
Reinforcement Learning

Robotica Probabilistica

Reinforcement Learning

• Task

– Learn how to behave successfully to achieve a goal
while interacting with an external environment

Learn through experience from trial and error

• Examples

– Game playing: The agent knows it has won or lost, but
it doesn’t know the appropriate action in each state

– Control: a traffic system can measure the delay of cars,
but not know how to decrease it.

3

Reinforcement Learning
• No knowledge of environment

– Can only act in the world and observe states and reward

• Many factors make RL difficult:

– Actions have non-deterministic effects
• Which are initially unknown

– Rewards / punishments are infrequent
• Often at the end of long sequences of actions
• How do we determine what action(s) were really responsible for reward

or punishment?
(credit assignment)

– World is large and complex

• Nevertheless learner must decide what actions to take
– We will assume the world behaves as an MDP

Reinforcement Learning

• Something is unknown
• Learning and Planning at the same time
• Ultimate learning and planning paradigm
• Scalability is a big issue, Very Challenging!

– Zhang, W., Dietterich, T. G., (1995). A Reinforcement Learning
Approach to Job-shop Scheduling

– G. Tesauro (1994). "TD-Gammon, A Self-Teaching Backgammon
Program Achieves Master-level Play" in Neural Computation

– Reinforcement Learning for Vulnerability Assessment in Peer-to-
Peer Networks, IAAI 2008
• Policy Gradient Update

– DeepQ Learning AlphaGo (2015/2016)

4

Reinforcement Learning

Learner
passive

active

Sequential decision problems

• Approaches:
• Learn values of states (or state histories) & try to maximize

utility of their outcomes.
• Need a model of the environment: what ops & what

states they lead to
• Learn values of state-action pairs

• Does not require a model of the environment (except
legal moves)

• Cannot look ahead

Two Key Aspect in RL

• How we update the value function or policy?

– How do we form training data

– Sequence of (s,a,r)….

• How we explore?

– Exploit or Exploration

6

Category of Reinforcement Learning

• Model-based RL
– Constructs domain transition model, MDP

• E3 – Kearns and Singh

• Model-free RL
– Only concerns policy

• Q-Learning - Watkins

• Active Learning (Off-Policy Learning)
– Q-Learning

• Passive Learning (On-Policy learning)
– Sarsa - Sutton

7

Elements of RL

• Transition model, how action influence states

• Reward R, immediate value of state-action transition

• Policy , maps states to actions

Agent

Environment

State Reward Action

Policy

 sss 221100 r a

2

r a

1

r a

0 ⎯⎯ →⎯⎯⎯ →⎯⎯⎯ →⎯
:::

RL task (restated)

• Execute actions in environment,

observe results.

• Learn action policy : state → action that

maximizes expected discounted reward

E [r(t) + r(t + 1) + 2r(t + 2) + …]

from any starting state in S

Reinforcement Learning

• Target function is : state → action

• However…

– We have no training examples of form <state,

action>

– Training examples are of form

<<state, action>, reward>

Policy Evaluation

• Given the formula

• Can we exploit this with RL?
– What is missing?

– What needs to be done?

• What do we do after policy evaluation?
– Policy Update

13

)'(
'

)'),(,(β)()(s
s

VsssTsRsV +=

14

Example: Passive RL

• Suppose given policy

• Want to determine how good it is

15

Objective: Value Function

16

Passive RL

• Given policy ,

– estimate V(s)

• Not given

– transition matrix, nor

– reward function!

• Simply follow the policy for many
epochs

• Epochs: training sequences

(1,1)→(1,2)→(1,3)→(1,2)→(1,3)→(2,3)→(3,3) →(3,4) +1

(1,1)→(1,2)→(1,3)→(2,3)→(3,3)→(3,2)→(3,3)→(3,4) +1

(1,1)→(2,1)→(3,1)→(3,2)→(4,2) -1

17

Direct Estimation

• Direct estimation (model free)
– Estimate V(s) as average total reward of epochs

containing s (calculating from s to end of epoch)

• Reward to go of a state s
the sum of the (discounted) rewards from that state
until a terminal state is reached

• Key: use observed reward to go of the state as the
direct evidence of the actual expected utility of that
state

• Averaging the reward to go samples will converge to
true value at state

18

Passive RL

• Given policy ,

– estimate V(s)

• Not given

– transition matrix, nor

– reward function!

