Problems of RL

Curse of Dimensionality
In real world problems ist difficult/impossible to define discrete state-action spaces.

(Temporal) Credit Assignment Problem
RL cannot handle large state action spaces as the reward gets too much dilited
along the way.

Partial Observability Problem
In a real-world scenario an RL-agent will often not know exactly in what state it will
end up after performing an action. Furthermore states must be history independent.

State-Action Space Tiling

Deciding about the actual state- and action-space tiling is difficult as it is often
critical for the convergence of RL-methods. Alternatively one could employ a
continuous version of RL, but these methods are equally difficult to handle.

Non-Stationary Environments
As for other learning methods, RL will only work quasi stationary environments.

Real-world behavior is hierarchical

1. pour coffee L
??2 2. add sugar -

@ 4 2 3.add milk m & add hot
4. stir %add cold
1. set water temp /'(T‘fi’:nge wait 5sec
ﬁ‘@ﬂ: ; 2. get wet f% success
3. shampoo
4. soap

5. turn off water

6. dry off

Hierarchical Reinforcement Learning

* Exploits domain structure to facilitate learning
— Policy constraints
— State abstraction

e Paradigms: Options, HAMs, MaxQ, etc.

Advantages of HRL

1. Faster learning
(mitigates scaling problem)

2. Structured exploration
(explore with sub-policies rather than primitive actions)

3. Transfer of knowledge from previous tasks
(generalization, shaping)

Semi-Markov Decision Process

Generalizes MDPs

Action a takes N steps to completeins
P(s'n| a,s),R(s’, N | a,s)

Bellman equation:

17 {8) = Z: P(s',N|s, n(s)) l‘r‘)'{“"- N|s,m(s)) + " Lﬁ(;)‘ '
g N

V7(s) = R(s,m(s)) + 3 P(s". Ns,m(s))y" V"(s).
s, N

Semi-Markov Decision Process

Generalizes MDPs

Action a takes N steps to completeins
P(s',n | a,s),R(s’,N | a,s)
Bellman equation:

a

V*(s) = max [R(s. a)+ 3 v7p(s',7ls, a,)v*(s')]

* . ‘ Ty / ‘ " * /]
Q*(s,a) = R(s,a) + Z "p(s', 7|5, a) max Q" (s',b)

Taxi Example

N

GET

PUT

pjckup] [putdown
' NAVIGATE
to Red

JEIED

]

Room Example

{ | | | { | { | 4 stochastic
HALLWAYS — primitive actions

up

: Fai 33%
- + nght of the time

down

8 multi-step options
(to each room'’s 2 hallways)

Sutton, Precup, Singh, 1999

Options

An optionis atriple o =< 7,7, 3 >
e 7: initiation set. preconditions

e m:S8 x A [0,1]: option’s policy ~ behavior

e 3:S8— [0,1- - termination condition effect

Options
over MDP

Options

aﬁ\wﬁf“\joﬂ

[State

Options

option’s policy: =;; global policy: u
— reward part of option:

0,8t = s}

r(s,o0) = E{'rt+1 +Tit2 + VT4 e+ Y Tk

— prediction-state part:

o0

p(s's.0) = p(s' k

k=1

k

$,0)Y

policy over options i :S x O — [0, 1]

V”(S) — E{‘T‘t =+ Yri41 B "}’2‘T’t+2....|p, St = S}

= E{'T‘t+1 +7er2 + Vrera + oo+ T ek YV (048 1, 5t = 3}

=E [r(s, 0) + Z p(Sisr|s, 0)VH(s")|p, s¢ = s]

St4k

Options

option’s policy: =;; global policy: u
— reward part of option:

0,8 = s}

'T'(Sa 0) = E{"‘t+1 T es T ’)’2Tt+3 o+ e ’Yth+k

— prediction-state part:

k
p(s'|s,0) =) _p(s'. k|s.0)y
k=1
policy over options i :S x O — [0, 1]
Q" {s,0) = E{rt +rest1 +y2reso....|op, s¢ = s}
= E{T't+1 + Yre42 +727‘t+3 + ... +"rk_1”‘t+k +’YkV'u(St+k)|M St = S}

e

= E{Tt+1 +Yrega +72'rt+3 + e 7
+ max (S¢4k, 0") Q¥ (5441, 0")|op, s¢ = S}

= E{r(s,0) + Y plsesxls, o) maxp(se sk, 0)Q (se1,0) |

Options

Gridworld environment
with stochastic cell-to-cell
actions and room-to-
room hallway options.
Two of the hallway
options are suggested by
the arrows o1 and 02. G1
and G2 are goals

Primitive
options

0O=A

Hallway

options
O=H

Initial Values

Iteration #1

Iteration #2

4 stochastic
primitive actions

up

; Fail 33%
!eft-—}— fght ot the time

down

8 multi-step options
(to each room's 2 hallways)

hallway options take the

agent from anywhere

within the room to one
of the two hallway cells
leading out of the room

Target
Hallway

Options

SMDP Q-learning: given the set of defined options.
— execute the current selected option (e.g use epsilon greedy Q(s, 0))

to termination.
— compute r(s¢, 0), then update Q(s¢, o) as Q-learning/SARSA.

