Cognitive Robotics and
Cognitive Architectures



Cognitive Robotics

= Cognitive Robotics
= Embodied Al/Embodied CS

= Robot capable of perception, reasoning, learning, deliberate,
planning, acting, interacting, etc.

= Cognitive Architectures
= Unified Theory of Cognition
= Cognitive Models

Long-term memory Intentional Module Declarative Module
(not identified) (Temporal/Hippocampus)

Visual Buffer
(Parietal)
el

Manual Buffer
(Motor)
-V\

Manual Module
{Motor/Cerebellum)

Visual Module
(Occipital/ete)

, External World




What is Cognitive Architecture?

Blueprint for Intelligent Agents

It proposes (artificial) computational processes that act like cognitive
systems (human)

An approach that attempts to model behavioral as well as structural
properties of the modeled system.

Aim:
- to summarize the various results of cognitive psychology in a
comprehensive computer model

- to model systems that accounts for the whole of cognition.



What is Cognitive Architecture?

Integrate and generalize different findings on intelligent behaviour

Fitts’ Law Power Law of TD Learning
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What is Cognitive Architecture?

Integrate and generalize different findings on intelligent behaviour

Fitts’ Law Power Law of TD Learning
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Unified Theory of Cognition

Book by Allen Newell

Newell's aim:
To define the architecture of human cognition, which is the way
that humans process information. This architecture must explain
how we react to stimuli, exhibit goal directed behavior, acquire
rational goals, represent knowledge, and learn.



Unified Theory of Cognition

Cognitive Architecture specifies aspects of cognition
that remain constant across lifetime of an agent:

Memory systems of beliefs, goals, experience
Knowledge Representation

Processes: perception, execution, cognition
Learning mechanisms

Goal: understand and exhibit intelligence across several tasks
and domains

Artificial General Intelligence (AGI)



Unified Theory of Cognition

[Newell 1990] Regularities at multiple scales and abstraction layers:
- Biological, Cognitive, Rational, Social, etc.

16° Months

108 Weeks Social Band
10° Days

10 Hours Task

108 10 min Task Rational Band
10 Minutes Task

10! 10 sec Unit Task

100 1 sec Operations Cognitive Band
16! 100 ms Deliberate act

1032 10 ms Neural circuit

103 1ms Neuron Biological Band

104 100 ps Organelle



Cognitive Band
Time Units System Cog. Capabilities

10 sec Unit Task Complex reasoning
Planning, Theory of Mind

1 sec Composition Simple Reasoning,
Language

100 ms Deliberation Reactive decisions
Skilled behavior, Access
LTM

Regularities at 100ms [Newell 1990], architecture at this level



Bounded Rationality

Agent rationality is limited [Simon 1957]
- Tractability of the problem

- Cognitive/Computational limitations

- Time available



Different Research Goals

* Biological Plausibility

— Leabra [bio and cog band]
— SPAUN [bio and cog band]

e Psycological Plausibiliy
— ACT-R, CLARION, EPIC [Cog and Rational band]

e Agent Functionality
— Soar, Sigma, ICARUS, LIDA [Cog and Rational band]




Different Research Goals

* SPAUN:

— Semantic Pointer Architecture

* Semantic pointers are neural representations that carry partial semantic
content and are composable into the representational structures
necessary to support complex cognition

e cognitive and non-cognitive tasks integrated in a single large-scale, spiking
neuron model

Working Memonry

Information
Encoding

Transform
Caleulation

FReward
Evaluation

Information
Decoding

Motor Motor
Processing Output

Action Selection




Another Taxonomy

Cognitive:

= SOAR, ACT-R, ICARUS, ADAPT, EPIC, etc.
Emergent:

= SASE, DARWIN, SPAUN, Global Workspace, etc.
Hybrid:

= CLARION, HUMANOID, Cog: Theory of Mind, Kismet, LIDA, etc.

Robotics (embodied agent):

= ACT-RE, ADAPT, HUMANOID, Kismet, Cog, ICARUS, etc.



1970

* GPS (Ernst & Newell, 1969) Means-ends analysis, recursive subgoals

¢ ACT (Anderson, 1976) Human semantic memory

* CAPS (Thibadeau, Just, Carpenter) Production system for modeling reading

1975

* Soar (Laird, & Newell, 1983) Multi-method problem solving, production systems, and problem spaces

» Theo (Mitchell et al., 1985) Frames, backward chaining, and EBL

1980

* PRS (Georgeff & Lansky, 1986) Procedural reasoning & problem solving

* BB1/AIS (Hayes-Roth & Hewitt 1988) Blackboard architecture, meta-level control

1985

* Prodigy (Minton et al., 1989) Means-ends analysis, planning and EBL

* MAX (Kuokka, 1991) Meta-level reasoning for planning and learning

1990

* Icarus (Langley, McKusick, & Allen,1991) Concept learning, planning, and learning

» 3T (Gat, 1991) Integrated reactivity, deliberation, and planning

1995

* CIRCA (Musliner, Durfee, & Shin, 1993) Real-time performance integrated with planning

* AIS (Hayes-Roth 1995) Blackboard architecture, dynamic environment

2000

* EPIC (Kieras & Meyer, 1997) Models of human perception, action, and reasoning



Cognitive Architecture

 Architecture:

— Modules, processes, communication,
data/knowledge

— Cognitive Cycle:

 Complex behavior usually obtained from primitive

processes and decisions generated/monitored through
cycles

* Regularities at 100ms



Cognitive Architecture

e Standard Model [J. Laird et al. 2017]

Declarative
Long-term Memory

Procedural :
Long-term Memory Working Memory

( Perception

il




Cognitive Architecture

e Standard Model [J. Laird et al. 2017]
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Baddeley Model

Central Executive model [Baddeley & Hitch 1976, Baddeley 1986,
Baddeley 2000] of Working Memory

Central
Executive
Visuospatial Episodic Phonological
Sketchpad Buffer Loop

Long-Term Memory

Central Executive drives the whole system and allocates data to the subsystems



Baddeley Model

Central Executive model [Baddeley & Hitch 1976, Baddeley 1986,
Baddeley 2000] of Working Memory

Central
Executive
Visuospatial Episodic Phonological
Sketchpad Buffer Loop

Long-Term Memory

- Visuospatial sketchpad stores and processes information in a visual or spatial torm
- Phonological loop deals with spoken and written material
- Episodic buffer 'backup' store which communicates with both LTM and WM



Newell's Cognitive Model

Newell introduces Soar: architecture for general cognition.

