
Cognitive Robotics and
Cognitive Architectures

 Cognitive Robotics
 Embodied AI/Embodied CS

 Robot capable of perception, reasoning, learning, deliberate,
planning, acting, interacting, etc.

 Cognitive Architectures
 Unified Theory of Cognition
 Cognitive Models

Cognitive Robotics

What is Cognitive Architecture?

Blueprint for Intelligent Agents

It proposes (artificial) computational processes that act like cognitive
systems (human)

An approach that attempts to model behavioral as well as structural
properties of the modeled system.

Aim:
- to summarize the various results of cognitive psychology in a

comprehensive computer model
- to model systems that accounts for the whole of cognition.

What is Cognitive Architecture?

Integrate and generalize different findings on intelligent behaviour

Debrinsky – MIT AGI

What is Cognitive Architecture?

Integrate and generalize different findings on intelligent behaviour

Debrinsky – MIT AGI

Unified Theory of Cognition

Book by Allen Newell

Newell's aim:
To define the architecture of human cognition, which is the way
that humans process information. This architecture must explain
how we react to stimuli, exhibit goal directed behavior, acquire
rational goals, represent knowledge, and learn.

Unified Theory of Cognition

Cognitive Architecture specifies aspects of cognition
that remain constant across lifetime of an agent:

• Memory systems of beliefs, goals, experience
• Knowledge Representation
• Processes: perception, execution, cognition
• Learning mechanisms

Goal: understand and exhibit intelligence across several tasks
and domains

Artificial General Intelligence (AGI)

Unified Theory of Cognition
[Newell 1990] Regularities at multiple scales and abstraction layers:
- Biological, Cognitive, Rational, Social, etc.

Cognitive Band

Time Units System Cog. Capabilities

10 sec Unit Task Complex reasoning
Planning, Theory of Mind

1 sec Composition Simple Reasoning,
Language

100 ms Deliberation Reactive decisions
Skilled behavior, Access
LTM

Regularities at 100ms [Newell 1990], architecture at this level

Bounded Rationality
Agent rationality is limited [Simon 1957]
- Tractability of the problem
- Cognitive/Computational limitations
- Time available

Different Research Goals

• Biological Plausibility
– Leabra [bio and cog band]
– SPAUN [bio and cog band]

• Psycological Plausibiliy
– ACT-R, CLARION, EPIC [Cog and Rational band]

• Agent Functionality
– Soar, Sigma, ICARUS, LIDA [Cog and Rational band]

• SPAUN:
– Semantic Pointer Architecture

• Semantic pointers are neural representations that carry partial semantic
content and are composable into the representational structures
necessary to support complex cognition

• cognitive and non-cognitive tasks integrated in a single large-scale, spiking
neuron model

Different Research Goals

 Cognitive:
 SOAR, ACT-R, ICARUS, ADAPT, EPIC, etc.

 Emergent:
 SASE, DARWIN, SPAUN, Global Workspace, etc.

 Hybrid:
 CLARION, HUMANOID, Cog: Theory of Mind, Kismet, LIDA, etc.

 Robotics (embodied agent):
 ACT-RE, ADAPT, HUMANOID, Kismet, Cog, ICARUS, etc.

Another Taxonomy

1970

1975

1980

1985

1990

1995

2000

• GPS (Ernst & Newell, 1969) Means-ends analysis, recursive subgoals

• ACT (Anderson, 1976) Human semantic memory

• CAPS (Thibadeau, Just, Carpenter) Production system for modeling reading

• Soar (Laird, & Newell, 1983) Multi-method problem solving, production systems, and problem spaces

• Theo (Mitchell et al., 1985) Frames, backward chaining, and EBL

• PRS (Georgeff & Lansky, 1986) Procedural reasoning & problem solving

• BB1/AIS (Hayes-Roth & Hewitt 1988) Blackboard architecture, meta-level control

• Prodigy (Minton et al., 1989) Means-ends analysis, planning and EBL

• MAX (Kuokka, 1991) Meta-level reasoning for planning and learning

• Icarus (Langley, McKusick, & Allen,1991) Concept learning, planning, and learning

• 3T (Gat, 1991) Integrated reactivity, deliberation, and planning

• CIRCA (Musliner, Durfee, & Shin, 1993) Real-time performance integrated with planning

• AIS (Hayes-Roth 1995) Blackboard architecture, dynamic environment

• EPIC (Kieras & Meyer, 1997) Models of human perception, action, and reasoning

Cognitive Architecture

• Architecture:
– Modules, processes, communication,

data/knowledge
– Cognitive Cycle:

• Complex behavior usually obtained from primitive
processes and decisions generated/monitored through
cycles

• Regularities at 100ms

Cognitive Architecture

• Standard Model [J. Laird et al. 2017]

Cognitive Architecture

• Standard Model [J. Laird et al. 2017]

Baddeley Model
Central Executive model [Baddeley & Hitch 1976, Baddeley 1986,
Baddeley 2000] of Working Memory

Central Executive drives the whole system and allocates data to the subsystems

Baddeley Model
Central Executive model [Baddeley & Hitch 1976, Baddeley 1986,
Baddeley 2000] of Working Memory

- Visuospatial sketchpad stores and processes information in a visual or spatial form
- Phonological loop deals with spoken and written material
- Episodic buffer 'backup' store which communicates with both LTM and WM

Newell's Cognitive Model

Newell introduces Soar: architecture for general cognition.

