
Task Planning

Architetture Robotiche



• Deliberative: 
planning, reasoning,  decision

• Executive: 
Execution monitoring, task decomposition, resource management, Command
sequencing, failure detection, diagnosis and repair, 
reconfigure/replan/adjust

• Functional: 
Sensorimotor processes, mapping, localization, avoidance, path/trajectory
planning, etc.

Three Layered Architecture



Three Layered Architecture



Architettura di RHINO la guida robotica 
del museo di Bonn (1995); simile 
MINERVA (1998) ad Atlanta

Architettura a 3 Livelli per un robot 
mobile:
1. Funzionale: 

Mapping, Localizzazione,   
Avoidance

2. Esecutivo:
Sequencer, monitor

3. Deliberativo: 
Task Planner

Architetture di RIHINO

Three Layered Architecture



• LAAS architecture:

Tre Livelli:

1. Deliberativo 
(temporal planner)

2. Esecutivo 
(PRS)

3. Funzionale 
(GENOME)

Controllo di Rover

Three Layered Architecture



Three Layered Architecture
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Planner Hierarchy

• Hierarchical planning systems typically share a structured
and clearly identifiable subdivision of functionality regarding 
distinct program modules that communicate with each 
other in a predictable and predetermined manner.

• At a hierarchical planner’s highest level, the most global and 
least specific plan is formulated (deliberative planner).

• At the lowest levels, rapid real-time response is required, 
but the planner is concerned only with its immediate 
surroundings and has lost the sight of the big picture.
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Hierarchical Planners vs. BBS

Hierarchical Planners
• Rely heavily on world models,
• Can readily integrate world knowledge,
• Have a broad perspective and scope.
BB Control Systems
• afford modular development,
• Real-time robust performance within a changing world,
• Incremental growth
• are tightly coupled with arriving sensory data.
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Hybrid Control 
• The basic idea is simple: we want the best of both worlds 

(if possible). 
• The goal is to combine closed-loop and open-loop

execution.
• That means to combine reactive and deliberative control.
• This implies combining the different time-scales and 

representations. 
• This mix is called hybrid control. 

Hybrid robotic architectures believe that a union of deliberative and 
behavior-based approaches can potentially yield the best of both worlds.
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Organizing Hybrid Systems 
Planning and reaction can be tied:

A: hierarchical integration -
planning and reaction are involved 
with different activities, time scales

Level N

Level 2

Level 1

Level 0

More Reactive

More Deliberative

A

Deliberation Projection

Planner

Reactor

B

Behavioral Advice
Configurations
Parameters

B: Planning to guide reaction -
configure and set parameters for 
the reactive control system.

C: coupled - concurrent activities

Planner Reactor

C
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Organizing Hybrid Systems 

In summary, a modern hybrid system typically consists of three components: 

a reactive layer 

a planner 

a layer that puts the two together.

=> Hybrid architectures are often called three-layer architectures.

It was observed that the emerging architectural design of choice is:
– multi-layered hybrid  comprising of

* a top-down planning system and 
* a lower-level reactive system.

– the interface (middle layer between the two components) design is 
a central issue in differentiating different hybrid architectures.
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The Magic Middle: Executive Control 

The middle layer has a hard job: 
1) compensate for the limitations of both the planner and the reactive 

system 

2) reconcile their different time-scales.

3) deal with their different representations.

4) reconcile any contradictory commands between the two. 

This is the challenge of hybrid systems 
=> achieving the right compromise between the two ends.
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Executive Control

Some frequently useful planned decisions may need to be reused, so 
to avoid planning, an intermediate layer may cache and look those 
up. These can be:

Reusing Plans

intermediate-level actions (ILAs): stored in contingency tables. 

macro operators: plans compiled into more general operators for future use.

Dynamic Re-planning
Reaction can influence planning. 

Any "important" changes discovered by the low-level controller are 
passed back to the planner in a way that the planner can use to re-plan. 

The planner is interrupted when even a partial answer is needed in real-
time. 

The reactive controller (and thus the robot) is stopped if it must wait for 

the planner to tell it where to go.
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Planner - Driven Reaction 
• Planning can also influence reaction. 

• Any "important" optimizations the planner discovers are passed down 
to the reactive controller. 

