Reinforcement Learning

Robotica Probabilistica

Reinforcement Learning

RL Task

Chapter 1, Barto

— Learn how to behave successfully to achieve a goal
while interacting with an external environment.

Learn through experience from trial and error

Examples

— Game playing: The agent knows it has won or lost, but
it doesn’t know the appropriate action in each state.

— Control: a traffic system can measure the delay of cars,

but not know how to decrease it.

Reinforcement Learning

* No knowledge of environment
— The agent can act in the world and observe states and reward

* Many factors make RL difficult:

— No supervisor
— Actions have non-deterministic effects
* Which are initially unknown

— Rewards / punishments are infrequent

e Often at the end of long sequences of actions
— Credit assignment: what actions are responsible for rewards or punishments

— World is large and complex

e Learner must decide what actions to take
— We will assume the world behaves as an MDP

Reinforcement Learning

* Learning and acting at the same time
e Scalability is a big issue

— Zhang, W., Dietterich, T. G., (1995). A Reinforcement Learning
Approach to Job-shop Scheduling

— G. Tesauro (1994). "TD-Gammon, A Self-Teaching Backgammon
Program Achieves Master-level Play" in Neural Computation

— Reinforcement Learning for Vulnerability Assessment in Peer-to-
Peer Networks, IAAlI 2008

* Policy Gradient Update

— An Application of Reinforcement Learning to Aerobatic
Helicopter Flight, Pieter Abbeel, Adam Coates, Morgan Quigley,
and Andrew Y. Ng. NIPS, 2007

— DeepQ Learing for Atari Games 2015
— DeepQ Learning AlphaGo (2015/2016)

Reinforcement Learning

* Learning and acting at the same time
e Scalability is a big issue

— An Application of Reinforcement Learning to Aerobatic
Helicopter Flight, Pieter Abbeel, Adam Coates, Morgan Quigley,
and Andrew Y. Ng. NIPS, 2007

Reinforcement Learning

* Learning and acting at the same time
» Scalability is a big issue

— DeepQ Learing for Atari Games 2015

Reinforcement Learning

MDP model:

— States, Actions, Reward, Transitions
Goal:

— Learn the policy as in MDP
Knowledge:

— State, Actions

No knowledge:

— Transitions, Reward

Discover by acting:

— Effects of Actions
— Rewards

Sequential Decision Problem

Agent Policy

State ..3‘: Reward @ \Action

Chapter 3, Barto

Environment

ao:ro a1:l‘1 a2:r2

S, > S, >S,

Transition model, how action influence states

\...
/7

Reward R, immediate value of state-action transition
History: sequence of actions, rewards, observations/state

Policy 7T, maps states to actions

Reinforcement Learning

Learner <

Sequential decision problems

passive

active

e Approaches:

* Learn values of states (or state histories) and try to
maximize utility of their outcomes (Model-based).

* Need a model of the environment: what ops and what
states they lead to

e Learn values of state-action pairs (Model free)

* Does not require a model of the environment (except
legal moves)

e Cannot look ahead

Key Aspects in RL

* How do we update value function or policy:
— How do we acquire training data
— Sequence of (s,a,r)....

* How do we explore and act:

— Exploit or Exploration dilemma

10

Taxonomy: Reinforcement Learning

function

Category of Reinforcement Learning

Model-based RL

— Constructs domain transition model, MDP
* E3-Kearns and Singh

Model-free RL

— Only concerns policy
* Q-Learning - Watkins

Active Learning (Off-Policy Learning)
— Q-Learning

Passive Learning (On-Policy learning)
— Sarsa - Sutton

12

RL Task

 Execute actions in environment,

observe results.

* Learn action policy &t : state — action that

maximizes expected discounted reward

E [r(t) + yr(t + 1) + y2r(t + 2) + ...]

from any starting state in S

Reinforcement Learning

e Target function is & : state — action

* However...

— We have no training examples of form <state,

action>
— Training examples are of form

<<state, action>, reward>

Example: Passive RL

* Assume a given policy
 We want to determine how good it is

4

Objective: Value Function

0.812 0.868

16

Given policy T,
— estimate V*(s) 2 T
Not given

— transition matrix, nor

— reward function!

Simp
epoc
Epoc

Passive RL

3 i i — + 1
f —
1 t —— -— e
1 2 3 4

y follow the policy for many
NS

ns: training sequences

Chapter 5, Sutton Barto,

Section 5.1-5.3

(1,1)=>(1,2)=>(1,3)>(1,2)>(1,3)2>(2,3)>(3,3) >(3,4) +1
(1,DH)=>(1,2)>(1,3)2(2,3)23,3)23,2)2>(3,3)>(3,4) +1
(1,H)=>2,H)~>3,1)>3,2)>4,2) -1

Each epoch should end

17

Direct Estimation

Direct estimation (model free)

— Estimate V7{(s) as average total reward of epochs containing
s (calculating from s to end of epoch)

Reward to go of a state s

the sum of the (discounted) rewards from that state
until a terminal state is reached

Key: use observed reward to go of the state as the
direct evidence of the actual expected utility of that
state

Averaging the reward to go samples will converge to
true value at a state (empirical mean)

Mont-Carlo Policy Evaluation
18

* Given policy 7,

— estimate V*(s) 2 T

* Not given
— transition matrix, nor 1 T hl
— reward function! !

