
32

Active Reinforcement Learning

• So far, we have assumed agent with a policy
– We try to learn how good it is

• Now, suppose agent must learn a good policy
(optimal)
– While acting in uncertain world

Chapter 6, Sutton Barto

33

Active Reinforcement Learning

• On-Policy
– Learn while following a policy (“learning on the job”)
– Learn about a policy from experience sampled from

• Off-Policy
– Learn outside the policy (“learn from someone else”)
– Learn about policy from experience sampled from

34

Policy Iteration

• Policy Evaluation
– Estimate the value function

• Policy Improvement
– Find a way to improve the policy

Policy impr. - greedy function in policy iteration

Policy eval.

Starting
∗ ∗

35

Policy Iteration

• Policy Evaluation
– Estimate the value function: MC-Evaluation?

• Policy Improvement
– Find a way to improve the policy?

Policy impr.

Policy eval.

Starting
∗ ∗

Model free!
How can we improve policy?

𝜋 𝑠 = 𝑎𝑟𝑔𝑚𝑎𝑥 ∈ 𝑅 + 𝑃 𝑉(𝑠′)

… but no model available

36

Policy Iteration

• Policy Evaluation
– Estimate the value function: MC-Evaluation?

• Policy Improvement
– Find a way to improve the policy?

Policy impr.

Policy eval.

Starting
∗ ∗

Model free!
Better to use …

𝜋 𝑠 = 𝑎𝑟𝑔𝑚𝑎𝑥 ∈ 𝑄 (𝑠, 𝑎)

… but is the greedy
improvement a good
choice?

Multi-Armed Bandit Problem

• Action selection:
– Decide which machines to play

Greedy selection strategy?

We keep going with right, but left was
not explored enough

Which is the best strategy?
- We need to explore and exploit, balancing exploration and exploitation

This is a typical RL problem

38

• Two reasons to take an action in RL
– Exploitation: To try to get reward. We exploit our current

knowledge to get a payoff.
– Exploration: Get more information about the world. How do

we know if there is not a pot of gold around the corner.

• To explore we typically need to take actions that do not
seem best according to our current model.

• Managing the trade-off between exploration and
exploitation is a critical issue in RL

• Basic intuition behind most approaches:
– Explore more when knowledge is weak
– Exploit more as we gain knowledge

Exploration versus Exploitation

39

• Simple exploration strategy: -Greedy
– With prob select a random action (given actions)
– With prob select the greedy action

Exploration

If ∈

otherwise

Theorem
For any -Greedy policy , the -Greedy policy ’ with respect to is an
improvement, i.e.,

∈
∈∈

∈ ∈

40

• Simple exploration strategy: -Greedy
– With prob select a random action (given actions)
– With prob select the greedy action

Exploration

If ∈

otherwise

Theorem
For any -Greedy policy , the -Greedy policy ’ with respect to is an
improvement, i.e.,

∈
∈∈

∈ ∈

∈

|
= 1

41

Policy Iteration

• Policy Evaluation
– Estimate the value function: MC-Evaluation?

• Policy Improvement
– Find a way to improve the policy?

Policy impr. -greedy

Policy eval.

Starting Q
∗ ∗

Model free!
Better to use …

𝜋 𝑠 = 𝑎𝑟𝑔𝑚𝑎𝑥 ∈ 𝑄 (𝑠, 𝑎)

42

Policy Iteration

• Policy Evaluation
– Estimate the value function: MC-Evaluation?

• Policy Improvement
– Find a way to improve the policy?

Policy eval.

Starting Q
∗ ∗

Model free!
Better to use …

𝜋 𝑠 = 𝑎𝑟𝑔𝑚𝑎𝑥 ∈ 𝑄 (𝑠, 𝑎)

Policy
evaluation/improvement
can be more frequent

Policy impr. -greedy

Not necessary to fully
evaluate the policy

GLIE Exploration

• Exploration policy greedy in the limit of infinite exploration
(GLIE) satisfies the following two properties:

– 1. If a state is visited infinitely often, then each action in that state
is chosen infinitely often (with probability 1).

– 2. In the limit (as t → ∞), the learning policy is greedy with respect
to the learned Q-function (with probability 1).

