability: FSMs with many states and many transitions between them are hard
to modify, for both humans and computers.

– Reusability: The transitions between states may depend on internal variables,
making it unpractical to reuse the same sub-FSM in multiple projects

BTs vs HFSMs

M. Colledanchise and P. Ogren Behavior Trees in Robotics and AI. An Introduction

– Maintainability: Adding or removing states is complex. Long sequence of actions
and interactions requires a fully connected subgraph
- Manually created hierarchy: The hierarchy resolves some problems, but a
reactive HFSM results in some sub graphs being fully connected with many
possible transitions

BTs vs HFSMs

M. Colledanchise and P. Ogren Behavior Trees in Robotics and AI. An Introduction

BTs vs HFSMs

M. Colledanchise and P. Ogren Behavior Trees in Robotics and AI. An Introduction

BTs vs Subsumption

M. Colledanchise and P. Ogren Behavior Trees in Robotics and AI. An Introduction

Fallback composition can be used to obtain an equivalent BT:
• Given a Subsumption architecture, an equivalent BT can be obtained by arranging the controllers as

actions under a Fallback composition, in order from higher to lower priority
• the return status of the actions be Failure (if they do not need to execute) or Running. They never

return Success

ABL

Michael Mateas and Andrew Stern. A Behavior Language for Story-based Believable Agents

Planning with a Behavior Language (ABL) [BG Weber et al 2011] for the façade
video game:
- Players interact with the couple by wandering through their apartment and
interacting with objects or by chatting with them directly

ABL Agent:

ABL
Planning with a Behavior Language (ABL) [BG Weber et al 2011] for the façade
video game:
- Players interact with the couple by wandering through their apartment and
interacting with objects or by chatting with them directly

ABL Agent:

Michael Mateas and Andrew Stern. A Behavior Language for Story-based Believable Agents

ABL

Michael Mateas and Andrew Stern. A Behavior Language for Story-based Believable Agents

Planning with a Behavior Language (ABL) [BG Weber et al 2011]

ABL Agent:

ABL
Planning with a Behavior Language (ABL) [BG Weber et al 2011]

ABL Agent:

Michael Mateas and Andrew Stern. A Behavior Language for Story-based Believable Agents

PA-BT

M. Colledanchise and P. Ogren Behavior Trees in Robotics and AI. An Introduction

Planning and Acting using Behavior Trees (PA-BT)

PA-BT

M. Colledanchise and P. Ogren Behavior Trees in Robotics and AI. An Introduction

Planning and Acting using Behavior Trees (PA-BT)

PA-BT

M. Colledanchise and P. Ogren Behavior Trees in Robotics and AI. An Introduction

Planning and Acting using Behavior Trees (PA-BT)

Back chaining: starting from a goal condition select actions to achieve that goal

PA-BT

M. Colledanchise and P. Ogren Behavior Trees in Robotics and AI. An Introduction

Planning and Acting using Behavior Trees (PA-BT)

Back chaining: starting from a goal condition select actions to achieve that goal

Behavior Networks
Hierarchical Behavior-based systems [Nicolescu and Mataric 2002]

Abstract and Primitive Behaviors

• world preconditions - conditions that activate the behaviors based on a
particular state of the environment.

• sequential preconditions - task-dependent conditions that must be met
before activating the behavior:
 Permanent preconditions: preconditions that must be met during the entire

execution of the behavior
 Enabling preconditions: preconditions that must be met immediately before the

activation of a behavior
 Ordering constraints: preconditions that must have been met at some point before

the behavior is activated

• Sequential execution: for the task segments containing temporal ordering constraints;
• Opportunistic execution: for the task segments for which the order of execution does

not matter.

Behavior Networks
Hierarchical Behavior-based systems [Nicolescu and Mataric 2002]

Abstract and Primitive Behaviors

Behavior Hierarchy
Hierarchical Behavior-based systems [Caccavale Finzi 2015, 2017, 2019]

Abstract and Primitive Behaviors (and activations)

BDI Systems
[Bratman,1987]. Intention, Plans, and Practical Reason.

