
Reinforcement Learning

Robotica Probabilistica

Reinforcement Learning

• RL Task
– Learn how to behave successfully to achieve a goal

while interacting with an external environment.
Learn through experience from trial and error

• Examples
– Game playing: The agent knows it has won or lost, but

it doesn’t know the appropriate action in each state.
– Control: a traffic system can measure the delay of cars,

but not know how to decrease it.

Chapter 1, Barto

3

Reinforcement Learning
• No knowledge of environment

– The agent can act in the world and observe states and reward

• Many factors make RL difficult:

– No supervisor
– Actions have non-deterministic effects

• Which are initially unknown
– Rewards / punishments are infrequent

• Often at the end of long sequences of actions
– Credit assignment: what actions are responsible for rewards or punishments

– World is large and complex

• Learner must decide what actions to take
– We will assume the world behaves as an MDP

Reinforcement Learning
• Learning and acting at the same time
• Scalability is a big issue

– Zhang, W., Dietterich, T. G., (1995). A Reinforcement Learning
Approach to Job-shop Scheduling

– G. Tesauro (1994). "TD-Gammon, A Self-Teaching Backgammon
Program Achieves Master-level Play" in Neural Computation

– Reinforcement Learning for Vulnerability Assessment in Peer-to-
Peer Networks, IAAI 2008

• Policy Gradient Update
– An Application of Reinforcement Learning to Aerobatic

Helicopter Flight, Pieter Abbeel, Adam Coates, Morgan Quigley,
and Andrew Y. Ng. NIPS, 2007

– DeepQ Learing for Atari Games 2015
– DeepQ Learning AlphaGo (2015/2016)

4

Reinforcement Learning
• Learning and acting at the same time
• Scalability is a big issue

– An Application of Reinforcement Learning to Aerobatic
Helicopter Flight, Pieter Abbeel, Adam Coates, Morgan Quigley,
and Andrew Y. Ng. NIPS, 2007

5

Reinforcement Learning
• Learning and acting at the same time
• Scalability is a big issue

– DeepQ Learing for Atari Games 2015

6

Reinforcement Learning

• MDP model:
– States, Actions, Reward, Transitions

• Goal:
– Learn the policy as in MDP

• Knowledge:
– State, Actions

• No knowledge:
– Transitions, Reward

• Discover by acting:
– Effects of Actions
– Rewards

7

Sequential Decision Problem

• Transition model, how action influence states
• Reward R, immediate value of state-action transition
• History: sequence of actions, rewards, observations/state

• Policy , maps states to actions

Agent

Environment

State Reward Action

Policy

 sss 221100 r a
2

r a
1

r a
0     :::

Chapter 3, Barto

Reinforcement Learning

Learner
passive

active
Sequential decision problems

• Approaches:
• Learn values of states (or state histories) and try to

maximize utility of their outcomes (Model-based).
• Need a model of the environment: what ops and what

states they lead to
• Learn values of state-action pairs (Model free)

• Does not require a model of the environment (except
legal moves)

• Cannot look ahead

Key Aspects in RL

• How do we update value function or policy:
– How do we acquire training data
– Sequence of (s,a,r)….

• How do we explore and act:
– Exploit or Exploration dilemma

10

Taxonomy: Reinforcement Learning

Value-
function

Policy

Model

Model-based

Model-free

Policy-basedValue-based

Actor-
Critic

Category of Reinforcement Learning

• Model-based RL
– Constructs domain transition model, MDP

• E3 – Kearns and Singh

• Model-free RL
– Only concerns policy

• Q-Learning - Watkins

• Active Learning (Off-Policy Learning)
– Q-Learning

• Passive Learning (On-Policy learning)
– Sarsa - Sutton

12

RL Task
• Execute actions in environment,

observe results.

• Learn action policy  : state  action that

maximizes expected discounted reward

E [r(t) + r(t + 1) + 2r(t + 2) + …]

from any starting state in S

Reinforcement Learning

• Target function is  : state  action

• However…

– We have no training examples of form <state,

action>

– Training examples are of form

<<state, action>, reward>

15

Example: Passive RL
• Assume a given policy
• We want to determine how good it is

16

Objective: Value Function

17

Passive RL
• Given policy ,

– estimate V(s)
• Not given

– transition matrix, nor
– reward function!

• Simply follow the policy for many
epochs

• Epochs: training sequences

(1,1)(1,2)(1,3)(1,2)(1,3)(2,3)(3,3) (3,4) +1
(1,1)(1,2)(1,3)(2,3)(3,3)(3,2)(3,3)(3,4) +1
(1,1)(2,1)(3,1)(3,2)(4,2) -1

Each epoch should end

Chapter 5, Sutton Barto,
Section 5.1-5.3

18

Direct Estimation
• Direct estimation (model free)

– Estimate V(s) as average total reward of epochs containing
s (calculating from s to end of epoch)

• Reward to go of a state s
the sum of the (discounted) rewards from that state
until a terminal state is reached

• Key: use observed reward to go of the state as the
direct evidence of the actual expected utility of that
state

• Averaging the reward to go samples will converge to
true value at a state (empirical mean)

• Mont-Carlo Policy Evaluation

19

Passive RL
• Given policy ,

– estimate V(s)
• Not given

– transition matrix, nor
– reward function!

