Task Planning

Architetture Robotiche

Three Layered Architecture

- Deliberative:
planning, reasoning, decision

e Executive:

Execution monitoring, task decomposition, resource management, Command
sequencing, failure detection, diagnosis and repair,
reconfigure/replan/adjust

e Functional:

Sensorimotor processes, mapping, localization, avoidance, path/trajectory
planning, etc.

Deals with goals and resource
interactions

Task decomposition: Task
synchronization; Monitoring;
Exception handling;
Resource management

Deals with sensors and
actuators

Three Layered Architecture

* Explicit Separation of Planning. Sequencing. and Control
— Upper layers provide conirol flow for lower layers
— Lower layers provide starns (state change) and
synchronization (success/failure) for upper layers
* Heterogeneous Architecture
— Each layer utilizes algorithms tuned for 1ts particular role

— Each layer has a representation to support its reasoning
Goals

Arrange Tasks Task Commitments

Configure Signals

Actuaiors
Sensors

Three Layered Architecture

Architettura di RHINO la guida robotica
del museo di Bonn (1995); simile
MINERVA (1998) ad Atlanta

User Interface

Task Planner

}

Architettura a 3 Livelli per un robot Mapping
mobile: / \

1. Funziona |e . Localizzation Path Planning

Mapping, Localizzazione, R
AVOId ance Collision Avoidance

2. Esecutivo:
Sequencer, monitor Architetture di RIHINO
V4

3. Deliberativo:
Task Planner

Rhino, 1997

* LAAS architecture:

Tre Livelli:

1. Deliberativo
(temporal planner)

2. Esecutivo
(PRS)

3. Funzionale
(GENOME)

Controllo di Rover

Three Layered Architecture

OFERATOR
mEsn I f L]
|
—
Fian Supendsor Womu
E'.; — Flarner
ak 1
y Ti - Task
‘ask Superddsor b mant
T 1
i requests § | safe
%i Exezulye |
.3 e —
w ______———' regues ['-—-_____|_
i —
L i
|
Feometre I
| I
% path |
E-BAMD LOCAL HAY WP |
Elastic Sand Nearest Diagram = |
Navigation | | Navigatian Motian Planner J_ I
] -
z USIT 1T TRACKMG IIEII::I:;"-. i "-'EF'_H". |
User Interacsian Coal Tracker ik A/ gagrmants JISmgmEnks)] |
Cantrod — = 5
E GRID SEGLOC | CAMERAS
T Segment-Based i (u-.-.afjj
| b oy Localization | Control
|
.}’_'"E |
LRF
Ty = |
(R echos] xmag00 |~ LN |
SR s _rtct;ci,_ 2 LRF ! PLATFORM | —
¢~ US & IR Canirod [0 Laser Ran Pan-TiE (] pan-tEy
U echo |
| Findier Comnol | Conirzl ﬂ:lry
== |
| |
[I
&) @ e +- | -
LI L BT R e] [ETEE P wolan i rang s e’ I I_"-_,. pen -l padem
|
|

CPUA1

CPU2

Three Layered Architecture

Xavier Task Planning
Architecture (Prodigy)
(1995) Path Planning

!DE‘[‘iSiﬂll—ThEﬂl'E‘ﬁ{‘)

Map-Based Navigation
(POMDPs)
Local Obstacle Avoidance
(Curvature Velocity Method)

Servo-Control
(Commercial)

Planner Hierarchy

e Hierarchical planning systems typically share a structured
and clearly identifiable subdivision of functionality regarding
distinct program modules that communicate with each
other in a predictable and predetermined manner.

e At a hierarchical planner’s highest level, the most global and
least specific plan is formulated (deliberative planner).

* At the lowest levels, rapid real-time response is required,
but the planner is concerned only with its immediate
surroundings and has lost the sight of the big picture.

38

Spatial Time

Scope Hierarchy of World Model Horizon
Planning Systems
Long - Term
Immediate
Vicinity

Actions Sensing Real - Time

39

Hierarchical Planners vs. BBS

Hierarchical Planners

Rely heavily on world models,
Can readily integrate world knowledge,
Have a broad perspective and scope.

BB Control Systems

afford modular development,

Real-time robust performance within a changing world,
Incremental growth

are tightly coupled with arriving sensory data.

40

Hybrid Control

The basic idea is simple: we want the best of both worlds
(if possible).

The goal is to combine closed-loop and open-loop
execution.

That means to combine reactive and deliberative control.

This implies combining the different time-scales and
representations.

This mix is called hybrid control.

Hybrid robotic architectures believe that a union of deliberative and
behavior-based approaches can potentially yield the best of both worlds.