Q(s,0) < Q(s, 0) +a[r + max Q(s’,0") Qfs, 0)]
o'eC,
If primitive actions are included as options, then optimal with options is like optimal
without options

1000[1000

[
"y, Goal '\\/\/\\4 Goal

atG, W atG,
Steps UH
per 10K AuH 1008 H H
episode
n A

10 .
100 1000 10,000 1 10 100 1000 10,0000

Episodes Episodes

Options

SMDP Q-learning: given the set of defined options.
— execute the current selected option (e.g use epsilon greedy Q(s, o))

to termination.
— compute r(s;,0), then update Q(s;, o) as Q-learning/SARSA.

Intra-option Q-learning: partially defined options
— after each primitive action, update all the options (off-policy learning).
— converge to correct values, "under same assumptions as 1-step

Q-learning” (Sutton)
Qs +1(85,0) = (1 — o) Oy (s, 0) + o [’}+1 + }’Uk(sno)]

where

Uy(s,0) = (1 - B(s))Qy(s5,0) + Bls) m:

]

O €

g(Qk(s, 0’)

Hierarchies of Abstract Machines

Partially specified Programs [Parr Russell 98]
- MDP State and Machine State

Start

Choose

Qi +1(lseme),a.) = (1 — o) Qi ([se, me], a.) + oy fro g + 7m0+ -

+ Tr - l)'f_+_) 4 },r ma;’lx Qk ([S:., i??:.]., G’)]

Task Hierarchy

MAXQ Task hierarchy [Dietterich 2000]
e Directed acyclic graph of subtasks
* Hierarchy of SMDS to be simultaneously learned
* Leaves are the primitive MDP actions

Traditionally, task structure is provided as prior
knowledge to the learning agent

Each task associated with termination, Actions, and
pseudo reward function: (T}, A;, R;)

Hierarchical policy is a set of policies, one for each
subtask

Taxi Domain
Motivational Example

. 4 |R G
Reward: -1 actions, N ‘
-10 illegal, 20 mission. 2
1
500 states N &
Task Graph: 01 2 3 4

Root

Pickup Navigate(t Putdown
North South East West

MAXQ Alg. (Value Fun. Decomposition)

 Compactness) in the representation of the
hierarchical value function

 Re-write Q(p, s, a) as
Q(p, s,a) =V(a,s) + C(p,s,a)

Vip,s) = max [V(a,s) + C(p,s,a)]

where V(q, s) is the expected total reward while executing action a,

and C(p, s, a) is the expected reward of completing parent task p
after a has returned

Hierarchical Structure

e MDP decomposed in task Mo, ..., Mn

Theorem 1 Given a task graph over tasks My. M, and a herarchical policy m. each
subtask M; defines a semi-Markov deciston process with states S;, actions A;. probability
transition function PT(s'. N|s.a), and expected reward function R(s.a) = V™ (a.s). where
V™(a.s) is the projected value function for child task M, in state s. If a is a primitive
action. V™ (a.s) 1s defined as the expected immediate reward of executing a wn s: V™ (a. s) =

> o P(s'|s,a)R(s'|s, a).
* Qforthe subtask i

Q" (i, s,a) = V™(a,s) + Y Pr(s, N|s,a)yV Q" (i, s, 7(s")),
s' \N

Q" (i,8,a) =V"(a,s)+ C" (i, s,a).

Value Decomposition

Definition 6 7The completion function, C™(i. s.a). is the expected discounted cumulative

reward of completing subtask M; after mvoking the subroutine for subtask M, in state s.

The reward is discounted back to the point in time where a begins execution.

7™ (i, 8, a) Z P (s, N|s, a)yN Q™ (i, s, m(s"))

With this definition. we can express the () function recursively as
Q" (¢,s.a) =V™(a,s)+ C" (i, s.a).
Finally, we can re-express the definition for V7™ (i, s) as

V(i 8) = Q" (z,s,mi(s)) if ¢ is composite
"N S P(8's i) R(8'1s,d) if i is primitive

(9)

(10)

(11)

Value Decomposition

* The value function can be decomposed as
follows

I-';W{”. "':] = 3 [!’I-m- "':] T (;W[ﬂ'm 1.5, ”-m._] LA (;W(”'l LS ”‘9) T (;F(” 8,04]

V™ (North, s;) + C™(Navigate(R), s1, North) +
C™(Get, s1, Navigate(R)) + C™(Root, 51, Get) V7(0,5)
= el) B T

—

V™ @m:8) Clm—t8;) C™(ay,s,az2) C™(0,s,a1)

I " rs i rs o rs ra rio| [F11 o riz

4

MAXQ Alg.