Soar is a problem solver that creates its own sub-goals and learns from
its own experience.

Soar operates with real-time constraints:
immediate-response, item-recognition tasks, etc..



What is Soar?

Soar is a symbolic cognitive architecture:

Al programming framework

Cognitive architectural framework to define and exploit cognitive
models

Architecture for knowledge-based problem solving, learning, and
interaction with external environments

Physical symbol system hypothesis:
a symbolic system is necessary for general intelligence



Newell's Cognitive Model

Created by John Laird, Allen Newell, and Paul Rosenbloom at
Carnegie Mellon University in 1983

John Laird Allen Newell Paul Rosenbloom



Soar

Historically, Soar was for State, Operator And Result, because problem
solving in Soar is a search through a problem space in which you apply
an operator to a state to get results

Over time, the community no longer regarded Soar as an acronym: this
is why it is no longer written in upper case



Problem Solving

* Soar is based upon a theory of human problem solving
(symbolic):

— problem solving activity is formulated as the selection and application
of operators to a state, to achieve some goal.

— Problem Space Hypothesis:

 all behavior, even planning, is decomposable into a sequence of selection
and application of primitive operators, which take about ~50ms

* Asingle operator selected at each step (serial bottleneck), but selection
and application associated with parallel rule firings (context-dependent
retrieval of procedural knowledge).

— Universal sub-goaling:

* Impasses generates sub-states

124



Problem Solving

Newell introduces the problem space principle as follows.

"The rational activity in which people engage to solve a problem can
be described in terms of (1) a set of states of knowledge, (2) operators
for changing one state into another, (3) constraints on applying
operators and (4) control knowledge for deciding which operator to
apply next.”

Problem spaces (e.g. STRIPS domain) are commonly composed of a set
of goals, a state or set of states, and a set of valid operators which
contain the constraints under which the operator can be applied.

The state consists of a set of literals that describe the knowledge of the
agent and the present model of the world.



Problem Spaces

Soar represents all tasks as collections of problem spaces

Problem spaces are made up of a set of states and operators that
manipulate the states

Soar begins work on a task by choosing a problem space, then an
initial state in the space

Soar represents the goal of the task as some final state in the
problem space



Soar

Goal: is a desired situation.

State: representation of a problem solving
situation.

Problem space: set of states and operators for
the task.

Operator: transforms the state by some action.



Problem Space Level

* Behaviour in a problem spaces:
— made up of States (S) and Operators (Op)

 Fluent behaviour:

— an operator is selected and applied to the current state to
give a new current state

128



Problem Space Level

* Main cycle:

— repeated selection and then application of one operator
after another

* Impasse:

— If something prevents that process from continuing (e.g.,
no operators to apply to that state, or no knowledge of
how to choose) an impasse occurs

129



Soar Architecture
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Soar Cycle

Soar main processing cycle:
Interaction between Procedural Memory (knowledge about how to do things)
and Working Memory (representation of the current situation):
- WM is represented as a symbolic graph structure, rooted in a state.
- PMis represented as if-then rules (sets of conditions and actions), which
are continually matched against the contents of working memory,
- if the conditions of a rule matches the working memory it fires and performs
its actions
- All rules match in parallel
- Operators are selected exploiting preferences
- Rules that match the operator changes the WM
- These changes induce other changes in the other modules



Soar Cycle

Soar main processing cycle:

During the elaboration phase, all directly available knowledge relevant to the

current situation is brought to bear
The contexts of the goal hierarchy and their augmentations serve as the

working memory for these productions
preferences can be created that specify the desirability of an object

DECISION 1 DECISION 2 DECISION 3

Efaboration | Decigion \lr \L 4
= M P P A
P A AR

vV

Gather
Preferences

Quiescence \L Replace
Interpret — Context

Preferences Object

b

Impasse

b

Create
Subgoal




Soar Cycle

Soar main processing cycle:

- Soar responds to an impasse by creating a subgoal (and an associated context)

- Once a subgoal is created, a problem space must be selected, along with an
initial state and an operator

- the goals (contexts) in working memory are structured as a stack, referred to
as the context stack

DECISION 1 DECISION 2 DECISION 3

Efaboration | Decigion \lr \L 4
= M P P A
P A AR

vV

Gather
Preferences

Quiescence \L Replace
Interpret — Context
Preferences Object

b

Impasse

b

Create
Subgoal




Structure of Soar

Soar can be layered into 3 levels :

1. Memory Level
2. Decision Level
3. Goal Level



Memory Level

A general intelligence requires a memory with a large capacity for the
storage of knowledge.

A variety of types of knowledge must be stored, including :
- Declarative knowledge
- Procedural knowledge
- Episodic knowledge



Long-term Production Memory

All of Soar's long-term knowledge is stored in a single production
memory.

Each production is a condition-action structure that performs its
actions when its conditions are met.

Memory access consists of the execution of these productions.

During the execution of a production, variables in its actions are
instantiated with value.



Long-term Production Memory

All of Soar's long-term knowledge is stored in a single production
memory.

sp = Soar production

sp {water-jug*apply*fill
(state <s> “name water-jug
“operator <o>
“jug <j>)
(<0> “name fill
~fill-jug <j>)
(<j> “volume <volume>
“contents <contents>)
-=>
(<j> “contents <volume>)
(<j> “contents <contents> -)}



Working Memory

The result of memory access is the retrieval of information into a global
Working Memory.

It is the temporary memory that contains all of Soar's short-term
processing context. It has 3 components :

- The context stack specifies the hierarchy of active goals, problem spaces,
states and operators

- Objects, such as goals and states (and their sub-objects)

- Preferences that encode the procedural search-control knowledge




Working Memory

The result of memory access is the retrieval of information into a global
Working Memory.

