Probabilistic Robotics:

Probabilistic Planning and
MDPs

Slide credits: Wolfram Burgard, Dieter Fox, Cyrill Stachniss, Giorgio
Grisetti, Maren Bennewitz, Christian Plagemann, Dirk Haehnel, Mike
Montemerlo, Nick Roy, Kai Arras, Patrick Pfaff and others

Planning: Classical Situation

he§ven hell

* World deterministic
e State observable

MDP-Style Planning

heaven hell
tt Vb
TTTT ‘ﬁ
ﬁ ‘\'\'\'\\"\\ et
AX
A X
| tTa » World stochastic
* Policy t1 - State observable
« Universal Plan ©
« Navigation function t 1
t 1
TTT
ty!
t x“v\tﬁ‘_

[Koditschek 87, Barto et al. 89]

Stochastic, Partially Observable

heaven? hell?

sign

[Sondik 72] [Littman/Cassandra/Kaelbling 97]

Stochastic, Partially Observable

heaven hell hell heaven

sign

Stochastic, Partially Observable

heaven hell ? ? hell heaven

50% 50%

Stochastic, Partially Observable

? ? eaven e ? ?
start |@ > start |©
sign sign

50% 50%

A Quiz

states

3
3
3
3

3

J:dhn
continuous
]:dnn
continuous
oo-di_m
continuous

Sensors

perfect

perfect

abstract states
stochastic

none
stochastic

stochastic

stochastic

actions size belief space?

deterministic 3:S;, S,, S3

stochastic 3:S4, Sy, S3

deterministic 23-1:S,, S5, S3, S;5, S13, S23, S123
deterministic 2-dim continuous: p(5=s,), p(5=s,)
stochastic ~ 2-dim continuous: p(5=s;), p(5=s,)

deterministic co-dim continuous

stochastic oo-dim continuous

stochastic aargh!

MPD Planning

= Solution for Planning problem
= Noisy controls
m Perfect perception
m Generates “universal plan” (=policy)

What is the problem?

m Consider a non-deterministic
robot/environment.

m Actions have desired outcome with a
probability less then 1.

m What is the best action for a robot under
this constraint?

m Example: a mobile robot does not
exactly perform the desired action.

‘ Uncertainty about performing actions!

Example (1)

+1

Start

m Bumping to wall “"reflects” robot.

m "Reward” for free cells -0.04 (travel
cost).

m What is the best way to reach the cell
labeled with +1 without moving to -1 ?

Example (2)

m Deterministic Transition Model:
move on the shortest path!

+1

Start

Example (3)

m But now consider the non-deterministic
transition model (N/E/ S/ W):

(desired action)
p=0.8

A

- -
p=01 p=0.1

m What is now the best way?

Example (4)

+1

Start

m Use a longer path with lower probability to
move to the cell labeled with -1.

m This path has the highest overall utility!

Utility and Policy

m Compute for every state a utility:
"What is the usage (utility) of this state
for the overall task?”

m A Policy is a complete mapping from
states to actions ("In which state should
I perform which action?”).

policy . States — Actions

Markov Decision Problem (MDP)

m Compute the optimal policy in an
accessible, stochastic environment with
known transition model.

Markov Property:

m The transition probabilities depend only
the current state and not on the history
of predecessor states.

Not every decision
problem is a MDP.

Markov Decision Process (MDP)

17

Markov Decision Process (MDP)

e Given:

e States X

e Actions u

e Transition probabilities p(x ‘|u,x)
e Reward / payoff function r(x,u)

e Wanted:

e Policy n(X) that maximizes the future
expected reward

18

Rewards and Policies

m Policy (general case):
o Ly Uy = U

m Policy (fully observable case):
. X —> U

m Expected cumulative payoff:

- -
RT = E Z yrrtw
| 7=l i

m T=1: greedy policy
m T>1: finite horizon case, typically no discount

s T=infty: infinite-horizon case, finite reward if discount < 1
19

Policies contd.

m Expected cumulative payoff of policy:

T

Rr (x)=E

7=1

m Optimal policy:

T

Z 7/ r‘t+r ‘utﬂ =7 (Zlit-I-T—luth-l-T—l)

7 =argmax R7(X)

m 1-step optimal policy:

7,(X) = argmax

r(x,u)

= Value functiuon of 1-step optimal policy:
V,(X) =y max r(x,u)
u

20

2-step Policies
m Optimal policy:

7, (X) = argmax {r(x,u) + Jvl(x') p(X'| U, x)dx"

m Value function:

V,(0 = ymax () + [V, () pOX|u, x|

21

T-step Policies
m Optimal policy:

7. (X) = argmax {r(x,u) + jVT_l(X') p(X'| U, x)dx"

m Value function:

V,(x)=ymax [roou)+ Vo, (¢) pOX|, K |

22

Infinite Horizon

m Optimal policy:
V, (0 =max [r(xu)+ [V, (x)p(x|u, xd]
u
m Bellman equation
m Fix point is optimal policy

m Necessary and sufficient condition

23

Value Iteration

m for all x do
\7(x) «r.

m endfor

® repeat until convergence
m for all x do

V (X) < 7 max {r(x,u)+j\7(x') n(X'| U, x)dx"

= endfor
® endrepeat

77(X) = argmax {r(x,u)+j\7(x') n(X'| U, x)dx"

24

Value Iteration for Motion
Planning

25

The optimal Policy

. sk . - -
policy™ (1) = arggnaXZij -U(J)
J
M,f; = Probability of reaching state j
form state i with action a.