- BDI model inspired by the Michael Bratman's theory of human practical
reasoning:

- resource-bounded agent
- intention and desire are proactive, intentions as commitments

Core concepts
Beliefs = information the agent has about the world
Desires = state of affairs that the agent would wish to bring about
Intentions = desires (or actions) that the agent has committed to achieve

Belief: the agent knowledge about about the world (belief set)
Desires: motivational state, objectives, tasks to be acheived (goals)
Intentions: desires with commitment, i.e. plans ready for the execution (plans)

BDI Systems
BDI particularly compelling because:
• philosophical component - based on a theory of rational actions in

humans
• software architecture - it has been implemented and successfully used in

a number of complex fielded applications
– IRMA - Intelligent Resource-bounded Machine Architecture
– PRS - Procedural Reasoning System

• logical component - the model has been rigorously formalized in a family
of BDI logics
– Rao & Georgeff, Wooldrige
– (Int Ai )   (Bel Ai )

Practical Reasoning Agents:
Deliberation: Intentions and Desires

– intentions are stronger than desires

– “My desire to play basketball this afternoon is merely a
potential influencer of my conduct this afternoon. It must vie
with my other relevant desires [. . .] before it is settled what I
will do. In contrast, once I intend to play basketball this
afternoon, the matter is settled: I normally need not continue
to weigh the pros and cons. When the afternoon arrives, I will
normally just proceed to execute my intentions.” [Bratman,
1990]

Practical Reasoning Agents: Intentions

1. agents are expected to determine ways of achieving intentions
• If I have an intention to Φ, you would expect me to devote resources to deciding how to bring about Φ

2. agents cannot adopt intentions which conflict
• If I have an intention to Φ , you would not expect me to adopt an intention Ψ that was incompatible with Φ

3. agents are inclined to try again if their attempts to achieve their intention fail
• If an agent’s first attempt to achieve Φ fails, then all other things being equal, it will try an alternative plan to

achieve Φ

4. agents believe their intentions are possible
• That is, they believe there is at least some way that the intentions could be brought about.

5. agents do not believe they will not bring about their intentions
• It would not be rational of me to adopt an intention to Φ if I believed that I would fail with Φ

6. under certain circumstances, agents believe they will bring about their intentions
• If I intend Φ, then I believe that under “normal circumstances” I will succeed withΦ

7. agents need not intend all the expected side effects of their intentions
• I may believe that going to the dentist involves pain, and I may also intend to go to the dentist — but this does

not imply that I intend to suffer pain!

3. BDI Architecture
Belief revision

Deliberation process

percepts

Desires
Opportunity
analyzer

Intentions

Filter

Means-ends
reasoner

Plans

Intentions structured
in partial plans

Executor

B = brf(B, p)

D = options(B, D, I)

I = filter(B, D, I)

 = plan(B, I)

Library of plans

actions

Beliefs
Knowledge

Practical Reasoning Agents

• agent control loop

while true

observe the world;

update internal world model;

deliberate about what intention to achieve next;

use means-ends reasoning to get a plan for the
intention;

execute the plan

end while

Practical Reasoning Agents

• agent control loop

while true

observe the world;

update internal world model;

deliberate about what intention to achieve next;

use means-ends reasoning to get a plan for the
intention;

execute the plan

end while

- what are the options (desires) ?
- how to choose an option ?
- incl. filter
- chosen option  intention …

Practical Reasoning Agents

• agent control loop

while true

observe the world;

update internal world model;

deliberate about what intention to achieve next;

use means-ends reasoning to get a plan for the
intention;

execute the plan

end while - when to reconsider intentions !?

- what are the options (desires) ?
- how to choose an option ?
- incl. filter
- chosen option  intention …

Implementing Practical Reasoning
Agents

• Let’s make the algorithm more formal:

Implementing Practical Reasoning Agents

• Optimal behaviour if
• deliberation and means-ends reasoning take a small

amount of time;
• the world is guaranteed to remain static while the agent

is deliberating and performing means-ends reasoning;
• an intention that is optimal when achieved at time t0 (the

time at which the world is observed) is guaranteed to
remain optimal until time t2 (the time at which the agent
has found a course of action to achieve the intention).

Deliberation
• The deliberate function can be decomposed into two distinct functional

components:

– option generation
the agent generates a set of possible alternatives. A function, options, takes
the agent’s current beliefs and current intentions, and from them
determines a set of options (= desires)

– filtering
the agent chooses between competing alternatives, and commits to
achieving them. In order to select between competing options, an agent
uses a filter function.

Deliberation

Practical Reasoning Agents
If an option has successfully passed trough the filter function and is chosen by
the agent as an intention, we say that the agent has made a commitment to
that option.
Commitment implies temporal persistence of intentions; once an intention is
adopted, it should not be immediately dropped out.
How committed an agent should be to its intentions?