(State space of Soar # state space in which the problem lives!)
Working memory is where most of the action happens
Set of “augmentations” (key-value table/dict)

(s1 “name water-jug
“jug J1
“jug j2)

(j1 “volume 5
“contents 0 )

(j2 “volume 3
“contents 0 )

idle — state augmentation ~ goal/activity — behavior



Preferences

There is one special type of working memory structure - “the
preference”

Preferences encode control knowledge about the
acceptability and desirability of actions:

Acceptability preferences determine which actions should be
considered as candidates

Desirability preferences define a partial ordering on the candidate
actions.



Decision Level

Two phase decision cycle: elaboration and decision. The two phases
are repeated until the goal of the current task is reached:

- A typical Soar decision cycle, takes much less than 50 milliseconds
(humans’ level, what humans expect), usually less than 1ms

Input Elaboration Operator Operator Output
Operator Proposal Selection Application
Operator Evaluation

e Elaboration phase:

— all productions which match the current working memory fire. All
productions fire in parallel.

— The elaboration phase runs to quiescence (until no more productions fire).

* Decision phase:

— examines any preferences put into preference memory (either in this phase,
or previous ones), and chooses the next problem space, state, operator or

Al +A AlarA Tn thA ~rAnRFAVE cFA AL
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Decision Level

If there is not enough information (or contradictory) for the decision
phase to choose the next value, then an impasse results.

* There are four types of impasses:

— When two are more elements have equal preference, then there is a "tie
impasse".

— When no preferences are in working memory, this causes a "no-change
impasse”

— When the only preferences in working memory are rejected by other
preferences, then there is a "reject impasse".

— A "conflict impasse" results when preferences claim that two or more
elements are each better choices then the others.

* When Soar reaches an impasse, it chooses a new problem space in
an attempt to resolve the impasse.



Goal Level

- A general intelligence must be able to set and work towards goals.
This level is based on the decision level.

- Goals are set whenever a decision cannot be made; that is, when the
decision procedure reaches an impasse.

- Impasses occur when there are no alternatives that can be selected
(no-change and rejection impasses) or when there are multiple
alternatives that can be selected, but insufficient discriminating
preferences exist to allow a choice to be made among them (tie and
conflict impasses).



Impasse Resolution

- Whenever an impasse occurs, the architecture generates the goal of
resolving the impasse which becomes the sub-goal.

- Along with this goal, a new performance context is created.

- The creation of a new context allows decisions to continue to be
made in the service of achieving the goal of “resolving the impasse”.

- A stack of impasses is possible.

- The original goal is resumed after all the impasse stack is cleared.



Learning

Chunking: new chunks to overcome impasses
Reinforcement Learning: better operator selection

Episodic and Semantic Learning: working memory re-organization



Learning via Chunking

- Learning occurs by the acquisition of chunks--productions that
summarize the problem solving that occurs in subgoals, a mechanism
called “Chunking”

The actions of a chunk represent the knowledge generated during
the sub-goal; that is, the results of the subgoal

Three steps in chunk creation:
(1) the collection of conditions and actions,
(2) the variabilization of identifiers,
(3) chunk optimization



Learning via Chunking

- Learning occurs by the acquisition of chunks--productions that
summarize the problem solving that occurs in subgoals, a mechanism
called “Chunking”

The actions of a chunk represent the knowledge generated during
the sub-goal; that is, the results of the subgoal

-  When Soar detects are useful sequence of firings, it creates chunks:

- A chunk is essentially a large production that does the work of an entire
sequence of smaller ones.

- Chunks may be generalised before storing.



Soar 9

- Unifying Cognitive Functions and Emotional Appraisal
- The functional and computational role of emotion is open to debate.

- Appraisal theory is the idea that emotions are extracted from our
evaluations (appraisals) of events that cause specific reactions in
different people.

- The main controversy surrounding these theories argues that
emotions cannot happen without physiological arousal.



Appraisal’'s Detector

This theory proposes that an agent continually evaluates a situation
and that evaluation leads to emotion.

The evaluation is hypothesized to take place along multiple
dimensions, such as

- goal relevance

- goal conduciveness

- causality and control

These dimensions are exactly what an intelligent agent needs to
compute as it pursues its goals, while interacting with an environment.



Soar

* Non-symbolic processing

Non-symbolic Processing

Function

Numeric Preferences

Control operator selection

Reinforcement Learning

Learn operator selection control knowledge

Working memory activation

Aid long-term memory retrieval

Visual Imagery

Represent images and spatial data for reasoning

Appraisals: Emotions & Feelings

Summarize intrinsic value of situation — aid RL

Clustering

Create symbols that capture statistical regularities

* Memory & Learning

Memory/Learning | Source of Representation of Retrieval of knowledge

Svstem Knowledge knowledge

Chunking Traces of rule firngs | Rules Exact match of rule
n subgoals conditions, retrieve actions

Clustering Perception Classification networks Winner take all

Semantic Memory | Working memory Mirror of working Partial match, retrieve object
existence memory object structures

Episodic Memory Working memory Episodes: Snapshots of Partial match. retrieve episode
co-occurrence working memory

Remforcement Reward and numeric | Numeric preferences Exact match of rule

Learning preferences conditions, retrieve preference

Image Memory Image short-term Image Deliberate recall based on
memory symbolic referent




Soar Applications
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Soar Applications

Northeastern University MIT 6.S099 — Artificial General Intelligence -« IAP 2018 - Derbinsky

Rosie
Soar Group @ UMich

e pr—— et e

00:02:770 Agent: Waiting for next command..

00:26:450 Mentor: This is blue.

00:27:339 Agent: What kind of attnbute is blue?

00:30:640 Mentor: a color

00:31:558 Agent: Okay.

00:31:585 Agent: | am idle and waiting for you to initiate a new interaction
00:37:074 Mentor: This is green.

00:37:955 Agent: What kind of attribute is green?

00:39:776 Mentor: a color.

00:40:707 Agent: Okay.

00:40:754 Agent: | am idle and waiting for you to initiate a new interaction
00:47:802 Mentor: Move the blue rectangle to the table.

00:49:390 Agent: What kind of attribute is rectangle?

00:52:197 Mentor: a shape.