 An example

7 7
Taxi Taslk WViroots)
-5 -5
Get Passenger Fimish WViGet.s) Ciroot.s,Get)
Taxi Task =
12
12
-4 -4
MNavigate{Y) Finish Vilavigate(y }.s) Ci{Get.s Nav(¥))
et -1
-1
West Finish WiWest,s) Ci{Naw(Y),5. West)}
Navigate(Y) -1 3

-1 -3

Fig. 5. An example of the MAXQ value function decompaosition for the state in which
the taxi i1s at location (2,2), the passenger is at (0,0), and wishes to get to (3,0). The
left tree gives English descriptions, and the right tree uses formal notation.

MAXQ Alg.

V(root, s) = V(west, s) + C(navigate(Y'), s, west)
+ C(get, s, navigate(Y'))
+ C(root, s, get).

Passenger at Y Passenger In Taxi
4110|198 |7 |6 4 |G |18]13|12(11
3111(10019 |8 |7 3 118(17114|13]12
2112|11{10| 9 | 8 2 117116151413
1 J13]10(9} 8|7
01419 |87 1|6

0 1 2 3 4 0 1 2 3 4

Fig. 4. Value function for the case where the passenger is at (0.0) (location Y) and
wishes to get to ((0,4) (location R).

MAXQQ Alg.

function MAXQQ(state s, subtask p) returns float
Let Total Reward = (
while p is not terminated do
Choose action a = 7, (s) according to exploration policy =,
Execute a.
if @ is primitive, Observe one-step reward r
else r := MAXQQ(s,a), which invokes subroutine a and
returns the total reward received while a executed.
Total Reward := Total Reward + r
Observe resulting state s’
if a is a primitive
Via,s) :=(1—-a)V(a,s)+ar
else a is a subroutine
C(p,a,s) = (1—a)C(p,s,a) + amaxy [V{(d',s') + C(p,s,a')]
end // while

return Total Reward
end

Optimality in HRL

Hierarchically optimal vs. recursively optimal

Hierarchical optimality: The learnt policy is the best policy

consistent with the given hierarchy. Task’s policy depends not
only on its children’s policies, but also on its context.

Recursive optimality: The policy for a parent task is optimal
given the learnt policies of its children. (Context-free task’s

policy).

State Abstraction

Three fundamental forms

* Irrelevant variables

e.g. passenger location is irrelevant for the navigate and put subtasks
and it thus could be ignored.

e Funnel abstraction

A funnel action is an action that causes a larger number of initial states
to be mapped into a small number of resulting states. E.g., the
navigate(t) action maps any state into a state where the taxi is at
location t. This means the completion cost is independent of the
location of the taxi—it is the same for all initial locations of the taxi.

State Abstraction

e Structure constraints

- E.g. if a task is terminated in a state s, then there is no need to
represent its completion cost in that state

- Also, in some states, the termination predicate of the child task implies
the termination predicate of the parent task

Effect

- reduce the amount memory to represent the Q-function.
14,000 g values required for flat Q-learning
3,000 for HSMQ, (with the irrelevant-variable abstraction
632 for C() and V() in MAXQ

- learning faster

State Abstraction

200 &

MAXQ+Abstraction

=200

-400

Mean Cumulative Reward

-600

-800

kl|

R

-1000 1 1 :!'fﬂj

] 20000 40000 0000 BOO0ODOD 100000 120000 140000 160000
Primitive Actions

Fig. 7. Comparison of Flat Q learning, MAXQ Q learning with no state abstraction,
and MAXQ () learning with state abstraction on a noisy version of the taxi task.

Limitations

* Recursively optimal not necessarily optimal

* Model-free Q-learning

Model-based algorithms (that is, algorithms that try to learn
P(s’[s,a) and R(s’[s,a)) are generally much more efficient
because they remember past experience rather than having
to re-experience it.

References and Further Reading

Sutton, R., Barto, A., Reinforcement Learning: an Introduction,
The MIT Press

Vlad Mnih, Koray Kavukcuoglu, et al. Human Level Control
Through Deep Reinforcement Learning. Nature 2015

Barto, A., Mahadevan, S., (2003) Recent Advances in Hierarchical
Reinforcement Learning, Discrete Event Dynamic Systems:
Theory and Applications, 13(4):41-77

