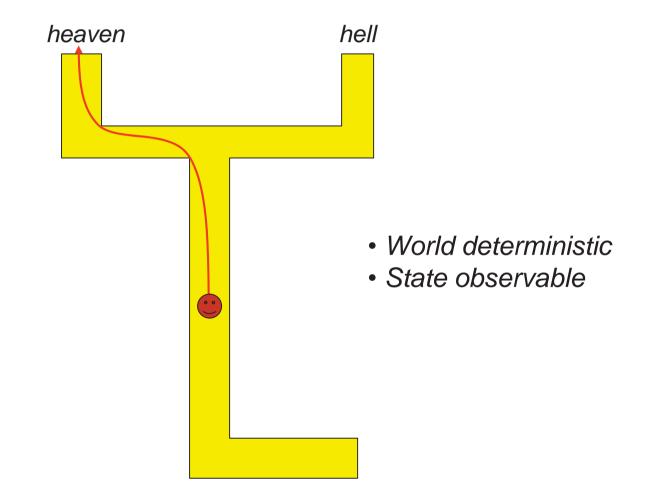
Probabilistic Robotics:

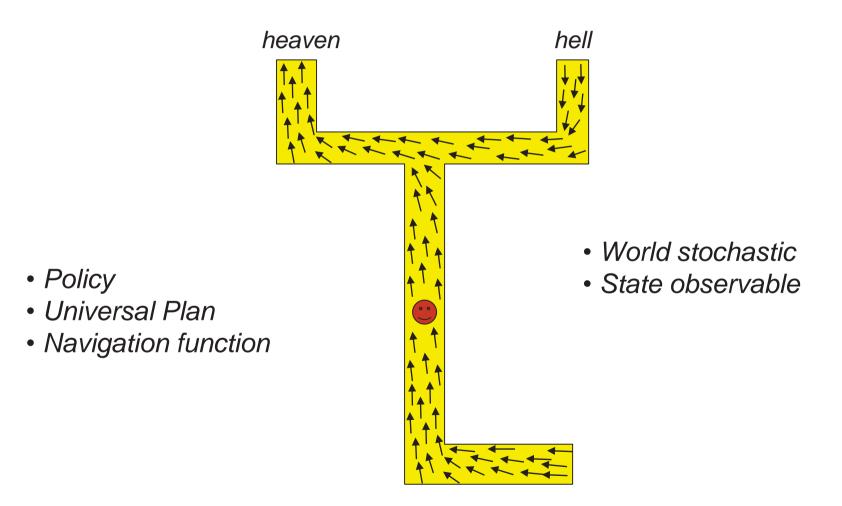
Probabilistic Planning and MDPs

Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio Grisetti, Maren Bennewitz, Christian Plagemann, Dirk Haehnel, Mike Montemerlo, Nick Roy, Kai Arras, Patrick Pfaff and others