41

Organizing Hybrid Systems

Planning and reaction can be tied: ~ More Deliberative

: . : Planner
A: hierarchical integration - - -

A

planning and reaction are involved
with different activities, time scales

Behavioral Advice
Configurations
Parameters

B: Planning to guide reaction -
configure and set parameters for
the reactive control system.

C: coupled - concurrent activities

v

More Reactive -

A B

42

Organizing Hybrid Systems

It was observed that the emerging architectural design of choice is:
— multi-layered hybrid comprising of
* a top-down planning system and
* a lower-level reactive system.

— the interface (middle layer between the two components) design is
a central issue in differentiating different hybrid architectures.

In summary, a modern hybrid system typically consists of three components:
¢ a reactive layer
¢ a planner
¢ a layer that puts the two together.

=> Hybrid architectures are often called three-layer architectures.

The Magic Middle: Executive Control

e The middle layer has a hard job:

1) compensate for the limitations of both the planner and the reactive
system

2) reconcile their different time-scales.

3) deal with their different representations.

4) reconcile any contradictory commands between the two.
e This is the challenge of hybrid systems

=> achieving the right compromise between the two ends.

44

Executive Control

Reusing Plans

e Some frequently useful planned decisions may need to be reused, so
to avoid planning, an intermediate layer may cache and look those

up. These can be:
— intermediate-level actions (ILAs): stored in contingency tables.

— macro operators: plans compiled into more general operators for future use.

Dynamic Re-planning
e Reaction can influence planning.

e Any "important" changes discovered by the low-level controller are
passed back to the planner in a way that the planner can use to re-plan.

e The planneris interrupted when even a partial answer is needed in real-
time.

e The reactive controller (and thus the robot) is stopped if it must wait for

the planner to tell it where to go.
45

Executive Control

Planner - Driven Reaction

* Planning can also influence reaction.

* Any "important"” optimizations the planner discovers are passed down
to the reactive controller.

 The planner’s suggestions are used if they are possible and safe.

=> Who has priority, planner or reactor? It depends, as we will see...

Types of “Reaction <> Planning”
Interaction

¢ Selection: Planning is viewed as configuration.
¢ Advising: Planning is viewed as advice giving.
¢ Adaptation: Planning is viewed as adaptation of controller.

¢ Postponing: Planning is viewed as a least commitment process.

46

Universal Plans

e Suppose for a given problem, all possible plans are generated for all
possible situations in advance and stored.

e |f for each situation a robot has a pre-existing optimal plan, it can react
optimally, be reactive and optimal.

e [t has a universal plan (These are complete reactive mappings).

Viability of Universal Plans
e A system with a universal plan is reactive; the planning is done at
compile-time, not at run-time.
e Universal plans are not viable in most domains, because:
— the world must be deterministic.
— the world must not change.

— the goals must not change.

— the world is too complex (state space is too large).
47

Classical Planning Problem

Newell and Simon 1956
« (Given the acfions available in a task domain.
« Given a problem specified as:

— an initial state of the world,
— a set of goals to be achieved.

« Find a solution to the problem, i.e., a way to transform
the initial state into a new state of the world where the
goal statement is true.

Action Model, State, Goals

Classical Planning

Action Model: complete, deterministic, correct, rich
representation

State: single initial state, fully known

Goals: complete satisfaction

Several different planning algorithms

Classical Planning

e States, Actions, Goal
- Actions induce transitions form state to state
- Goal are termination states

* Representation:
- Implicit representation of the states (predicates)
- Planning Domain to represent the actions as modifications of
states (symbolic transitions)

Example: Blocks World

ol o

[B] B
Al [C] [a] [C]

Table Table

Blocks are picked up and put down by the arm

Blocks can be picked up only if they are clear. 1.e.. without
any block on top

The arm can pick up a block only 1if the arm 1s empty, 1.e.,
if 1t 1s not holding another block, 1.e., the arm can be pick
up only one block at a time

The arm can put down blocks on blocks or on the table

Planning Domain

* Frame Problem
- How to represent unchanged facts?
- Example: 1 go from home (state S) to the store (state S’). In S’:
The house is still there, Rome is still the largest city in Italy, my

shoes are the same, etc..
- Path Planning has not this issue (sub-symbolic representation)

e Ramification Problem:
- How to represent indirect effect of the actions
- |l go from home (state S) to the store (state §’). In S’:
The number of people in the store went up by 1,
The contents of my pockets are now in the store, etc..