• degrees of commitments
– blind commitment

» ≈ fanatical commitment: continue until achieved

– single-minded commitment
» continue until achieved or no longer possible

– open-minded commitment
» continue until no longer believed possible

Commitment Strategies

• An agent has commitment both
– to ends (i.e., the wishes to bring about)
– and means (i.e., the mechanism via which the agent

wishes to achieve the state of affairs)

• current version of agent control loop is
overcommitted, both to means and ends

modification: replan if ever a plan goes
wrong

Reactivity, replan

“Blind commitment”

Commitment Strategies
• this version still overcommitted to intentions:

– never stops to consider whether or not its intentions
are appropriate

modification: stop for determining
whether

intentions have succeeded or whether
they are impossible:

“Single-minded commitment”

Single-minded Commitment

Dropping intentions
that are impossible
or have succeeded

Reactivity, replan

Intention Reconsideration
• Our agent gets to reconsider its intentions when:

– it has completely executed a plan to achieve its current
intentions; or

– it believes it has achieved its current intentions; or
– it believes its current intentions are no longer possible.

 This is limited in the way that it permits an agent to
reconsider its intentions
modification:

Reconsider intentions after executing every
action

“Open-minded commitment”

Open-minded Commitment

Intention Reconsideration
• But intention reconsideration is costly!

A dilemma:
– an agent that does not stop to reconsider its intentions sufficiently

often will continue attempting to achieve its intentions even after it is
clear that they cannot be achieved, or that there is no longer any
reason for achieving them

– an agent that constantly reconsiders its attentions may spend
insufficient time actually working to achieve them, and hence runs the
risk of never actually achieving them

• Solution: incorporate an explicit meta-level control component, that
decides whether or not to reconsider

meta-level control

Possible Interactions
• The possible interactions between meta-level

control and deliberation are:

Intention Reconsideration

• Situations
– In situation (1), the agent did not choose to deliberate, and as consequence, did not

choose to change intentions.
Moreover, if it had chosen to deliberate, it would not have changed intentions.

the reconsider(…) function is behaving optimally.

– In situation (2), the agent did not choose to deliberate, but if it had done so, it
would have changed intentions.

the reconsider(…) function is not behaving optimally.

– In situation (3), the agent chose to deliberate, but did not change intentions.
the reconsider(…) function is not behaving optimally.

– In situation (4), the agent chose to deliberate, and did change intentions.
the reconsider(…) function is behaving optimally.

• An important assumption: cost of reconsider(…) is much less than the cost of the
deliberation process itself.

Optimal Intention Reconsideration

• Kinny and Georgeff’s experimentally investigated
effectiveness of intention reconsideration strategies

• Two different types of reconsideration strategy were used:
– bold agents

never pause to reconsider intentions, and
– cautious agents

stop to reconsider after every action
• Dynamism in the environment is represented by the rate of

world change, g

Optimal Intention Reconsideration
• Results (not surprising):

– If g is low (i.e., the environment does not change
quickly),
bold agents do well compared to cautious ones.
• cautious ones waste time reconsidering their

commitments while bold agents are busy working
towards — and achieving — their intentions.

– If g is high (i.e., the environment changes
frequently), cautious agents tend to outperform
bold agents.
• they are able to recognize when intentions are doomed,

and also to take advantage of serendipitous situations
and new opportunities when they arise.

Implemented BDI Agents: IRMA

• IRMA – Intelligent Resource-bounded Machine Architecture –
Bratman, Israel, Pollack

• IRMA has four key symbolic data structures:
• a plan library
• explicit representations of

– beliefs: information available to the agent — may be
represented symbolically, but may be simple variables

– desires: those things the agent would like to make true — think
of desires as tasks that the agent has been allocated;

– intentions: desires that the agent has chosen and committed to

IRMA

• Additionally, the architecture has:
• a reasoner

– for reasoning about the world; an inference engine
• a means-ends analyzer

– determines which plans might be used to achieve intentions
• an opportunity analyzer

– monitors the environment, and as a result of changes, generates
new options

• a filtering process
– determines which options are compatible with current

intentions
• a deliberation process

– responsible for deciding upon the ‘best’ intentions to adopt

IRMA

Practical Reasoning Agents:
Procedural Reasoning System (PRS)

– “BDI-architecture” (beliefs / desires / intentions)
– explicit data structures for b/d/i

– planning
– no “on-the-fly” planning  plan libraries

» a plan: goal (post-condition)
context (pre-condition)
body (sequence of actions

/ subgoals)

– intention stack

beliefs plans

desires intentions

agent

interpreter

sensor input

action

97

Procedural Reasoning System (PRS)

• Framework for symbolic reactive control
systems in dynamic environments
– Eg. Mobile robot control
– Eg. Diagnosis of the Space Shuttle’s Reaction