• The planner’s suggestions are used if they are possible and safe.
=> Who has priority, planner or reactor? It depends, as we will see... 

Types of “Reaction Planning”
Interaction

Selection: Planning is viewed as configuration. 

Advising: Planning is viewed as advice giving. 

Adaptation: Planning is viewed as adaptation of controller. 

Postponing: Planning is viewed as a least commitment process. 

Executive Control
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Universal Plans 
Suppose for a given problem, all possible plans are generated for all 
possible situations in advance and stored. 

If for each situation a robot has a pre-existing optimal plan, it can react 
optimally, be reactive and optimal. 

It has a universal plan  (These are complete reactive mappings). 

Viability of Universal Plans

A system with a universal plan is reactive; the planning is done at 
compile-time, not at run-time. 

Universal plans are not viable in most domains, because: 
the world must be deterministic. 

the world must not change.

the goals must not change.

the world is too complex (state space is too large).



Classical Planning Problem



Classical Planning



Classical Planning

• States, Actions, Goal
- Actions induce transitions form state to state
- Goal are termination states

• Representation:
- Implicit representation of the states (predicates)
- Planning Domain to represent the actions as modifications of 

states (symbolic transitions)



Example: Blocks World



Planning Domain

• Frame Problem
- How to represent unchanged facts?
- Example: I go from home (state S) to the store (state S’). In S’: 

The house is still there, Rome is still the largest city in Italy, my 
shoes are the same, etc..

- Path Planning has not this issue (sub-symbolic representation)

• Ramification Problem:
- How to represent indirect effect of the actions
- I go from home (state S) to the store (state S’). In S’: 

The number of people in the store went up by 1, 
The contents of my pockets are now in the store, etc..



STRIPS Domain

Init: On(a,Table), On(b,table), On(c,table) Goal: On(a,table),On(b,a), On(c,b)  

STanford Research Institute Problem Solver [Fikes, Nilsson, 1971] 



STRIPS-like Domain



STRIPS Domain
States:
- set of well-formed formulas (wffs: conjunction of literals) 

Set of Actions, each represented with 
– Preconditions (list of predicates that should hold)
– Delete list (list of predicates that will become invalid)
– Add list (list of predicates that will become valid) Actions thus allow variables 

A goal condition:
- well-formed formula



Planning Problem

• Planning Domain: 
– Operators as preconditions and effects

• Planning Problem:  
– Initial State, Planning Domain, Goals



PDDL Domain
Planning Domain Definition Language

(standard language for classical AI planning)

Components of a PDDL planning task: 
• Objects: Things of interest 
• Predicates: Relevant properties of objects (can be true or false)
• Initial state: The initial state of the world 
• Goal specification: Desiderata 
• Actions/Operators: Means to change the state of the world

Planning Domain: predicates and actions. 
Planning Problem: initial state and goal specification.



PDDL Domain
Planning Domain Definition Language

(standard language for classical AI planning)

Planning Domain: 

(define (domain <domain name>)
<PDDL code for predicates>
<PDDL code for first action>
[...]
<PDDL code for last action>
)

Planning Problem

(define (problem <problem name>)
(:domain <domain name>)
<PDDL code for objects>
<PDDL code for initial state>
<PDDL code for goal specification>
)

(:objects rooma roomb ball1 ball2 ball3 ball4 
left right)

(:predicates (ROOM ?x) (BALL ?x) (GRIPPER 
?x) (at-robby ?x) (at-ball ?x ?y) (free ?x) (carry 
?x ?y)) 

(:init (ROOM rooma) (ROOM roomb) (BALL 
ball1) (BALL ball2) (BALL ball3) (BALL ball4) 
(GRIPPER left) (GRIPPER right) (free left) (free 
right) (at-robby rooma) (at-ball ball1 rooma) 
(at-ball ball2 rooma) (at-ball ball3 rooma) (at-
ball ball4 rooma))

(:goal (and (at-ball ball1 roomb) (at-ball ball2 
roomb) (at-ball ball3 roomb) (at-ball ball4 
roomb)))



PDDL Domain
Planning Domain Definition Language

(standard language for classical AI planning)

Planning Domain: 

(define (domain <domain name>)
<PDDL code for predicates>
<PDDL code for first action>
[...]
<PDDL code for last action>
)