U(j) = Utility of state j.

m If we know the utility we can easily
compute the optimal policy.

m The problem is to compute the correct
utilities for all states.

The Utility (1)

m Jo compute the utility of a state we have
to consider a tree of states.

m The utility of a state depends on the
utility of all successor states.

mm) = Not all utility functions can be used.

m The utility function must have the
property of separability.
m E£.g. additive utility functions:

U(lso,s1,...5n]) = R(sg) + U([s1,...5n])

(R = reward function)

The Utility (2)

m The utility can be expressed similar to
the policy function:

U(i) = R(i) + mC?XZM% -U(7)
J

m The reward R(i) is the "utility” of the state
itself (without considering the successors).

Dynamic Programming

m This Utility function is the basis for
“"dynamic programming”.

m Fast solution to compute n-step decision
problems.

m Naive solution: O(|A]|").
m Dynamic Programming: O(n|A||S]|).
m But what is the correct value of n?

m If the graph has loops: n — oo 2?2727

Iterative Computation

Idea:
m The Utility is computed iteratively:

Up1(1) = R(i) + max M5 - Ur(j)
J

m Optimal utility: U* = lim Uy

t—00
m Abort, if change in the utility is below a
threshold.

The Value Iteration Algorithm

function VALUE-ITERATION(M, R) returns a utility function
inputs: M, a transition model
R, a reward function on states
local variables: U, utility function, initially identical to R
U', utility functimn, initially identical to R

repeat
U—U
for each state i do
U'[i] — R[i{] + max, ZJ. M;; Ulj]
end
until CLOSE-ENOUGH(U, U")
return U

Value Iteration Example

m Calculate utility of the center cell

Up41(i) = R(i) + max Z M5 - U(5)
J

(desired action=North) u=10
p=0.8
A u=5 | r=1 | u=-8
-} - _
p=0.1 p=0.1 =1
Transition Model State Space

(u=utility, r=reward)

Value Iteration Example

Up1(1) = R(i) + maxy M - Up(4)
]

reward + max{
0.1-1408-54+0.1-10 (),
0.1-54+0.8-1040.1--8 (1),
0.1-10408:--8+4+0.1-1 (—),
01--84+08-140.1-5 (1)}
1+ max{5.1(+),7.7(7]),
—5.3(—),0.5(])}

1= .

3.7

Value Iteration: Example

Another Example

Value Function and Plan

Another Example

Value Function and Plan

From Utilities to Policies

m Computes the optimal utility function.

m Optimal Policy can easily be computed
using the optimal utility values:

policy™(2) = argg’laxZM{‘j - U*(4)
J

m Value Iteration is an optimal solution to
the Markov Decision Problem!

Convergence “close-enough”

m Different possibilities to detect
convergence:

m RMS error — root mean square error
m Policy Loss

Convergence-Criteria: RMS

1 S|
RMS = ——- | Y (UG) - U'(4))?
=1

K

m CLOSE-ENOUGH (U,U’) in the algorithm can
be formulated by:

RMS(U,U") < e

Example: RMS-Convergence

0.8 r

RMS error

0 5 10 15 20
Number of iterations

Example: Value Iteration

+1
—1

1. The given
environment.

Example: Value Iteration

+1 081208680912 +1
-1 0762 0660 -1

0.70510.655]|0.611]0.388

1. The given 2. Calculate Utilities.
environment.

Example: Value Iteration

+1

n

1. The given
environment.

3. Extract optimal

policy.

081208680912 +1
0762 0660 -1
0.705|0.655|0.611(0.388

2. Calculate Utilities.

Example: Value Iteration

+1

n

1. The given
environment.

3. Extract optimal

policy.

081208680912 +1
0762 0660 -1
0.705|0.655|0.611(0.388

2. Calculate Utilities.

+1
. _1

4. Execute actions.

Example: Value Iteration

0812086810912 +1 — | = | - +1
0660 —1 f T 1
0.705|0.655|0.611(0.388 f - | - -
The The optimal
Utilities. policy.

m (3,2) has higher utility than (2,3). Why
does the polity of (3,3) points to the left?

Example: Value Iteration

081210.868|0.912| +1 — | = | — | 1

0660 -1 i

0.70510.655]|0.611]0.388 ? - | - | -

The The optimal
Utilities. policy.

m (3,2) has higher utility than (2,3). Why
does the polity of (3,3) points to the left?
m Because the Policy is not the gradient!

Itis: policy* (i) = argmax » M;: - U(j)

Convergence of Policy and Utilities

m In practice: policy converges faster than
the utility values.

m After the relation between the utilities are
correct, the policy often does not change
anymore (because of the argmax).

m s there an algorithm to compute the
optimal policy faster?

Policy Iteration

m Idea for faster convergence of the policy:

1. Start with one policy.

2. Calculate utilities based on the current
policy.

3. Update policy based on policy formula.

4. Repeat Step 2 and 3 until policy is
stable.

The Policy Iteration Algorithm

function POLICY-ITERATION(M, R) returns a policy
inputs: M, a transition model
R, a reward function on states
local variables: U, a utility function, initially identical to R
P, a policy, initially optimal with respect to U

repeat
U — VALUE-DETERMINATION(P, U, M, R)
unchanged? — true

for each state i do .
if max, Y Mg U[jl > 5 M;" Ulj] then

J

J
Pli] — argmax, » M U[j]
J

i ¢ Value Determination
unchanged? — false

end Uls) = R(s)+ %, PT0(s))
until unchanged?

return P ('(s,) — RBli| + 32, P U(s))

