POMDPs

- MDPs policy: to find a mapping from states to actions
- POMDPs policy: to find a mapping from probability distributions (over states) to actions.
 - belief state: a probability distribution over states
 - belief space: the entire probability space, infinite

POMDPs

Partially Observable MDPs

A partially observable Markov decision process can be described as a tuple $\langle S, A, T, R, \Omega, O \rangle$, where

- S, A, T, and R describe a Markov decision process;
- Ω is a finite set of observations the agent can experience of its world; and
- O: S × A → Π(Ω) is the observation function, which gives, for each action and resulting state, a probability distribution over possible observations (we write O(s', a, o) for the probability of making observation o given that the agent took action a and landed in state s').

POMDPs

- In POMDPs we apply the very same idea as in MDPs.
- Since the state is not observable, the agent has to make its decisions based on the belief state which is a posterior distribution over states.
- Let b be the belief of the agent about the state under consideration.
- POMDPs compute a value function over belief space:

$$V_T(b) = \gamma \max_u \left[r(b, u) + \int V_{T-1}(b') p(b' | u, b) db' \right]$$

Problems

- Each belief is a probability distribution, thus, each value in a POMDP is a function of an entire probability distribution.
- This is problematic, since probability distributions are continuous.
- Additionally, we have to deal with the huge complexity of belief spaces.
- For finite worlds with finite state, action, and measurement spaces and finite horizons, however, we can effectively represent the value functions by piecewise linear functions.

A two state POMDP

- represent the belief state with a single number p.
- the entire space of belief states can be represented as a line segment.

belief space for a 2 state POMDP

belief state updating

- finite number of possible next belief states, given a belief state
 - a finite number of actions
 - a finite number of observations
- b' = T(b' | b, a, z). Given a and z, b' is fully determined.

- the process of maintaining the belief state is Markovian: the next belief state depends only on the current belief state (and the current action and observation)
- we are now back to solving a MDP policy problem with some adaptations

- continuous space: value function is some arbitrary function
 - b: belief space
 - V(b): value function
- Problem: how we can easily represent this value function?

Value function over belief space Fortunately, the finite horizon value function is piecewise linear and convex (PWLC) for every horizon length.

An Illustrative Example

The Parameters of the Example

- The actions u_1 and u_2 are terminal actions.
- The action u₃ is a sensing action that potentially leads to a state transition.
- The horizon is finite and $\gamma = 1$.

$$r(x_{1}, u_{1}) = -100 \qquad r(x_{2}, u_{1}) = +100$$

$$r(x_{1}, u_{2}) = +100 \qquad r(x_{2}, u_{2}) = -50$$

$$r(x_{1}, u_{3}) = -1 \qquad r(x_{2}, u_{3}) = -1$$

$$p(x'_{1}|x_{1}, u_{3}) = 0.2 \qquad p(x'_{2}|x_{1}, u_{3}) = 0.8$$

$$p(x'_{1}|x_{2}, u_{3}) = 0.8 \qquad p(z'_{2}|x_{2}, u_{3}) = 0.2$$

$$p(z_{1}|x_{1}) = 0.7 \qquad p(z_{2}|x_{1}) = 0.3$$

 $p(z_1|x_2) = 0.3$ $p(z_2|x_2) = 0.7$

Payoff in POMDPs

- In MDPs, the payoff (or return) depended on the state of the system.
- In POMDPs, however, the true state is not exactly known.
- Therefore, we compute the expected payoff by integrating over all states:

$$r(b, u) = E_x[r(x, u)]$$

= $\int r(x, u)p(x) dx$
= $p_1 r(x_1, u) + p_2 r(x_2, u)$

Payoffs in Our Example (1)

- If we are totally certain that we are in state x₁ and execute action u₁, we receive a reward of -100
- If, on the other hand, we definitely know that we are in x_2 and execute u_1 , the reward is +100.
- In between it is the linear combination of the extreme values weighted by the probabilities

$$r(b, u_1) = -100 p_1 + 100 p_2$$

= -100 p_1 + 100 (1 - p_1)

$$r(b, u_2) = 100 p_1 - 50 (1 - p_1)$$

$$r(b, u_3) = -1$$

Payoffs in Our Example (2)

The Resulting Policy for T=1

- Given we have a finite POMDP with T=1, we would use V₁(b) to determine the optimal policy.
- In our example, the optimal policy for T=1 is

$$\pi_1(b) = \begin{cases} u_1 & \text{if } p_1 \leq \frac{3}{7} \\ u_2 & \text{if } p_1 > \frac{3}{7} \end{cases}$$

This is the upper thick graph in the diagram.