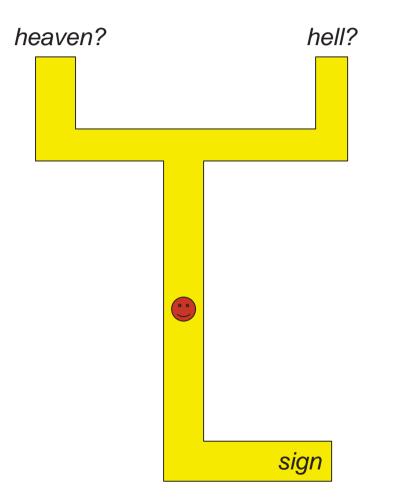
Planning: Classical Situation



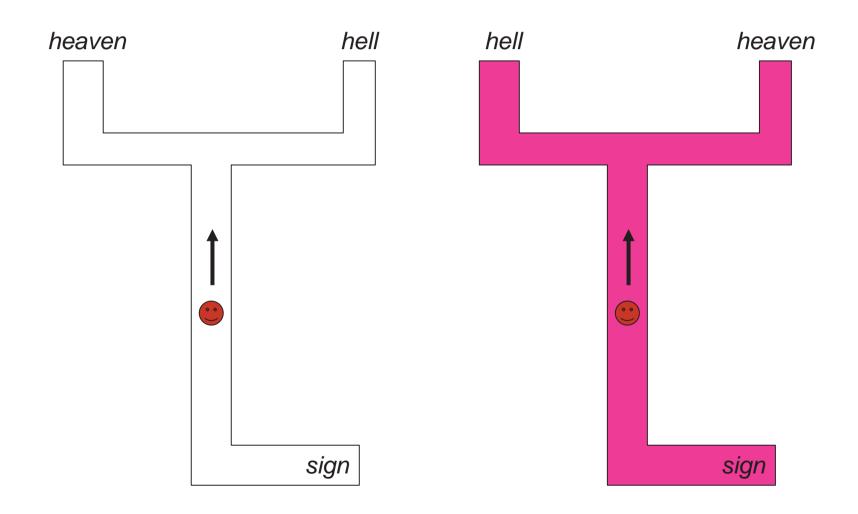
MDP-Style Planning

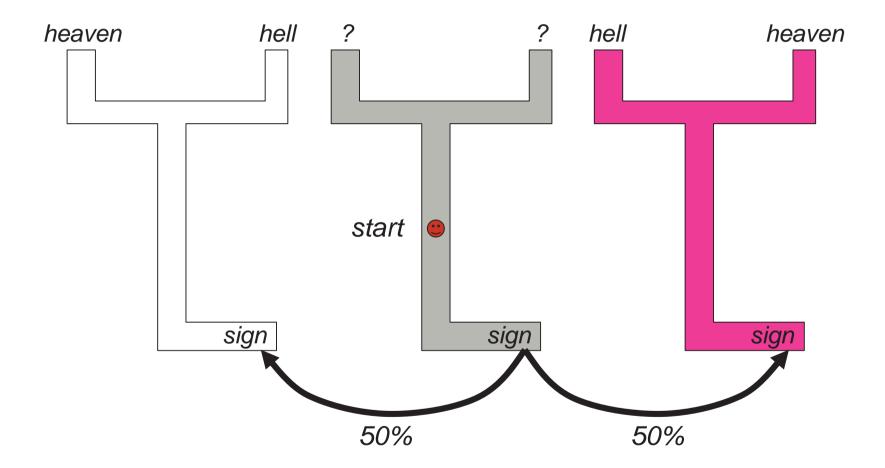


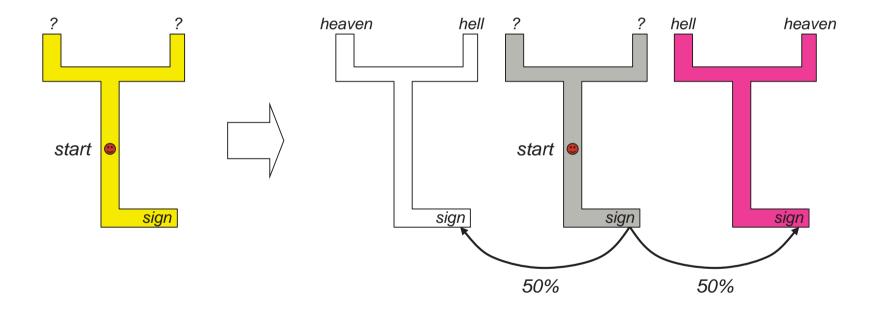
[Koditschek 87, Barto et al. 89]



[Sondik 72] [Littman/Cassandra/Kaelbling 97]







# states	sensors	actions	size belief space?
3	perfect	deterministic	3: s ₁ , s ₂ , s ₃
3	perfect	stochastic	3: s ₁ , s ₂ , s ₃
3	abstract states	deterministic	2 ³ -1: <i>s</i> ₁ , <i>s</i> ₂ , <i>s</i> ₃ , <i>s</i> ₁₂ , <i>s</i> ₁₃ , <i>s</i> ₂₃ , <i>s</i> ₁₂₃
3	stochastic	deterministic	2-dim continuous: $p(S=s_1)$, $p(S=s_2)$
3	none	stochastic 2	2-dim continuous: $p(S=s_1)$, $p(S=s_2)$
1-dim continuou	s stochastic	deterministic	∞ -dim continuous
1-dim continuou	s stochastic	stochastic	∞ -dim continuous
∞-dim continuou	stochastic	stochastic	aargh!