STRIPS Domain

STanford Research Institute Problem Solver [Fikes, Nilsson, 1971]

Pickup from table(b) Pickup from block(b, c¢)

Pre: Block(b). Handempty Pre: Block(b), Handempty
Clear(b). On(b, Table) Clear(b). On(b. c), Block(c)
Add: Holding(b) Add: Holding(b), Clear(c)
Delete: Handempty, Delete: Handempty,
On(b. Table) On(b. c)

Putdown on_table(b) Putdown on_block(b, ¢)
Pre: Block(b), Holding(b) Pre: Block(b), Holding(b)
Add: Handempty, Block(c), Clear(c). b =¢

On(b. Table) Add: Handempty, On(b. c)

Delete: Holding(b) Delete: Holding(b), Clear(c)

Init: On(a,Table), On(b,table), On(c,table) Goal: On(a,table),On(b,a), On(c,b)

STRIPS-like Domain

Observation-1

— pointing
target — |

instruments
Y

Observation-2
Observation-3

Observation-4

calibrated

Takelmage (?target, ?instr):
Pre: Status(?instr, Calibrated), Pointing(?target)
Eff: Image(?target)

Calibrate (?instrument):
Pre: Status(?instr, On), Calibration-Target(?target), Pointing(?target)
Eff: ~Status(?inst, On), Status(?instr, Calibrated)

Turn (?target):
Pre: Pointing(?direction), ?direction # ?target
Eff: =Pointing(?direction), Pointing(?target)

STRIPS Domain

States:
- set of well-formed formulas (wffs: conjunction of literals)

Set of Actions, each represented with

— Preconditions (list of predicates that should hold)

— Delete list (list of predicates that will become invalid)

— Add list (list of predicates that will become valid) Actions thus allow variables

A goal condition:
- well-formed formula

Planning Problem

* Planning Domain:
— Operators as preconditions and effects
* Planning Problem:

— Initial State, Planning Domain, Goals

Initial Conditions: | P, P, P, P,

pre,
Eff1
= D
Eﬁz

Pre;

Operators:

Goals: Goal, Goal, Goal,

PDDL Domain

Planning Domain Definition Language
(standard language for classical Al planning)

Components of a PDDL planning task:

e Objects: Things of interest

e Predicates: Relevant properties of objects (can be true or false)
e |nitial state: The initial state of the world

e Goal specification: Desiderata

e Actions/Operators: Means to change the state of the world

Planning Domain: predicates and actions.
Planning Problem: initial state and goal specification.

PDDL Domain

Planning Domain Definition Language
(standard language for classical Al planning)

Planning Domain:

(define (domain <domain name>)
<PDDL code for predicates>
<PDDL code for first action>

[...]

<PDDL code for last action>

)

Planning Problem

(define (problem <problem name>)
(:domain <domain name>)

<PDDL code for objects>

<PDDL code for initial state>
<PDDL code for goal specification>

)

(:objects rooma roomb balll ball2 ball3 ball4
left right)

(:predicates (ROOM ?x) (BALL ?x) (GRIPPER
?Xx) (at-robby ?x) (at-ball ?x ?y) (free ?x) (carry

?x ?y))

(:init (ROOM rooma) (ROOM roomb) (BALL
ball1) (BALL ball2) (BALL ball3) (BALL ball4)
(GRIPPER left) (GRIPPER right) (free left) (free
right) (at-robby rooma) (at-ball ball1 rooma)
(at-ball ball2 rooma) (at-ball ball3 rooma) (at-
ball ball4 rooma))

(:goal (and (at-ball balll roomb) (at-ball ball2
roomb) (at-ball ball3 roomb) (at-ball ball4
roomb)))

PDDL Domain

Planning Domain Definition Language
(standard language for classical Al planning)

Planning Domain:

(define (domain <domain name>)
<PDDL code for predicates>
<PDDL code for first action>

[...]

<PDDL code for last action>

)
Planning Problem

(define (problem <problem name>)
(:domain <domain name>)

<PDDL code for objects>

<PDDL code for initial state>
<PDDL code for goal specification>

)

(:action move :parameters (?x ?y)
:precondition (and (ROOM ?x) (ROOM ?y) (at-
robby ?x)) :effect (and (at-robby ?y) (not (at-
robby ?x))))

(:action pick-up :parameters (?x ?y ?z)
:precondition (and (BALL ?x) (ROOM ?y)
(GRIPPER ?z) (at-ball ?x ?y) (at-robby ?y) (free
?z)) :effect (and (carry ?z ?x) (not (at-ball ?x
?y)) (not (free ?z))))

Al Planning Paradigms

Classical Planning

Temporal Planning
Conditional Planning
Decision Theoretic Planning

Least-Commitment Planning
HTN planning

Al Planning Paradigms

Classical planning

(STRIPS, operator-based, first-principles)
“generative”

Hierarchical Task Network planning
“practical” planning

MDP & POMDP planning

planning under uncertainty

Planning Algorithms

 Soundness
— A planning algorithm is sound if all solutions found are legal plans

e All preconditions and goals are satisfied
* No constraints are violated

e Completeness

— A planning algorithm is complete if a solution can be found whenever
one exists