• Simply follow the policy for many
epochs

• Epochs: training sequences

(1,1)→(1,2)→(1,3)→(1,2)→(1,3)→(2,3)→(3,3) →(3,4) +1

0.57 0.64 0.72 0.81 0.9

(1,1)→(1,2)→(1,3)→(2,3)→(3,3)→(3,2)→(3,3)→(3,4) +1

(1,1)→(2,1)→(3,1)→(3,2)→(4,2) -1

19

Direct Estimation

• Converge very slowly to correct utilities values (requires a
lot of sequences)

• Does not exploit Bellman on policy values

)'()',,()()(
'

sVsasTsRsV
s

 +=

How can we incorporate constraints?

20

Adaptive Dynamic Programming (ADP)

• ADP is a model based approach

– Follow the policy for awhile

– Estimate transition model based on observations

– Learn reward function

– Use estimated model to compute utility of policy

• How can we estimate transition model T(s,a,s’)?

– Simply the fraction of times we see s’ after taking a in state s.

)'()',,()()(
'

sVsasTsRsV
s

 +=

learned

21

Temporal Difference Learning (TD)

• Can we avoid the computational expense of full DP policy
evaluation?

• Temporal Difference Learning
– Do local updates of utility/value function on a per-action basis

– Don’t try to estimate entire transition function!

– For each transition from s to s’, we perform the following update:

• Intutively, moves us closer to satisfying Bellman constraint

))()'()(()()(sVsVsRsVsV −++=

)'()',,()()(
'

sVsasTsRsV
s

 +=

learning rate discount factor

23

Temporal Difference Learning (TD)

• TD update for transition from s to s’:

• So the update is maintaining a “mean” of the
(noisy) utility samples

• If the learning rate decreases with the number
of samples (e.g. 1/n) then the utility estimates
will converge to true values

))()'()(()()(sVsVsRsVsV −++=

)'()',,()()(
'

sVsasTsRsV
s

 +=

learning rate (noisy) sample of utility

based on next state

24

Temporal Difference Learning (TD)

• TD update for transition from s to s’:

• When V satisfies Bellman constraints then
expected update is 0.

))()'()(()()(sVsVsRsVsV −++=

)'()',,()()(
'

sVsasTsRsV
s

 +=

learning rate (noisy) sample of utility

based on next state

25Comparisons

• Direct Estimation (model free)
– Simple to implement

– Each update is fast

– Does not exploit Bellman constraints

– Converges slowly

• Adaptive Dynamic Programming (model based)
– Harder to implement

– Each update is a full policy evaluation (expensive)

– Fully exploits Bellman constraints

– Fast convergence (in terms of updates)

• Temporal Difference Learning (model free)
– Update speed and implementation similar to direct estimation

– Partially exploits Bellman constraints---adjusts state to ‘agree’ with observed
successor

• Not all possible successors

– Convergence in between direct estimation and ADP

26

Active Reinforcement Learning

• So far, we have assumed agent with a policy

– We try to learn how good it is

• Now, suppose agent must learn a good policy
(optimal)

– While acting in uncertain world

27

• Two reasons to take an action in RL
– Exploitation: To try to get reward. We exploit our current

knowledge to get a payoff.
– Exploration: Get more information about the world. How do

we know if there is not a pot of gold around the corner.

• To explore we typically need to take actions that do not
seem best according to our current model.