MPD Planning

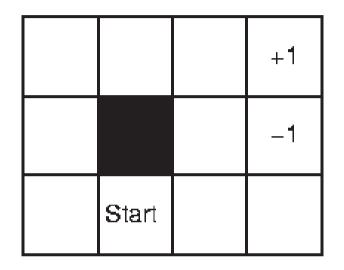
- Solution for Planning problem
 - Noisy controls
 - Perfect perception
 - Generates "universal plan" (=policy)

What is the problem?

- Consider a non-deterministic robot/environment.
- Actions have desired outcome with a probability less then 1.
- What is the best action for a robot under this constraint?
- Example: a mobile robot does not exactly perform the desired action.

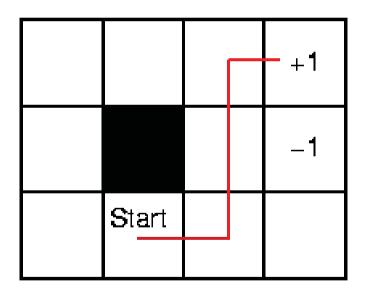
Uncertainty about performing actions!

Example (1)

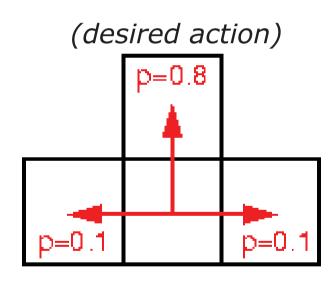


- Bumping to wall "reflects" robot.
- "Reward" for free cells -0.04 (travel cost).
- What is the best way to reach the cell labeled with +1 without moving to -1?

Deterministic Transition Model: move on the shortest path!

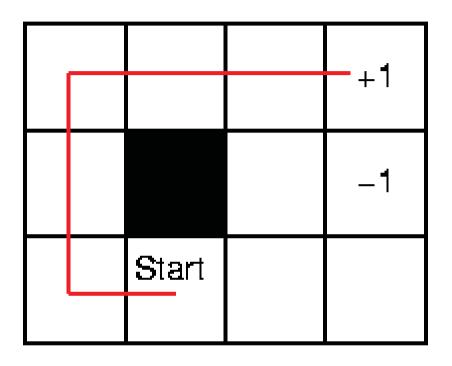


But now consider the non-deterministic transition model (N / E / S / W):



• What is now the best way?

Example (4)



- Use a longer path with lower probability to move to the cell labeled with -1.
- This path has the highest overall utility!

Utility and Policy

- Compute for every state a utility: "What is the usage (utility) of this state for the overall task?"
- A Policy is a complete mapping from states to actions ("In which state should I perform which action?").

 $policy: States \mapsto Actions$

Markov Decision Problem (MDP)