— A planning algorithm is strictly complete if all solutions are included in
the search space
* Optimality

— A planning algorithm is optimal if the order in which solutions are
provided is consistent with some measure of plan quality

Three Main Types of Planners

1. Domain-specific
¢ Made or tuned for a specific planning domain
+ Won’t work well (if at all) in other planning domains
2. Domain-independent
¢ In principle, works in any planning domain
¢ In practice, need restrictions on what kind of planning domain
3. Configurable
¢ Domain-independent planning engine
¢ Input includes info about how to solve problems in some domain

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Planning Versus Scheduling

l Description of £

Initial state

: Planner
P
@ Scheduling Objectives
® DeC}de Whﬁ‘p and how to | sehediilar
perform a given set of actions I v
» Time constraints Controller
> straints :
Res.our-ce c‘onsnjamts T l Actions
» Objective functions
¢ Typically NP-complete System ¥
T Events

e Planning
¢ Decide what actions to use to achieve some set of objectives
¢ Can be much worse than NP-complete; worst case 1s undecidable

® Scheduling problems may require replanning

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Restrictive Assumptions

AQ0: Finite system:
+ finitely many states, actions, events

A1l: Fully observable: l Description of X

Initial state

+ the controller always X’s current state | Planner
A2: Deterministic: Objectives
¢ each action has only one outcome - Plans

AJ3: Static (no exogenous events):

+ no changes but the controller’s actions Controller

A4: Attainment goals: Observations T lActions
¢ aset of goal states S,
AS: Sequential plans: DYSLEHES

+ aplanis a linearly ordered sequence ‘ Events

of actions (a,, a,, ... a,
A6: Implicit time:
¢ no time durations; linear sequence of instantaneous states
A7: Off-line planning:
¢ planner doesn’t know the execution status

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 12

Classical Planning (Chapters 2-9)

® Classical planning requires all eight restrictive assumptions

¢ Offline generation of action sequences for a deterministic, static, finite
system, with complete knowledge, attainment goals, and implicit time

@ Reduces to the following problem:
¢ Given a planning problem P = (Z, s,,, 5,)

¢ Find a sequence of actions (a,, a,, ... a,) that produces
a sequence of state transitions (s, s, ..., S,
such that s, 1s in S,

® This is just path-searching in a graph
¢ Nodes = states
¢ Edges = actions

® Is this trivial?

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Classical Planning (Chapters 2-9)

® Generalize the earlier example:

5 locations, 4 o "\
3 robot vehicles, take
100 containers,
3 pallets to stack containers on - [H/ put
¢ Then there are 10°77 states loc1 loc2 J
@ Number of particles in the universe move2 I lmovel

is only about 10%7
¢ The example is more than 10'°° times as large

@ Automated-planning research has been heavily dominated by classical planning
¢ Dozens (hundreds?) of different algorithms

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Linear Planning

* Alinear planner is a classical planner such that:
— no importance distinction of goals
— all (sub)goals are assumed to be independent
— (sub)goals can be achieved in arbitrary order

* Plans that achieve subgoals are combined by placing all steps
of one subplan before or after all steps of the others
(=non-interleaved)

STRIPS Planning

« STRIPS (initial-state, goals)
— state = initial-state. plan = []. stack = []
— Push goals on stack
— Repeat until stack 1s empty
* If top of stack 1s zoal that matches stafe. then pop stack
 Else if top of stack 1s a | ' g. then

— Select an ordering for the subgoals of g. and push them on
stack

* Else if top of stack 1s a simple goal sg. then
— Choose an operator o whose add-list matches goal sg
— Replace goal sg with operator o
— Push the preconditions of o on the stack

 Else 1f top of stack 1s an operator o, then
— state = apply(o, state)
— plan = [plan: o]

Simmons. Veloso : Fall 2001

STRIPS

® Basic idea: given a compound goal g = {g,. g,. ...}. try to solve each g;
separately
¢ Works 1f the goals are serializable (can be solved in some linear order)

1 < the empty plan

do a modified backward search from g:
instead of y-1(s,a@). each new set of subgoals is just precond(a)
whenever you find an action that’s executable in the current state.

go forward on the current search path as far as possible.
executing actions and appending them to ©

repeat until all goals are satisfied

(&; 1o
t = (m,m,) or (m,,m,) .
Ty = (M1, My @) OF (M1, Ty,) @’ ag —"@_a

4

Ty = (a7,ay)

Ty = (a3,as) @ a7 ’@_‘*’5’

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

16

Linear Planning

* Advantage:
— Goals are solved one at a time (ok if independent)
— Sound

 Disadvantage
— Suboptimal solutions (number of operators in the plan)
— incomplete

