
Problems of RL
Curse of Dimensionality
In real world problems ist difficult/impossible to define discrete state-action spaces.

(Temporal) Credit Assignment Problem
RL cannot handle large state action spaces as the reward gets too much dilited
along the way. 

Partial Observability Problem
In a real-world scenario an RL-agent will often not know exactly in what state it will 
end up after performing an action. Furthermore states must be history independent.  

State-Action Space Tiling
Deciding about the actual state- and action-space tiling is difficult as it is often
critical for the convergence of RL-methods. Alternatively one could employ a 
continuous version of RL, but these methods are equally difficult to handle. 

Non-Stationary Environments
As for other learning methods, RL will only work quasi stationary environments.



Real-world behavior is hierarchical

1. set water temp

2. get wet

3. shampoo

4. soap

5. turn off water

6. dry off

add hot

success

add cold

wait 5sec

1. pour coffee

2. add sugar

3. add milk

4. stir



Hierarchical Reinforcement Learning

• Exploits domain structure to facilitate learning
– Policy constraints
– State abstraction

• Paradigms: Options, HAMs, MaxQ, etc.



Advantages of HRL
1. Faster learning 

(mitigates scaling problem)
2. Structured exploration 

(explore with sub-policies rather than primitive actions)
3. Transfer of knowledge from previous tasks

(generalization, shaping)



Semi-Markov Decision Process

• Generalizes MDPs
• Action a takes N steps to complete in s
• P(s’,n | a, s), R(s’, N | a, s)
• Bellman equation:
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Taxi Example



Room Example



Options

preconditions

behavior

effect
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Options
Gridworld environment 
with stochastic cell-to-cell 
actions and room-to-
room hallway options. 
Two of the hallway 
options are suggested by 
the arrows o1 and o2. G1 
and G2 are goals 

hallway options take the
agent from anywhere 
within the room to one 
of the two hallway cells 
leading out of the room

Value functions formed over iterations



Options

If primitive actions are included as options, then optimal with options is like optimal 
without options



Options



Hierarchies of Abstract Machines 

Partially specified Programs [Parr Russell 98]
- MDP State and Machine State 



Task Hierarchy

MAXQ Task hierarchy [Dietterich 2000]
• Directed acyclic graph of subtasks
• Hierarchy of SMDS to be simultaneously learned
• Leaves are the primitive MDP actions

Traditionally, task structure is provided as prior 
knowledge to the learning agent

Each task associated with termination, Actions, and 
pseudo reward function: 

Hierarchical policy is a set of policies, one for each 
subtask



Taxi Domain
• Motivational Example
• Reward: -1 actions,

-10 illegal, 20 mission.
• 500 states
• Task Graph:



MAXQ Alg. (Value Fun. Decomposition)

• Compactness) in the representation of the 
hierarchical value function

• Re-write Q(p, s, a) as

where V(a, s) is the expected total reward while executing action a, 
and C(p, s, a) is the expected reward of completing parent task p
after a has returned



Hierarchical Structure

• MDP decomposed in task M0, … , Mn

• Q for the subtask i



Value Decomposition



Value Decomposition

• The value function can be decomposed as
follows



MAXQ Alg. 
• An example



MAXQ Alg. 



MAXQQ Alg. 



Optimality in HRL

Hierarchically optimal vs. recursively optimal
• Hierarchical optimality: The learnt policy is the best policy 

consistent with the given hierarchy. Task’s policy depends not 
only on its children’s policies, but also on its context.

• Recursive optimality: The policy for a parent task is optimal 
given the learnt policies of its children. (Context-free task’s 
policy).



Three fundamental forms
• Irrelevant variables

e.g. passenger location is irrelevant for the navigate and put subtasks 
and it thus could be ignored.

• Funnel abstraction
A funnel action is an action that causes a larger number of initial states 

to be mapped into a small number of resulting states. E.g., the 
navigate(t) action maps any state into a state where the taxi is at 
location t. This means the completion cost is independent of the 
location of the taxi—it is the same for all initial locations of the taxi.

State Abstraction



State Abstraction

• Structure constraints
- E.g. if a task is terminated in a state s, then there is no need to 

represent its completion cost in that state

- Also, in some states, the termination predicate of the child task implies 
the termination predicate of the parent task

Effect
- reduce the amount memory to represent the Q-function.        

14,000 q values required for flat Q-learning 
3,000 for HSMQ (with the irrelevant-variable abstraction
632 for C() and V() in MAXQ

- learning faster



State Abstraction 



Limitations

• Recursively optimal not necessarily optimal
• Model-free Q-learning

Model-based algorithms (that is, algorithms that try to learn 
P(s’|s,a) and R(s’|s,a)) are generally much more efficient 
because they remember past experience rather than having 
to re-experience it.
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