
SA-1

Probabilistic Robotics:

Probabilistic Planning and
MDPs

Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio
Grisetti, Maren Bennewitz, Christian Plagemann, Dirk Haehnel, Mike
Montemerlo, Nick Roy, Kai Arras, Patrick Pfaff and others

Planning: Classical Situation

hellheaven

• World deterministic
• State observable

MDP-Style Planning

hellheaven

• World stochastic
• State observable

[Koditschek 87, Barto et al. 89]

• Policy
• Universal Plan
• Navigation function

Stochastic, Partially Observable

sign

hell?heaven?

[Sondik 72] [Littman/Cassandra/Kaelbling 97]

Stochastic, Partially Observable

sign

hellheaven

sign

heavenhell

Stochastic, Partially Observable

sign

heavenhell

sign

??

sign

hellheaven

start

50% 50%

Stochastic, Partially Observable

sign

??

start

sign

heavenhell

sign

hellheaven

50% 50%

sign

??

start

A Quiz

-dim continuousstochastic1-dim
continuous stochastic

actions# states size belief space?sensors

3: s1, s2, s3deterministic3 perfect

3: s1, s2, s3stochastic3 perfect

23-1: s1, s2, s3, s12, s13, s23, s123deterministic3 abstract states

deterministic3 stochastic

2-dim continuous: p(S=s1), p(S=s2)stochastic3 none

2-dim continuous: p(S=s1), p(S=s2)

-dim continuousdeterministic1-dim
continuous stochastic

aargh!stochastic-dim
continuous

stochastic

MPD Planning

Solution for Planning problem
Noisy controls
Perfect perception
Generates “universal plan” (=policy)

What is the problem?

Example: a mobile robot does not
exactly perform the desired action.

Consider a non-deterministic
robot/environment.
Actions have desired outcome with a
probability less then 1.
What is the best action for a robot under
this constraint?

Uncertainty about performing actions!

Example (1)

Bumping to wall “reflects” robot.
“Reward” for free cells -0.04 (travel
cost).

What is the best way to reach the cell
labeled with +1 without moving to –1 ?

Example (2)

Deterministic Transition Model:
move on the shortest path!

Example (3)

But now consider the non-deterministic
transition model (N / E / S / W):

(desired action)

What is now the best way?

Example (4)

Use a longer path with lower probability to
move to the cell labeled with –1.
This path has the highest overall utility!

Utility and Policy

Compute for every state a utility:
“What is the usage (utility) of this state
for the overall task?”

A Policy is a complete mapping from
states to actions (“In which state should
I perform which action?”).

Markov Decision Problem (MDP)
Compute the optimal policy in an
accessible, stochastic environment with
known transition model.

Markov Property:

The transition probabilities depend only
the current state and not on the history
of predecessor states.

Not every decision
problem is a MDP.

17

Markov Decision Process (MDP)

s2

s3

s4
s5

s1

0.7

0.3

0.9
0.1

0.3

0.3
0.4

0.99

0.01

0.2

0.8 r=-10

r=20

r=0

r=1

r=0

18

Markov Decision Process (MDP)

• Given:
• States x
• Actions u
• Transition probabilities p(x‘|u,x)
• Reward / payoff function r(x,u)

• Wanted:
• Policy (x) that maximizes the future

expected reward

19

Rewards and Policies
Policy (general case):

Policy (fully observable case):

Expected cumulative payoff:

T=1: greedy policy
T>1: finite horizon case, typically no discount
T=infty: infinite-horizon case, finite reward if discount < 1

ttt uuz 1:11:1 ,:

tt ux:

T

tT rER
1

20

Policies contd.
Expected cumulative payoff of policy:

Optimal policy:

1-step optimal policy:

Value function of 1-step optimal policy:

T

tttttT uzurExR
1

1:11:1)(|)(

),(argmax)(1 uxrx
u

),(max)(1 uxrxV
u

)(argmax tT xR

21

2-step Policies
Optimal policy:

Value function:

'),|'()'(),(argmax)(12 dxxuxpxVuxrx
u

'),|'()'(),(max)(12 dxxuxpxVuxrxV
u

22

T-step Policies
Optimal policy:

Value function:

'),|'()'(),(argmax)(1 dxxuxpxVuxrx T
u

T

'),|'()'(),(max)(1 dxxuxpxVuxrxV TuT

23

Infinite Horizon

Optimal policy:

Bellman equation

Fix point is optimal policy

Necessary and sufficient condition

'),|'()'(),(max)(dxxuxpxVuxrxV
u

24

Value Iteration
for all x do

endfor

repeat until convergence
for all x do

endfor
endrepeat

'),|'()'(ˆ),(max)(ˆ dxxuxpxVuxrxV
u

min)(ˆ rxV

'),|'()'(ˆ),(argmax)(dxxuxpxVuxrx
u

25

Value Iteration for Motion
Planning

The optimal Policy

Probability of reaching state j
form state i with action a.

If we know the utility we can easily
compute the optimal policy.
The problem is to compute the correct
utilities for all states.

Utility of state j.

The Utility (1)

To compute the utility of a state we have
to consider a tree of states.
The utility of a state depends on the
utility of all successor states.

Not all utility functions can be used.
The utility function must have the
property of separability.
E.g. additive utility functions:

(R = reward function)

The Utility (2)

The utility can be expressed similar to
the policy function:

The reward R(i) is the “utility” of the state
itself (without considering the successors).

This Utility function is the basis for
“dynamic programming”.

Fast solution to compute n-step decision
problems.

Naive solution: O(|A|n).

Dynamic Programming: O(n|A||S|).

But what is the correct value of n?

If the graph has loops: ???

Dynamic Programming

Optimal utility:

Abort, if change in the utility is below a
threshold.

The Utility is computed iteratively:

Iterative Computation

Idea:

The Value Iteration Algorithm

Value Iteration Example
Calculate utility of the center cell

u=10

u=-8u=5

u=1

r=1

(desired action=North)

Transition Model State Space
(u=utility, r=reward)

Value Iteration Example

u=10

u=-8u=5

u=1

r=1

Value Iteration: Example

Another Example

Value Function and PlanMap

Another Example

Value Function and PlanMap

From Utilities to Policies

Computes the optimal utility function.

Optimal Policy can easily be computed
using the optimal utility values:

Value Iteration is an optimal solution to
the Markov Decision Problem!

Convergence “close-enough”

Different possibilities to detect
convergence:

RMS error – root mean square error
Policy Loss
…

Convergence-Criteria: RMS

CLOSE-ENOUGH(U,U’) in the algorithm can
be formulated by:

Example: RMS-Convergence

Example: Value Iteration

1. The given
environment.

Example: Value Iteration

1. The given
environment.

2. Calculate Utilities.

Example: Value Iteration

1. The given
environment.

2. Calculate Utilities.

3. Extract optimal
policy.

Example: Value Iteration

1. The given
environment.

2. Calculate Utilities.

4. Execute actions.3. Extract optimal
policy.

Example: Value Iteration

The
Utilities.

The optimal
policy.

(3,2) has higher utility than (2,3). Why
does the polity of (3,3) points to the left?

Example: Value Iteration

The
Utilities.

The optimal
policy.

(3,2) has higher utility than (2,3). Why
does the polity of (3,3) points to the left?
Because the Policy is not the gradient!
It is:

Convergence of Policy and Utilities

In practice: policy converges faster than
the utility values.

After the relation between the utilities are
correct, the policy often does not change
anymore (because of the argmax).

Is there an algorithm to compute the
optimal policy faster?

Policy Iteration

Idea for faster convergence of the policy:

1. Start with one policy.
2. Calculate utilities based on the current

policy.
3. Update policy based on policy formula.
4. Repeat Step 2 and 3 until policy is

stable.

The Policy Iteration Algorithm

Value Determination