Soar is a problem solver that creates its own sub-goals and learns from
its own experience.

Soar operates with real-time constraints:
• immediate-response, item-recognition tasks, etc..

What is Soar?
Soar is a symbolic cognitive architecture:

• AI programming framework

• Cognitive architectural framework to define and exploit cognitive
models

• Architecture for knowledge-based problem solving, learning, and
interaction with external environments

• Physical symbol system hypothesis:
– a symbolic system is necessary for general intelligence

Newell's Cognitive Model

Created by John Laird, Allen Newell, and Paul Rosenbloom at
Carnegie Mellon University in 1983

John Laird Allen Newell Paul Rosenbloom

Soar

Historically, Soar was for State, Operator And Result, because problem
solving in Soar is a search through a problem space in which you apply
an operator to a state to get results

Over time, the community no longer regarded Soar as an acronym: this
is why it is no longer written in upper case

124

Problem Solving

• Soar is based upon a theory of human problem solving
(symbolic):
– problem solving activity is formulated as the selection and application

of operators to a state, to achieve some goal.

– Problem Space Hypothesis:
• all behavior, even planning, is decomposable into a sequence of selection

and application of primitive operators, which take about ~50ms
• A single operator selected at each step (serial bottleneck), but selection

and application associated with parallel rule firings (context-dependent
retrieval of procedural knowledge).

– Universal sub-goaling:
• Impasses generates sub-states

125

Problem Solving
Newell introduces the problem space principle as follows.

"The rational activity in which people engage to solve a problem can
be described in terms of (1) a set of states of knowledge, (2) operators
for changing one state into another, (3) constraints on applying
operators and (4) control knowledge for deciding which operator to
apply next.“

Problem spaces (e.g. STRIPS domain) are commonly composed of a set
of goals, a state or set of states, and a set of valid operators which
contain the constraints under which the operator can be applied.

The state consists of a set of literals that describe the knowledge of the
agent and the present model of the world.

Problem Spaces

Soar represents all tasks as collections of problem spaces

• Problem spaces are made up of a set of states and operators that
manipulate the states

• Soar begins work on a task by choosing a problem space, then an
initial state in the space

• Soar represents the goal of the task as some final state in the
problem space

127

Soar

• Goal: is a desired situation.
• State: representation of a problem solving

situation.
• Problem space: set of states and operators for

the task.
• Operator: transforms the state by some action.

128

Problem Space Level

• Behaviour in a problem spaces:
– made up of States (S) and Operators (Op)

• Fluent behaviour:
– an operator is selected and applied to the current state to

give a new current state

Op1 Op2 Op3

S S' S"

129

Problem Space Level

• Main cycle:
– repeated selection and then application of one operator

after another

• Impasse:
– If something prevents that process from continuing (e.g.,

no operators to apply to that state, or no knowledge of
how to choose) an impasse occurs

Soar Architecture

Soar Cycle

Soar main processing cycle:
- Interaction between Procedural Memory (knowledge about how to do things)

and Working Memory (representation of the current situation):
- WM is represented as a symbolic graph structure, rooted in a state.
- PM is represented as if-then rules (sets of conditions and actions), which

are continually matched against the contents of working memory,
- if the conditions of a rule matches the working memory it fires and performs

its actions
- All rules match in parallel
- Operators are selected exploiting preferences
- Rules that match the operator changes the WM
- These changes induce other changes in the other modules

Soar Cycle

Soar main processing cycle:
- During the elaboration phase, all directly available knowledge relevant to the

current situation is brought to bear
- The contexts of the goal hierarchy and their augmentations serve as the

working memory for these productions
- preferences can be created that specify the desirability of an object

Soar Cycle

Soar main processing cycle:
- Soar responds to an impasse by creating a subgoal (and an associated context)
- Once a subgoal is created, a problem space must be selected, along with an

initial state and an operator
- the goals (contexts) in working memory are structured as a stack, referred to

as the context stack

Structure of Soar

Soar can be layered into 3 levels :

1. Memory Level
2. Decision Level
3. Goal Level

Memory Level

A general intelligence requires a memory with a large capacity for the
storage of knowledge.