• Managing the trade-off between exploration and
exploitation is a critical issue in RL

• Basic intuition behind most approaches:
– Explore more when knowledge is weak
– Exploit more as we gain knowledge

Exploration versus Exploitation

Explore/Exploit Policies
• Greedy action is action maximizing estimated Q-value

– where V is current value function estimate, and R, T are current
estimates of model

– Q(s,a) is the expected value of taking action a in state s and then getting
the estimated value V(s’) of the next state s’

• Want an exploration policy that is greedy in the limit of infinite
exploration (GLIE) if it satisfies the following two properties:

– 1. If a state is visited infinitely often, then each action in that state is
chosen infinitely often (with probability 1).

– 2. In the limit (as t → ∞), the learning policy is greedy with respect to
the learned Q-function (with probability 1).

– Guarantees convergence

)'()',,()(),(
'

sVsasTsRasQ
s

+=

Explore/Exploit Policies
• Greedy action is action maximizing estimated Q-value

– where V is current value function estimate, and R, T are current
estimates of model

– Q(s,a) is the expected value of taking action a in state s and then getting
the estimated value V(s’) of the next state s’

• Want an exploration policy that is greedy in the limit of infinite
exploration (GLIE)
– Guarantees convergence

• Solution 1:
– On time step t select random action with probability p(t) and greedy

action with probability 1-p(t)
– p(t) = 1/t will lead to convergence, but it is slow

)'()',,()(),(
'

sVsasTsRasQ
s

+=

30

Explore/Exploit Policies
• Greedy action is action maximizing estimated Q-value

– where V is current value function estimate, and R, T are current
estimates of model

• Solution 2: Boltzmann Exploration

– Select action a with probability,

– T is the temperature. Large T means that each action has about
the same probability. Small T leads to more greedy behavior.

– Typically start with large T and decrease with time

)'()',,()(),(
'

sVsasTsRasQ
s

+=

()
()

=

Aa

TasQ

TasQ
sa

'

/)',(exp

/),(exp
)|Pr(

TD-based Active RL

1. Start with initial utility/value function

2. Take action according to an explore/exploit policy
(should converge to greedy policy, i.e. GLIE)

3. Update estimated model

4. Perform TD update

V(s) is new estimate of optimal value function at state s.

5. Goto 2

Just like TD for passive RL, but we follow explore/exploit policy

))()'()(()()(sVsVsRsVsV −++

Given the usual assumptions about learning rate and GLIE,

TD will converge to an optimal value function!

32

Requires an estimated model. Why?

To compute Q(s,a) for greedy policy execution

Can we construct a model-free variant?

TD-based Active RL

1. Start with initial utility/value function

2. Take action according to an explore/exploit policy
(should converge to greedy policy, i.e. GLIE)

3. Update estimated model

4. Perform TD update

V(s) is new estimate of optimal value function at state s.

5. Goto 2

))()'()(()()(sVsVsRsVsV −++

33

Q-Learning: Model-Free RL

• Instead of learning the optimal value function V, directly learn the
optimal Q function.
– Recall Q(s,a) is expected value of taking action a in state s and then

following the optimal policy thereafter

• The optimal Q-function satisfies
which gives:

• Given the Q function we can act optimally by select action
greedily according to Q(s,a)

)',(max)',,()(

)'()',,()(),(

'
'

'

asQsasTsR

sVsasTsRasQ

a
s

s

+=

+=

)',(max)(
'

asQsV
a

=

How can we learn the Q-function directly?

34

Q-Learning: Model-Free RL

• We can perform updates after each action just
like in TD.

– After taking action a in state s and reaching state s’
do:
(note that we directly observe reward R(s))

)',(max)',,()(),(
'

'

asQsasTsRasQ
a

s

+=

)),()','(max)((),(),(
'

asQasQsRasQasQ
a

−++

(noisy) sample of Q-value

based on next state

Bellman constraints on optimal Q-function:

35

Q-Learning

1. Start with initial Q-function (e.g. all zeros)

2. Take action according to an explore/exploit policy
(should converge to greedy policy, i.e. GLIE)

3. Perform TD update

Q(s,a) is current estimate of optimal Q-function.