00:53:664 Agent: Is this a blue rectangle?

e e e Lo

e g T e

-?’,.

-:olor-qrnn 0.828
unk nown 10, 00

S

Debrinsky — MIT AGI



ACT-R
Adaptive Control of Thought-Rational

 ACT-R [Lebiere Anderson 93] is a cognitive architecture, a
theory about how human cognition works

— Looks like a (procedural) programming language.

— Constructs based on assumptions about human cognitions
— Cognitive Models

— Psychological Plausibility

— Hybrid Cognitive Architecture (symbolic and sub-symbolic)



ACT-R

e ACT-R is a framework

— Researchers can create models that are written in
ACT-R including

* ACT-R’s assumptions about cognition.
* The researcher’s assumptions about the task.

— The assumptions are tested against data.
* Reaction time

* Accuracy
* Neurological data (fMRI)



Subset of psychology experiments

General assumptions
about human cognition

ACT-R

ACT-R

Assumptions about a
particular domain

A

ACT-R Model

Experiment-=

¢ Predictions
Human subjects ACT-R model
Quanttative Quanttative
measures measures
Latency
—>
Accuracy [
FMRI data




ACT-R

 ACT-R is an integrated cognitive architecture.

— Brings together not just different aspects of cognition, but
of
* Cognition
* Perception
* Action

— Runs in real time.
— Learns.

— Robust behavior in the face of error, the unexpected, and
the unknown.



Overview of ACT-R

 ACT-R is made up of

— Modules:
* Perceptual/motor

* Memory:
— Declarative: facts
— Procedural: productions

— Buffers
— A sub-symbolic level



ACT-R: Architecture
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ACT-R: Cycle

ACT-R accesses its modules (except for the procedural-memory module) through
buffers. For each module, a dedicated buffer serves as the interface with that

module. The contents of the buffers at a given moment in time represents the
state of ACT-R at that moment.

Visual : Motor
Module <—Enwonmerli—> Module

e ACT-R Buffers -

Procedural i

o Pater Declarative]
Memory matching Memory

Y

Production
execution




ACT-R: Cycle

At each cycle period, a pattern matcher searches for a production that matches the current
state of the buffers. Only one such production is executed at a given cycle. A production
that fires can modify the buffers changing the state of the system

Visual . Motor
Module ‘_Enwronmeﬁ—b Module

N ACT-R Buffers :_
Procedural Declarativel
Memory o nﬁggﬂ% Memory
Production
execution




Perceptual-Motor Modules

|II

e Takes care of the interface with the “real” world:
* Visual module

* Auditory module

 Motor module

* elc



Perceptual-Motor Modules

* 3 tones: low, med, high

— 445ms

* 3 positions: left, middle, right
— 279ms

* Tones and positions
— 456ms

— 283 ms



Perceptual-Motor Modules
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Declarative Module

* Declarative memory:

— Facts
* Washington, D.C. is the capital of the U.S.
e 2+3=5.

— Knowledge a person might be expected to have to solve a
problem

— Called chunks



Declarative Module

( CHUNK-TYPE NAME SLOT1 SLOT2  SLOTN )

(b

isa count-order
first 1
second 2



Procedural Module

* Procedural memory:

- Knowledge about how to do something:
o How to type the letter “Q”
o How to drive
o How to perform addition



Procedural Module

Made of condition-action data structures called production rules
* Each production rule takes 50ms to fire

* Serial bottleneck in this parallel system

( p  name
condition part Specification of
Buffer Tests
delimiter ==>
action part Specification of

Buffer Transformations



Procedural Module

example-counting
=goal>
isa count
state counting
number =num1
=retrieval>
isa count-order
first =num1
second =num?2

=goal>
number =num2
+retrieval>
isa count-order
first =num2




Buffers

 The procedural module accesses the other modules through
buffers

* For each module (visual, declarative, etc.), a dedicated buffer
serves as the interface with that module

* The contents of the buffers at any given time represent the
state of ACT-R at that time



Buffers

. Goal Buffer (=goal, +goal)
-represents where one is in the task
-preserves information across production cycles

. Retrieval Buffer (=retrieval, +retrieval)
-holds information retrieval from declarative memory
-seat of activation computations

. Visual Buffers

-location (=visual-location, +visual-location)
-visual objects (=visual, +visual)
-attention switch corresponds to buffer transformation

. Auditory Buffers (=aural, +aural)
-analogous to visual

. Manual Buffers (=manual, +manual)
-elaborate theory of manual movement include feature
preparation, Fitts law, and device properties



Sub-symbolic Level

The production system is symbolic.

The sub-symbolic structure is a set of parallel processes that
can be summarized by a number of mathematical equations.

The sub-symbolic equations control many of the symbolic
processes.

Subsymbolic, parallel
processes

v 4

Symbolic processes
(pattern matching)




Sub-symbolic Level

Sub-symbolic equations control many symbolic processes

If several productions match the state of the buffers, a sub-symbolic utility
equation estimates the relative cost and benefit associated with each
production and decides to select for the production with the highest utility

Facts retrieved from declarative memory depend on sub-symbolic retrieval
equations, which take into account context and history of usage of that fact

Sub-symbolic mechanisms are also responsible for most learning processes

Subsymbolic, parallel
processes

v 4

Symbolic processes
(pattern matching)




Production Utility

* When several productions match the state of the buffers:

— a sub-symbolic utility equation estimates the relative cost and benefit
associated with each production and

— selects the production with the highest utility



Production Utility

Expected Gain = E =PG-C P expected probability of success
G value of goal
C expected cost

E./t
Probability of choosing i = e—E/z t noise in evaluation (temperature
J in the Bolztman equation)
Ye

J

Successes
Successes + Failures

P =
oL prior successes
m experienced successes
Successes = o + m B prior failures
Failures = + n n experienced failures



Retrieved Facts

e Whether and how fast a chunk can be retrieved from
declarative memory:

— depends on the sub-symbolic retrieval equations, which take into
account the context and the history of usage of that fact

e Chunk activations:

— The activation of a chunk is a sum of base-level activation, reflecting
its general usefulness in the past, and an associative activation,
reflecting it’s relevance in the current context




Chunk Activation

Attentional weighting of
Activation of Chunk i Element j of Chunk i

. /

A=B +2 Wiji
J

\

Strength of association

Base-level activation of Element j to Chunk i
(Higher if used recently)
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addendl

Chunk Activation

addend 2
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Chunk Activation

addendl , «addend2
Eight - Four
W, Sii i W,

Sji Sum

Twelve

Wj decreases with the number of elements associated with
Chunk i.