A variety of types of knowledge must be stored, including :
- Declarative knowledge
- Procedural knowledge
- Episodic knowledge

Long-term Production Memory

All of Soar's long-term knowledge is stored in a single production
memory.

Each production is a condition-action structure that performs its
actions when its conditions are met.

Memory access consists of the execution of these productions.

During the execution of a production, variables in its actions are
instantiated with value.

Long-term Production Memory

All of Soar's long-term knowledge is stored in a single production
memory.

Working Memory
The result of memory access is the retrieval of information into a global
Working Memory.

It is the temporary memory that contains all of Soar's short-term
processing context. It has 3 components :

- The context stack specifies the hierarchy of active goals, problem spaces,
states and operators

- Objects, such as goals and states (and their sub-objects)

- Preferences that encode the procedural search-control knowledge

Working Memory
The result of memory access is the retrieval of information into a global
Working Memory.

Preferences

• There is one special type of working memory structure - “the
preference”

• Preferences encode control knowledge about the
acceptability and desirability of actions:

– Acceptability preferences determine which actions should be
considered as candidates

– Desirability preferences define a partial ordering on the candidate
actions.

Decision Level
Two phase decision cycle: elaboration and decision. The two phases
are repeated until the goal of the current task is reached:
- A typical Soar decision cycle, takes much less than 50 milliseconds

(humans’ level, what humans expect), usually less than 1ms

• Elaboration phase:
– all productions which match the current working memory fire. All

productions fire in parallel.
– The elaboration phase runs to quiescence (until no more productions fire).

• Decision phase:
– examines any preferences put into preference memory (either in this phase,

or previous ones), and chooses the next problem space, state, operator or
goal to place in the context stack.

Soar
Architecture

Decision Level
If there is not enough information (or contradictory) for the decision
phase to choose the next value, then an impasse results.

• There are four types of impasses:
– When two are more elements have equal preference, then there is a "tie

impasse".
– When no preferences are in working memory, this causes a "no-change

impasse"
– When the only preferences in working memory are rejected by other

preferences, then there is a "reject impasse".
– A "conflict impasse" results when preferences claim that two or more

elements are each better choices then the others.

• When Soar reaches an impasse, it chooses a new problem space in
an attempt to resolve the impasse.

Goal Level

- A general intelligence must be able to set and work towards goals.
This level is based on the decision level.

- Goals are set whenever a decision cannot be made; that is, when the
decision procedure reaches an impasse.

- Impasses occur when there are no alternatives that can be selected
(no-change and rejection impasses) or when there are multiple
alternatives that can be selected, but insufficient discriminating
preferences exist to allow a choice to be made among them (tie and
conflict impasses).

Impasse Resolution

- Whenever an impasse occurs, the architecture generates the goal of
resolving the impasse which becomes the sub-goal.

- Along with this goal, a new performance context is created.

- The creation of a new context allows decisions to continue to be
made in the service of achieving the goal of “resolving the impasse”.

- A stack of impasses is possible.

- The original goal is resumed after all the impasse stack is cleared.

Learning

• Chunking: new chunks to overcome impasses

• Reinforcement Learning: better operator selection

• Episodic and Semantic Learning: working memory re-organization

Learning via Chunking

- Learning occurs by the acquisition of chunks--productions that
summarize the problem solving that occurs in subgoals, a mechanism
called “Chunking”

- The actions of a chunk represent the knowledge generated during
the sub-goal; that is, the results of the subgoal

- Three steps in chunk creation:
- (1) the collection of conditions and actions,
- (2) the variabilization of identifiers,
- (3) chunk optimization

Learning via Chunking

- Learning occurs by the acquisition of chunks--productions that
summarize the problem solving that occurs in subgoals, a mechanism
called “Chunking”

- The actions of a chunk represent the knowledge generated during
the sub-goal; that is, the results of the subgoal

- When Soar detects are useful sequence of firings, it creates chunks:
- A chunk is essentially a large production that does the work of an entire

sequence of smaller ones.
- Chunks may be generalised before storing.

Soar 9

- Unifying Cognitive Functions and Emotional Appraisal

- The functional and computational role of emotion is open to debate.

- Appraisal theory is the idea that emotions are extracted from our
evaluations (appraisals) of events that cause specific reactions in
different people.

- The main controversy surrounding these theories argues that
emotions cannot happen without physiological arousal.

Appraisal's Detector

This theory proposes that an agent continually evaluates a situation
and that evaluation leads to emotion.

The evaluation is hypothesized to take place along multiple
dimensions, such as

- goal relevance
- goal conduciveness
- causality and control

These dimensions are exactly what an intelligent agent needs to
compute as it pursues its goals, while interacting with an environment.

