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POMDPs

MDPs policy: to find a mapping from 
states to actions
POMDPs policy: to find a mapping 
from probability distributions (over 
states) to actions. 

belief state: a probability distribution 
over states 
belief space: the entire probability 
space, infinite



POMDPs

Partially Observable MDPs
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POMDPs
In POMDPs we apply the very same idea as in 
MDPs.

Since the state is not observable, the agent has 
to make its decisions based on the belief state 
which is a posterior distribution over states.

Let b be the belief of the agent about the state 
under consideration.

POMDPs compute a value function over belief 
space:
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Problems
Each belief is a probability distribution, thus, 
each value in a POMDP is a function of an 
entire probability distribution.

This is problematic, since probability 
distributions are continuous.

Additionally, we have to deal with the huge 
complexity of belief spaces.

For finite worlds with finite state, action, and 
measurement spaces and finite horizons, 
however, we can effectively represent the 
value functions by piecewise linear 
functions. 



54

A two state POMDP 

represent the belief state with a single 
number p.
the entire space of belief states can be 
represented as a line segment. 

belief space for a 2 state POMDP 
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belief state updating
finite number of possible next belief states, 
given a belief state

a finite number of actions 
a finite number of observations 

b’ = T(b’| b, a, z). Given a and z, b’ is fully 
determined.
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the process of maintaining the belief 
state is Markovian: the next belief 
state depends only on the current 
belief state (and the current action 
and observation) 
we are now back to solving a MDP 
policy problem with some adaptations
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continuous space: 
value function is 
some arbitrary 
function 

b: belief space 
V(b): value function

Problem: how we 
can easily 
represent this 
value function? Value function over 

belief space 
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Fortunately, the finite horizon value 
function is piecewise linear and convex 
(PWLC) for every horizon length.

Sample 
PWLC 
function
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An Illustrative Example
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The Parameters of the Example
The actions u1 and u2 are terminal actions.
The action u3 is a sensing action that potentially 
leads to a state transition.
The horizon is finite and =1.
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Payoff in POMDPs
In MDPs, the payoff (or return) 
depended on the state of the system.
In POMDPs, however, the true state is 
not exactly known.
Therefore, we compute the expected 
payoff by integrating over all states: 



62

Payoffs in Our Example (1)
If we are totally certain that we are in state x1 and 
execute action u1, we receive a reward of -100
If, on the other hand, we definitely know that we 
are in x2 and execute u1, the reward is +100.
In between it is the linear combination of the 
extreme values weighted by the probabilities
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Payoffs in Our Example (2)
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The Resulting Policy for T=1

Given we have a finite POMDP with 
T=1, we would use V1(b) to 
determine the optimal policy.
In our example, the optimal policy 
for T=1 is

This is the upper thick graph in the 
diagram.
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Piecewise Linearity, Convexity

The resulting value function V1(b) is 
the maximum of the three functions 
at each point

It is piecewise linear and convex.
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Pruning

If we carefully consider V1(b), we see 
that only the first two components 
contribute. 
The third component can therefore 
safely be pruned away from V1(b).
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Increasing the Time Horizon
Assume the robot can make an observation before 
deciding on an action.  

V1(b)
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Increasing the Time Horizon
Assume the robot can make an observation before 
deciding on an action.  
Suppose the robot perceives z1 for which 
p(z1 | x1)=0.7 and p(z1| x2)=0.3. 
Given the observation z1 we update the belief using 
Bayes rule. 
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Value Function

b’(b|z1)

V1(b)

V1(b|z1)



70

Increasing the Time Horizon
Assume the robot can make an observation before 
deciding on an action.  
Suppose the robot perceives z1 for which 
p(z1 | x1)=0.7 and p(z1| x2)=0.3. 
Given the observation z1 we update the belief using 
Bayes rule. 
Thus V1(b |  z1) is given by 
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Expected Value after Measuring

Since we do not know in advance what the 
next measurement will be, we have to 
compute the expected belief

2

1
111

2

1

11
1

2

1
111

)|(

)(
)|()(

)|()()]|([)(

i
i

i i

i
i

i
iiz

pxzpV

zp
pxzpVzp

zbVzpzbVEbV



72

Expected Value after Measuring

Since we do not know in advance what the 
next measurement will be, we have to 
compute the expected belief
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Resulting Value Function
The four possible combinations yield the 
following function which then can be simplified 
and pruned. 
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Value Function

b’(b|z1)

p(z1) V1(b|z1)

p(z2) V2(b|z2)
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State Transitions (Prediction)

When the agent selects u3 its state 
potentially changes. 
When computing the value function, we 
have to take these potential state 
changes into account.
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State Transitions (Prediction)
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Resulting Value Function after 
executing u3

Taking the state transitions into account, 
we finally obtain.
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Value Function after executing 
u3
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Value Function for T=2

Taking into account that the agent can 
either directly perform u1 or u2 or first u3
and then u1 or u2, we obtain (after 
pruning)
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Graphical Representation 
of V2(b)

u1 optimal u2 optimal

unclear

outcome of 
measurement 
is important 
here
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Deep Horizons and Pruning

We have now completed a full backup in 
belief space.
This process can be applied recursively. 
The value functions for T=10 and T=20 are



82

Deep Horizons and Pruning
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|S| = 3
Hyper-planes
Finite number 
of regions over 
the simplex

Sample value function for |S| = 3
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Repeat the process for value 
functions of 3-horizon,…, and k-
horizon POMDP
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Alternate Value function 
interpretation

A decision tree
Nodes represent an action decision
Branches represent observation made

Too many trees to be generated!
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Why Pruning is Essential
Each update introduces additional linear 
components to V.
Each measurement squares the number of 
linear components. 
Thus, an un-pruned value function for T=20 
includes more than 10547,864 linear functions.  
At T=30 we have 10561,012,337 linear functions.
The pruned value functions at T=20, in 
comparison, contains only 12 linear components.
The combinatorial explosion of linear components 
in the value function are the major reason why 
POMDPs are impractical for most 
applications.
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POMDP Summary
POMDPs compute the optimal action in 
partially observable, stochastic domains.
For finite horizon problems, the resulting 
value functions are piecewise linear and 
convex. 
In each iteration the number of linear 
constraints grows exponentially.
POMDPs so far have only been applied 
successfully to very small state spaces 
with small numbers of possible 
observations and actions. 


