Reinforcement Learning

Robotica Probabilistica

Reinforcement Learning

e Task

— Learn how to behave successfully to achieve a goal
while interacting with an external environment

Learn through experience from trial and error

 Examples

— Game playing: The agent knows it has won or lost, but
it doesn’t know the appropriate action in each state

— Control: a traffic system can measure the delay of cars,
but not know how to decrease it.

Reinforcement Learning

* No knowledge of environment
— Canonly act in the world and observe states and reward

 Many factors make RL difficult:

— Actions have non-deterministic effects
* Which are initially unknown

— Rewards / punishments are infrequent
e Often at the end of long sequences of actions

* How do we determine what action(s) were really responsible for reward
or punishment?
(credit assignment)

— World is large and complex

e Nevertheless learner must decide what actions to take
— We will assume the world behaves as an MDP

3

Reinforcement Learning

Something is unknown

Learning and Planning at the same time
Ultimate learning and planning paradigm
Scalability is a big issue, Very Challenging!

— Zhang, W,, Dietterich, T. G., (1995). A Reinforcement Learning
Approach to Job-shop Scheduling

— G. Tesauro (1994). "TD-Gammon, A Self-Teaching Backgammon
Program Achieves Master-level Play" in Neural Computation

— Reinforcement Learning for Vulnerability Assessment in Peer-to-
Peer Networks, IAAI 2008

* Policy Gradient Update
— DeepQ Learning AlphaGo (2015/2016)

Reinforcement Learning

Learner <

Sequential decision problems

passive

active

* Approaches:

e Learn values of states (or state histories) & try to maximize
utility of their outcomes.

* Need a model of the environment: what ops & what
states they lead to

* Learn values of state-action pairs

* Does not require a model of the environment (except
legal moves)

e Cannot look ahead

Two Key Aspect in RL

* How we update the value function or policy?
— How do we form training data
— Sequence of (s,a,r)....

* How we explore?
— Exploit or Exploration

Category of Reinforcement Learning

Model-based RL

— Constructs domain transition model, MDP
* E3-Kearns and Singh

Model-free RL

— Only concerns policy
* Q-Learning - Watkins

Active Learning (Off-Policy Learning)
— Q-Learning

Passive Learning (On-Policy learning)
— Sarsa - Sutton

-

Elements of RL

Agent Policy

State ..0‘.: Reward @ \Action

Environment

a;:ry a, sy

S, —2-%»s,

>S,

* Transition model, how action influence states
* Reward R, immediate value of state-action transition

* Policy 7T, maps states to actions

)...

RL task (restated)

* Execute actions in environment,

observe results.

* Learn action policy &t : state — action that

maximizes expected discounted reward

E [r(t) + yr(t + 1)+ yr(t + 2) + ...]

from any starting state in S

Reinforcement Learning

* Target function is & : state — action

* However...

— We have no training examples of form <state,

action>
— Training examples are of form

<<state, action>, reward>

Policy Evaluation

* Given the formula
Vz(8) =R(8)+BD o T (5, 72(5),8") -V (s')

* Can we exploit this with RL?
— What is missing?
— What needs to be done?

 What do we do after policy evaluation?
— Policy Update

13

Example: Passive RL

e Suppose given policy

* Want to determine how good it is

3 —

|t

*

zt.

#

+ 1

E

4

1
14

Objective: Value Function

0.812 0.868

0.762

0.705 0.655 0.611 0.388

(1,1)=>(1,2)=>(1,3)>(1,2)=>(1,3)>(2,3)2>(3,3) 2(3.,4) +1

Given policy T,

— estimate V*(s) 2 T

Not given

— transition matrix, nor 1 1 h
— reward function! k 2
Simply follow the policy for many

epoc
Epoc

Passive RL

+ 1

NS

ns: training sequences

(1,1)=>(1,2)=>(1,3)2(2,3)2(3,3)2(3,2)2>(3,3)>(34) +1
(1,1)=>(2,1)>(3,1)>(3,2)>(4,2) -1

16

Direct Estimation

Direct estimation (model free)

— Estimate V7{(s) as average total reward of epochs
containing s (calculating from s to end of epoch)

Reward to go of a state s

the sum of the (discounted) rewards from that state
until a terminal state is reached

Key: use observed reward to go of the state as the
direct evidence of the actual expected utility of that
state

Averaging the reward to go samples will converge to
true value at state

17

* Given policy T,

— estimate V*(s) 2 T
* Not given
— transition matrix, nor 1 1 h
— reward function! k 2
* Simply follow the policy for many

epoc
* Epoc

(1,1)=>(1,2)=>(1,3)>(1,2)=>(1,3)>(2,3)2>(3,3) 2(3.4) +1

Passive RL

+ 1

NS

ns: training sequences

0.57 064 0./2 0381 0.9

(1,1)=>(1,2)=>(1,3)2(2,3)2(3,3)>(3,2)2>(3,3)>(34) +1
(1,1)=>(2,1)>(3,1)>(3,2)>(4,2) -1

18

Direct Estimation

* Converge very slowly to correct utilities values (requires a
lot of sequences)

* Does not exploit Bellman on policy values

V7(s)=R(s)+ LD T(s,a,s'V"(s")

How can we incorporate constraints?