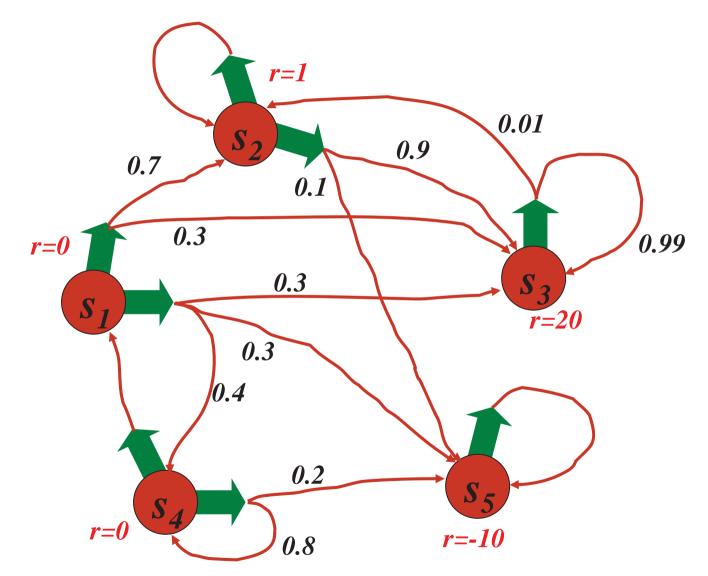
Compute the optimal policy in an accessible, stochastic environment with known transition model.

Markov Property:

The transition probabilities depend only the current state and not on the history of predecessor states.

Not every decision problem is a MDP.

Markov Decision Process (MDP)



Markov Decision Process (MDP)

- Given:
- States x
- Actions u
- Transition probabilities p(x'|u,x)
- *Reward / payoff function r(x,u)*

- Wanted:
- Policy π(x) that maximizes the future expected reward

Rewards and Policies

Policy (general case):

$$\pi: \quad z_{1:t-1}, u_{1:t-1} \to u_t$$

Policy (fully observable case):

$$\pi: x_t \to u_t$$

Expected cumulative payoff:

$$R_T = E \left[\sum_{\tau=1}^T \gamma^{\tau} r_{t+\tau} \right]$$

- T=1: greedy policy
- T>1: finite horizon case, typically no discount
- T=infty: infinite-horizon case, finite reward if discount < 1</p>

Policies contd.

Expected cumulative payoff of policy:

$$R_{T}^{\pi}(x_{t}) = E \left[\sum_{\tau=1}^{T} \gamma^{\tau} r_{t+\tau} \mid u_{t+\tau} = \pi \left(z_{1:t+\tau-1} u_{1:t+\tau-1} \right) \right]$$

Optimal policy:

$$\pi^* = \underset{\pi}{\operatorname{argmax}} \quad R_T^{\pi}(x_t)$$

1-step optimal policy:

$$\pi_1(x) = \operatorname{argmax} r(x, u)$$

Value function of 1-step optimal policy:

$$V_1(x) = \gamma \max_u r(x, u)$$

2-step Policies

Optimal policy:

$$\pi_2(x) = \underset{u}{\operatorname{argmax}} \left[r(x,u) + \int V_1(x') p(x'|u,x) dx' \right]$$

Value function:

$$V_2(x) = \gamma \max_u \left[r(x,u) + \int V_1(x') p(x'|u,x) dx' \right]$$

T-step Policies

Optimal policy:

$$\pi_{T}(x) = \underset{u}{\operatorname{argmax}} \left[r(x,u) + \int V_{T-1}(x') p(x'|u,x) dx' \right]$$

Value function:

$$V_T(x) = \gamma \max_u \left[r(x,u) + \int V_{T-1}(x') p(x'|u,x) dx' \right]$$

Infinite Horizon

Optimal policy:

$$V_{\infty}(x) = \gamma \max_{u} \quad \left[r(x,u) + \int V_{\infty}(x') p(x'|u,x) dx' \right]$$

- Bellman equation
- Fix point is optimal policy
- Necessary and sufficient condition