S;; decreases with the number of chunks associated with the
element.



Probability/Time Retrieval

* The probability of retrieving a chunk is given by:

P.=1/(1+exp(-(A -1)/s))

Here 7 is the activation threshold, s controls the sensitivity of recall to
changes in activation

 The time to retrieve a chunk is given by

T.= F exp(-A))

F: The latency factor parameter



Sub-symbolic Level

* The equations that make up the sub-symbolic level
are not static and change with experience.

* The sub-symbolic learning allows the system to adapt
to the statistical structure of the environment.



ACT-R/E

* Embodied: spatial reasoning

Octavia (MDS Platform

Intentional Declarative Imaginal Temporal
module Module Module Module MIT) at Navy Center for
|| || |I || Applied Research in
Goal Retrieval Imaginal Temporal Artificial Intelligence
Buffer Buffer Buffer Buffer

Matching

Procedural Module

Selection

uonnaaxy

Production FIND-NEXT-ROOM

conditions:

=goal> isa patrol-goal
slot cur-room: A
slot next-room: B

=retrieval> isa room
slot name: A

actions:

slot location: building-1

+retrieval> isa room
slot name: B
slot location: ?
Visual Aural Vocal Motor Configural || Manipulative
Buffer Buffer Buffer Buffer Buffer Buffer
Em/t
|| || |I |I |I |I P("”)*W
Visual Aural Vocal Motor Configural || Manipulative
Module Module Module Module Module Module At
B | 1 | 1 | 1 | 1 | N P(”=W
Robot Sensors and Effectors ’
TN N N | 1 | 1 | ¥ |

Environment




ACT-R/E
e HRI tasks

Components of

Task ACT-R/E Dataset
Gaze following Manipulative module Corkum & Moore (1998)
Configural module Moll & Tomasello (2006)
Utility learning
Hide and seek Imaginal module Trafton, Schultz, Perzanowski, et al. (2006)

Visual module
Vocal module
Interruption and  Declarative module Trafton et al. (2012)
resumption Intentional module
Imaginal module
Procedural module
Theory of mind Declarative module Leslie, German, & Polizzi (2005)
Architecture as a whole ~ Wellman, Cross, & Watson (2001)

(1) test and evaluate each component separately, to validate it against human subject data;
(2) test different sets of the components as they interact;
(3) show how models increase the ability, breadth, and parsimony of cognitive models.



Perspective Taking

* Perspective taking is critical for collaboration.
 How do we model it? (ACT-R, Polyscheme...)

e Scenario:

“Please hand me the wrench”




Perspective Taking and Changing
Frames of Reference

Bob, if you come straight down from where you are, uh, and uh
kind of peek down under the rail on the nadir side, by your right
hand, almost straight nadir, you should see the uh...

* Notice the mixing of perspectives: exocentric (down), object-
centered (down under the rail), addressee-centered (right
hand), and exocentric again (nadir) all in one instruction!

* Notice the “new” term developed collaboratively: mystery
hand rail



Perspective taking in
human interactions

* How do people usually resolve ambiguous
references that involve different spatial
perspectives? (Clark, 96)

— Principle of least effort (which implies least joint effort)
* All things being equal, agents try to minimize their effort
— Principle of joint salience

* The ideal solution to a coordination problem among two or
more agents is the solution that is the most salient, prominent,
or conspicuous with respect to their current common ground.

* In less simple contexts, agents may have to work harder to
resolve ambiguous references



Perspective Taking

* ACT-R/S (Schunn & Harrison, 2001)

— Perspective-taking system using ACT-R/S is described in
Hiatt et al. 2003

* Three Integrated Visuo Spatial buffers
* Focal: Object ID; non-metric geon parts
* Manipulative: grasping/tracking; metric geons
* Configural: navigation; bounding boxes |
* Polyscheme (Cassimatis)
— Computational Cognitive Architecture w

L. Conﬁgural-Na.Vi 0
* Mental Simulation is the primitive
* Many Al methods are integrated

— Perspective-taking using Polyscheme is described in
Trafton et al., 2005

Focal -object identification

- grasping & tracking



Robot Perspective Taking

Human can see one cone
Robot can sense two cones

(Fong et al., 06)




ADAPT

 ADAPT is an architecture for Robots that integrates
features of Soar and ACT-R

* Aims:
— Embodied agent (robot) that implements sophisticated

behaviors managing vision, natural language, problem
solving, and learning

— Two principles:

* Active perception: perception is context-related and goal-oriented,
therefore enhanced perception of related input

* Real-time reasoning about parallel processes and multiple actions



ADAPT

ADAPT’s Structure

Sensory input goes to
Soar, not the world
model. ADAPT’s goal

1s to comprehend.




ADAPT vs. Soar and ACT-R

Soar has a single buffer for each goal, hence a single
operator is selected

ACT-R allows one firing for each cycle, depending on
the context

Both Soar and ACT-R impose a bottleneck to parallel
processing



ADAPT vs. Soar and ACT-R

ADAPT continuously updates the WM with respect to
the rules as in Soar

Schemata are stored in LTM, as in ACT-R

Schema similar to operator of Soar or chunk in ACT-R:

Schema theory representation (perception and action schema)
Integrates procedural and declarative knowledge (reasoning about
plans)



ADAPT

The RS (Robot Schemas) language 1s the basis of the robotics
capabilities of ADAPT. RS i1s precise and mature.

RS 1s a CSP-type programming language for robotics, that
controls a hierarchy of concurrently executing schemas.

