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Active Reinforcement Learning

• So far, we have assumed agent with a policy
– We try to learn how good it is

• Now, suppose agent must learn a good policy 
(optimal)
– While acting in uncertain world

Chapter 6, Sutton Barto
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Active Reinforcement Learning

• On-Policy
– Learn while following a policy (“learning on the job”)
– Learn about a policy from experience sampled from 

• Off-Policy
– Learn outside the policy (“learn from someone else”)
– Learn about policy from experience sampled from 
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Policy Iteration

• Policy Evaluation
– Estimate the value function

• Policy Improvement
– Find a way to improve the policy

Policy impr. - greedy function in policy iteration

Policy eval. 

Starting 
∗ ∗
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Policy Iteration

• Policy Evaluation
– Estimate the value function: MC-Evaluation?

• Policy Improvement
– Find a way to improve the policy?

Policy impr. 

Policy eval. 

Starting 
∗ ∗

Model free!
How can we improve policy?

𝜋 𝑠 = 𝑎𝑟𝑔𝑚𝑎𝑥 ∈  𝑅 + 𝑃 𝑉(𝑠′)

… but no model available
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Policy Iteration

• Policy Evaluation
– Estimate the value function: MC-Evaluation?

• Policy Improvement
– Find a way to improve the policy?

Policy impr. 

Policy eval. 

Starting 
∗ ∗

Model free!
Better to use …

𝜋 𝑠 = 𝑎𝑟𝑔𝑚𝑎𝑥 ∈  𝑄 (𝑠, 𝑎)

… but is the greedy 
improvement a good 
choice?



Multi-Armed Bandit Problem

• Action selection:
– Decide which machines to play

Greedy selection strategy?

We keep going with right, but left was 
not explored enough

Which is the best strategy? 
- We need to explore and exploit, balancing exploration and exploitation

This is a typical RL problem
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• Two reasons to take an action in RL
– Exploitation: To try to get reward. We exploit our current 

knowledge to get a payoff.
– Exploration: Get more information about the world. How do 

we know if there is not a pot of gold around the corner.

• To explore we typically need to take actions that do not 
seem best according to our current model.

• Managing the trade-off between exploration and 
exploitation is a critical issue in RL

• Basic intuition behind most approaches: 
– Explore more when knowledge is weak
– Exploit more as we gain knowledge

Exploration versus Exploitation
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• Simple exploration strategy: -Greedy
– With prob select a random action (given actions)
– With prob select the greedy action

Exploration

If ∈

otherwise

Theorem
For any  -Greedy policy , the -Greedy policy ’ with respect to is an 
improvement, i.e., 

∈
∈∈

∈  ∈
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• Simple exploration strategy: -Greedy
– With prob select a random action (given actions)
– With prob select the greedy action

Exploration

If ∈

otherwise

Theorem
For any  -Greedy policy , the -Greedy policy ’ with respect to is an 
improvement, i.e., 

∈
∈∈

∈  ∈

∈  

|  
= 1
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Policy Iteration

• Policy Evaluation
– Estimate the value function: MC-Evaluation?

• Policy Improvement
– Find a way to improve the policy?

Policy impr. -greedy

Policy eval. 

Starting Q
∗ ∗

Model free!
Better to use …

𝜋 𝑠 = 𝑎𝑟𝑔𝑚𝑎𝑥 ∈  𝑄 (𝑠, 𝑎)
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Policy Iteration

• Policy Evaluation
– Estimate the value function: MC-Evaluation?

• Policy Improvement
– Find a way to improve the policy?

Policy eval. 

Starting Q
∗ ∗

Model free!
Better to use …

𝜋 𝑠 = 𝑎𝑟𝑔𝑚𝑎𝑥 ∈  𝑄 (𝑠, 𝑎)

Policy 
evaluation/improvement 
can be more frequent

Policy impr. -greedy

Not necessary to fully 
evaluate the policy



GLIE Exploration

• Exploration policy greedy in the limit of infinite exploration 
(GLIE) satisfies the following two properties: 

– 1. If a state is visited infinitely often, then each action in that state 
is chosen infinitely often (with probability 1). 

– 2. In the limit (as t → ∞), the learning policy is greedy with respect 
to the learned Q-function (with probability 1).

