
Reinforcement Learning

Robotica Probabilistica

Reinforcement Learning

• RL Task
– Learn how to behave successfully to achieve a goal

while interacting with an external environment.
Learn through experience from trial and error

• Examples
– Game playing: The agent knows it has won or lost, but

it doesn’t know the appropriate action in each state.
– Control: a traffic system can measure the delay of cars,

but not know how to decrease it.

Chapter 1, Barto

3

Reinforcement Learning
• No knowledge of environment

– The agent can act in the world and observe states and reward

• Many factors make RL difficult:

– No supervisor
– Actions have non-deterministic effects

• Which are initially unknown
– Rewards / punishments are infrequent

• Often at the end of long sequences of actions
– Credit assignment: what actions are responsible for rewards or punishments

– World is large and complex

• Learner must decide what actions to take
– We will assume the world behaves as an MDP

Reinforcement Learning
• Learning and acting at the same time
• Scalability is a big issue

– Zhang, W., Dietterich, T. G., (1995). A Reinforcement Learning
Approach to Job-shop Scheduling

– G. Tesauro (1994). "TD-Gammon, A Self-Teaching Backgammon
Program Achieves Master-level Play" in Neural Computation

– Reinforcement Learning for Vulnerability Assessment in Peer-to-
Peer Networks, IAAI 2008

• Policy Gradient Update
– An Application of Reinforcement Learning to Aerobatic

Helicopter Flight, Pieter Abbeel, Adam Coates, Morgan Quigley,
and Andrew Y. Ng. NIPS, 2007

– DeepQ Learing for Atari Games 2015
– DeepQ Learning AlphaGo (2015/2016)

4

Reinforcement Learning
• Learning and acting at the same time
• Scalability is a big issue

– An Application of Reinforcement Learning to Aerobatic
Helicopter Flight, Pieter Abbeel, Adam Coates, Morgan Quigley,
and Andrew Y. Ng. NIPS, 2007

5

Reinforcement Learning
• Learning and acting at the same time
• Scalability is a big issue

– DeepQ Learing for Atari Games 2015

6

Reinforcement Learning

• MDP model:
– States, Actions, Reward, Transitions

• Goal:
– Learn the policy as in MDP

• Knowledge:
– State, Actions

• No knowledge:
– Transitions, Reward

• Discover by acting:
– Effects of Actions
– Rewards

7

Sequential Decision Problem

• Transition model, how action influence states
• Reward R, immediate value of state-action transition
• History: sequence of actions, rewards, observations/state

• Policy , maps states to actions

Agent

Environment

State Reward Action

Policy

 sss 221100 r a
2

r a
1

r a
0 :::

Chapter 3, Barto

Reinforcement Learning

Learner
passive

active
Sequential decision problems

• Approaches:
• Learn values of states (or state histories) and try to

maximize utility of their outcomes (Model-based).
• Need a model of the environment: what ops and what

states they lead to
• Learn values of state-action pairs (Model free)

• Does not require a model of the environment (except
legal moves)

• Cannot look ahead

Key Aspects in RL

• How do we update value function or policy:
– How do we acquire training data
– Sequence of (s,a,r)….

• How do we explore and act:
– Exploit or Exploration dilemma

10

Taxonomy: Reinforcement Learning

Value-
function

Policy

Model

Model-based

Model-free

Policy-basedValue-based

Actor-
Critic

Category of Reinforcement Learning

• Model-based RL
– Constructs domain transition model, MDP

• E3 – Kearns and Singh

• Model-free RL
– Only concerns policy

• Q-Learning - Watkins

• Active Learning (Off-Policy Learning)
– Q-Learning

• Passive Learning (On-Policy learning)
– Sarsa - Sutton

12

RL Task
• Execute actions in environment,

observe results.

• Learn action policy : state action that

maximizes expected discounted reward

E [r(t) + r(t + 1) + 2r(t + 2) + …]

from any starting state in S

Reinforcement Learning

• Target function is : state action

• However…

– We have no training examples of form <state,

action>

– Training examples are of form

<<state, action>, reward>

15

Example: Passive RL
• Assume a given policy
• We want to determine how good it is

16

Objective: Value Function

17

Passive RL
• Given policy ,

– estimate V(s)
• Not given

– transition matrix, nor
– reward function!

