POMDPs

m MDPs policy: to find a mapping from
states to actions

m POMDPs policy: to find a mapping

from probability distributions (over
states) to actions.

m belief state: a probability distribution
over states

m belief space: the entire probability
space, Infinite
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POMDPs

m Partially Observable MDPs

A partially observable Markov decision process can be described as a tuple
(S A TR Q0. where

o &5 A T and R describe a Markov decision process:

e () isa finite set of observations the agent can experience of 1ts world: and

o ()8 x A — 11 is the observation function, which gives. for each action
and resulting state, a probability distribution over possible observations (we
write ()&, w. o) for the probability of making observation o given that the
acent took action o and landed in state s,

Action

Observation

| SE ’nT

AGENT ol




POMDPs

= In POMDPs we apply the very same idea as in
MDPs.

m Since the state is not observable, the agent has
to make its decisions based on the belief state
which is a posterior distribution over states.

m Let b be the belief of the agent about the state
under consideration.

= POMDPs compute a value function over belief
space:

Vi) = ymax [r(b,w) + [ Vi1 @)p | ub) db
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Problems

m Each belief is a probability distribution, thus,
each value in a POMDP is a function of an
entire probability distribution.

m This is problematic, since probability
distributions are continuous.

= Additionally, we have to deal with the huge
complexity of belief spaces.

m For finite worlds with finite state, action, and
measurement spaces and finite horizons,
however, we can effectively represent the
value functions by piecewise linear
functions.
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A two state POMDP

m represent the belief state with a single
number p.

m the entire space of belief states can be
represented as a line segment.

belief space for a 2 state POMDP

0 1
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belief state updating

m finite number of possible next belief states,
given a belief state

m a finite number of actions
m a finite number of observations

m b’ =T7(b’| b, a, z). Given a and z, b’ is fully
determined.
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m the process of maintaining the belief
state Is Markovian: the next belief
state depends only on the current
belief state (and the current action
and observation)

m we are now back to solving a MDP
policy problem with some adaptations
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®m continuous space:
value function is
some arbitrary
function
m b: belief space
= V(b): value function

® Problem: how we
can easily
represent this
value function?

V(b)

mVValue function over

belief space
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Fortunately, the finite horizon value
function is piecewise linear and convex
(PWLC) for every horizon length.

AN

() |
PWLC
function
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An Illustrative Example

measurements

state X

0.2

action U, state X,

0.8

-100 100

‘ payoff ‘

0.8

measurements
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The Parameters of the Example

m The actions u; and u, are terminal actions.

m The action u; IS a sensing action that potentially
leads to a state transition.

m The horizon is finite and y=1.

r(x1,u1) = —100 r(xo,u1) = —+100
r(zx1,up) = 4100 r(zo,up) = —50
r(r1,uz) = —1 r(zo,u3z) = -1
p(z1|T1,u3) = 0.2 p(z5|z1,u3) = 0.8
p(zi|To,u3) = 0.8 p(z5|z2,uz) = 0.2
p(z1|z1) = 0.7 p(z2|z1) = 0.3
p(z1|z2) = 0.3 plzajzn) = 0.7
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Payoff in POMDPs

m In MDPs, the payoff (or return)
depended on the state of the system.

m In POMDPs, however, the true state Is
not exactly known.

m Therefore, we compute the expected
payoff by integrating over all states:

T(ba U’) Eﬂ? [T(aja ’U,)]
/fr(::c,u)p(a:‘) dx

= P1 T‘(SIZ]_,’U,) +p2 T(CBQ'J ’U,)
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Payoffs in Our Example (1)

m If we are totally certain that we are in state x, and
execute action u,, we receive a reward of -100

m If, on the other hand, we definitely know that we
are in x, and execute u,, the reward is +100.

m In between it is the linear combination of the
extreme values weighted by the probabilities

r(b,u1) = —100 p71 + 100 p>
—  _100.p; - 100 (1 —pi)
r(b,up) = 100p; —50 (1 —p1)