– For instance, -Greedy with Reduce at each episode 



GLIE Monte-Carlo

• Learning with MC

– Sample k-th episode from : 
– For each state and action in the episode:

– Improve the policy with -Greedy: 

 

-greedy

Theorem
The MC-GLIE converges towards the optimal action-value function ∗



MC vs TD Learning

• TD Learning advantages over MC:
– On-line learning (no termination)
– Incomplete sequences
– Exploits Bellman
– Low variance

• Use TD Learning instead of MC Learning in the control loop
– Evaluation of 
– Policy improvement with -greedy
– Update every step (not after each episode)



TD Learning

• Use TD Learning instead of MC Learning
– Policy evaluation: evaluation of 
– SARSA action-value update

S A,R S’ A
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Policy impr. 

Policy eval. 

Starting 
∗ ∗

𝑆𝐴𝑅𝑆𝐴

-Greedy policy

Policy evaluation 
every time-step

Every time-step



TD-Sarsa

Q(s,a) is usually represented as a look-up table

Theorem
The TD-GLIE converges towards the optimal action-value function under the 
following conditions:
- GLIE sequence of policies 
- Robbins-Monro sequence of step : 

→
∈ , ∈

vanishing oscillation



Windy Gridworld Example



Windy Gridworld Example

Completed episodes vs time steps

-greedy Sarsa with and , init values 

Episodes completed 
faster with experience 



n-step Sarsa
n-step version of SARSA

…

n-step Q-return

n-step SARSA update towards the n-step Q-return

SARSA

MC

Chapter 7, Sutton Barto
Section 7.1, 7.2



Forward View Sarsa



Backward View Sarsa

 

Eligibility trace in an online algorithm

Sarsa( ) has one eligibility trace for each state-action pair

updated for every state and action: 



Backward View Sarsa
Eligibility trace in an online algorithm

Sarsa( ) has one eligibility trace for each state-action pair

Equivalent to forward view



Backward View Sarsa
Eligibility trace in an online algorithm

Sarsa( ) has one eligibility trace for each state-action pair



Off-Policy Learning
Evaluate target policy to compute or while following 
another policy 

• Learn from observing humans or other agents
• Learn from past policies, re-use experience from old policies
• Learn the optimal policy while following an exploration policy
• Learn multiple policies while following one policy

Chapter 6, Sutton Barto
Section 6.4, 6.5, 6.6



Off-Policy Learning
Evaluate target policy to compute or while following 
another policy 

• Importance sampling
• Q-learning



Off-Policy Learning
Evaluate target policy to compute or while following 
another policy 

• Importance sampling

Monte-Carlo Off-policy with importance sampling

• Importance along the whole episode

• Update towards the correct return

• Not practical, too high variance

/

 

/



Off-Policy Learning
Evaluate target policy to compute or while following 
another policy 

• Importance sampling

TD Off-policy with importance sampling

• Importance sampling correction at each step

• Lower variance than MC importance sampling
• Policies need to be similar over a single step



Off-Policy Learning
Evaluate target policy to compute or while following 
another policy 

• Q-Learning approach [Watkins, 1989]
o Suited for TD(0)
o No importance sampling
o Next action using the behavior policy 𝜇, i.e., 𝐴  ∼ 𝜇(⋅ |𝑆 )
o Assess alternative successor action with policy 𝜋, i.e., 𝐴 ∼ 𝜋 ⋅ 𝑆 )
o Update 𝑄(𝑆 , 𝐴 ) considering the alternative action 



Q-Learning
Evaluate target policy to compute or while following 
another policy 

• The target policy is greedy with respect to 

• The behavior policy is –greedy with respect to 

Theorem
The Q-Learning converges towards the optimal action-value function with GLIE 
and 
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Q-Learning
1. Start with initial Q-function (e.g., all zeros)
2. Take an action according to an explore/exploit policy

(should converge to greedy policy, i.e. GLIE) 
3. Perform TD update

Q(s,a) is current estimate of optimal Q-function.
4. Goto 2

 Does not require model since we learn Q directly

 Uses explicit |S|x|A| table to represent Q 

 Explore/exploit policy directly uses Q-values



SARSA vs Q-Learning
Cliff Walking (undiscounted, episodic task)

-greedy policy with 
- Q-learning off-policy, more risky policy (because of -gready)

Optimal policy, but lower Reward (off-
policy). If 𝜖 is gradually reduced both 
policies converge to the optimal one