Value Iteration

for all x do

$$\hat{V}(x) \leftarrow r_{\min}$$

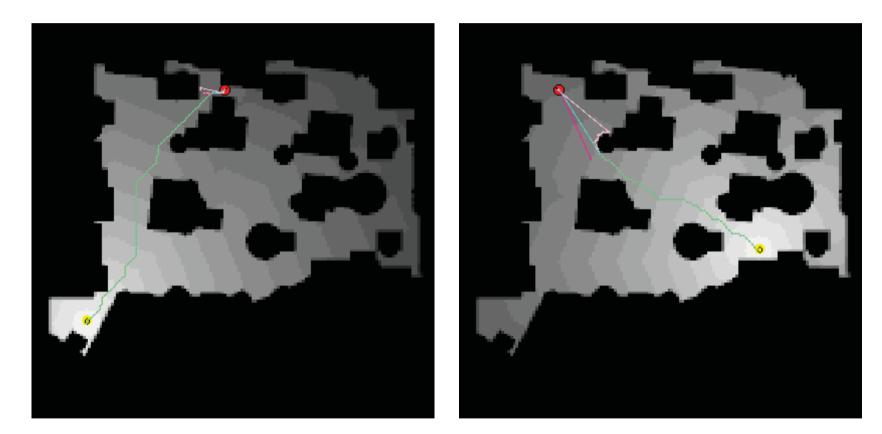
endfor

repeat until convergence
for all x do $\hat{V}(x) \leftarrow \gamma \max \left[r(x,u) + \int \hat{V}(x') p(x'|u,x) dx' \right]$

endforendrepeat

$$\pi(x) = \underset{u}{\operatorname{argmax}} \quad \left[r(x,u) + \int \hat{V}(x') p(x'|u,x) dx' \right]$$

Value Iteration for Motion Planning



The optimal Policy

$$policy^*(i) = \arg\max_a \sum_j M_{ij}^a \cdot U(j)$$

 $M_{ij}^{a} = Probability of reaching state j$ form state i with action a.<math>U(j) = Utility of state j.

- If we know the utility we can easily compute the optimal policy.
- The problem is to compute the correct utilities for all states.

The Utility (1)

- To compute the utility of a state we have to consider a tree of states.
- The utility of a state depends on the utility of all successor states.
 - Not all utility functions can be used.
 - The utility function must have the property of separability.
 - E.g. additive utility functions:

 $U([s_0, s_1, \dots, s_n]) = R(s_0) + U([s_1, \dots, s_n])$

(*R* = reward function)

The Utility (2)

The utility can be expressed similar to the policy function:

$$U(i) = R(i) + \max_{a} \sum_{j} M_{ij}^{a} \cdot U(j)$$

The reward R(i) is the "utility" of the state itself (without considering the successors).

Dynamic Programming

- This Utility function is the basis for "dynamic programming".
- Fast solution to compute n-step decision problems.
- Naive solution: O(|A|ⁿ).
- Dynamic Programming: O(n|A||S|).
- But what is the correct value of n?
- If the graph has loops: $n \to \infty$???

Iterative Computation

Idea:

The Utility is computed iteratively:

$$U_{t+1}(i) = R(i) + \max_{a} \sum_{j} M_{ij}^{a} \cdot U_{t}(j)$$

- Optimal utility: $U^* = \lim_{t \to \infty} U_t$
- Abort, if change in the utility is below a threshold.

The Value Iteration Algorithm

repeat

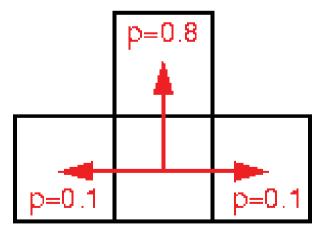
 $U \leftarrow U'$ **for each** state *i* **do** $U'[i] \leftarrow R[i] + \max_a \sum_j M^a_{ij} U[j]$ **end until** CLOSE-ENOUGH(U, U')**return** U

Value Iteration Example

Calculate utility of the center cell

$$U_{t+1}(i) = R(i) + \max_{a} \sum_{j} M_{ij}^{a} \cdot U_{t}(j)$$

(desired action=North)



Transition Model

	u=10	
u=5	r=1	u=-8
	u=1	

State Space (u=utility, r=reward)