—1

r(b,u3)
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Payoffs in Our Example (2)

r(b,uq)

100

50-

0_

-50¢

=100, 02 04 06

r(b,u3)
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50~

08

-50r

-100

0.8

100

50¢

-50
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r(b, uo)
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.'1

V1(b) = mazyr(b,u)

100

50r

-50

OF

-100

0 02 04 06 08

1
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The Resulting Policy for T=1

m Given we have a finite POMDP with
T=1, we would use V,(b) to
determine the optimal policy.

m In our example, the optimal policy
for T=1 Is

’

uq |fp1<3
71'1([)) =

i 3
| u2 pr1>7

m This Is the upper thick graph in the
diagram.
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Piecewise Linearity, Convexity

m The resulting value function V,(b) Is
the maximum of the three functions
at each point

Vi(b) = max r(b,uw)

( —100p; +100 (1 —p7)
max{ 100p; —50(1—pq1)
—1

\ /

m It Is plecewise linear and convex.
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Pruning

m If we carefully consider V,(b), we see
that only the first two components
contribute.

m The third component can therefore
safely be pruned away from V,(b).

_ —100p; +100 (1 —p1)
) = max{ 100p1 =50 (1 —p1)
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Increasing the Time Horizon

s Assume the robot can make an observation before
deciding on an action.

V1(b)
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Increasing the Time Horizon

= Assume the robot can make an observation before
deciding on an action.

m Suppose the robot perceives z, for which
p(z, | X;)=0.7 and p(z,| x,)=0.3.

m Given the observation z; we update the belief using
Bayes rule.

' 07 pl

p —
" p(z)

pv _ 03(1_ pl)
T p(z)

0(z,)=0.7p, +0.3(1— p,)=0.4p, +0.3
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Value Function

b’(b]z,)
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Vi(b)
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Increasing the Time Horizon

= Assume the robot can make an observation before
deciding on an action.

m Suppose the robot perceives z, for which
p(z, | X;)=0.7 and p(z,| x,)=0.3.

m Given the observation z; we update the belief using
Bayes rule.

m Thus V,(b| z;) is given by

i . . 0.7 P1 . 03 (l—pl) f
L e
MaxX < >

. 0.7p1 o . 0.3 (l—pl)
O 2 ey

_ 1 —70p1 +30(1—p1)
 p(z1) max{ 70 pq —15(1—p1)}

Vi(b | z1)
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Expected Value after Measuring

m Since we do not know In advance what the
next measurement will be, we have to
compute the expected belief

Vi(b) = E,[V,(b| 2)]= 2 p(z,V, (b )

S b2,V [ p(z, | Xl)pll

p(z;)

> Vi(p(z;1x)p,)
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Expected Value after Measuring

m Since we do not know In advance what the
next measurement will be, we have to
compute the expected belief

Vi(b) = E:[Vi(b] 2)]
2
= Y p(z) Vi(b] z;)
=

—70p; +30(1 —pj)
= max
{ 70p1 —15(1—p1)

—30p1 +70 (1 —p1) }

+ max
{ 30p1 —35(1—p1)
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Resulting Value Function

m The four possible combinations yield the
following function which then can be simplified
and pruned.

| =70p; +30(lL—p1) —30py +70(lL—p1) |
—70p1 +30(1—p1) +30p1 —35(1—p1) |
+70pi —15(1l—pi) —30p; -+70(1—pi)

| +70p1 -15(1—p31) +30p; —35(1-—p1) |

—100 p; 4100 (1 —p1)
= maX +40p; +55 (1 —p1)
+100p; —50 (1 —p1)

Vl(b) MmaxX <
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Value Function
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State Transitions (Prediction)

= When the agent selects u, its state
potentially changes.