• Simply follow the policy for many
epochs

• Epochs: training sequences

(1,1)(1,2)(1,3)(1,2)(1,3)(2,3)(3,3) (3,4) +1
0.57 0.64 0.72 0.81 0.9

(1,1)(1,2)(1,3)(2,3)(3,3)(3,2)(3,3)(3,4) +1
(1,1)(2,1)(3,1)(3,2)(4,2) -1

20

Direct Estimation
• Converge very slowly to correct utilities values (requires a

lot of sequences)

• Does not exploit Bellman on policy values

)'()',,()()(
'

sVsasTsRsV
s

 

How can we incorporate constraints?

21

Adaptive Dynamic Programming (ADP)

• ADP is a model based approach
– Follow the policy for a while
– Estimate transition model based on observations
– Learn reward function
– Use estimated model to compute utility of policy

• How can we estimate transition model T(s,a,s’)?
– Statistics: the fraction of times we see s’ after taking a in state s.

)'()',,()()(
'

sVsasTsRsV
s

 

learned

22

Temporal Difference Learning (TD)

• Can we avoid the computational expense of full DP policy
evaluation?

• Temporal Difference Learning
– Model Free Method
– Learns from incomplete episodes by bootstrapping
– Approximate guesses from guesses
– Do local updates of utility/value function on a per-action basis
– Don’t try to estimate entire transition function!
– For each transition from s to s’, we perform the following update:

))()'()(()()(sVsVsRsVsV   

learning rate discount factor
TD target TD Error

23

Temporal Difference Learning (TD)

• Can we avoid the computational expense of full DP policy
evaluation?

• Temporal Difference Learning
– Do local updates of utility/value function on a per-action basis
– Don’t try to estimate entire transition function!
– For each transition from s to s’, we perform the following update:

• Intutively, moves us closer to satisfying Bellman constraint

))()'()(()()(sVsVsRsVsV   

)'()',,()()(
'

sVsasTsRsV
s

 

learning rate discount factor
TD target TD Error

24

Temporal Difference Learning (TD)
• TD update for transition from s to s’:

• So the update is maintaining a “mean” of the
(noisy) utility samples

• If the learning rate decreases with the number
of samples (e.g. 1/n) then the utility estimates
will converge to true values

))()'()(()()(sVsVsRsVsV   

)'()',,()()(
'

sVsasTsRsV
s

 

learning rate (noisy) sample of utility
based on next state

25

Temporal Difference Learning (TD)
• TD update for transition from s to s’:

• When V satisfies Bellman constraints then
expected update is 0.

))()'()(()()(sVsVsRsVsV   

)'()',,()()(
'

sVsasTsRsV
s

 

learning rate (noisy) sample of utility
based on next state

26

N-step prediction
• TD(0):

• update with 1-step prediction
• update with 2-steps
• update n+1-steps

– ௡
ଵ

ଶ
ଶ

గ
௡

– గ గ ௡ గ

• Monte-Carlo: full evaluation

))()'()(()()(sVsVsRsVsV   

learning rate (noisy) sample of utility
based on next state

27

TD()
• return:

–

• Forward-view TD():
–

௡ିଵ ௡

ஶ

௡ୀ଴

ஶ

௡ୀଵ

28

Forward view TD()
• return:

–

• Forward-view TD():
–

• TD(0) is TD
• TD(1) is MC
• TD() used for TD-Gammon

29

Backward view TD()

• On-line version of TD()
• Traces are collected backward, not forward
• Eligibity traces that holds the decaying values of

௧ ௧ାଵ ௧ାଵ ௧

଴

௧ ௧ିଵ ௧

instead of waiting for what is going to happen next, we remember what happened in
the past and use current information to update the state-values for every state seen so far

௧ ௧

The eligibility traces combine two things: both how frequent and how recent a state is

30

Backward view TD()
• On-line version of TD()
• Traces are collected backward, not forward
• Eligibity traces that holds the decaying values of

31Comparisons
• MC Estimation (model free)

– Simple to implement
– Each update is fast
– Does not exploit Bellman constraints
– Converges slowly

• Adaptive Dynamic Programming (model based)
– Harder to implement
– Each update is a full policy evaluation (expensive)
– Fully exploits Bellman constraints
– Fast convergence (in terms of updates)

• Temporal Difference Learning (model free)
– Update speed and implementation similar to direct estimation
– Partially exploits Bellman constraints---adjusts state to ‘agree’ with observed

successor
• Not all possible successors

– Convergence in between direct estimation and ADP