The Sussman Anomaly

] a

c b

a ‘ b ‘ c
Initial state goal

® On this problem, STRIPS can’t produce an nredundant solution
¢ Try 1t and see

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Non-Linear Planning

* Basic ldea
— Goal set instead of goal stack
— Search space all possible subgoal orderings
— Goal interactions by interleaving

* Advantages

— Sound, complete, can be optimal with respect to plan length
(depending on search strategy employed)

* Disadvantages
— Larger search space

Non-Linear Planning

NLP (initial-state, goals)
— state = initial-state; plan = []; goalset = goals: opstack = []
— Repeat until goalset 1s empty
* Choose a goal g from the goalset
* If g does not match state, then
— Choose an operator o whose add-list matches goal ¢
— Push o on the opstack
— Add the preconditions of o to the goalset

« While all preconditions of operator on top of opstack
are met in state

— Pop operator o from top of opstack
— state = apply(o, state)

= p/an = [P]CH?; 0] Simmons, Veloso : Fall 2001

Progressive Planning

Input : a world model and a goal
QOutput : a plan or fail.

ProgPlan[DB,Goal] =

If Goal is satisfied in DB, then return empty plan

For each operator o such that precond(o) is satisfied in the current DB:
Let DB™ = DB + addlist(o) — dellist(o)
Let plan = ProgPlan[DB",Goal]
If plan # fail, then return [act(o) ; plan]

End for

Return fail

(ignoring variables)

Brachman & Levesque 2005

Regressive Planning

Input : a world model and a goal
Output : a plan or fall.

RegrPlan[DB,Goal] =

If Goal is satisfied in DB, then return empty plan

For each operator o such that dellist(c) m Goal = {}:
Let Goal” = Goal + precond(o) — addlist(o)
Let plan = RegrPlan[DB,Goal’]
If plan # fail, then return [plan ; act(o)]

End for

Return fail

(ignoring variables)

Brachman & Levesque 2005

Decidability of Planning

Halting problem

/

Allow function | Decidability of /’ Decidability of

symbols? PLAN-EXISTEN PLAN-LENGTH
no® decidable / " [decidable

ves semidecidable” decidable w_
“This is ordinary classical planning. N

Can cut off the
search at every
path of length n

7True even if we make several restrictions (see text).

Next: analyze complexity for the decidable cases

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons_org/licenses/by-nc-sa/2.0/ a

® |In this case, can write domain-specific algorithms

¢ e.g., DWR and Blocks World: PLAN-EXISTENCE
is in P and PLAN-LENGTH is NP-complete /

@ no operator has
>1 precondition

Kind of | How the | Allow Allow Complexity | Complexity
represen- | operators | negative | negati¥e | of PLAN- of PLAN-
tation are given | effects? | pregon- EXISTENCE | LENGTH
ditions?
yes yes / 1o EXPSPACE- NEXPTIME-
classical / complete complete
rep. in the | yes NEXPTIME- | NEXPTIME-
input | complete complete
n no EXPTIME- NEXPTIME-
complete complete
107 PSPACE- PSPACE-
/ /J complete lete
yes /| yes/no PSPACE 7 PSPACE 7
in / - yes NP ? NP 7
advance no no P NP 7
no® NLOGSPACE

Y PSPACE-complete or NP-complete
for some sets of operators

10

Heuristic Search (Chapter 9)

@ Heuristic function like those in A*

¢ Created using techniques similar to planning graphs
@ Problem: A* quickly runs out of memory

¢ So do a greedy search instead

® Greedy search can get trapped 1n local minima
¢ Greedy search plus local search at local minima

e HSP [Bonet & Gefiner]
e FastForward [Hoffmann]

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Heuristics for Forward-Chaining Planning

Several classical planning style are available:
- http://icaps-conference.org/index.php/Main/Competitions

Forward-chaining planners:
- solving an abstraction of the original, hard, planning problem

The most widely used abstraction involves planning using ‘relaxed actions', where the
delete effects of the original actions are ignored.

Examples:
FF [Hoffmann & Nebel 2001], HSP [Bonet & Geffner 2000], UnPOP [McDermott 1996]
use relaxed actions as the basis for their heuristic estimates

FF was the first to count the number of relaxed actions in a relaxed plan connecting
the goal to the initial state

Planning Graphs (Chapter 6)

Level 0 Level 1 Level 2
it All appli- All effects All actions All effects
state cable of those applicable to of those
actions actions subsets of actions
— Level 1

: j
® Rough idea: O &?

¢ First, solve a

relaxed problem %

2]

» Each “level” contains all
effects of all applicable actions \ y
» Even though the effects may \)

contradict each other

¢ Next, do a state-space search within the planning graph

® Graphplan, IPP, CGP, DGP, LGP, PGP, SGP, TGP, ...