Value Iteration Example

$$U_{t+1}(i) = R(i) + \max_{a} \sum_{j} M_{ij}^{a} \cdot U_{t}(j)$$

$$= reward + \max\{$$

$$0.1 \cdot 1 + 0.8 \cdot 5 + 0.1 \cdot 10 \quad (\leftarrow),$$

$$0.1 \cdot 5 + 0.8 \cdot 10 + 0.1 \cdot -8 \quad (\uparrow),$$

$$0.1 \cdot 10 + 0.8 \cdot -8 + 0.1 \cdot 1 \quad (\rightarrow),$$

$$0.1 \cdot -8 + 0.8 \cdot 1 + 0.1 \cdot 5 \quad (\downarrow)\}$$

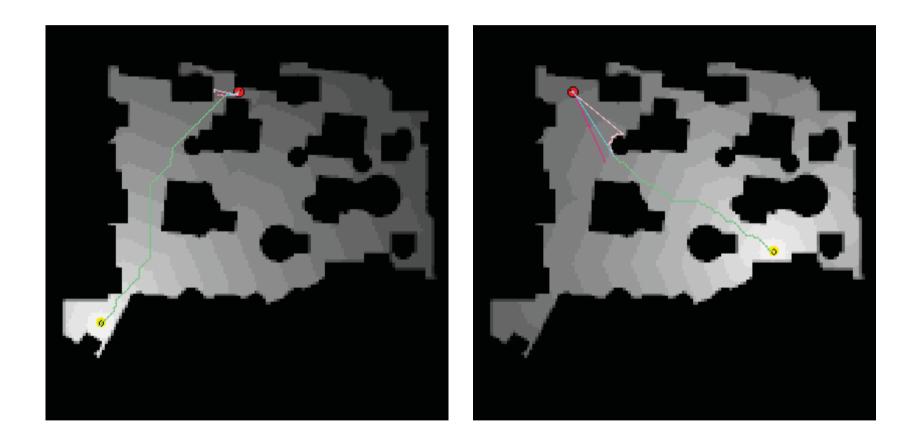
$$= 1 + \max\{5.1 (\leftarrow), 7.7 (\uparrow),$$