4. Goto 2

)),()','(max)((),(),(
'

asQasQsRasQasQ
a

−++

 Does not require model since we learn Q directly

 Uses explicit |S|x|A| table to represent Q

 Explore/exploit policy directly uses Q-values

E.g. use Boltzmann exploration.

Q-Learning Algorithmic Components

• Q-learning:

– If infinitely often and
then converngence [Jaakkola,Jordan,Singh 94]

• SARSA(0):

– Convergence if GLIE policy: infinitely often,
in the limit action chosen w.r.t. Q

SARSA

• SARSA(state-action-reward-state-action) equation

where a’ is the action actually taken in state s’.

• The rule is applied at the end of each s,a,r,s’,a’.

• Difference with Q learning:
Q-learning backs up the best Q-value from the state
reached while SARSA waits until an action is taken and
then backs up the Q-value from that action.

SARSA

Actor Critic Method

• Policy structure (actor): it selects the actions,

• Value function (critic): it criticizes the actions made by the actor.

• Explicit representation of
policy as well as value
function

• Minimal computation to
select actions

• Can learn an explicit
stochastic policy

• Can put constraints on
policies

• Appealing as psychological
and neural models

40

Actor-Critic Details

TD-error is used to evaluate actions:

 t = rt+1 +V (st+1) −V (st)

If actions are determined by preferences, p(s,a), as follows:

t (s,a) = Pr at = a st = s =
e
p(s, a)

e p(s ,b)

b

,

then you can update the preferences like this :

p(st , at) p(st ,at)+ t

(softmax)

p(s, a) tendency to select

(preference for) each action

RL in real world tasks…

model based vs. model free learning and control

Q(S1,L) 4

Q(S1,R) 2

Q(S2,L) 4

Q(S2,R) 0

Q(S3,L) 2

Q(S3,R) 2
S1

S3

S2L

R

L

R

L

R

= 4

= 0

= 2

= 2

S1

S3S2

4 0 2 2

RL

Real-world behavior is hierarchical
H

ierarch
ical R

L: W
h

at is it?

1. set water temp

2. get wet

3. shampoo

4. soap

5. turn off water

6. dry off

add hot

success

add cold

wait 5sec

simplified control, disambiguation, encapsulation

1. pour coffee

2. add sugar

3. add milk

4. stir

Hierarchical Reinforcement Learning

• Exploits domain structure to facilitate learning
– Policy constraints

– State abstraction

• Paradigms: Options, HAMs, MaxQ

• MaxQ task hierarchy
– Directed acyclic graph of subtasks

– Leaves are the primitive MDP actions

• Traditionally, task structure is provided as
prior knowledge to the learning agent

S: start G: goal

Options: going to doors

Actions: + 2 door options

HRL: a toy example
H

ierarch
ical R

L: W
h

at is it?

Advantages of HRL

1. Faster learning
(mitigates scaling problem)

H
ierarch

ical R
L: W

h
at is it?

RL: no longer ‘tabula rasa’

2. Transfer of knowledge from previous tasks
(generalization, shaping)

Disadvantages (or: the cost) of HRL
H

ierarch
ical R

L: W
h

at is it?

1. Need ‘right’ options - how to learn them?

2. Suboptimal behavior (“negative transfer”; habits)

3. More complex learning/control structure

no free lunches…

Semi-Markov Decision Process

• Generalizes MDPs

• Action a takes N steps to complete in s

• P(s’,n | a, s), R(s’, N | a, s)

• Bellman equation:

Taxi Domain
• Motivational Example

• Reward: -1 actions,
-10 illegal, 20 mission.

• 500 states

• Task Graph:

HSMQ Alg. (Task Decomposition)

MAXQ Alg. (Value Fun. Decomposition)

• Want to obtain some sharing (compactness) in
the representation of the value function.

• Re-write Q(p, s, a) as

where V(a, s) is the expected total reward while executing action a,
and C(p, s, a) is the expected reward of completing parent task p
after a has returned

Hierarchical Structure

• MDP decomposed in task M0, … , Mn

• Q for the subtask i

Value Decomposition

Value Decomposition

• The value function can be decomposed as
follows

MAXQ Alg. (cont’d)
• An example

MAXQ Alg. (cont’d)

MAXQ Alg. (cont’d)

State Abstraction

Three fundamental forms

• Irrelevant variables
e.g. passenger location is irrelevant for the navigate and put subtasks

and it thus could be ignored.