Soar

• Non-symbolic processing

• Memory & Learning

Soar Applications

Debrinsky – MIT AGI

Soar Applications

Debrinsky – MIT AGI

ACT-R
Adaptive Control of Thought-Rational

• ACT-R [Lebiere Anderson 93] is a cognitive architecture, a
theory about how human cognition works

– Looks like a (procedural) programming language.
– Constructs based on assumptions about human cognitions
– Cognitive Models
– Psychological Plausibility
– Hybrid Cognitive Architecture (symbolic and sub-symbolic)

ACT-R

• ACT-R is a framework
– Researchers can create models that are written in

ACT-R including
• ACT-R’s assumptions about cognition.
• The researcher’s assumptions about the task.

– The assumptions are tested against data.
• Reaction time
• Accuracy
• Neurological data (fMRI)

ACT-R

ACT-R

• ACT-R is an integrated cognitive architecture.
– Brings together not just different aspects of cognition, but

of
• Cognition
• Perception
• Action

– Runs in real time.
– Learns.
– Robust behavior in the face of error, the unexpected, and

the unknown.

Overview of ACT-R

• ACT-R is made up of
– Modules:

• Perceptual/motor
• Memory:

– Declarative: facts
– Procedural: productions

– Buffers
– A sub-symbolic level

ACT-R: Architecture

Environment

P
ro

du
ct

io
ns

(B
as

al
 G

an
gl

ia
)

Retrieval Buffer
(VLPFC)

Matching (Striatum)

Selection (Pallidum)

Execution (Thalamus)

Goal Buffer
(DLPFC)

Visual Buffer
(Parietal)

Manual Buffer
(Motor)

Manual Module
(Motor/Cerebellum)

Visual Module
(Occipital/etc)

Intentional Module
(not identified)

Declarative Module
(Temporal/Hippocampus)

ACT-R: Cycle
ACT-R accesses its modules (except for the procedural-memory module) through
buffers. For each module, a dedicated buffer serves as the interface with that
module. The contents of the buffers at a given moment in time represents the
state of ACT-R at that moment.

ACT-R: Cycle
At each cycle period, a pattern matcher searches for a production that matches the current
state of the buffers. Only one such production is executed at a given cycle. A production
that fires can modify the buffers changing the state of the system

Perceptual-Motor Modules

• Takes care of the interface with the “real” world:
• Visual module
• Auditory module
• Motor module
• etc

Perceptual-Motor Modules

• 3 tones: low, med, high
– 445ms

• 3 positions: left, middle, right
– 279ms

• Tones and positions
– 456ms
– 283ms

Perceptual-Motor Modules

Declarative Module

• Declarative memory:
– Facts

• Washington, D.C. is the capital of the U.S.
• 2+3=5.

– Knowledge a person might be expected to have to solve a
problem

– Called chunks

Declarative Module

count-order

first 1

second 2

b(

)

isa

CHUNK-TYPE NAME SLOT1 SLOT2 SLOTN()

Procedural Module

• Procedural memory:
- Knowledge about how to do something:

o How to type the letter “Q”
o How to drive
o How to perform addition

Procedural Module

• Made of condition-action data structures called production rules
• Each production rule takes 50ms to fire
• Serial bottleneck in this parallel system

(p

==>

)

Specification of
Buffer Transformations

condition part

delimiter

action part

name

Specification of
Buffer Tests

Procedural Module

(p

==>

)

example-counting
=goal>

isa count
state counting
number =num1

=retrieval>
isa count-order
first =num1
second =num2

=goal>
number =num2

+retrieval>
isa count-order
first =num2

IF the goal is
to count
the current state is counting
there is a number called =num1
and a chunk has been retrieved
of type count-order
where the first number is =num1
and it is followed by =num2

THEN
change the goal
to continue counting from =num2
and request a retrieval
of a count-order fact
for the number that follows =num2

Buffers

• The procedural module accesses the other modules through
buffers

• For each module (visual, declarative, etc.), a dedicated buffer
serves as the interface with that module

• The contents of the buffers at any given time represent the
state of ACT-R at that time

Buffers

1. Goal Buffer (=goal, +goal)
-represents where one is in the task
-preserves information across production cycles

2. Retrieval Buffer (=retrieval, +retrieval)
-holds information retrieval from declarative memory
-seat of activation computations

3. Visual Buffers
-location (=visual-location, +visual-location)
-visual objects (=visual, +visual)
-attention switch corresponds to buffer transformation

4. Auditory Buffers (=aural, +aural)
-analogous to visual

5. Manual Buffers (=manual, +manual)
-elaborate theory of manual movement include feature

preparation, Fitts law, and device properties

Sub-symbolic Level

• The production system is symbolic.
• The sub-symbolic structure is a set of parallel processes that

can be summarized by a number of mathematical equations.
• The sub-symbolic equations control many of the symbolic

processes.