Controls System

98

PRS: Main Features

• Pre-compiled procedural knowledge
• BDI (Belief, Desires, Intentions) foundation
• Combines deliberative and reactive features

– Plan selection, formation, execution, sensing

• Plans dynamically and incrementally
• Integrates goal-directed and event-driven behavior
• Can interrupt plan execution
• Meta-level reasoning
• Multi-agent planning

PRS Architecture

100

PRS Architecture

Interpreter

Tasks Procedures

IntentionsDatabase

User

World

101

PRS Architecture:
Database

• Contains beliefs or
facts about the
world

• Includes meta-
level information
– Eg goal G is active

Interpreter

Tasks Procedures

IntentionsDatabase

User

World

102

PRS Architecture:
Tasks

• Represent desired
behavior

• Conditions over
some time interval
– eg (walk a b): set of

behaviors in which
agent walks from a to
b)

Interpreter

Tasks Procedures

IntentionsDatabase

User

World

103

PRS Architecture:
Intentions

• Currently active
procedures

• Procedure
currently being
executed

Interpreter

Tasks Procedures

IntentionsDatabase

User

World

104

PRS Architecture:
Procedures

• Pre-compiled
procedures

• Express actions
and tests to
achieve goals or to
react to conditions

Interpreter

Tasks Procedures

IntentionsDatabase

User

World

PRS

• Beliefs, goals, intentions and plan library
• Agent perceive the world through external

events
• Plans – proceedural knowledge

– Recipes for action (tree labeled with actions and
formulas which evaluate to a boolean)

– Trigger (what an agent must perceive)
– Context (what an agent must believe)
– If plans cannot proceed they post internal events

From Plans to Intentions

• Agents respond to Internal and External
events by selecting an appropriate plan in its
plan based whose trigger and context is true

• When a plan is adopted it becomes an
intention

• This intention become part of the agent’s
intention structure

PRS Operation
1. Perceive the world, and update the set of events.
2. For each event, generate the set of plans whose trigger condition matches

the event. These are known as the relevant plans of an event.
3. For each event, select the subset of relevant plans whose context condition

is satisfied by the agent’s current beliefs. These plans are known as active
plans.

4. From the set of active plans, select one for execution so that it is now an
intention.

5. Include this new intention in the current intention structure either by
creating a new intention stack or by placing it on the top of an existing stack.

6. Select an intention stack, take the topmost intention, and execute the next
formula in it.

108

Expressing Tasks in a Dynamic
Environment

• (! P) -- achieve P
• (? P) -- test P
• (# P) -- maintain P
• (^ C) -- wait until C
• (-> C) -- assert C
• (~> C) -- retract C

109

• Environment conditions
– Purpose (goal or condition)
– applicability criteria

• Plot
– directed graph
– partially ordered conditional &

parallel actions, loops
– Successful node execution by

achievement of node’s goals
– If no body: primitive action

Metapredicates
– Achieve – Achieve-By {proc}

– Test – Conclude {effects}

– Wait-Until – Use-Resource
– Require-Until

Cross-Country Delivery

Cue:

(ACHIEVE (DELIVER CUSTOMER.1 GOODS.1))

Preconditions:

(TEST
(AND
(LOCATED CUSTOMER.1 CITY.2)
(LOCATED GOODS.1 CITY.1)

(DISTANCE CITY.1 CITY.2 DISTANCE.1)
(> DISTANCE.1 1000)))

Setting:

(TEST
(AND
(AIR-SHIPMENT AIRCARGO.1 GOODS.1)
(LAND-SHIPMENT LANDCARGO.1 GOODS.1)))

Resources:

- no entry -

Propertities:

(AUTHORING-SYSTEM ACT-EDITOR)

Comment:

Long distance delivery of goods to customers

(ACHIEVE
(RECORD-INVOICE
CUSTOMER.1
GOODS.1
INVOICE.1))

(ACHIEVE
(LOCAL-DELIVERY
CUSTOMER.1
GOODS.1))

(CONCLUDE
(COMPLETED-INVOICE
INVOICE.1))

(ACHIEVE-BY
(LOCATED
LANDCARGO.1
CITY.2)

SHIP-BY-RAIL))

(ACHIEVE-BY
(LOCATED
AIRCARGO.1
CITY.2)

SHIP-BY-AIR))

Representing Procedures with Act
Formalism

110

PRS Interpreter
Execution Cycle

1. New information
arrives that
updates facts
and/or tasks

2. Acts are triggered
by new facts or
tasks

3. A triggered Act is
intended

4. An intended Act is
selected

5. That intention is
activated

6. An action is
performed

7. New facts or
tasks are posted

8. Intentions are
updated

Goal2
ACT8

sleeping

Fact1
ACT2
normal

Goal3
ACT3

sleeping

Intention Graph

Cue:
(TEST (overpressurized tank.1))

