
Problems of RL
Curse of Dimensionality
In real world problems ist difficult/impossible to define discrete state-action spaces.

(Temporal) Credit Assignment Problem
RL cannot handle large state action spaces as the reward gets too much dilited
along the way.

Partial Observability Problem
In a real-world scenario an RL-agent will often not know exactly in what state it will
end up after performing an action. Furthermore states must be history independent.

State-Action Space Tiling
Deciding about the actual state- and action-space tiling is difficult as it is often
critical for the convergence of RL-methods. Alternatively one could employ a
continuous version of RL, but these methods are equally difficult to handle.

Non-Stationary Environments
As for other learning methods, RL will only work quasi stationary environments.

Real-world behavior is hierarchical

1. set water temp

2. get wet

3. shampoo

4. soap

5. turn off water

6. dry off

add hot

success

add cold

wait 5sec

1. pour coffee

2. add sugar

3. add milk

4. stir

Hierarchical Reinforcement Learning

• Exploits domain structure to facilitate learning
– Policy constraints
– State abstraction

• Paradigms: Options, HAMs, MaxQ, etc.

Advantages of HRL
1. Faster learning

(mitigates scaling problem)
2. Structured exploration

(explore with sub-policies rather than primitive actions)
3. Transfer of knowledge from previous tasks

(generalization, shaping)

Semi-Markov Decision Process

• Generalizes MDPs
• Action a takes N steps to complete in s
• P(s’,n | a, s), R(s’, N | a, s)
• Bellman equation:

• Generalizes MDPs
• Action a takes N steps to complete in s
• P(s’,n | a, s), R(s’, N | a, s)
• Bellman equation:

Semi-Markov Decision Process

Taxi Example

Room Example

Options

preconditions

behavior

effect

Options

Options

Options

Options
Gridworld environment
with stochastic cell-to-cell
actions and room-to-
room hallway options.
Two of the hallway
options are suggested by
the arrows o1 and o2. G1
and G2 are goals

hallway options take the
agent from anywhere
within the room to one
of the two hallway cells
leading out of the room

Value functions formed over iterations

Options

If primitive actions are included as options, then optimal with options is like optimal
without options

Options

Hierarchies of Abstract Machines

Partially specified Programs [Parr Russell 98]
- MDP State and Machine State

Task Hierarchy

MAXQ Task hierarchy [Dietterich 2000]
• Directed acyclic graph of subtasks
• Hierarchy of SMDS to be simultaneously learned
• Leaves are the primitive MDP actions

Traditionally, task structure is provided as prior
knowledge to the learning agent

Each task associated with termination, Actions, and
pseudo reward function:

Hierarchical policy is a set of policies, one for each
subtask

Taxi Domain
• Motivational Example
• Reward: -1 actions,

-10 illegal, 20 mission.
• 500 states
• Task Graph:

MAXQ Alg. (Value Fun. Decomposition)

• Compactness) in the representation of the
hierarchical value function

• Re-write Q(p, s, a) as

where V(a, s) is the expected total reward while executing action a,
and C(p, s, a) is the expected reward of completing parent task p
after a has returned

Hierarchical Structure

• MDP decomposed in task M0, … , Mn

• Q for the subtask i

Value Decomposition

Value Decomposition

• The value function can be decomposed as
follows

MAXQ Alg.
• An example

MAXQ Alg.

MAXQQ Alg.

Optimality in HRL

Hierarchically optimal vs. recursively optimal
• Hierarchical optimality: The learnt policy is the best policy

consistent with the given hierarchy. Task’s policy depends not
only on its children’s policies, but also on its context.

• Recursive optimality: The policy for a parent task is optimal
given the learnt policies of its children. (Context-free task’s
policy).

Three fundamental forms
• Irrelevant variables

e.g. passenger location is irrelevant for the navigate and put subtasks
and it thus could be ignored.

• Funnel abstraction
A funnel action is an action that causes a larger number of initial states

to be mapped into a small number of resulting states. E.g., the
navigate(t) action maps any state into a state where the taxi is at
location t. This means the completion cost is independent of the
location of the taxi—it is the same for all initial locations of the taxi.

State Abstraction

State Abstraction

• Structure constraints
- E.g. if a task is terminated in a state s, then there is no need to

represent its completion cost in that state

- Also, in some states, the termination predicate of the child task implies
the termination predicate of the parent task

Effect
- reduce the amount memory to represent the Q-function.

14,000 q values required for flat Q-learning
3,000 for HSMQ (with the irrelevant-variable abstraction
632 for C() and V() in MAXQ

- learning faster

State Abstraction

Limitations

• Recursively optimal not necessarily optimal
• Model-free Q-learning

Model-based algorithms (that is, algorithms that try to learn
P(s’|s,a) and R(s’|s,a)) are generally much more efficient
because they remember past experience rather than having
to re-experience it.

References and Further Reading
• Sutton, R., Barto, A., Reinforcement Learning: an Introduction,

The MIT Press

• Vlad Mnih, Koray Kavukcuoglu, et al. Human Level Control
Through Deep Reinforcement Learning. Nature 2015

• Barto, A., Mahadevan, S., (2003) Recent Advances in Hierarchical
Reinforcement Learning, Discrete Event Dynamic Systems:
Theory and Applications, 13(4):41-77