Jomnt(s)() = [Jpos.,()(x), Iset (s, x)(u), Jmot,(u)() |
cO: (Jpos;, x) (Jset, X) (Jset, u) (Jmot;, u)

Jpos;()(x) continuously reports the position of joint 1 on port X

Jmot;(u)() accepts a signal on port u and applies it to the actuator of joint 1

Jset;(s, x)(u) accepts a setpoint on port s and 1iteratively inputs a joint position on
port X and outputs a motor signal on port u to drive the joint position to the
setpoint



ADAPT
P=(0 L X0 B 1) where
() 1s the set of states

L 1s the set of ports
X=(X |ie L) 1sthe event alphabet for each port

XL=1{(i X)|ie L }1e.,adisjomntunion of L and X

0. OxXL— 29 is the transition function
f=(6 |ie L) P,: Q — X, is the output map for port i
Te 2¢9 1s the set of start states



ADAPT

The behavior of every RS schema 1s defined using port
automata. This provides precision to the semantics and also
a constructive means of reasoning about the behavior and
meaning of schemas.

Jmot;




ADAPT

1. Sequential Composition: T = P;Q. The process T behaves like the process P until that terminates,

and then behaves like the process Q (regardless of P ’s termination status).

2. Concurrent Composition: T = (P | Q). The process T behaves like P and Q running in parallel and

with the input ports of one connected to the output ports of the other as indicated by the port-to-port
connection map ¢. This can also be written as T = ( | Pi )" for a set of processes indexed by 1.
il
3. Conditional Composition: T = P{v) : Q,. The process T behaves like the process P until that

terminates. If P aborts. then T aborts. If P terminates normally. then the value v calculated by
P is used to intialize the process §, and T then behaves like Q,.

4. Disabling Composition: T = P#Q. The process T behaves like the concurrent composition of P and

Q until either terminates, then the other is aborted and T terminates. At most one process can stop:
the remainder are aborted.

v |

. Synchronous Recurrent Composition: T = P{v) :; Q,. This is a recursively defined as follows:
P:;Q=P:(Q;P:Q).
6. Asynchronous Recurrent Composition: T = P(v) :: Q,. This is recursively defined as follows:

P:Q=P:(Q|(P:Q).

Operator Precedence: The operator precedence from loosest to tightest is as follows: Concurrent; Disabling;

Sequential; Conditional: Synchronous Recurrent; Asynchronous Recurrent.



ADAPT

Schemas, facts, and hypotheses are nodes 1n a graph.
Links implement the composition operations, as well as otk
relations, including deductive and evidential inference.

Automata that implement a schema are built as needed.

Yoo @
) -



ADAPT

ADAPT plans by transforming a hierarchy of schemas

At each step, ADAPT can perform one of the following steps:

- refine a schema into subschemas,

- instantiate variables in a schema (this includes connecting two or more
schemas by binding their variables together),

- start execution of a schema, suspend execution of a schema, or terminate and
remove a schema.

ADAPT operators work at the executive level rather than at the task level,
continually modifying the schema hierarchy.

Task-level actions are executed by the motor parts of the schemas



ADAPT

The basic loop ot ADAPT is:

1 - check Soar's output link to see if there are any commands, which may be
either motion commands for the robot or modeling commands for the World

Model,

2 - blend the motion commands that are to be sent to the robot,

3 - send all robot commands both to the robot and to the virtual robot in the
World Model,

4 - send all other commands to the World Model.

5 — periodically (every tenth of a second) fetch data from the robot to be put
into Soar's working memory,

6 - periodically fetch data from the Vision System, compare it to visual data
from the World Model, and put any significant differences into Soar's
working memory.



ADAPT

Two different methods of learning in ADAPT:
- procedural learning of search control (from Soar)
- inductive inference of schemas

ADAPT generates procedural “chunks” when goals are satisfied:

- chunks are productions as in Soar:
- left-hand sides contain all the working memory elements that were referenced in making the
search-control decision
- right-hand side is the decision

A search-control chunk that ADAPT learns may use:
- Bayesian estimate to make the choice of action

- the chunk performs in one step the same choice that ACT-R would make.
- The chunk may compile the results of a search of alternatives

- the chunk performs just as a Soar chunk does

ADAPT can perform inductive inference on schemas:
- examine the execution history and hypothesize more general schemas that are added to

the declarative memory
- by replacing a constant with a variable or by enlarging an interval of permitted numeric values



ICARUS

lcarus [Shapiro & Langley 1999] designed as an integrated
architecture for controlling an agent that exists in a complicated

physical environment.

Features in common with Soar, ACT-R and other production-
system architectures.

The design is modular, using separate modules for planning,
perception, execution and long-term memory.



ICARUS

Designs for ICARUS have been guided by six principles:

Cognitive reality of physical objects

Cognitive separation of categories and skills
Primacy of categorization and skill execution
Hierarchical organization of long-term memory

Correspondence of long-term/short-term structures

S A A

Modulation of symbolic structures with utility functions

These ideas distinguish ICARUS from most other architectures.



ICARUS

Designs for ICARUS

1. ARGUS — perception

an attention mechanism to determine which of these
changes is worthy of attention

2. DAEDALUS - planning

heuristic best-first search through the problem space.

3. MAENDER — execution

executes all the primitive actions

4. LABYRINTH — memory

probabilistic hierarchy to store the knowledge



Overview of the ICARUS Architecture
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Overview of the ICARUS Architecture
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Some Concepts from the Blocks World

(on (?blockl ?block2)
:percepts  ((block ?blockl xpos ?x1 ypos ?y1)

(block ?block2 xpos ?x2 ypos ?y2 height ?h2))
:tests ((equal ?x1 ?x2)

(>= 2yl ?y2)

(<= 72yl (+ ?y2 ?h2))) )

(clear (?block)
:percepts  ((block ?block))
:negatives ((on ?other ?block)) )

(unstackable (?block ?from)
:percepts  ((block ?block) (block ?from))
:positives  ((on ?block ?from)

(clear ?block)

(hand-empty)) )



Primitive Skills from the Blocks World

(pickup (?block ?from)
:percepts  ((block ?block xpos ?x)
(table ?from height ?h))
:start ((pickupable ?block ?from))
:requires ()
:actions ((x move ?block ?x (+ ?h 10)))
:effects ((holding ?block))

:value 1.0)