$$-5.3 (\rightarrow), 0.5 (\downarrow)\}$$

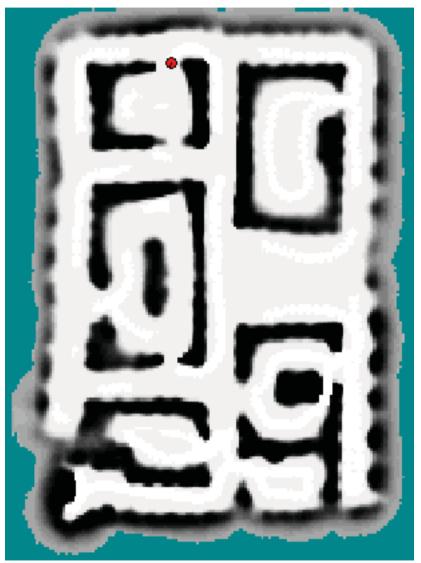
$$= 1 + 7.7$$

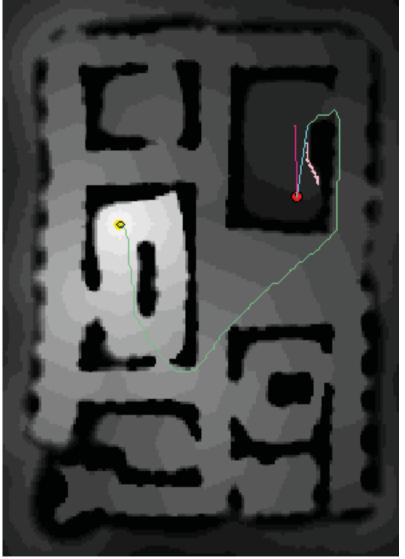
$$= 8.7$$

Value Iteration: Example



Another Example

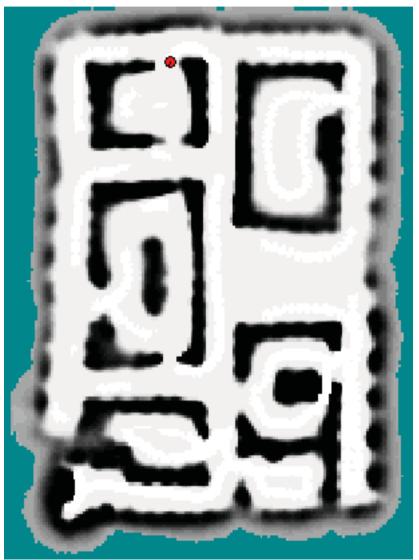


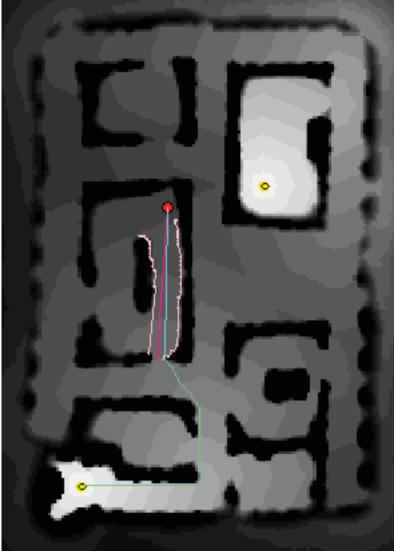


Value Function and Plan

Мар

Another Example





Мар

Value Function and Plan

From Utilities to Policies

- Computes the optimal utility function.
- Optimal Policy can easily be computed using the optimal utility values:

$$policy^*(i) = \operatorname*{argmax}_a \sum_j M^a_{ij} \cdot U^*(j)$$

Value Iteration is an optimal solution to the Markov Decision Problem!

Convergence "close-enough"

- Different possibilities to detect convergence:
 - RMS error root mean square error
 - Policy Loss
 - **.**,,,

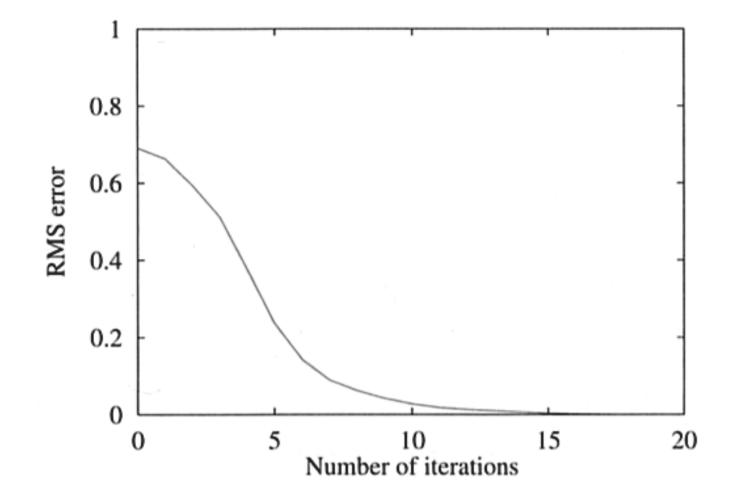
Convergence-Criteria: RMS

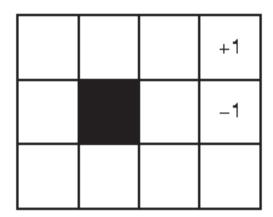
$$RMS = \frac{1}{|S|} \cdot \sqrt{\sum_{i=1}^{|S|} (U(i) - U'(i))^2}$$

CLOSE-ENOUGH(U,U') in the algorithm can be formulated by:

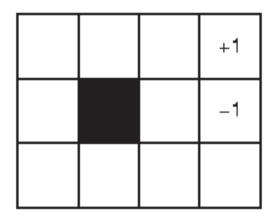
$$RMS(U, U') < \epsilon$$

Example: RMS-Convergence





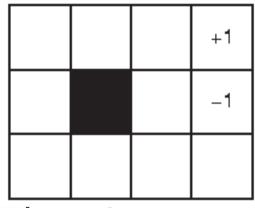
1. The given environment.