Sub-symbolic Level
• Sub-symbolic equations control many symbolic processes
• If several productions match the state of the buffers, a sub-symbolic utility

equation estimates the relative cost and benefit associated with each
production and decides to select for the production with the highest utility

• Facts retrieved from declarative memory depend on sub-symbolic retrieval
equations, which take into account context and history of usage of that fact

• Sub-symbolic mechanisms are also responsible for most learning processes

Production Utility

• When several productions match the state of the buffers:
– a sub-symbolic utility equation estimates the relative cost and benefit

associated with each production and
– selects the production with the highest utility

Making Choices: Conflict Resolution

Expected Gain = E = PG-C

Probability of choosing i = e
Ei / t

e
E
j
/t

j

P =

Successes = + m
Failures = + n

Successes
Successes + Failures

Production Utility

P expected probability of success
G value of goal
C expected cost

t noise in evaluation (temperature
in the Bolztman equation)

 prior successes
m experienced successes
 prior failures
n experienced failures

Retrieved Facts

• Whether and how fast a chunk can be retrieved from
declarative memory:
– depends on the sub-symbolic retrieval equations, which take into

account the context and the history of usage of that fact

• Chunk activations:
– The activation of a chunk is a sum of base-level activation, reflecting

its general usefulness in the past, and an associative activation,
reflecting it’s relevance in the current context

Chunk Activation

Activation of Chunk i

Base-level activation
(Higher if used recently)

Attentional weighting of
Element j of Chunk i

Strength of association
of Element j to Chunk i

j
Ai = Bi + WjSji

Chunk Activation

Addition-FactEight

Twelve

Four
addend1 addend 2

SumSji

SjiSjiWj Wj

Bi

Chunk Activation

Addition-FactEight

Twelve

Four
addend1 addend 2

SumSji

SjiSjiWj Wj

Bi

Wj decreases with the number of elements associated with
Chunk i.

Sji decreases with the number of chunks associated with the
element.

Probability/Time Retrieval

• The probability of retrieving a chunk is given by:

Pi = 1 / (1 + exp(-(Ai -)/s))

• The time to retrieve a chunk is given by

Ti = F exp(-Ai)

Here is the activation threshold, s controls the sensitivity of recall to
changes in activation

F: The latency factor parameter

Sub-symbolic Level

• The equations that make up the sub-symbolic level
are not static and change with experience.

• The sub-symbolic learning allows the system to adapt
to the statistical structure of the environment.

ACT-R/E

• Embodied: spatial reasoning
Octavia (MDS Platform
MIT) at Navy Center for

Applied Research in
Artificial Intelligence

ACT-R/E
• HRI tasks

(1) test and evaluate each component separately, to validate it against human subject data;
(2) test different sets of the components as they interact;
(3) show how models increase the ability, breadth, and parsimony of cognitive models.

Perspective Taking

• Perspective taking is critical for collaboration.

• How do we model it? (ACT-R, Polyscheme…)

• Scenario:

“Please hand me the wrench”

• Notice the mixing of perspectives: exocentric (down), object-
centered (down under the rail), addressee-centered (right
hand), and exocentric again (nadir) all in one instruction!

• Notice the “new” term developed collaboratively: mystery
hand rail

Bob, if you come straight down from where you are, uh, and uh
kind of peek down under the rail on the nadir side, by your right
hand, almost straight nadir, you should see the uh…

Perspective Taking and Changing
Frames of Reference

Perspective taking in
human interactions

• How do people usually resolve ambiguous
references that involve different spatial
perspectives? (Clark, 96)
– Principle of least effort (which implies least joint effort)

• All things being equal, agents try to minimize their effort

– Principle of joint salience
• The ideal solution to a coordination problem among two or

more agents is the solution that is the most salient, prominent,
or conspicuous with respect to their current common ground.

• In less simple contexts, agents may have to work harder to
resolve ambiguous references

Configural - Navigation

Focal -object identification

Manipulative
- grasping & tracking

Configural - Navigation

Focal -object identification

Manipulative
- grasping & tracking

Perspective Taking

• ACT-R/S (Schunn & Harrison, 2001)
– Perspective-taking system using ACT-R/S is described in

Hiatt et al. 2003
• Three Integrated Visuo Spatial buffers
• Focal: Object ID; non-metric geon parts
• Manipulative: grasping/tracking; metric geons
• Configural: navigation; bounding boxes

• Polyscheme (Cassimatis)
– Computational Cognitive Architecture where:

• Mental Simulation is the primitive
• Many AI methods are integrated

– Perspective-taking using Polyscheme is described in
Trafton et al., 2005

Robot Perspective Taking
Human can see one cone
Robot can sense two cones

(Fong et al., 06)