(stack (?block ?to)
:percepts  ((block ?block)
(block ?to xpos ?x ypos ?y height ?h))
:start ((stackable ?block ?to))
:requires ()
:actions ((x move ?block ?x (+ ?y ?h)))
:effects ((on ?block ?to)

(hand-empty))
:value 1.0)



A Nonprimitive Skill from the Blocks World

(puton (?block ?from ?to)
:percepts  ((block ?block) (block ?from) (table ?to))
:start ((ontable ?block ?from) (clear ?block)
(hand-empty) (clear ?to))
:requires ()
:ordered ((pickup ?block ?from) (stack ?block ?to))
:effects ((on ?block ?to))

:value 1.0)

(puton (?block ?from ?to)
:percepts  ((block ?block) (block ?from) (block ?to))
:start ((on ?block ?from) (clear ?block)
(hand-empty) (clear ?to))
:requires ()
:ordered ((unstack ?block ?from) (stack ?block ?to))
:effects ((on ?block ?to))
:value 1.0)



Hierarchical Organization of Memory

ICARUS’ long-term memories are organized into hierarchies:

e concepts can refer to percepts and to other concepts;
e skills refer to percepts, to concepts, and to other skills.

Conceptual memory is similar to a network, but each node
represents a meaningful category.

Different expansions for skills and concepts also make them
similar to Horn clause programes.

These hierarchies are encoded by direct reference, rather than
through working-memory elements, as in ACT and Soar.



ICARUS’ Short-Term Memories

perceptual buffer

short-term skill memory

(deliver-package g029)
(avoid-collisions g001)

short-term concept memory

(ahead-right-corner g008)
(ahead-left-corner g011)
(behind-right-corner g017)
(approaching g001 g023)
(opposite-direction g001 g023)
(parallel-to-line g001 g019)
(on-cross-street g001 g029)

(self g001 speed 32 wheel-angle -0.2 fuel-level 0.4)

(corner g008 r 15.3 theta 0.25 street-dist 12.7)
(corner g011 r 18.4 theta -0.34 street-dist 12.7)
(corner g017 r 7.9 theta 1.08 street-dist 5.2)
(lane-line g019 dist 1.63 angle -0.07)

(street g025 name campus address 1423)

(package g029 street panama cross campus address 2134)



Categorization and Inference

Perceptual
Buffer

e Categorization AT o
Memory Memory

On each cycle, perception deposits object descriptions into the
perceptual buffer.

lcarus matches its concepts against the contents of this buffer.

Categorization proceeds in an automatic, bottom-up manner,
much as in a Rete matcher.

This process can be viewed as a form of monotonic inference
that adds concept instances to short-term memory.



Beliefs

* Inference of beliefs

— For each cognitive cycle, a perceptual process deposits a set of visible objects, each with a type (e.g.,
lane-line and self) and associated attributes, into the architecture’s perceptual buffer

— Inference mechanism finds all ways that primitive conceptual rules matches against these objects
— Nonprimitive rules matches to infer high-level beliefs

higher-level
beliefs .

primitive
[Choi, P. Langley. beliefs
Cognitive Systems

Research 2018]

®
/AN
oLy Mo Mo Lirird®

S
percepts $ &




Retrieving and Matching Skill Paths

On each cycle, ICARUS finds all paths through

its skill hierarchy which:

® begin with an instance in skill STM;

e have start and requires fields that match;

e have effects fields that do not match.

Each instantiated path produced in this way terminates

in an executable action.

ICARUS adds these candidate actions to its motor

buffer for possible execution.

Perceptual
Buffer

Short-Term
Conceptual
Memory

v

Skill
Retrieval

1

v

Long-Term
Skill Memory

Short-Term
Skill Memory

Motor
Buffer




Retrieving and Matching Skill Paths

KA AR
fy AN

skills
Q Each path through the skill hierarchy starts at an
skill expansions intention and ends at a primitive skill instance.




Retrieving and Matching Skill Paths

top-level
goals

!

higher-level
intentions

|

primitive
intentions

L LD direct

actions

Top-down selection of subgoals (boxes) and assocated intentions (not shown) by ICARUS’ execution
module on a single cognitive cyle [Choi, P. Langley. Cognitive Systems Research 2018]



Evaluating and Executing Skills
For each selected path, ICARUS computes a utility by
summing the values of each skill along that path.
For each path, in order of decreasing utility:

® |f required resources are available, execute actions;

e |f executed, commit the resources for this cycle.

Environment

These actions alter the environment, which affects the
perceptual buffer and thus conceptual memory.

Short-Term Skill
Skill Memory Execution

Motor
Buffer




Learning

Incremental learning is central to most cognitivist
cognitive architectures:

- new cognitive structures are created by problem
solving when an impasse is encountered

- ICARUS adopts a similar approach:

- when an execution module cannot find an applicable
skill that is relevant to the current goal, it resolves the

impasse by backward chaining



Cognitive Control

= Cognitive Control:
= SRK (Skill, Rule, Knowledge) [Rasmussen83,86,87]

= Human factors (error classification)

Goals
Knowlede-Based T Decision ,
RaRERL —| ldentification |——» oo | Planning
Symbols Plans
Rule-Based A jati Stored' Rules
; " ssociation
Signs Intentions
Skiil-Based v
Behaviour Automated
F';f;t:{ign »| Sensori-Motor
T T T Patterns
| I | yYvyvYy

Sensory Input Output Actions



Cognitive Control

= Cognitive Control:
= SRK (Skill, Rule, Knowledge) [Rasmussen83,86,87]

= Different types of information processing involved in industrial tasks
Framework for identifying the types of error likely to occur in:

= different operational situations,

= different aspects of the same task with different types of information
processing demands

Knowledge based mode,
= Human carries out a task in a conscious manner

Skill based mode,
= Execution of highly practiced actions without conscious monitoring

Rule-based mode,
= Learned rules (interacting with the plant, formal training, working with
experienced process workers)

= Situation assessment leads to recognition of which procedures apply to
particular familiar situations



Cognitive Control

= Cognitive Control:

= SRK (Skill, Rule, Knowledge) [Rasmussen83,86,87]