* Simp
epoc
* Epoc

(1,1)=>(1,2)=>(1,3)>(1,2)>(1,3)2>(2,3)>(3,3) >(3,4) +1

Passive RL

+ 1

y follow the policy for many
NS

ns: training sequences

0.57 0.64 0.72 0.81 0.9

(1,DH)=>(1,2)>(1,3)2(2,3)23,3)23,2)2>(3,3)>(3,4) +1
(1,H)=>2,1H)~>3,1)2>3,2)>4,2) -1

19

Direct Estimation

* Converge very slowly to correct utilities values (requires a
lot of sequences)

* Does not exploit Bellman on policy values

Vi(s)=R(s)+ B T(s,a,s'W"(s")

How can we incorporate constraints?

20

Adaptive Dynamic Programming (ADP)

« ADPis a model based approach
— Follow the policy for a while
— Estimate transition model based on observations
— Learn reward function
— Use estimated model to compute utility of policy

VZ(s) = R(S)-I—,BZ T(s,a,s"W7"(s")

NS

learned

* How can we estimate transition model T(s,a,s’)?
— Statistics: the fraction of times we see s’ after taking a in state s.

21

Temporal Difference Learning (TD)

* Can we avoid the computational expense of full DP policy
evaluation?

* Temporal Difference Learning
— Model Free Method
— Learns from incomplete episodes by bootstrapping
— Approximate guesses from guesses
— Do local updates of utility/value function on a per-action basis
— Don’t try to estimate entire transition function!
— For each transition from s to s’, we perform the following update:

Vo(s)=V"(s)+a(R(s)+ ,QV” (s")=V" (S)|)
/ | D taréet \ " TD Error

learning rate discount factor

22

Temporal Difference Learning (TD)

* Can we avoid the computational expense of full DP policy
evaluation?

* Temporal Difference Learning
— Do local updates of utility/value function on a per-action basis

— Don’t try to estimate entire transition function!
— For each transition from s to s’, we perform the following update:

V7 (5) =V (s)+ a(R(s)+ BV (s) =V (5))
/ | D taréet \ " TD Error

. learning rate discount factor .
* Intutively, moves us closer to satisfying Bellman constraint

VZi(s) = R(S)-I—,BZ T(s,a,s"W7"(s'")

23

Temporal Difference Learning (TD)
 TD update for transition fromstos’:

o(s) =V7(s)+a(R(s)+ SV (s") =V (s))

Y

learning rate (noisy) sample of utility
based on next state

e So the update is maintaining a “mean” of the
(noisy) utility samples

 |f the learning rate decreases with the number
of samples (e.g. 1/n) then the utility estimates
will converge to true values

VZi(s) = R(S)-I—,BZ T(s,a,s"W7"(s')

24

Temporal Difference Learning (TD)
 TD update for transition fromstos’:

o(s) =V7(s)+a(R(s)+ SV (s") =V (s))

Y

learning rate (noisy) sample of utility
based on next state

e When V satisfies Bellman constraints then
expected update is O.

V*(s) = R(S)+,BZ T(s,a,s"W7”"(s")

25

N-step prediction
 TD(0):

o(s)=V7(s)+a(R(s)+ SV (s') =V (s))

Y

learning rate (noisy) sample of utility
based on next state

e update with 1-step prediction
e update with 2-steps

e update n+1-steps
— G"=R(s)+ B R(sy) + B?R(sy) + ...+ VT(sy,)
— V() =V™(s) + a(G™ — V™ (s))
 Monte-Carlo: full evaluation

26

TD(A)
* Areturn:
—Gr=(1-D)X2A1gn -

* Forward-view TD(A):
—VT(s) = VT(s) + a(G* — V()

TD(\)
o7 7§
CI) T T I :5':’+1 Ryt
O T S 1
<I> T o L
(1—A)A ? (f AHH
G;\ = (1-A) Z N e + A g, O .
n=1 (1 —A)A2 I Ap_,
Z =1 s O Sr Rr

27 AT—t-1

Forward view TD(A)

A return:
—Gr=(1-DXLA1gn

Forward-view TD(A):
—V™(s) = VT(s) + a(G* — VT(s))

TD(0) is TD
TD(1) is MC
TD(A) used for TD-Gammon

28

Backward view TD(A)

* On-line version of TD(A)
 Traces are collected backward, not forward
 Eligibity traces E(s) that holds the decaying values of I/ (s)

instead of waiting for what is going to happen next, we remember what happened in
the past and use current information to update the state-values for every state seen so far

The eligibility traces combine two things: both how frequent and how recent a state is

6t = Rey1 + ¥V (Se41) —V(Sp)

Ey(s) =0
E (s) = yAE_1(s) + 1 (S5 = s)

V(S) = V(S) + ad,E,(S)

29

Backward view TD(A)

On-line version of TD(A)
Traces are collected backward, not forward
Eligibity traces E(s) that holds the decaying values of V (s)

On-line Tabular TD(A\)

Initialize V(s) arbitrarily and e(s) =0, for all s €S
Repeat (for each episode) :
Initialize s
Repeat (for each step of episode) :
a < action given by xfor s
Take action a, observe reward, r, and next state s’
O <—r+yV(s)-V(s)
e(s)<—e(s) +1
For all s:
V(s) < V(s) + ade(s)
e(s) < yhe(s)
s< s

Until s 1s terminal

30

Comparisons

 MC Estimation (model free)
— Simple to implement
— Each update is fast
— Does not exploit Bellman constraints
— Converges slowly

* Adaptive Dynamic Programming (model based)
— Harder to implement
— Each update is a full policy evaluation (expensive)
— Fully exploits Bellman constraints
— Fast convergence (in terms of updates)

 Temporal Difference Learning (model free)

— Update speed and implementation similar to direct estimation

— Partially exploits Bellman constraints---adjusts state to ‘agree’ with observed
successor

* Not all possible successors
— Convergence in between direct estimation and ADP

31