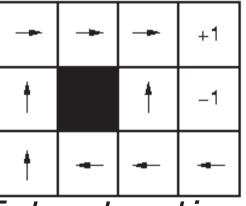
1. The given environment.

0.812	0.868	0.912	+1
0.762		0.660	-1
0.705	0.655	0.611	0.388

2. Calculate Utilities.



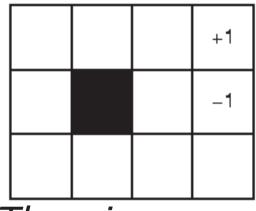
1. The given environment.



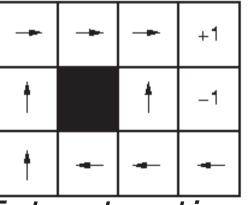
3. Extract optimal policy.

0.812	0.868	0.912	+1
0.762		0.660	-1
0.705	0.655	0.611	0.388

2. Calculate Utilities.



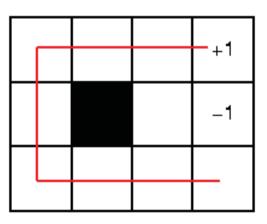
1. The given environment.



3. Extract optimal policy.

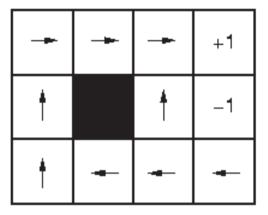
0.812	0.868	0.912	+1
0.762		0.660	-1
0.705	0.655	0.611	0.388

2. Calculate Utilities.



4. Execute actions.

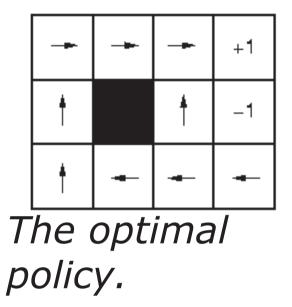
0.812	0.868	0.912	+1
0.762		0.660	-1
0.705	0.655	0.611	0.388



The Utilities. *The optimal policy.*

(3,2) has higher utility than (2,3). Why does the polity of (3,3) points to the left?

0.812	0.868	0.912	+1
0.762		0.660	-1
0.705	0.655	0.611	0.388
The Utilities.			



- (3,2) has higher utility than (2,3). Why does the polity of (3,3) points to the left?
- Because the Policy is **not** the gradient! It is: $policy^*(i) = argmax \sum_j M^a_{ij} \cdot U(j)$

Convergence of Policy and Utilities

In practice: policy converges faster than the utility values.

- After the relation between the utilities are correct, the policy often does not change anymore (because of the argmax).
- Is there an algorithm to compute the optimal policy faster?

Policy Iteration

• **Idea** for faster convergence of the policy:

- 1. Start with one policy.
- 2. Calculate utilities based on the current policy.
- 3. Update policy based on policy formula.
- 4. Repeat Step 2 and 3 until policy is stable.

The Policy Iteration Algorithm

function POLICY-ITERATION(M, R) returns a policy

inputs: M, a transition model

R, a reward function on states local variables: U, a utility function, initially identical to RP, a policy, initially optimal with respect to U

repeat

 $U \leftarrow \text{VALUE-DETERMINATION}(P, U, M, R)$ $unchanged? \leftarrow \text{true}$ for each state *i* do if max_a $\sum_{j} M_{ij}^{a} U[j] > \sum_{j} M_{ij}^{P[i]} U[j]$ then $P[i] \leftarrow \arg \max_{a} \sum_{j} M_{ij}^{a} U[j]$ $unchanged? \leftarrow \text{false}$ end $U(s_{i}) = R(s_{i}) + \sum_{j} P_{ij}^{\pi(s_{i})} U(s_{j})$ $U'(s_{i}) \leftarrow R[i] + \sum_{j} P_{ij}^{\pi(s_{i})} U(s_{j})$