ADAPT

• ADAPT is an architecture for Robots that integrates
features of Soar and ACT-R

• Aims:
– Embodied agent (robot) that implements sophisticated

behaviors managing vision, natural language, problem
solving, and learning

– Two principles:
• Active perception: perception is context-related and goal-oriented,

therefore enhanced perception of related input
• Real-time reasoning about parallel processes and multiple actions

ADAPT

ADAPT vs. Soar and ACT-R

Soar has a single buffer for each goal, hence a single
operator is selected

ACT-R allows one firing for each cycle, depending on
the context

Both Soar and ACT-R impose a bottleneck to parallel
processing

ADAPT vs. Soar and ACT-R

ADAPT continuously updates the WM with respect to
the rules as in Soar

Schemata are stored in LTM, as in ACT-R

Schema similar to operator of Soar or chunk in ACT-R:
- Schema theory representation (perception and action schema)
- Integrates procedural and declarative knowledge (reasoning about

plans)

ADAPT

ADAPT

ADAPT

ADAPT

ADAPT

ADAPT
ADAPT plans by transforming a hierarchy of schemas

At each step, ADAPT can perform one of the following steps:
- refine a schema into subschemas,
- instantiate variables in a schema (this includes connecting two or more

schemas by binding their variables together),
- start execution of a schema, suspend execution of a schema, or terminate and

remove a schema.

ADAPT operators work at the executive level rather than at the task level,
continually modifying the schema hierarchy.

Task-level actions are executed by the motor parts of the schemas

ADAPT

ADAPT
Two different methods of learning in ADAPT:
- procedural learning of search control (from Soar)
- inductive inference of schemas

ADAPT generates procedural “chunks” when goals are satisfied:
- chunks are productions as in Soar:

- left-hand sides contain all the working memory elements that were referenced in making the
search-control decision

- right-hand side is the decision

A search-control chunk that ADAPT learns may use:
- Bayesian estimate to make the choice of action

- the chunk performs in one step the same choice that ACT-R would make.
- The chunk may compile the results of a search of alternatives

- the chunk performs just as a Soar chunk does

ADAPT can perform inductive inference on schemas:
- examine the execution history and hypothesize more general schemas that are added to

the declarative memory
- by replacing a constant with a variable or by enlarging an interval of permitted numeric values

ICARUS

Icarus [Shapiro & Langley 1999] designed as an integrated
architecture for controlling an agent that exists in a complicated
physical environment.

Features in common with Soar, ACT-R and other production-
system architectures.

The design is modular, using separate modules for planning,
perception, execution and long-term memory.

ICARUS

1. Cognitive reality of physical objects

2. Cognitive separation of categories and skills

3. Primacy of categorization and skill execution

4. Hierarchical organization of long-term memory

5. Correspondence of long-term/short-term structures

6. Modulation of symbolic structures with utility functions

Designs for ICARUS have been guided by six principles:

These ideas distinguish ICARUS from most other architectures.

ICARUS

1. ARGUS – perception
an attention mechanism to determine which of these
changes is worthy of attention

2. DAEDALUS – planning
heuristic best-first search through the problem space.

3. MAENDER – execution
executes all the primitive actions

4. LABYRINTH – memory
probabilistic hierarchy to store the knowledge

Designs for ICARUS

Overview of the ICARUS Architecture

Long-Term
Conceptual

Memory

Long-Term
Skill Memory

Short-Term
Conceptual

Memory

Short-Term
Skill Memory

Categorization
and Inference

Skill
Execution

Perception

Environment

Perceptual
Buffer

Means-Ends
Analysis

Motor
Buffer

Skill
Retrieval

Overview of the ICARUS Architecture

Some Concepts from the Blocks World
(on (?block1 ?block2)
:percepts ((block ?block1 xpos ?x1 ypos ?y1)

(block ?block2 xpos ?x2 ypos ?y2 height ?h2))
:tests ((equal ?x1 ?x2)

(>= ?y1 ?y2)
(<= ?y1 (+ ?y2 ?h2))))

(clear (?block)
:percepts ((block ?block))
:negatives ((on ?other ?block)))

(unstackable (?block ?from)
:percepts ((block ?block) (block ?from))
:positives ((on ?block ?from)

(clear ?block)
(hand-empty)))

(pickup (?block ?from)
:percepts ((block ?block xpos ?x)

(table ?from height ?h))
:start ((pickupable ?block ?from))
:requires ()
:actions ((* move ?block ?x (+ ?h 10)))
:effects ((holding ?block))
:value 1.0)

(stack (?block ?to)
:percepts ((block ?block)

(block ?to xpos ?x ypos ?y height ?h))
:start ((stackable ?block ?to))
:requires ()
:actions ((* move ?block ?x (+ ?y ?h)))
:effects ((on ?block ?to)

(hand-empty))
:value 1.0)

Primitive Skills from the Blocks World

(puton (?block ?from ?to)
:percepts ((block ?block) (block ?from) (table ?to))
:start ((ontable ?block ?from) (clear ?block)