• Funnel abstraction
A funnel action is an action that causes a larger number of initial states

to be mapped into a small number of resulting states. E.g., the
navigate(t) action maps any state into a state where the taxi is at
location t. This means the completion cost is independent of the
location of the taxi—it is the same for all initial locations of the taxi.

State Abstraction (cont’d)

• Structure constraints

- E.g. if a task is terminated in a state s, then there is no need to
represent its completion cost in that state

- Also, in some states, the termination predicate of the child task implies
the termination predicate of the parent task

Effect

- reduce the amount memory to represent the Q-function.

14,000 q values required for flat Q-learning

3,000 for HSMQ (with the irrelevant-variable abstraction

632 for C() and V() in MAXQ

- learning faster

State Abstraction (cont’d)

Wargus Resource-Gathering Domain

Induced Wargus Hierarchy
Root

Harvest WoodHarvest Gold

Get Gold Get Wood

Goto(loc)

Mine Gold Chop WoodGDeposit

Put Gold Put Wood

WGoto(townhall)GGoto(goldmine) WGoto(forest)GGoto(townhall)

WDeposit

Induced Abstraction & Termination
Task Name State Abstraction Termination Condition

Root req.gold, req.wood req.gold = 1 && req.wood = 1

Harvest Gold req.gold, agent.resource, region.townhall req.gold = 1

Get Gold agent.resource, region.goldmine agent.resource = gold

Put Gold req.gold, agent.resource, region.townhall agent.resource = 0

GGoto(goldmine) agent.x, agent.y agent.resource = 0 && region.goldmine = 1

GGoto(townhall) agent.x, agent.y req.gold = 0 && agent.resource = gold && region.townhall = 1

Harvest Wood req.wood, agent.resource, region.townhall req.wood = 1

Get Wood agent.resource, region.forest agent.resource = wood

Put Wood req.wood, agent.resource, region.townhall agent.resource = 0

WGoto(forest) agent.x, agent.y agent.resource = 0 && region.forest = 1

WGoto(townhall) agent.x, agent.y req.wood = 0 && agent.resource = wood && region.townhall = 1

Mine Gold agent.resource, region.goldmine NA

Chop Wood agent.resource, region.forest NA

GDeposit req.gold, agent.resource, region.townhall NA

WDeposit req.wood, agent.resource, region.townhall NA

Goto(loc) agent.x, agent.y NA

Note that because each subtask has a unique terminal state,

Result Distribution Irrelevance applies

Claims

• The resulting hierarchy is unique

– Does not depend on the order in which goals and
trajectory sequences are analyzed

• All state abstractions are safe
– There exists a hierarchical policy within the induced hierarchy that will

reproduce the observed trajectory

– Extend MaxQ Node Irrelevance to the induced structure

• Learned hierarchical structure is “locally optimal”

– No local change in the trajectory segmentation can
improve the state abstractions (very weak)

Experimental Setup

• Randomly generate pairs of source-target resource-
gathering maps in Wargus

• Learn the optimal policy in source

• Induce task hierarchy from a single (near) optimal
trajectory

• Transfer this hierarchical structure to the MaxQ
value-function learner for target

• Compare to direct Q learning, and MaxQ learning on
a manually engineered hierarchy within target