Two forms of
human failure

Erors Violations
ROUTINE EXCEPTIONAL
H (operator does ot follow (trips a@e resst by
SI]S Mdd(es procedire becaee it isno pervisor in order to
longer rlevant to the task) fuifill rush order)
Ms-applied conmpetence A falure of expertise A lak of expertise
KILL-BASD RULEBASD KNOWLEDGEBASD
(operaor fals to dose (operdtor asaumes reador (operaor fals to dagose
vave due to spetid is OK besed on ore the cases of a savre
corfusion with another teperaure indication which dmormaity under
vave) proves to be faity) congderdbie time-presaure)

Figure 4:

Classification of Human Errors

(adapted from Reason, 1990)




Cognitive Control

= Cognitive Control:

= Orchestration of cognitive and reactive processes for
flexible execution of complex tasks

[Norman&Shallice86] Attentional System

— g ol

Attention To Action model [ Supervisory 1

+ Sensory Trigger Contention ; f>
Environment . A perceptual 3 Data [ Scheduling [ Action
Systems Base




Cognitive Control and Attention

= Cognitive Control:

= Ability of flexibly orchestrating structured goal-oriented activities and
reactive actions [Posner & Snyder ‘75, Botvinick et al. ‘01]

= Attentional mechanisms play a crucial role

= Supervisory Attentional System [Noman Shallice ‘86]:
= Contention scheduling:

= |low-level process that manages the execution of routinized i i

system

activities (competing sensorimotor schemata)

= Supervisory attention:
= higher level mechanism that affects s ;
contention scheduling through attentional /Fresse /=77 s /=8
modulation (inhibition, stimulation). ey




Cognitive Control and Attention

= Cognitive Control:

= Ability of flexibly orchestrating structured goal-oriented activities and
reactive actions [Posner & Snyder ‘75, Botvinick et al. ‘01]

= Attentional mechanisms play a crucial role

= Supervisory Attentional System [Noman Shallice ‘86]:

= Hierarchically organized action schemata [Lashely 1951] «.
= Goal-oriented methods [Cooper Shallice 2000]

'
. . . ‘ Prepare Instant Coffee
= Activation values [Norman Shallice ‘86] T
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SEED: Attentional Executive System

Attentional Executive System .00 em e e e e e e e e m——— === o
I I
[[1Concrete node []Abstract node
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~ - - Executive
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= Long Term Memory: repository of the tasks/schem?;\ta
available to the system

= Working Memory: maintains the executive state and
the structure of the tasks/schemata in the attentional
focus of the system (tasks to be executed)

Q-L_:tput

[SMC-2015, IEEE-TCDS-2016, AURO-2019 |

= Attentional Behaviors: concrete sensorimotor processes
associated with an activation level



SEED: Attentional Executive System

Attentional Executive System

LT™ WM =
‘schema(aive]_]) u - '~~
:E:%:ﬁg‘“‘“ D Retrieve (
el .
st . Alive |
Sodinodes
et} Expand = |
= s-.____;pan /‘
[ Behaviorl ‘J
[ Behavior2 "]
|( Behavior3 ]
[' Behaviord )

Attentional Behavior-based System /

|

" take(objRed) |
‘objﬂed.mkm |
|

_goto(objRed) ) i

objRed.reached | objRed.taken

& explore(-7,2) followColor(red) L2

|

- B |

C_vander ) T |
' |

Long Term Memory: repository of the tasks/schemata available to the system

= HTN-like methods:
schema(m,l, e)
L =((my,11), ..., (My, 1))
= STRIPS-like primitive operators: a € A

Execution vs Planning:

schema (take(Obj)
((goto(Oby), true), (pickup(Obj), Obj.reached))
Obj.taken)

schema(goto(Obj)
((explore(X, Y), true), (followColor(Obyj), true))
Obj.reached).

= Executive Model extends an associated HTN Planning Domain




Cognitive Control

= Global Workspace Theory [Baars97]

" Cconscious experience:

= global workspace, set of specialized unconscious processors, and a
set of unconscious contexts that serve to select, evoke, and define
conscious contents (Baars, 1988).
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Black Board Architecture

= Black Board Systems [Erman et al. 1980]

= Group of specialists with a large blackboard using the blackboard as
the workplace for cooperatively developing the solution
= Problem specifications written onto the blackboard
= knowledge sources (KSs) can apply their expertises
= Control shell, which controls the flow of problem-solving activity in the system

Module
F Y

/ Blackboard \

Data

Data

Data

___

Module



LIDA

Learning - Intelligent Distribution Agent [Frankling ed at. 2006]

Hybrid Architecture
- http://ccrg.cs.memphis.edu/framework.html

Assumptions:

- Cognitive cycles (~10 Hz) as building blocks of cognitive processing
- Memory access and action selection
- Higher-level cognitive processes are based on them

Cognitive Cycle:
- Understanding phase:
- From low-level features to episodic and declarative memory (situation model)

- Attention (consciousness) phase:
- Coalitions of salient portions of the situation model (competition to global ws)

- Action selection and learning phase:
- Schemas are instantiated and compete for the execution



LIDA

Learning - Intelligent Distribution Agent [Frankling ed at. 2006]

Hybrid Architecture
- http://ccrg.cs.memphis.edu/framework.html

IDA: "What do | do next?"

LIDA, the learning IDA adds three modes of learning to IDA's

design:
perceptual learning,
episodic learning,
procedural learning
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LIDA
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Figure 1. The LIDA Model Diagram




LIDA

Learning - Intelligent Distribution Agent [Frankling ed at. 2006]

Default implementations of the following LIDA modules:
e Environment
e Sensory Memory
e Perceptual Associative Memory
e Transient Episodic Memory
e Declarative Memory
e Workspace
e Structure-Building Codelets
tasks maintaining the current situation in the Current Situational Model
e Attention Codelets

Type of task that tries to bring Workspace content in the Situational Model to the Global WS.
Upon finding such content it creates a coalition containing the content and adds it to the Global WS

e Global Workspace
The content of the winning coalition is the current contents to broadcast throughout the system
e Procedural Memory
e Action Selection
Inspired by Maes’ (1989) Behavior Net: selects a behavior to execute for each cognitive cycle
e Sensory-Motor Memory