(hand-empty) (clear ?to))
:requires ()
:ordered ((pickup ?block ?from) (stack ?block ?to))
:effects ((on ?block ?to))
:value 1.0)

(puton (?block ?from ?to)
:percepts ((block ?block) (block ?from) (block ?to))
:start ((on ?block ?from) (clear ?block)

(hand-empty) (clear ?to))
:requires ()
:ordered ((unstack ?block ?from) (stack ?block ?to))
:effects ((on ?block ?to))
:value 1.0)

A Nonprimitive Skill from the Blocks World

Hierarchical Organization of Memory

 concepts can refer to percepts and to other concepts;
 skills refer to percepts, to concepts, and to other skills.

ICARUS’ long-term memories are organized into hierarchies:

Conceptual memory is similar to a network, but each node
represents a meaningful category.

Different expansions for skills and concepts also make them
similar to Horn clause programs.

These hierarchies are encoded by direct reference, rather than
through working-memory elements, as in ACT and Soar.

(self g001 speed 32 wheel-angle -0.2 fuel-level 0.4)
(corner g008 r 15.3 theta 0.25 street-dist 12.7)
(corner g011 r 18.4 theta -0.34 street-dist 12.7)
(corner g017 r 7.9 theta 1.08 street-dist 5.2)
(lane-line g019 dist 1.63 angle -0.07)
(street g025 name campus address 1423)
(package g029 street panama cross campus address 2134)

perceptual buffer

ICARUS’ Short-Term Memories

(deliver-package g029)
(avoid-collisions g001)

short-term skill memory

(ahead-right-corner g008)
(ahead-left-corner g011)
(behind-right-corner g017)
(approaching g001 g023)
(opposite-direction g001 g023)
(parallel-to-line g001 g019)
(on-cross-street g001 g029)

short-term concept memory

Categorization and Inference

On each cycle, perception deposits object descriptions into the
perceptual buffer.
ICARUS matches its concepts against the contents of this buffer.
Categorization proceeds in an automatic, bottom-up manner,
much as in a Rete matcher.
This process can be viewed as a form of monotonic inference
that adds concept instances to short-term memory.

Long-Term
Conceptual

Memory

Short-Term
Conceptual

Memory
Categorization
and Inference Perception

Perceptual
Buffer

Beliefs

• Inference of beliefs
– For each cognitive cycle, a perceptual process deposits a set of visible objects, each with a type (e.g.,

lane-line and self) and associated attributes, into the architecture’s perceptual buffer
– Inference mechanism finds all ways that primitive conceptual rules matches against these objects
– Nonprimitive rules matches to infer high-level beliefs

[Choi, P. Langley.
Cognitive Systems
Research 2018]

Retrieving and Matching Skill Paths

On each cycle, ICARUS finds all paths through
its skill hierarchy which:

 begin with an instance in skill STM;

 have start and requires fields that match;

 have effects fields that do not match.

Each instantiated path produced in this way terminates
in an executable action.

ICARUS adds these candidate actions to its motor
buffer for possible execution.

Short-Term
Conceptual

Memory

Short-Term
Skill Memory

Perceptual
Buffer

Motor
Buffer

Skill
Retrieval

Long-Term
Skill Memory

Retrieving and Matching Skill Paths

skills

skill expansions
Each path through the skill hierarchy starts at an
intention and ends at a primitive skill instance.

Retrieving and Matching Skill Paths

Top-down selection of subgoals (boxes) and assocated intentions (not shown) by ICARUS’ execution
module on a single cognitive cyle [Choi, P. Langley. Cognitive Systems Research 2018]

Evaluating and Executing Skills

For each selected path, ICARUS computes a utility by
summing the values of each skill along that path.

For each path, in order of decreasing utility:

 If required resources are available, execute actions;

 If executed, commit the resources for this cycle.

These actions alter the environment, which affects the
perceptual buffer and thus conceptual memory.

Short-Term
Skill Memory

Skill
Execution

Environment

Motor
Buffer

Learning

Incremental learning is central to most cognitivist
cognitive architectures:

- new cognitive structures are created by problem
solving when an impasse is encountered

- ICARUS adopts a similar approach:

- when an execution module cannot find an applicable
skill that is relevant to the current goal, it resolves the
impasse by backward chaining

 Cognitive Control:
 SRK (Skill, Rule, Knowledge) [Rasmussen83,86,87]

 Human factors (error classification)

Cognitive Control

 Cognitive Control:
 SRK (Skill, Rule, Knowledge) [Rasmussen83,86,87]

 Different types of information processing involved in industrial tasks
 Framework for identifying the types of error likely to occur in:

 different operational situations,
 different aspects of the same task with different types of information

processing demands

 Knowledge based mode,
 Human carries out a task in a conscious manner

 Skill based mode,
 Execution of highly practiced actions without conscious monitoring