Hand-Built Wargus Hierarchy

Root

Get Gold Get Wood

Goto(loc)Mine Gold Chop Wood Deposit

GWDeposit

Hand-Built Abstractions & Terminations

Task Name State Abstraction
Termination

Condition

Root req.gold, req.wood, agent.resource req.gold = 1 && req.wood = 1

Harvest Gold agent.resource, region.goldmine agent.resource ≠ 0

Harvest Wood agent.resource, region.forest agent.resource ≠ 0

GWDeposit req.gold, req.wood, agent.resource, region.townhall agent.resource = 0

Mine Gold region.goldmine NA

Chop Wood region.forest NA

Deposit req.gold, req.wood, agent.resource, region.townhall NA

Goto(loc) agent.x, agent.y NA

Results: Wargus
Wargus domain: 7 reps

-1000

0

1000

2000

3000

4000

5000

6000

7000

8000

0 10 20 30 40 50 60 70 80 90 100

Episode

T
o

ta
l

D
u

ra
ti

o
n

Induced (MAXQ)

Hand-engineered (MAXQ)

No transfer (Q)

Limitations

• Recursively optimal not necessarily optimal

• Model-free Q-learning
Model-based algorithms (that is, algorithms that try to learn
P(s’|s,a) and R(s’|s,a)) are generally much more efficient
because they remember past experience rather than having
to re-experience it.

References and Further Reading
• Sutton, R., Barto, A., (2000) Reinforcement Learning: an

Introduction, The MIT Press

http://www.cs.ualberta.ca/~sutton/book/the-book.html

• Kaelbling, L., Littman, M., Moore, A., (1996) Reinforcement
Learning: a Survey, Journal of Artificial Intelligence Research,
4:237-285

• Barto, A., Mahadevan, S., (2003) Recent Advances in Hierarchical
Reinforcement Learning, Discrete Event Dynamic Systems:
Theory and Applications, 13(4):41-77

http://www.cs.ualberta.ca/~sutton/book/the-book.html

Task Planning

Architetture Robotiche

• Deliberativo:
pianificazione, ragionamento, decisione

• Esecutivo:
monitoraggio dell’esecuzione,
sequenziamento dei comandi

• Funzionale:
funzionalità di controllo attuative e percettive

Architetture a 3 Livelli

Architetture a 3 Livelli: ATLANTIS

Architettura di RHINO la guida robotica
del museo di Bonn (1995); simile
MINERVA (1998) ad Atlanta

Architettura a 3 Livelli per un robot
mobile:

1. Funzionale:
Mapping, Localizzazione,
Avoidance

2. Esecutivo:
Sequencer, monitor

3. Deliberativo:
Task Planner

Architetture di RIHINO

Esempio: RHINO Architettura

• LAAS architecture:

Tre Livelli:

1. Deliberativo
(temporal planner)

2. Esecutivo
(PRS)

3. Funzionale
(GENOME)

Architetture a 3 Livelli

Controllo di Rover

Architetture a 3 Livelli

76

Pianificazione Deliberativa

• Are often aligned with hierarchical control community
within robotics.

• Hierarchical planning systems typically share a structured
and clearly identifiable subdivision of functionality regarding
to distinct program modules that communicate with each
other in a predictable and predetermined manner.

• At a hierarchical planner’s highest level, the most global and
least specific plan is formulated.

• At the lowest levels, rapid real-time response is required,
but the planner is concerned only with its immediate
surroundings and has lost the sight of the big picture.

77

Strategic
Global
Planning

Tactical
Intermediate
Planning

Short-Term
Local
Planning

Actuator
Control

Actions

Global
Knowledge

Local
World
Model

Intermediate
Sensor
Interpretations

Sensing Real - Time

Time
Horizon

Long - Term

Spatial
Scope

Global

Immediate
Vicinity

Hierarchical
Planner

World Model

78

Planning as Search

• Planning is looking ahead, searching

• The goal is a state.

• The robot's entire state space is enumerated, and
searched, from the current state to the goal state.

• Different paths are tried until one is found that reaches
the goal.

• If the optimal path is desired, then all possible paths must
be considered in order to find the best one.

79

SPA = Planner-based

• Planner-based (deliberative) architectures typically involve three
generic sequential steps or functional modules:

1) sensing (S)

2) planning (P)

3) acting (A), executing the plan

• Thus, they are called SPA architectures.

• SPA has serious drawbacks.

• It takes a very (prohibitively) long time to search in a real

robot's state space, as that space is typically very large.