Piecewise Linearity, Convexity

The resulting value function V₁(b) is the maximum of the three functions at each point

$$V_{1}(b) = \max_{u} r(b, u)$$

=
$$\max \left\{ \begin{array}{cc} -100 \ p_{1} & +100 \ (1 - p_{1}) \\ 100 \ p_{1} & -50 \ (1 - p_{1}) \\ -1 \end{array} \right\}$$

It is piecewise linear and convex.

Pruning

- If we carefully consider V₁(b), we see that only the first two components contribute.
- The third component can therefore safely be pruned away from $V_1(b)$.

$$V_1(b) = \max \left\{ \begin{array}{rrr} -100 \ p_1 & +100 \ (1-p_1) \\ 100 \ p_1 & -50 \ (1-p_1) \end{array} \right\}$$

Increasing the Time Horizon

Assume the robot can make an observation before deciding on an action.

Increasing the Time Horizon

- Assume the robot can make an observation before deciding on an action.
- Suppose the robot perceives z_1 for which $p(z_1 | x_1) = 0.7$ and $p(z_1 | x_2) = 0.3$.
- Given the observation z₁ we update the belief using Bayes rule.

$$p'_{1} = \frac{0.7 p_{1}}{p(z_{1})}$$

$$p'_{2} = \frac{0.3(1 - p_{1})}{p(z_{1})}$$

$$p(z_{1}) = 0.7 p_{1} + 0.3(1 - p_{1}) = 0.4 p_{1} + 0.3$$

Value Function

Increasing the Time Horizon

- Assume the robot can make an observation before deciding on an action.
- Suppose the robot perceives z_1 for which $p(z_1 | x_1) = 0.7$ and $p(z_1 | x_2) = 0.3$.
- Given the observation z₁ we update the belief using Bayes rule.
- Thus $V_l(b \mid z_1)$ is given by

$$V_{1}(b \mid z_{1}) = \max \begin{cases} -100 \cdot \frac{0.7 p_{1}}{p(z_{1})} + 100 \cdot \frac{0.3 (1-p_{1})}{p(z_{1})} \\ 100 \cdot \frac{0.7 p_{1}}{p(z_{1})} - 50 \cdot \frac{0.3 (1-p_{1})}{p(z_{1})} \end{cases} \\ = \frac{1}{p(z_{1})} \max \begin{cases} -70 p_{1} + 30 (1-p_{1}) \\ 70 p_{1} - 15 (1-p_{1}) \end{cases} \end{cases}$$

Expected Value after Measuring

Since we do not know in advance what the next measurement will be, we have to compute the expected belief

$$\overline{V_1}(b) = E_z[V_1(b \mid z)] = \sum_{i=1}^2 p(z_i)V_1(b \mid z_i)$$
$$= \sum_{i=1}^2 p(z_i)V_1\left(\frac{p(z_i \mid x_1)p_1}{p(z_i)}\right)$$
$$= \sum_{i=1}^2 V_1(p(z_i \mid x_1)p_1)$$

Expected Value after Measuring

Since we do not know in advance what the next measurement will be, we have to compute the expected belief

$$\overline{V}_{1}(b) = E_{z}[V_{1}(b \mid z)] \\
= \sum_{i=1}^{2} p(z_{i}) V_{1}(b \mid z_{i}) \\
= \max \left\{ \begin{array}{cc} -70 \ p_{1} & +30 \ (1-p_{1}) \\ 70 \ p_{1} & -15 \ (1-p_{1}) \end{array} \right\} \\
+ \max \left\{ \begin{array}{cc} -30 \ p_{1} & +70 \ (1-p_{1}) \\ 30 \ p_{1} & -35 \ (1-p_{1}) \end{array} \right\}$$

Resulting Value Function

The four possible combinations yield the following function which then can be simplified and pruned.

$$\bar{V}_{1}(b) = \max \begin{cases} -70 \ p_{1} \ +30 \ (1-p_{1}) \ -30 \ p_{1} \ +70 \ (1-p_{1}) \\ -70 \ p_{1} \ +30 \ (1-p_{1}) \ +30 \ p_{1} \ -35 \ (1-p_{1}) \\ +70 \ p_{1} \ -15 \ (1-p_{1}) \ -30 \ p_{1} \ +70 \ (1-p_{1}) \\ +70 \ p_{1} \ -15 \ (1-p_{1}) \ +30 \ p_{1} \ -35 \ (1-p_{1}) \\ +70 \ p_{1} \ -15 \ (1-p_{1}) \ +30 \ p_{1} \ -35 \ (1-p_{1}) \\ +40 \ p_{1} \ +55 \ (1-p_{1}) \\ +100 \ p_{1} \ -50 \ (1-p_{1}) \\ \end{cases}$$

Value Function

State Transitions (Prediction)

- When the agent selects u₃ its state potentially changes.
- When computing the value function, we have to take these potential state changes into account.