ACT2

Act Library

Act Execution

(overpressurized fuel-tank)

(ACHIEVE (position ox-valve closed))

New Facts & Tasks

External
World

1

2

3

4

5

6

7

8

Cue:
(ACHIEVE (position valve.1 closed))

ACT1Facts
&

Tasks

(ACHIEVE
(position ox-valve closed))

ACT1
current

111

Meta-Reasoning

• Can include meta-level procedures
– eg: choose among multiple applicable procedures
– eg: evaluate how much more reasoning can be

done within time constraints
– eg: how to achieve a conjunction or disjunction of

goals

RCS Jets

RCS Controls

PT

Rlv
Valve

HE
Tank

A B
Valve

Jet

Regulator

12 345

1 2 3 4 5

T Temp

P P P P

P

T

P P

P Pressure

P

FU
Tank

Talkback

Switch

A B

Control Panel

12 345

1 2 3 4 5

OP OP OPOPOP

OP CL

OP CL

open
gpc

close

open
gpc

close

Jet Fail - On
Cue
Test:

Alarm sounding,
RCS warning light on,
Status RCS jet.1 is failed-on,
GPC displays dir.1 for jet.1 for rcs.1

Preconditions
Test:

Direction jet.1 is dir.1

Setting
Test:

Connected manifold.ox to jet.1,
Connected manifold.fu to jet.1,
Connects valve.fu by leg.fu

to manifold.fu,
Connects valve.ox by leg.ox

to manifold.ox,
Oxidizer-subsystem ox.1 of rcs.1,
Fuel-subsystem fu.1 of rcs.1,
Part valve.ox of ox.1,
Part valve.fu of fu.1

Achieve:
Position valve.ox closed,
Position valve.fu closed

Achieve:
Notify "Thruster jet.1 failed-on"

Test:
High-usage of jet.1

Test:
Not high-usage of jet.1

Achieve:
Notify "Thruster jet.1 failed-on

ELECTRICALLY"

Test:
Type jet.1 vernier

Test:
Not type jet.1 vernier

Achieve:
Notify "Thruster jet.1 failed-on

INPUT CARD"

Achieve:
Notify "TURN-OFF rcs.1 manifold.ox

& manifold.fu DRIVER"

Achieve:
Pressure manifold.ox is pres.ox,
Pressure manifold.fu is pres.fu

Test:
> pres.ox 130,
> pres.fu 130

Test:
≤ pres.ox 130,
≤ pres.fu 130

FACTS
&

BELIEFS

External
TASKS

External
FACTS

Executing
procedures can post

GOALS, FACTS, &
BELIEFS

or
send MESSAGES

TASKS

Procedure
Library

Jet Fail - On

Jet Fail - On

Determine new
procedures

that are eligible
for execution

Select procedures
for execution

Dump Propellant

Regulator Test

Regulator Test

Shuttle
GPC

MESSAGES

Shuttle’s RCS Malfunction Handling

• Automates specification and
execution of RCS (Reaction
Control System) malfunction
procedures.

• Reacts to changes in RCS.
Ensures safe operation while
carrying out diagnosis and
remediation procedures.

PRS's procedure library

Versions of PRS:

- UM-PRS
- OpenPRS (formerly C-PRS and Propice)
- AgentSpeak
- Distributed Multi-Agent Reasoning System (dMARS)
- JAM
- JACK Intelligent Agents
- SRI Procedural Agent Realization Kit (SPARK)
- PRS-CL

PRS

114

Multiple Tasks, Multiple Agents

• Multithreaded operation: multiple tasks being
performed, runtime stacks where tasks are
executed, suspended, and resumed

• Supports distributed planning: several PRS
agents run asynchronously and communicate
through message passing

Model-based Programming

• High level programming vs. Planning
• Model-based execution and diagnosis

• RMPL [Kim et. al 2001, Williams et al. 2003]
• GOLOG [Hahnel et al. 1998, Finzi Orlandini 2005, Carbone et al.

2008]

Summary

• Reactive Action Packages (RAPs)
– Networks of “conditions” and “tasks”

• ESL (Execution Support Language)
• Task Control Architecture (TCA)

– Network arranged according to “vertical capabilities”

• Claraty and PLEXIL
• Behavior Trees
• BDI

– IRMA
– Procedural Reasoning System (PRS)