 Rule-based mode,
 Learned rules (interacting with the plant, formal training, working with

experienced process workers)
 Situation assessment leads to recognition of which procedures apply to

particular familiar situations

Cognitive Control

 Cognitive Control:
 SRK (Skill, Rule, Knowledge) [Rasmussen83,86,87]

Cognitive Control

 Cognitive Control:
 Orchestration of cognitive and reactive processes for

flexible execution of complex tasks

Attention To Action model
[Norman&Shallice86]

Cognitive Control

Cognitive Control and Attention

 Cognitive Control:
 Ability of flexibly orchestrating structured goal-oriented activities and

reactive actions [Posner & Snyder ‘75, Botvinick et al. ‘01]
 Attentional mechanisms play a crucial role

 Supervisory Attentional System [Noman Shallice ‘86]:
 Contention scheduling:

 low-level process that manages the execution of routinized
activities (competing sensorimotor schemata)

 Supervisory attention:
 higher level mechanism that affects

contention scheduling through attentional
modulation (inhibition, stimulation).

Cognitive Control and Attention

 Cognitive Control:
 Ability of flexibly orchestrating structured goal-oriented activities and

reactive actions [Posner & Snyder ‘75, Botvinick et al. ‘01]
 Attentional mechanisms play a crucial role

 Supervisory Attentional System [Noman Shallice ‘86]:
 Hierarchically organized action schemata [Lashely 1951]

 Goal-oriented methods [Cooper Shallice 2000]
 Activation values [Norman Shallice ‘86]

SEED: Attentional Executive System

 Long Term Memory: repository of the tasks/schemata
available to the system

 Working Memory: maintains the executive state and
the structure of the tasks/schemata in the attentional
focus of the system (tasks to be executed)

 Attentional Behaviors: concrete sensorimotor processes
associated with an activation level

[SMC-2015, IEEE-TCDS-2016, AURO-2019]

SEED: Attentional Executive System

 Long Term Memory: repository of the tasks/schemata available to the system
 HTN-like methods:

 STRIPS-like primitive operators: 𝑎 ∈ 𝐴

 Execution vs Planning:
 Executive Model extends an associated HTN Planning Domain

𝑠𝑐ℎ𝑒𝑚𝑎(𝑚, 𝑙, 𝑒)
𝑙 = ⟨ 𝑚ଵ, 𝑟ଵ , … , 𝑚, 𝑟 ⟩

 Global Workspace Theory [Baars97]
 conscious experience:

 global workspace, set of specialized unconscious processors, and a
set of unconscious contexts that serve to select, evoke, and define
conscious contents (Baars, 1988).

Cognitive Control

 Black Board Systems [Erman et al. 1980]
 Group of specialists with a large blackboard using the blackboard as

the workplace for cooperatively developing the solution
 Problem specifications written onto the blackboard
 knowledge sources (KSs) can apply their expertises
 Control shell, which controls the flow of problem-solving activity in the system

Black Board Architecture

Learning - Intelligent Distribution Agent [Frankling ed at. 2006]

Hybrid Architecture
- http://ccrg.cs.memphis.edu/framework.html

Assumptions:
- Cognitive cycles (~10 Hz) as building blocks of cognitive processing

- Memory access and action selection
- Higher-level cognitive processes are based on them

Cognitive Cycle:
- Understanding phase:

- From low-level features to episodic and declarative memory (situation model)
- Attention (consciousness) phase:

- Coalitions of salient portions of the situation model (competition to global ws)
- Action selection and learning phase:

- Schemas are instantiated and compete for the execution

LIDA

Learning - Intelligent Distribution Agent [Frankling ed at. 2006]

Hybrid Architecture
- http://ccrg.cs.memphis.edu/framework.html

IDA: "What do I do next?"

LIDA, the learning IDA adds three modes of learning to IDA's
design:
- perceptual learning,
- episodic learning,
- procedural learning

LIDA

LIDA

LIDA

Learning - Intelligent Distribution Agent [Frankling ed at. 2006]

Default implementations of the following LIDA modules:
• Environment
• Sensory Memory
• Perceptual Associative Memory
• Transient Episodic Memory
• Declarative Memory
• Workspace
• Structure-Building Codelets

tasks maintaining the current situation in the Current Situational Model

• Attention Codelets
Type of task that tries to bring Workspace content in the Situational Model to the Global WS.
Upon finding such content it creates a coalition containing the content and adds it to the Global WS

• Global Workspace
The content of the winning coalition is the current contents to broadcast throughout the system

• Procedural Memory
• Action Selection

Inspired by Maes’ (1989) Behavior Net: selects a behavior to execute for each cognitive cycle

• Sensory-Motor Memory

LIDA

