
Task Planning

Architetture Robotiche

• Deliberative:
planning, reasoning, decision

• Executive:
Execution monitoring, task decomposition, resource management, Command
sequencing, failure detection, diagnosis and repair,
reconfigure/replan/adjust

• Functional:
Sensorimotor processes, mapping, localization, avoidance, path/trajectory
planning, etc.

Three Layered Architecture

Three Layered Architecture

Architettura di RHINO la guida robotica
del museo di Bonn (1995); simile
MINERVA (1998) ad Atlanta

Architettura a 3 Livelli per un robot
mobile:
1. Funzionale:

Mapping, Localizzazione,
Avoidance

2. Esecutivo:
Sequencer, monitor

3. Deliberativo:
Task Planner

Architetture di RIHINO

Three Layered Architecture

• LAAS architecture:

Tre Livelli:

1. Deliberativo
(temporal planner)

2. Esecutivo
(PRS)

3. Funzionale
(GENOME)

Controllo di Rover

Three Layered Architecture

Three Layered Architecture

38

Planner Hierarchy

• Hierarchical planning systems typically share a structured
and clearly identifiable subdivision of functionality regarding
distinct program modules that communicate with each
other in a predictable and predetermined manner.

• At a hierarchical planner’s highest level, the most global and
least specific plan is formulated (deliberative planner).

• At the lowest levels, rapid real-time response is required,
but the planner is concerned only with its immediate
surroundings and has lost the sight of the big picture.

39

Strategic
Global
Planning

Tactical
Intermediate
Planning

Short-Term
Local
Planning

Actuator
Control

Actions

Global
Knowledge

Local
World
Model

Intermediate
Sensor
Interpretations

Sensing Real - Time

Time
Horizon

Long - Term

Spatial
Scope

Global

Immediate
Vicinity

Hierarchy of
Planning Systems World Model

40

Hierarchical Planners vs. BBS

Hierarchical Planners
• Rely heavily on world models,
• Can readily integrate world knowledge,
• Have a broad perspective and scope.
BB Control Systems
• afford modular development,
• Real-time robust performance within a changing world,
• Incremental growth
• are tightly coupled with arriving sensory data.

41

Hybrid Control
• The basic idea is simple: we want the best of both worlds

(if possible).
• The goal is to combine closed-loop and open-loop

execution.
• That means to combine reactive and deliberative control.
• This implies combining the different time-scales and

representations.
• This mix is called hybrid control.

Hybrid robotic architectures believe that a union of deliberative and
behavior-based approaches can potentially yield the best of both worlds.

42

Organizing Hybrid Systems
Planning and reaction can be tied:

A: hierarchical integration -
planning and reaction are involved
with different activities, time scales

Level N

Level 2

Level 1

Level 0

More Reactive

More Deliberative

A

Deliberation Projection

Planner

Reactor

B

Behavioral Advice
Configurations
Parameters

B: Planning to guide reaction -
configure and set parameters for
the reactive control system.

C: coupled - concurrent activities

Planner Reactor

C

43

Organizing Hybrid Systems

In summary, a modern hybrid system typically consists of three components:

a reactive layer

a planner

a layer that puts the two together.

=> Hybrid architectures are often called three-layer architectures.

It was observed that the emerging architectural design of choice is:
– multi-layered hybrid comprising of

* a top-down planning system and
* a lower-level reactive system.

– the interface (middle layer between the two components) design is
a central issue in differentiating different hybrid architectures.

44

The Magic Middle: Executive Control

The middle layer has a hard job:
1) compensate for the limitations of both the planner and the reactive

system

2) reconcile their different time-scales.

3) deal with their different representations.

4) reconcile any contradictory commands between the two.

This is the challenge of hybrid systems
=> achieving the right compromise between the two ends.

45

Executive Control

Some frequently useful planned decisions may need to be reused, so
to avoid planning, an intermediate layer may cache and look those
up. These can be:

Reusing Plans

intermediate-level actions (ILAs): stored in contingency tables.

macro operators: plans compiled into more general operators for future use.

Dynamic Re-planning
Reaction can influence planning.

Any "important" changes discovered by the low-level controller are
passed back to the planner in a way that the planner can use to re-plan.

The planner is interrupted when even a partial answer is needed in real-
time.