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

STRIPS and Games

Behavior of Non Player Characters (NPCs) can be described by abstract actions defined in
a symbolic world model, e.g. First-Person Shooter (FPS) games

F.E.A.R. (short for First Encounter Assault Recon) is a horror-themed first-person shooter
developed by Monolith Productions

— Gamespot’s Best Al Award in 2005

— Ranked 2nd in the list of most influential Al games

The agents’ behavior is a function of the generated plans based on goals, state, and
available actions

Jeff Orkin: Three States and a Plan: The Al of F.E.A.R. Proceedings of the Game Developer's Conference (GDC)

Olivier Bartheye and Eric Jacopin: A PDDL-Based Planning Architecture to Support Arcade Game Playing

Summary

e If classical planning 1s extended to allow function symbols
¢ Then we can encode arbitrary computations as planning problems
» Plan existence 1s semidecidable
» Plan length 1s decidable
@ Ordinary classical planning 1s quite complex
» Plan existence 1s EXPSPACE-complete
» Plan length 1s NEXPTIME-complete
+ But those are worst case results

» If we can write domain-specific algorithms. most well-known planning
problems are much easier

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons._org/licenses/by-nc-sa/2.0/

14

State Space vs. Plan Space

* Planning in the state space:

— seqguence of actions, from the initial state to the
goal state

* Planning in the plan space:

— Sequence of plan transformations, from an initial
plan to the final one

Plan-Space Planning
(Chapter 5)

® Decompose sets of goals into the
individual goals
@ Plan for them separately

¢ Bookkeeping info to detect and
resolve interactions

® Produce a partially ordered plan that
retains as much flexibility as possible

@ The Mars rovers used a temporal-
planning extension of this

Dana Nau: Lecture slides for Automated Planning

0
d C
4 ‘/ a 7, ’ Vi b
p3 U p4
Y A
pl p2
Start

move(d,a,pl)

move(c,b,p2)

L

move(a,p3,c)

move(b,p4,d)

\//

Finish

b a

y d C
pl p2

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Plan-State Search

» Search space 1s set of parfial plans

« Plan 1s mple =4, O, B=

— A: et of acfions, of the form (a; : Op,)

— O Setof orderings. of the form (3; < a,)

— B: Setof bindings. of the form (v; = C). (v; =C). (v;=v) or

(v; = vj}

+ [mitial plan:

— < {sfart, finish}, {start < finish}, {}=

— srart has no preconditions; Its effects are the imitial state

— finish has no effects; Its preconditions are the goals

State-Space vs Plan-Space

Planning problem

Find a sequence of actions that make instance of the goal true

Nodes in search space

Standard search: node = concrete world state

Planning search: node = partial plan

(Partial) Plan consists of

£ Set of operator applications §;
& Partial (temporal) order constraints 5; < §;
o Causallinks §; — S,

Meaning: *S, achieves ¢ Epr-:.frm.!ﬂ'{ﬁ'j)” (record purpose of steps)

Search in the Plan-Space

Operators on partial plans

£ add an action and a causal link to achieve an open condition
& add a causal link from an existing action to an open condition

& add an order constraint to order one step w.r.t. another

Open condition

A precondition of an action not yet causally linked

Flaws: 1. Open Goals

® Open goal:
¢ An action a has a precondition p that we haven’t
decided how to establish

(2)
foo(x) v baz(:)
® Resolvine the flaw: Precond: ... Precond: p(z)
T _ Effects: p(x) Effects: ...
¢ Find an action b
* (erther already 1n the plan, or insert it)
¢ that can be used to establish p
e can precede a and produce p
¢ Instantiate variables and/or
I o -+ p(¥)
constrain variable bindings —))
¢ (Create a causal link Precond: ... [*| Precond: p(2)
Effects: p(x) Effects: ...

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommeons org/licenses/by-nc-sa/2.0/

Flaws: 2. Threats

® Threat: a deleted-condition interaction
¢ Action a establishes a precondition (e.g.. pg(x)) of action b

¢ Another action ¢ 1s capable of deleting p

® Resolving the flaw:

¢ 1mpose a constraint to prevent ¢ from deleting p

@ Three possibilities:
¢ Make b precede ¢
¢ Make c precede a

¢ Constram variable(s)
to prevent ¢ from
deleting p

Dana Nau: Lecture slides for Automated Planning

clobber(y)
Precond: ...

Effects: -p(v)

foo(x)
Precond: ...
Effects: p(x)

baz(x)
Precond: p(x)
Effects: ...