• Simply follow the policy for many
epochs

• Epochs: training sequences

(1,1)(1,2)(1,3)(1,2)(1,3)(2,3)(3,3) (3,4) +1
(1,1)(1,2)(1,3)(2,3)(3,3)(3,2)(3,3)(3,4) +1
(1,1)(2,1)(3,1)(3,2)(4,2) -1

Each epoch should end

Chapter 5, Sutton Barto,
Section 5.1-5.3

18

Direct Estimation
• Direct estimation (model free)

– Estimate V(s) as average total reward of epochs containing
s (calculating from s to end of epoch)

• Reward to go of a state s
the sum of the (discounted) rewards from that state
until a terminal state is reached

• Key: use observed reward to go of the state as the
direct evidence of the actual expected utility of that
state

• Averaging the reward to go samples will converge to
true value at a state (empirical mean)

• Mont-Carlo Policy Evaluation

19

Passive RL
• Given policy ,

– estimate V(s)
• Not given

– transition matrix, nor
– reward function!

• Simply follow the policy for many
epochs

• Epochs: training sequences

(1,1)(1,2)(1,3)(1,2)(1,3)(2,3)(3,3) (3,4) +1
0.57 0.64 0.72 0.81 0.9

(1,1)(1,2)(1,3)(2,3)(3,3)(3,2)(3,3)(3,4) +1
(1,1)(2,1)(3,1)(3,2)(4,2) -1

20

Direct Estimation
• Converge very slowly to correct utilities values (requires a

lot of sequences)

• Does not exploit Bellman on policy values

)'()',,()()(
'

sVsasTsRsV
s

How can we incorporate constraints?

21

Adaptive Dynamic Programming (ADP)

• ADP is a model based approach
– Follow the policy for a while
– Estimate transition model based on observations
– Learn reward function
– Use estimated model to compute utility of policy

• How can we estimate transition model T(s,a,s’)?
– Statistics: the fraction of times we see s’ after taking a in state s.

)'()',,()()(
'

sVsasTsRsV
s

learned

22

Temporal Difference Learning (TD)

• Can we avoid the computational expense of full DP policy
evaluation?

• Temporal Difference Learning
– Model Free Method
– Learns from incomplete episodes by bootstrapping
– Approximate guesses from guesses
– Do local updates of utility/value function on a per-action basis
– Don’t try to estimate entire transition function!
– For each transition from s to s’, we perform the following update:

))()'()(()()(sVsVsRsVsV

learning rate discount factor
TD target TD Error

23

Temporal Difference Learning (TD)

• Can we avoid the computational expense of full DP policy
evaluation?

• Temporal Difference Learning
– Do local updates of utility/value function on a per-action basis
– Don’t try to estimate entire transition function!
– For each transition from s to s’, we perform the following update:

• Intutively, moves us closer to satisfying Bellman constraint

))()'()(()()(sVsVsRsVsV

)'()',,()()(
'

sVsasTsRsV
s

learning rate discount factor
TD target TD Error

24

Temporal Difference Learning (TD)
• TD update for transition from s to s’:

• So the update is maintaining a “mean” of the
(noisy) utility samples

• If the learning rate decreases with the number
of samples (e.g. 1/n) then the utility estimates
will converge to true values

))()'()(()()(sVsVsRsVsV

)'()',,()()(
'

sVsasTsRsV
s

learning rate (noisy) sample of utility
based on next state

25

Temporal Difference Learning (TD)
• TD update for transition from s to s’:

• When V satisfies Bellman constraints then
expected update is 0.

))()'()(()()(sVsVsRsVsV

)'()',,()()(
'

sVsasTsRsV
s

learning rate (noisy) sample of utility
based on next state

26

N-step prediction
• TD(0):

• update with 1-step prediction
• update with 2-steps
• update n+1-steps

–

–

• Monte-Carlo: full evaluation

))()'()(()()(sVsVsRsVsV

learning rate (noisy) sample of utility
based on next state

27

TD()
• return:

–

• Forward-view TD():
–

28

Forward view TD()
• return:

–

• Forward-view TD():
–

• TD(0) is TD
• TD(1) is MC
• TD() used for TD-Gammon

29

Backward view TD()

• On-line version of TD()
• Traces are collected backward, not forward
• Eligibity traces that holds the decaying values of

instead of waiting for what is going to happen next, we remember what happened in
the past and use current information to update the state-values for every state seen so far

The eligibility traces combine two things: both how frequent and how recent a state is

30

Backward view TD()
• On-line version of TD()
• Traces are collected backward, not forward
• Eligibity traces that holds the decaying values of

31Comparisons
• MC Estimation (model free)

– Simple to implement
– Each update is fast
– Does not exploit Bellman constraints
– Converges slowly

• Adaptive Dynamic Programming (model based)
– Harder to implement
– Each update is a full policy evaluation (expensive)
– Fully exploits Bellman constraints
– Fast convergence (in terms of updates)

• Temporal Difference Learning (model free)
– Update speed and implementation similar to direct estimation
– Partially exploits Bellman constraints---adjusts state to ‘agree’ with observed

successor
• Not all possible successors

– Convergence in between direct estimation and ADP