The reactive controller (and thus the robot) is stopped if it must wait for

the planner to tell it where to go.

46

Planner - Driven Reaction
• Planning can also influence reaction.

• Any "important" optimizations the planner discovers are passed down
to the reactive controller.

• The planner’s suggestions are used if they are possible and safe.
=> Who has priority, planner or reactor? It depends, as we will see...

Types of “Reaction Planning”
Interaction

Selection: Planning is viewed as configuration.

Advising: Planning is viewed as advice giving.

Adaptation: Planning is viewed as adaptation of controller.

Postponing: Planning is viewed as a least commitment process.

Executive Control

47

Universal Plans
Suppose for a given problem, all possible plans are generated for all
possible situations in advance and stored.

If for each situation a robot has a pre-existing optimal plan, it can react
optimally, be reactive and optimal.

It has a universal plan (These are complete reactive mappings).

Viability of Universal Plans

A system with a universal plan is reactive; the planning is done at
compile-time, not at run-time.

Universal plans are not viable in most domains, because:
the world must be deterministic.

the world must not change.

the goals must not change.

the world is too complex (state space is too large).

Classical Planning Problem

Classical Planning

Classical Planning

• States, Actions, Goal
- Actions induce transitions form state to state
- Goal are termination states

• Representation:
- Implicit representation of the states (predicates)
- Planning Domain to represent the actions as modifications of

states (symbolic transitions)

Example: Blocks World

Planning Domain

• Frame Problem
- How to represent unchanged facts?
- Example: I go from home (state S) to the store (state S’). In S’:

The house is still there, Rome is still the largest city in Italy, my
shoes are the same, etc..

- Path Planning has not this issue (sub-symbolic representation)

• Ramification Problem:
- How to represent indirect effect of the actions
- I go from home (state S) to the store (state S’). In S’:

The number of people in the store went up by 1,
The contents of my pockets are now in the store, etc..

STRIPS Domain

Init: On(a,Table), On(b,table), On(c,table) Goal: On(a,table),On(b,a), On(c,b)

STanford Research Institute Problem Solver [Fikes, Nilsson, 1971]

STRIPS-like Domain

STRIPS Domain
States:
- set of well-formed formulas (wffs: conjunction of literals)

Set of Actions, each represented with
– Preconditions (list of predicates that should hold)
– Delete list (list of predicates that will become invalid)
– Add list (list of predicates that will become valid) Actions thus allow variables

A goal condition:
- well-formed formula

Planning Problem

• Planning Domain:
– Operators as preconditions and effects

• Planning Problem:
– Initial State, Planning Domain, Goals

PDDL Domain
Planning Domain Definition Language

(standard language for classical AI planning)

Components of a PDDL planning task:
• Objects: Things of interest
• Predicates: Relevant properties of objects (can be true or false)
• Initial state: The initial state of the world
• Goal specification: Desiderata
• Actions/Operators: Means to change the state of the world

Planning Domain: predicates and actions.
Planning Problem: initial state and goal specification.

PDDL Domain
Planning Domain Definition Language

(standard language for classical AI planning)

Planning Domain:

(define (domain <domain name>)
<PDDL code for predicates>
<PDDL code for first action>
[...]
<PDDL code for last action>
)

Planning Problem

(define (problem <problem name>)
(:domain <domain name>)
<PDDL code for objects>
<PDDL code for initial state>
<PDDL code for goal specification>
)

(:objects rooma roomb ball1 ball2 ball3 ball4
left right)

(:predicates (ROOM ?x) (BALL ?x) (GRIPPER
?x) (at-robby ?x) (at-ball ?x ?y) (free ?x) (carry
?x ?y))

(:init (ROOM rooma) (ROOM roomb) (BALL
ball1) (BALL ball2) (BALL ball3) (BALL ball4)
(GRIPPER left) (GRIPPER right) (free left) (free
right) (at-robby rooma) (at-ball ball1 rooma)
(at-ball ball2 rooma) (at-ball ball3 rooma) (at-
ball ball4 rooma))

(:goal (and (at-ball ball1 roomb) (at-ball ball2
roomb) (at-ball ball3 roomb) (at-ball ball4
roomb)))

PDDL Domain
Planning Domain Definition Language

(standard language for classical AI planning)

Planning Domain:

(define (domain <domain name>)
<PDDL code for predicates>
<PDDL code for first action>
[...]
<PDDL code for last action>
)

Planning Problem

(define (problem <problem name>)
(:domain <domain name>)
<PDDL code for objects>
<PDDL code for initial state>
<PDDL code for goal specification>
)

(:action move :parameters (?x ?y)
:precondition (and (ROOM ?x) (ROOM ?y) (at-
robby ?x)) :effect (and (at-robby ?y) (not (at-
robby ?x))))

(:action pick-up :parameters (?x ?y ?z)
:precondition (and (BALL ?x) (ROOM ?y)
(GRIPPER ?z) (at-ball ?x ?y) (at-robby ?y) (free
?z)) :effect (and (carry ?z ?x) (not (at-ball ?x
?y)) (not (free ?z))))

AI Planning Paradigms

• Classical Planning
• Temporal Planning
• Conditional Planning
• Decision Theoretic Planning
• …
• Least-Commitment Planning
• HTN planning
• …

AI Planning Paradigms

Planning Algorithms

• Soundness
– A planning algorithm is sound if all solutions found are legal plans

• All preconditions and goals are satisfied
• No constraints are violated

• Completeness
– A planning algorithm is complete if a solution can be found whenever

one exists
– A planning algorithm is strictly complete if all solutions are included in

the search space

• Optimality
– A planning algorithm is optimal if the order in which solutions are

provided is consistent with some measure of plan quality

Linear Planning

• A linear planner is a classical planner such that:
– no importance distinction of goals
– all (sub)goals are assumed to be independent
– (sub)goals can be achieved in arbitrary order

• Plans that achieve subgoals are combined by placing all steps
of one subplan before or after all steps of the others
(=non-interleaved)

STRIPS Planning

STRIPS Planning

Linear Planning

• Advantage:
– Goals are solved one at a time (ok if independent)
– Sound

• Disadvantage
– Suboptimal solutions (number of operators in the plan)
– incomplete

Non-Linear Planning

• Basic Idea
– Goal set instead of goal stack
– Search space all possible subgoal orderings
– Goal interactions by interleaving

• Advantages
– Sound, complete, can be optimal with respect to plan length

(depending on search strategy employed)

• Disadvantages
– Larger search space

Non-Linear Planning

Progressive Planning

Regressive Planning

Heuristics for Forward-Chaining Planning

Several classical planning style are available:
- http://icaps-conference.org/index.php/Main/Competitions

Forward-chaining planners:
- solving an abstraction of the original, hard, planning problem

The most widely used abstraction involves planning using `relaxed actions', where the
delete effects of the original actions are ignored.

Examples:
FF [Hoffmann & Nebel 2001], HSP [Bonet & Geffner 2000], UnPOP [McDermott 1996]
use relaxed actions as the basis for their heuristic estimates

FF was the first to count the number of relaxed actions in a relaxed plan connecting
the goal to the initial state

STRIPS and Games
Behavior of Non Player Characters (NPCs) can be described by abstract actions defined in
a symbolic world model, e.g. First-Person Shooter (FPS) games

F.E.A.R. (short for First Encounter Assault Recon) is a horror-themed first-person shooter
developed by Monolith Productions

– Gamespot’s Best AI Award in 2005

– Ranked 2nd in the list of most influential AI games

The agents’ behavior is a function of the generated plans based on goals, state, and
available actions

Jeff Orkin: Three States and a Plan: The AI of F.E.A.R. Proceedings of the Game Developer's Conference (GDC)

Olivier Bartheye and Eric Jacopin: A PDDL-Based Planning Architecture to Support Arcade Game Playing

State Space vs. Plan Space

• Planning in the state space:
– sequence of actions, from the initial state to the

goal state
• Planning in the plan space:

– Sequence of plan transformations, from an initial
plan to the final one

Plan-State Search

State-Space vs Plan-Space

Search in the Plan-Space

Plan-State Search

Partially-Ordered Plans

Partial-Order Plans

Partial-Order Plans

General Approach

Blocks World

Blocks World

Blocks World

Blocks World

Blocks World

Blocks World

Blocks World

Least Commitment

Terminology

POP-Algorithm

POP-Algorithm

POP-Algorithm

POP-Algorithm

POP-Algorithm

Plan Monitoring

Replanning

Replanning

