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Probabilistic Planning and 
MDPs
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Planning: Classical Situation

hellheaven

• World deterministic
• State observable



MDP-Style Planning

hellheaven

• World stochastic
• State observable

[Koditschek 87, Barto et al. 89]

• Policy
• Universal Plan
• Navigation function



Stochastic, Partially Observable
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[Sondik 72] [Littman/Cassandra/Kaelbling 97]
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A Quiz

-dim continuousstochastic1-dim
continuous stochastic

actions# states size belief space?sensors

3: s1, s2, s3deterministic3 perfect

3: s1, s2, s3stochastic3 perfect

23-1: s1, s2, s3, s12, s13, s23, s123deterministic3 abstract states

deterministic3 stochastic

2-dim continuous: p(S=s1), p(S=s2)stochastic3 none

2-dim continuous: p(S=s1), p(S=s2)

-dim continuousdeterministic1-dim
continuous stochastic

aargh!stochastic-dim
continuous

stochastic



MPD Planning

Solution for Planning problem
Noisy controls
Perfect perception 
Generates “universal plan” (=policy)



What is the problem?

Example: a mobile robot does not 
exactly perform the desired action.

Consider a non-deterministic 
robot/environment.
Actions have desired outcome with a 
probability less then 1.
What is the best action for a robot under 
this constraint?

Uncertainty about performing actions!



Example (1)

Bumping to wall “reflects”  robot.
“Reward” for free cells -0.04 (travel 
cost).

What is the best way to reach the cell 
labeled with +1 without moving to –1 ?



Example (2)

Deterministic Transition Model:
move on the shortest path!



Example (3)

But now consider the non-deterministic 
transition model (N / E / S / W):

(desired action)

What is now the best way?



Example (4)

Use a longer path with lower probability to 
move to the cell labeled with –1. 
This path has the highest overall utility!



Utility and Policy

Compute for every state a utility:
“What is the usage (utility) of this state 
for the overall task?”

A Policy is a complete mapping from 
states to actions (“In which state should 
I perform which action?”). 



Markov Decision Problem (MDP)
Compute the optimal policy in an 
accessible, stochastic environment with 
known transition model.  

Markov Property:

The transition probabilities depend only 
the current state and not on the history 
of predecessor states.

Not every decision 
problem is a MDP.
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Markov Decision Process (MDP)
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Markov Decision Process (MDP)

• Given:
• States x
• Actions u
• Transition probabilities p(x‘|u,x)
• Reward / payoff function r(x,u)

• Wanted:
• Policy (x) that maximizes the future 

expected reward
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Rewards and Policies
Policy (general case):

Policy (fully observable case):

Expected cumulative payoff:

T=1: greedy policy
T>1: finite horizon case, typically no discount
T=infty: infinite-horizon case, finite reward if discount < 1

ttt uuz 1:11:1 ,:

tt ux:

T

tT rER
1
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Policies contd.
Expected cumulative payoff of policy:

Optimal policy:

1-step optimal policy:

Value function of 1-step optimal policy:

T

tttttT uzurExR
1

1:11:1 )(|)(

),(argmax)(1 uxrx
u

),(max)(1 uxrxV
u

)(argmax tT xR
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2-step Policies
Optimal policy:

Value function:

'),|'()'(),(argmax)( 12 dxxuxpxVuxrx
u

'),|'()'(),(max)( 12 dxxuxpxVuxrxV
u
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T-step Policies
Optimal policy:

Value function:

'),|'()'(),(argmax)( 1 dxxuxpxVuxrx T
u

T

'),|'()'(),(max)( 1 dxxuxpxVuxrxV TuT
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Infinite Horizon

Optimal policy:

Bellman equation

Fix point is optimal policy

Necessary and sufficient condition

'),|'()'(),(max)( dxxuxpxVuxrxV
u
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Value Iteration
for all x do

endfor

repeat until convergence
for all x do

endfor
endrepeat

'),|'()'(ˆ),(max)(ˆ dxxuxpxVuxrxV
u

min)(ˆ rxV

'),|'()'(ˆ),(argmax)( dxxuxpxVuxrx
u
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Value Iteration for Motion 
Planning



The optimal Policy

Probability of reaching state j 
form state i with action a.

If we know the utility we can easily 
compute the optimal policy.
The problem is to compute the correct 
utilities for all states.

Utility of  state j.



The Utility (1)

To compute the utility of a state we have 
to consider a tree of states.
The utility of a state depends on the 
utility of all successor states. 

Not all utility functions can be used.
The utility function must have the 
property of separability.
E.g. additive utility functions:

(R = reward function)



The Utility (2)

The utility can be expressed similar to 
the policy function:

The reward R(i) is the “utility” of the state 
itself (without considering the successors).



This Utility function is the basis for 
“dynamic programming”.

Fast solution to compute n-step decision 
problems.

Naive solution: O(|A|n).

Dynamic Programming: O(n|A||S|).

But what is the correct value of n? 

If the graph has loops:                ??? 

Dynamic Programming



Optimal utility: 

Abort, if change in the utility is below a 
threshold.

The Utility is computed iteratively:

Iterative Computation

Idea:



The Value Iteration Algorithm



Value Iteration Example 
Calculate utility of the center cell

u=10

u=-8u=5

u=1

r=1

(desired action=North)

Transition Model State Space 
(u=utility, r=reward)



Value Iteration Example 

u=10

u=-8u=5

u=1

r=1



Value Iteration: Example



Another Example

Value Function and PlanMap



Another Example

Value Function and PlanMap



From Utilities to Policies

Computes the optimal utility function.

Optimal Policy can easily be computed 
using the optimal utility values:

Value Iteration is an optimal solution to 
the Markov Decision Problem!



Convergence “close-enough”

Different possibilities to detect 
convergence:

RMS error – root mean square error
Policy Loss
…



Convergence-Criteria: RMS

CLOSE-ENOUGH(U,U’) in the algorithm can 
be formulated by:



Example: RMS-Convergence



Example: Value Iteration

1. The given 
environment.



Example: Value Iteration

1. The given 
environment.

2. Calculate Utilities.



Example: Value Iteration

1. The given 
environment.

2. Calculate Utilities.

3. Extract optimal 
policy.



Example: Value Iteration

1. The given 
environment.

2. Calculate Utilities.

4. Execute actions.3. Extract optimal 
policy.



Example: Value Iteration

The 
Utilities.

The optimal 
policy.

(3,2) has higher utility than (2,3). Why 
does the polity of (3,3) points to the left?



Example: Value Iteration

The 
Utilities.

The optimal 
policy.

(3,2) has higher utility than (2,3). Why 
does the polity of (3,3) points to the left?
Because the Policy is not the gradient! 
It is:



Convergence of Policy and Utilities

In practice: policy converges faster than 
the utility values. 

After the relation between the utilities are 
correct, the policy often does not change 
anymore (because of the argmax).

Is there an algorithm to compute the 
optimal policy faster?



Policy Iteration

Idea for faster convergence of the policy:

1. Start with one policy.
2. Calculate utilities based on the current 

policy.
3. Update policy based on policy formula.
4. Repeat Step 2 and 3 until policy is 

stable.



The Policy Iteration Algorithm

Value Determination