 Real robots may have collections of simple digital sensors
(e.g., switches, IRs), a few more complex ones (e.g.,
cameras), or analog sensors (e.g., encoders, gauges, etc.)

 => "too much information"

 => Generating a plan is slow.

Problem 1:
Time Scale

80

SPA = Planner-based

 It takes a lot of space (memory) to represent and
manipulate the robot's state space representation.

 The representation must contain all information needed
for planning.

 => Generating a plan can be large.

 Space is not nearly as much of a problem as time, in
practice.

Problem 2:
Space

Problem 3:
Information

 The planner assumes that the representation of the state
space is accurate and up-to-date.

 => The representation must be constantly updated and
checked

 The more information, the better.

 => "too little information"

81

SPA = Planner-based

The resulting plan is only useful if:
a) the environment does not change during the

execution of a plan in a way that affects the plan.

b) the representation was accurate enough to generate a
correct plan.

c) the robot's effectors are accurate enough to perfectly
execute each step of the plan in order to make the
next step possible

Problem 4:
Use of Plans

Deliberation in Summary

 In short, deliberative (SPA, planner-based) approaches:

 require search and planning, which are slow

 encourage open-loop plan execution, which is limiting and dangerous

 Note that if planning were not slow (computationally expensive) then
execution would not need to be open-loop, since re-planning could be done.

82

Hierarchical Planners vs. BBS

Hierarchical Planners

• Rely heavily on world models,

• Can readily integrate world knowledge,

• Have a broad perspective and scope.

BB Control Systems

• afford modular development,

• Real-time robust performance within a changing world,

• Incremental growth

• are tightly coupled with arriving sensory data.

83

Hybrid Control

• The basic idea is simple: we want the best of both worlds
(if possible).

• The goal is to combine closed-loop and open-loop
execution.

• That means to combine reactive and deliberative control.

• This implies combining the different time-scales and
representations.

• This mix is called hybrid control.

Hybrid robotic architectures believe that a union of deliberative and
behavior-based approaches can potentially yield the best of both worlds.

84

Organizing Hybrid Systems

Planning and reaction can be tied:

A: hierarchical integration -
planning and reaction are involved
with different activities, time scales

Level N

Level 2

Level 1

Level 0

More Reactive

More Deliberative

A

Deliberation Projection

Planner

Reactor

B

Behavioral Advice
Configurations
Parameters

B: Planning to guide reaction -
configure and set parameters for
the reactive control system.

C: coupled - concurrent activities

Planner Reactor

C

85

Organizing Hybrid Systems

In summary, a modern hybrid system typically consists of three components:

a reactive layer

a planner

a layer that puts the two together.

=> Hybrid architectures are often called three-layer architectures.

It was observed that the emerging architectural design of choice is:
– multi-layered hybrid comprising of

* a top-down planning system and
* a lower-level reactive system.

– the interface (middle layer between the two components) design is
a central issue in differentiating different hybrid architectures.

86

The Magic Middle: Executive Control

• The middle layer has a hard job:

1) compensate for the limitations of both the planner and the reactive
system

2) reconcile their different time-scales.

3) deal with their different representations.

4) reconcile any contradictory commands between the two.

• This is the challenge of hybrid systems

=> achieving the right compromise between the two ends.

87

The middle layer services.

• Some frequently useful planned decisions may need to be reused, so
to avoid planning, an intermediate layer may cache and look those
up. These can be:

Reusing Plans

− intermediate-level actions (ILAs): stored in contingency tables.

− macro operators: plans compiled into more general operators for future use.

Dynamic Re-planning

• Reaction can influence planning.

• Any "important" changes discovered by the low-level controller are
passed back to the planner in a way that the planner can use to re-plan.

• The planner is interrupted when even a partial answer is needed in real-
time.

• The reactive controller (and thus the robot) is stopped if it must wait for

the planner to tell it where to go.

88

Planner - Driven Reaction

• Planning can also influence reaction.