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://lcreativecommons.org/licenses/by-nec-sa/2.0/

The PSP Procedure

PSP(=)
flaws «— OpenGoals(w) L) Threats(w)
if flaws = then return(r)
select any flaw ¢ € flaws
resolvers < Resolve(d,)
if resolvers = { then return(failure)
nondeterministically choose a resolver p ¢ resolvers
w’ «— Refine(p, 7)
return(PSP(="))
end

® PSP i1s both sound and complete
@ It returns a partially ordered solution plan
¢ Any total ordering of this plan will achieve the goals
+ Or could execute actions 1n parallel 1f the environment permits 1t

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Plan-State Search

fPick{A " ""
Pat{A, E]

O H':Lml:r:/f\.Y _i{ﬂ A\
I,.r*" ParfA B |

Pick(a,

\ :*L'H.T -
Pu:i_-L B‘J = ?/ I:
/iﬁ{a 0) 'ﬂl{"‘_\“

) l|
P"“‘) PickT(c) foet of BickT(C) |

P.]: .'L Bl IJ‘IJ:H B) " Prat{ AL B}/

/\/ N
Order

m:a = i/; Tl?:“-

\wf

Partially-Ordered Plans

Start
Start Cett t
S Sook

LeftShoeOr, lﬁwgﬁfﬂhﬂﬂﬂﬁ | eftSockOrn RightSockOrr
Lot FHight
Finish Shoo Shoe

\

LeftShoeOn, RightShoaeln

Finish

Special steps with empty action

Start no precond, initial assumptions as effect)

Finish goal as precond, no effect

Partial-Order Plans

Complete plan

A plan is complete iff every precondition is achieved

A precondition ¢ of a step §; is achieved (by §;) if

& 5{' = S,r
$ c € effect(S;)

& thereisno S with §; <S8 <S5, and -—c € effect(S;)
(otherwise S; is called a clobberer or threat)

Clobberer / threat

A potentially intervening step that destroys the condition achieved
by a causal link

Example

Go(Home) clobbers Air(HWS)

e

H_..i' S

Partial-Order Plans

y ™\ DEMOTION
GoHWS) 1|
l
\
= Gol lome)
ff’ At(Homa)
AHHWS) [f
Buy(Drill) ||
L /
Co
PROMOTION At(HEme)

Finish

Demotion

Put before Go(HWS)

Promotion

Put after Buy(Drill)

General Approach

* (general Approach
— Find unachieved precondition

* Add new action or link to existing action

— Determine 1f conflicts occur
» Previcusly aclueved precondition 1= “clobbered”
» Fix conflicts (reorder, bind, .)

* Partial-order planning can easily (and optimally) solve
blocks world problems that imnvolve goal mnteractions (e.g..
the “Sussman Anomalyv problem)

C

| [
B

T B '
Initial State oal

Blocks World

"Sussman anomaly” problem

BI|A

Start State Goal State
Clear(x) On(x,z) Clear(y) Clear(x) On(x,z)
PutOn(x,y) PutOnTable(x)
~0n(x,z) ~Clear(y) ~0n(x,z) Clear(z) On(x, Table)

Clear(z) On(x,y)

+ several inequality constraints

Blocks World

START
On(C.A) On(A, Table) CKB) On(B,Table) CI(C)

OnA,B) OnB.C)
FINISH

o] =] >

Blocks World

START
On(C,A) On(A, Table) CKB) On(B,Table) C{C)

N

CKB) Dﬂ?ﬂ,z) G"}C)
PutOn(B,C)

/

OnA,B) Dﬁ({C)
FINISH

A
B

Blocks World

START B)

On(C,A) On(A, Table) CB) On(B.Table) CIC)

\ clobbe ?.‘,)
obbers
auMHaﬂiBr}
PutOn(B,C)

CKB) Dﬂ,B z) Cl',C,l"
— Put':'nf:B,C:l

PutOn(AB) |==~ /
OH}AJE‘) Dﬁ({t’-‘)

FINISH

CHA) on(.!,z,h crrg;

o]w] >

Blocks World

START

On(C,A) On(A,Table) CKB) On(B,Table) CIC)

Dﬂfﬁz) Cffs‘ ')

-

utOnTable(C)

N

CIA) Dn(/! z) CI(B)

~ ~o C-‘}}B) Dn',B 2) Cﬂ’,ﬂ)

..---' PutDn(B,C:l
PutOn(AB) ==~

O\ﬂ?ﬂﬁ‘) Dﬂ(gﬁ/

FINISH

A

byl
dobbers KB)
== order after

PutOn(B,C)

Elml:?bl{B’ C)
[o] rs

== Qrder after

PutOnTable(C)

o] w] >

Blocks World

1. 3

B

| Stam | _lA

On{C, A} On{A, Table} On{B. Takls)

Clear{C), Clear{B}

Clear{C}

Move(C, Tahle)

A
On{A, B) On(B. 'C:I'J_I B
| Finish | C

2. [Start I

OnfC, A)On{a Table)
Clear{C}h Clear’B

Clear(

Move(B, C)

On{A, B) On(E
_Finish

Clear AN COul(C, Table)