® When computing the value function, we
have to take these potential state
changes into account.

p] = Eglp(z1 | x,uz)]
2

> p(x1 | @, us)p;
—
0.2p1 + 0.8(1 — p1)

0.8 — 0.6pq
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State Transitions (Prediction)

Exlp(z1 | z,uz)]
2

> p(x1 | i, u3)p;

=1
0.2p7 + 0.8(1 — pq)

0.8 — 0.6pq

0.8

0.6r

0.4;

0.2

0.4

0.6

0.8

76



Resulting Value Function after
executing u;

m Taking the state transitions into account,
we finally obtain.

| =70p; +30(lL—p1) —30py +70(lL—p1) |
—70p1 430(1—p1) +30p; —35(1l—pi)
+70pi —15(1l—pi) —30p; -+70(1—pi)
+70p1 —-15(1—p1) +30p; —35(1-—p1) |

s

max A{

V1(b)

Ve

~

—100 p; +100 (1 —p1)
= max{ +40p;y +55(1—p1)
| +100p; —50 (1 —pq)

B [ 60p; —60 (1 —p1)
Vl(b | U3) = MaXyH« 52 P1 +43 (1 — pl)
—20p1 +70 (1 —p1) |

—
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Value Function after executing
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Value Function for T=2

m Taking into account that the agent can
either directly perform u, or u, or first u;
and then u; or u,, we obtain (after

pruning)

B ( —100p; +100 (1 —p1) |
Vo(b) = max{ 100py —-50(1—1p1) ;
. 51p; +42(1-p1) |
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Graphical Representation
of V,(b)

100 u, optimal u, optimal

507

outcome of
measurement
important
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Deep Horizons and Pruning

®m We have now completed a full backup In
belief space.

m This process can be applied recursively.
m The value functions for T=10 and T=20 are

100 100

80 80

60 607

40¢ 40¢

207 207




Deep Horizons and Pruning

1004

501

100
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m |S] =3
m Hyper-planes

= Finite number
of regions over
the simplex

mSample value function for |S| = 3
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m Repeat the process for value
functions of 3-horizon,..., and k-
horizon POMDP

V" (b) = max qu, + > bpiraV, [T (b|a,2)]]

acA
i,j,2
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AlITernate vaiue runction
interpretation

m A decision tree
m Nodes represent an action decision
m Branches represent observation made

®= ToO many trees to be generated!

B=0 B=2
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e T @

10:
11:
12:
13:
14:

15:
16:

17

18:
19:
20:
21:
22:
23:
24.
25:

Algorithm POMDP(T'):

T=(0,...,0)
forr=1toT do
T =10
forall (v/;vf,...,vk)in T do
for all control actions u do

for all measurements z do
forj=1toN do

N
Ve = D Ui Dz | 20) p(ai | u,2))
i=1

endfor
endfor
endfor
endfor
for all control actions u do

for all k(1),... k(M) =(1,...,1) to (|Y].....|Y]) do

fori =1to N do

vl =1 [r(l‘:‘yu) + Z 1"5.(;.)5]

endfor
add (u;vy,...,vy) to X’
endfor
endfor
optional: prune Y’
T=71
endfor
return T
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Why Pruning is Essential

Each update introduces additional linear
components to V.

Each measurement squares the number of
linear components.

Thus, an un-pruned value function for T=20
includes more than 10°47:864 |inear functions.

At T=30 we have 10°61.012,337 |ihear functions.

The pruned value functions at T=20, In
comparison, contains only 12 linear components.

The combinatorial explosion of linear components
In the value function are the major reason why
POMDPs are impractical for most

applications. .



POMDP Summary

POMDPs compute the optimal action Iin
partially observable, stochastic domains.

~or finite horizon problems, the resulting
value functions are piecewise linear and
convex.

In each iteration the number of linear
constraints grows exponentially.

POMDPs so far have only been applied
successfully to very small state spaces
with small numbers of possible
observations and actions.