– For instance, -Greedy with Reduce at each episode

GLIE Monte-Carlo

• Learning with MC

– Sample k-th episode from :
– For each state and action in the episode:

– Improve the policy with -Greedy:

-greedy

Theorem
The MC-GLIE converges towards the optimal action-value function ∗

MC vs TD Learning

• TD Learning advantages over MC:
– On-line learning (no termination)
– Incomplete sequences
– Exploits Bellman
– Low variance

• Use TD Learning instead of MC Learning in the control loop
– Evaluation of
– Policy improvement with -greedy
– Update every step (not after each episode)

TD Learning

• Use TD Learning instead of MC Learning
– Policy evaluation: evaluation of
– SARSA action-value update

S A,R S’ A

46

Policy impr.

Policy eval.

Starting
∗ ∗

𝑆𝐴𝑅𝑆𝐴

-Greedy policy

Policy evaluation
every time-step

Every time-step

TD-Sarsa

Q(s,a) is usually represented as a look-up table

Theorem
The TD-GLIE converges towards the optimal action-value function under the
following conditions:
- GLIE sequence of policies
- Robbins-Monro sequence of step :

→
∈ , ∈

vanishing oscillation

Windy Gridworld Example

Windy Gridworld Example

Completed episodes vs time steps

-greedy Sarsa with and , init values

Episodes completed
faster with experience

n-step Sarsa
n-step version of SARSA

…

n-step Q-return

n-step SARSA update towards the n-step Q-return

SARSA

MC

Chapter 7, Sutton Barto
Section 7.1, 7.2

Forward View Sarsa

Backward View Sarsa

Eligibility trace in an online algorithm

Sarsa() has one eligibility trace for each state-action pair

updated for every state and action:

Backward View Sarsa
Eligibility trace in an online algorithm

Sarsa() has one eligibility trace for each state-action pair

Equivalent to forward view

Backward View Sarsa
Eligibility trace in an online algorithm

Sarsa() has one eligibility trace for each state-action pair

Off-Policy Learning
Evaluate target policy to compute or while following
another policy

• Learn from observing humans or other agents
• Learn from past policies, re-use experience from old policies
• Learn the optimal policy while following an exploration policy
• Learn multiple policies while following one policy

Chapter 6, Sutton Barto
Section 6.4, 6.5, 6.6

Off-Policy Learning
Evaluate target policy to compute or while following
another policy

• Importance sampling
• Q-learning

Off-Policy Learning
Evaluate target policy to compute or while following
another policy

• Importance sampling

Monte-Carlo Off-policy with importance sampling

• Importance along the whole episode

• Update towards the correct return

• Not practical, too high variance

/

/

Off-Policy Learning
Evaluate target policy to compute or while following
another policy

• Importance sampling

TD Off-policy with importance sampling

• Importance sampling correction at each step

• Lower variance than MC importance sampling
• Policies need to be similar over a single step

Off-Policy Learning
Evaluate target policy to compute or while following
another policy

• Q-Learning approach [Watkins, 1989]
o Suited for TD(0)
o No importance sampling
o Next action using the behavior policy 𝜇, i.e., 𝐴 ∼ 𝜇(⋅ |𝑆)
o Assess alternative successor action with policy 𝜋, i.e., 𝐴 ∼ 𝜋 ⋅ 𝑆)
o Update 𝑄(𝑆 , 𝐴) considering the alternative action

Q-Learning
Evaluate target policy to compute or while following
another policy

• The target policy is greedy with respect to

• The behavior policy is –greedy with respect to

Theorem
The Q-Learning converges towards the optimal action-value function with GLIE
and

61

Q-Learning
1. Start with initial Q-function (e.g., all zeros)
2. Take an action according to an explore/exploit policy

(should converge to greedy policy, i.e. GLIE)
3. Perform TD update

Q(s,a) is current estimate of optimal Q-function.
4. Goto 2

 Does not require model since we learn Q directly

 Uses explicit |S|x|A| table to represent Q

 Explore/exploit policy directly uses Q-values

SARSA vs Q-Learning
Cliff Walking (undiscounted, episodic task)

-greedy policy with
- Q-learning off-policy, more risky policy (because of -gready)

Optimal policy, but lower Reward (off-
policy). If 𝜖 is gradually reduced both
policies converge to the optimal one