Planning Problem

(define (problem <problem name>)
(:domain <domain name>)
<PDDL code for objects>
<PDDL code for initial state>
<PDDL code for goal specification>
)

(:action move :parameters (?x ?y) 
:precondition (and (ROOM ?x) (ROOM ?y) (at-
robby ?x)) :effect (and (at-robby ?y) (not (at-
robby ?x))))

(:action pick-up :parameters (?x ?y ?z) 
:precondition (and (BALL ?x) (ROOM ?y) 
(GRIPPER ?z) (at-ball ?x ?y) (at-robby ?y) (free 
?z)) :effect (and (carry ?z ?x) (not (at-ball ?x 
?y)) (not (free ?z))))



AI Planning Paradigms

• Classical Planning
• Temporal Planning
• Conditional Planning
• Decision Theoretic Planning
• …
• Least-Commitment Planning
• HTN planning
• …



AI Planning Paradigms



Planning Algorithms

• Soundness
– A planning algorithm is sound if all solutions found are legal plans

• All preconditions and goals are satisfied
• No constraints are violated 

• Completeness
– A planning algorithm is complete if a solution can be found whenever 

one exists
– A planning algorithm is strictly complete if all solutions are included in 

the search space 

• Optimality
– A planning algorithm is optimal if the order in which solutions are 

provided is consistent with some measure of plan quality













Linear Planning

• A linear planner is a classical planner such that:
– no importance distinction of goals
– all (sub)goals are assumed to be independent
– (sub)goals can be achieved in arbitrary order

• Plans that achieve subgoals are combined by placing all steps 
of one subplan before or after all steps of the others 
(=non-interleaved)



STRIPS Planning



STRIPS Planning



Linear Planning

• Advantage:
– Goals are solved one at a time (ok if independent)
– Sound

• Disadvantage
– Suboptimal solutions (number of operators in the plan)
– incomplete





Non-Linear Planning

• Basic Idea
– Goal set instead of goal stack 
– Search space all possible subgoal orderings
– Goal interactions by interleaving 

• Advantages
– Sound, complete, can be optimal with respect to plan length 

(depending on search strategy employed) 

• Disadvantages
– Larger search space



Non-Linear Planning



Progressive Planning



Regressive Planning









Heuristics for Forward-Chaining Planning

Several classical planning style are available:
- http://icaps-conference.org/index.php/Main/Competitions

Forward-chaining planners: 
- solving an abstraction of the original, hard, planning problem

The most widely used abstraction involves planning using `relaxed actions', where the 
delete effects of the original actions are ignored.

Examples: 
FF [Hoffmann & Nebel 2001], HSP [Bonet & Geffner 2000], UnPOP [McDermott 1996] 
use relaxed actions as the basis for their heuristic estimates

FF was the first to count the number of relaxed actions in a relaxed plan connecting 
the goal to the initial state





STRIPS and Games
Behavior of Non Player Characters (NPCs) can be described by abstract actions defined in 
a symbolic world model, e.g. First-Person Shooter (FPS) games

F.E.A.R. (short for First Encounter Assault Recon) is a horror-themed first-person shooter 
developed by Monolith Productions

– Gamespot’s Best AI Award in 2005

– Ranked 2nd in the list of most influential AI games

The agents’ behavior is a function of the generated plans based on goals, state, and 
available actions

Jeff Orkin: Three States and a Plan: The AI of F.E.A.R. Proceedings of the Game Developer's Conference (GDC)

Olivier Bartheye and Eric Jacopin: A PDDL-Based Planning Architecture to Support Arcade Game Playing





State Space vs. Plan Space

• Planning in the state space: 
– sequence of actions, from the initial state to the 

goal state
• Planning in the plan space:

– Sequence of plan transformations, from an initial
plan to the final one





Plan-State Search



State-Space vs Plan-Space



Search in the Plan-Space









Plan-State Search



Partially-Ordered Plans



Partial-Order Plans



Partial-Order Plans



General Approach



Blocks World



Blocks World



Blocks World



Blocks World



Blocks World



Blocks World



Blocks World



Least Commitment



Terminology



POP-Algorithm



POP-Algorithm



POP-Algorithm



POP-Algorithm



POP-Algorithm



Plan Monitoring



Replanning



Replanning