$$p_1' = E_x[p(x_1 | x, u_3)]$$

= $\sum_{i=1}^{2} p(x_1 | x_i, u_3)p_i$
= $0.2p_1 + 0.8(1 - p_1)$
= $0.8 - 0.6p_1$

State Transitions (Prediction)

Resulting Value Function after executing u_3

Taking the state transitions into account, we finally obtain.

$$\bar{V}_{1}(b) = \max \begin{cases} -70 \ p_{1} \ +30 \ (1-p_{1}) \ -30 \ p_{1} \ +70 \ (1-p_{1}) \\ -70 \ p_{1} \ +30 \ (1-p_{1}) \ +30 \ p_{1} \ -35 \ (1-p_{1}) \\ +70 \ p_{1} \ -15 \ (1-p_{1}) \ -30 \ p_{1} \ +70 \ (1-p_{1}) \\ +70 \ p_{1} \ -15 \ (1-p_{1}) \ +30 \ p_{1} \ -35 \ (1-p_{1}) \\ +40 \ p_{1} \ +55 \ (1-p_{1}) \\ +100 \ p_{1} \ -50 \ (1-p_{1}) \\ +100 \ p_{1} \ -50 \ (1-p_{1}) \\ \end{pmatrix}$$

$$\bar{V}_{1}(b \mid u_{3}) = \max \begin{cases} 60 \ p_{1} \ -60 \ (1-p_{1}) \\ 52 \ p_{1} \ +43 \ (1-p_{1}) \\ -20 \ p_{1} \ +70 \ (1-p_{1}) \\ \end{pmatrix}$$

Value Function after executing *u*₃

Value Function for T=2

Taking into account that the agent can either directly perform u₁ or u₂ or first u₃ and then u₁ or u₂, we obtain (after pruning)

$$\bar{V}_{2}(b) = \max \left\{ \begin{array}{rrr} -100 \ p_{1} & +100 \ (1-p_{1}) \\ 100 \ p_{1} & -50 \ (1-p_{1}) \\ 51 \ p_{1} & +42 \ (1-p_{1}) \end{array} \right\}$$

Graphical Representation of $V_2(b)$

Deep Horizons and Pruning

- We have now completed a full backup in belief space.
- This process can be applied recursively.
- The value functions for T=10 and T=20 are

Deep Horizons and Pruning

82

- |*S*| = 3
- Hyper-planes
- Finite number of regions over the simplex

Sample value function for |S| = 3

Repeat the process for value functions of 3-horizon,..., and khorizon POMDP

$$V_{t}^{*}(b) = \max_{a \in A} \left[\sum_{i} b_{i} q_{i}^{a} + \sum_{i, j, z} b_{i} p_{ij}^{a} r_{jz}^{a} V_{t-1}^{*} [T(b \mid a, z)]\right]$$

Alternate value function interpretation

A decision tree

- Nodes represent an action decision
- Branches represent observation made
- Too many trees to be generated!

Algorithm POMDP(T): 1: $\Upsilon = (0, \ldots, 0)$ 2: 3: for $\tau = 1$ to T do 4: $\Upsilon' = \emptyset$ 5: for all $(u'; v_1^k, \ldots, v_N^k)$ in Υ do for all control actions u do 6: for all measurements z do 7: 8: for j = 1 to N do $v_{j,u,z}^{k} = \sum_{i=1}^{N} v_{i}^{k} p(z \mid x_{i}) p(x_{i} \mid u, x_{j})$ 9: 10: endfor 11: endfor 12: endfor 13: endfor 14: for all control actions u do for all k(1), ..., k(M) = (1, ..., 1) to $(|\Upsilon|, ..., |\Upsilon|)$ do 15: for i = 1 to N do 16: $v_i' = \gamma \left[r(x_i, u) + \sum_z v_{u, z, i}^{k(z)} \right]$ 17: endfor 18: add $(u; v'_1, \ldots, v'_N)$ to Υ' 19: 20: endfor 21: endfor optional: prune Υ' 22: $\Upsilon=\Upsilon'$ 23: endfor 24: 25: return Υ

Why Pruning is Essential

- Each update introduces additional linear components to V.
- Each measurement squares the number of linear components.
- Thus, an un-pruned value function for T=20 includes more than 10^{547,864} linear functions.
- At T=30 we have $10^{561,012,337}$ linear functions.
- The pruned value functions at T=20, in comparison, contains only 12 linear components.
- The combinatorial explosion of linear components in the value function are the major reason why POMDPs are impractical for most applications.

POMDP Summary

- POMDPs compute the optimal action in partially observable, stochastic domains.
- For finite horizon problems, the resulting value functions are piecewise linear and convex.
- In each iteration the number of linear constraints grows exponentially.
- POMDPs so far have only been applied successfully to very small state spaces with small numbers of possible observations and actions.