Clear{A}Clear(B)
Aove(A, B)

Clear{BwClear(C)
AMoveiB. C)

)

Blocks World

—

4. | Start | 5. | Start |
On{C, A) On(fA, Table) Qu(B. Table) Ol A) Onid, Table) On(E, Tzahle)
Clglar{C) Clear(Clggm{C) Clear(B)

Clear(C) i_lear(C)
Move(C, Table) | Move(C, Tahle) \\‘ _
, — CleanBw Clear{C) - — Clear(B) Clear(C)
Clear(AN On{C, Takl Clear(AN On(C, Takl
ear(A)|On{C. 3:}\“\. Move(B. C) ear(A)On(C, Table) Move(®, C)
Clear(A)Clear(2) —Clearil Clear(A)}Clear(B) ~Clear(C)
Move(A, B) Move(A, B) —

~Clear{B)
i 1O, ©) L i Y Ondl, C)

[Fimsh | |_Fimsh |

Least Commitment

« Basic [dea

— Make choices that are only relevant fo selving rhe curreni
part of the problem

« [east Commutment Choices

— Orderings: Leave actions unordered, unless they must be
sequential

— Bindings: Leave variables unbound, unless needed to umify
with conditions being achieved

— Actions: Usually not subject to “least commitment™
« Refinement

— Only odd information to the current plan
— Transfermational planning can remove choices

Terminology
Totally Ordered Plan

— There exists sufficient orderings ¢ such that all actions in 4
are ordered with respect to each other

Fully Instantiated Plan

— There exists sufficient constraints 1n 5 such that all varnables
are constrained to be equal to some constant

Consistent Plan

— There are no contradictions i O or 8

Complete Plan
— Every precondition p of every action a; in 4 15 achieved:
There exists an effect of an action g; that comes before a; and
unifies with p. and no action a, that deletes p comes between

a; and g,

POP-Algorithm

function POP (initial, goal, operators) returns plan

plan — MAKE-MINIMAL-PLAN(initial, goal)
loop do
if SOLUTION?(plan) then return plan % complete and consistent
Sneed, ¢ +— SELECT-SUBGOAL(plan)
CHOOSE-QOPERATOR(plan, operators, Syeed, €)
RESOLVE-THREATS(plan)
end

function SELECT-SUBGOAL(plan) returns S,eeq. ¢

pick a plan step S;eeq from STEPS(plan)
with a precondition ¢ that has not been achieved
return S,eed. €

POP-Algorithm

procedure CHOOSE-OPERATOR(plan, operators, S, ¢ed: C)

choose a step S,44 from operators or STEPS(plan) that has ¢ as an effect
if there is no such step then fail

add the causal link Sggq - Sneeq to LINKS(plan)

add the ordering constraint Sggq < Syeeqd 10 ORDERINGS(plan)
if Sqqq 1s a newly added step from operators then
add S,44 to STEPS(plan)

add Srart < S;34 = Finish to ORDERINGS(plan)

POP-Algorithm

procedure RESOLVE-THREATS(plan)

for each S,;, ., that threatens a link §; _©.. §; in LINKS(plan) do
choose either
Demotion: Add S;preqe = Si to ORDERINGS(plan)
Promotion: Add S; < Stprear to ORDERINGS(plan)
if not CONSISTENT(plan) then fail
end

POP-Algorithm

Non-deterministic search for plan,
backtracks over choicepoints on failure:

— choice of 5,44 to achieve S,,c¢4
— choice of promotion or demotion for clobberer

Sound and complete

There are extensions for:
disjunction, universal quantification, negation, conditionals

Efficient with good heuristics from problem description
But: very sensitive to subgoal ordering

Good for problems with loosely related subgoals

POP-Algorithm

* Advantages
— Partial order planning 1s sennd and complere
— Typically produces oprimal solutions {plan length)
— Least commitment may lead to shorter search times

« Disadvantages
— Significantly more complex algorithms (higher per-node
cost)
— Hard to determine what 1s true in a state

— Larger search space (infinite!)

Plan Monitoring

Execution monitoring

Failure: Preconditions of remaining plan not met

Action monitoring

Failure: Preconditions of next action not met

(or action itself fails, e.g., robot bump sensor)

Consequence of failure

MNeed to replan

Replanning

Simplest

On failure, replan from scratch

Better

Plan to get back on track by reconnecting to best continuation

O—O—0—D—0—0—0

|
!

C{ " Failure

START
Color(Chait,Blue) rfiavqfﬂed,:

Get(Red)

HEVJQQ«DU

Paint(Red)

Gﬂfa'{Jlair; Red)

FINISH

Replanning

PRECONDITIONS FAILURE RESPONSE
hohe N/A
Have(Red) Fetch more red
Color(Chair,Red) Repaint