• Any "important" optimizations the planner discovers are passed down
to the reactive controller.

• The planner’s suggestions are used if they are possible and safe.

=> Who has priority, planner or reactor? It depends, as we will see...

The middle layer services.

Types of “Reaction Planning”
Interaction

 Selection: Planning is viewed as configuration.

 Advising: Planning is viewed as advice giving.

 Adaptation: Planning is viewed as adaptation of controller.

 Postponing: Planning is viewed as a least commitment process.

89

Universal Plans

• Suppose for a given problem, all possible plans are generated for all
possible situations in advance, and stored.

• If for each situation a robot has a pre-existing optimal plan, it can react
optimally, be reactive and optimal.

• It has a universal plan (These are complete reactive mappings).

Viability of Universal Plans

• A system with a universal plan is reactive; the planning is done at
compile-time, not at run-time.

• Universal plans are not viable in most domains, because:

− the world must be deterministic.

− the world must not change.

− the goals must not change.

− the world is too complex (state space is too large).

Planning & Execution

Planning Problem

Classical Planning

Esempio: Blocks World

STRIPS Model

Init: On(a,Table), On(b,table), On(c,table) Goal: On(a,table),On(b,a), On(c,b)

Spacecraft Domain

Planning Problem

• Planning Domain: Descrizione degli operatori
in termini di precondizioni ed effetti

• Planning Problem: Stato iniziale, Dominio,
Goals

Tipi di Planning

• Classical Planning

• Temporal Planning

• Conditional Planning

• Decision Theoretic Planning

• …

• Least-Commitment Planning

• HTN planning

• …

Paradigms

State Space vs. Plan Space

• Planning in the state space:

– sequence of actions, from the initial state to the
goal state

• Planning in the plan space:

– Sequence of plan transformations, from an initial
plan to the final one

Plan-State Search

State-Space vs Plan-Space

Search in the Plan-Space

Plan-State Search

Partially-Ordered Plans

Partial-Order Plans

Partial-Order Plans

General Approach

Blocks World

Blocks World

Blocks World

Blocks World

Blocks World

Blocks World

Blocks World

Least Commitment

Terminology

POP-Algorithm

POP-Algorithm

POP-Algorithm

POP-Algorithm

POP-Algorithm

Plan Monitoring

Preconditions for the rest of the plan

Replanning

Replanning

Classical Planning: Limits

Spacecraft Domain

Spacecraft Domain

Extensions

• Time

• Resources

• Constraints

• Uncertainty

• Utility

• …

Model

Temporal Interval Relations

Temporal Operators

Temporal Operators

Temporal Operators

Temporal Operators

Temporal Operators

Temporal Planning Problem

Consistent Complete Plan

CBI-Planning

Initial Plan

Expansion

Expansion

Coalescing

Coalescing

Expansion

Coalescing

CBI-Algorithm

CBI-Planners

CBI vs POP

• CBI is similar to POP because least
commitment and partial order

• But, temporal constraints in CBI …

• Contraints Temporal Network associated with
a plan

• Constraint propagation

Temporal Constraints

RAX Example: DS1

Temporal Constraints as Inequalities

Metric Constraints

Temporal Constraint Networks

Temporal Constraint Satisfaction
Problem

Simple Temporal Networks

Simple Temporal Networks

STN example

Start End

A Complete CBI-Plan is a STN

A Complete CBI-Plan is a STN

DS1: Remote Agent

Remote Agent Experiment: RAX

Remote Agent

Remote Agent

Remote Agent

• Mission Manager

Remote Agent

• Constraints:

Remote Agent

• Planner starts

Remote Agent

• Planning

Remote Agent

• Final Plan

Remote Agent

• Constraints

Remote Agent

• Flexible Temporal Plan through least
commitment

Remote Agent

• Executive system dispatch tasks

Remote Agent
• Executing Flexible Plans

Remote Agent

• Constraint propagation can be costly

Remote Agent

• Constraint Propagation can be costly

Remote Agent

• Solution: compile temporal constraints to an
efficient network