19

Adaptive Dynamic Programming (ADP)

 ADP is a model based approach
— Follow the policy for awhile
— Estimate transition model based on observations
— Learn reward function
Use estimated model to compute utility of policy

V7 (s)_R(s)+,BZT(sas)V (s")

NS

learned

* How can we estimate transition model T(s,a,s’)?
— Simply the fraction of times we see s’ after taking a in state s.

20

Temporal Difference Learning (TD)

Can we avoid the computational expense of full DP policy
evaluation?

Temporal Difference Learning

— Do local updates of utility/value function on a per-action basis
— Don’t try to estimate entire transition function!
— For each transition from s to s’, we perform the following update:

V7(s)=V"(s) +a(R(s) +,3\V”(S') —V7(s))

d

_ learning rate discount factor .
Intutively, moves us closer to satisfying Bellman constraint

V7(s)=R(s)+ LD T(s,a,s'V"(s")

21

Temporal Difference Learning (TD)

* TD update for transition from s to s’:
V($) =V () +a(R(S) + VT (5) -V ()
Y

learning rate (noisy) sample of utility
based on next state

* So the update is maintaining a “mean” of the
(noisy) utility samples

* |f the learning rate decreases with the number
of samples (e.g. 1/n) then the utility estimates
will converge to true values

V7(s)=R(s)+BD T(s,a,s'V7(s")

3

Temporal Difference Learning (TD)

* TD update for transition from s to s’:
V($) =V () +a(R(S) + VT (5) -V ()
Y

learning rate (noisy) sample of utility
based on next state

e When V satisfies Bellman constraints then
expected update is O.

V7(s)=R(s)+BD T(s,a,s'V"(s")

24

Comparisons

* Direct Estimation (model free)
— Simple to implement
— Each update is fast
— Does not exploit Bellman constraints
— Converges slowly

e Adaptive Dynamic Programming (model based)
— Harder to implement
— Each update is a full policy evaluation (expensive)
— Fully exploits Bellman constraints
— Fast convergence (in terms of updates)

 Temporal Difference Learning (model free)

— Update speed and implementation similar to direct estimation

— Partially exploits Bellman constraints---adjusts state to ‘agree’ with observed
successor

* Not all possible successors
— Convergence in between direct estimation and ADP

25

Active Reinforcement Learning

* So far, we have assumed agent with a policy

— We try to learn how good it is

* Now, suppose agent must learn a good policy
(optimal)
— While acting in uncertain world

26

Exploration versus Exploitation

Two reasons to take an action in RL

— Exploitation: To try to get reward. We exploit our current
knowledge to get a payoff.

— Exploration: Get more information about the world. How do
we know if there is not a pot of gold around the corner.

To explore we typically need to take actions that do not
seem best according to our current model.

Managing the trade-off between exploration and
exploitation is a critical issue in RL

Basic intuition behind most approaches:
— Explore more when knowledge is weak
— Exploit more as we gain knowledge

27

Explore/Exploit Policies

* Greedy action is action maximizing estimated Q-value

Q(s,a)=R(s)+ B> T(s,a,s'V(s")

— where V is current value function estimate, and R, T are current
estimates of model

— Q(s,a) is the expected value of taking action a in state s and then getting
the estimated value V(s’) of the next state s’

* Want an exploration policy that is gfreedy_in the limit of infinite
exploration (GLIE) if it satisfies the following two properties:

— 1. If a state is visited infinitely often, then each action in that state is
chosen infinitely often (with probability 1).

— 2.Inthelimit (ast - ooz, the learning policy is greedy with respect to
the learned Q-function (with probabllity 1).

— Guarantees convergence

Explore/Exploit Policies

* Greedy action is action maximizing estimated Q-value

Q(s,a)=R(s)+ B> T(s,a,s'V(s")

— where V is current value function estimate, and R, T are current
estimates of model

— Q(s,a) is the expected value of taking action a in state s and then getting
the estimated value V(s’) of the next state s’

* Want an exploration policy that is greedy in the limit of infinite
exploration (GLIE)

— Guarantees conve rgence

e Solution 1:

— On time step t select random action with probability p(t) and greedy
action with probability 1-p(t)

— p(t) = 1/t will lead to convergence, but it is slow

Explore/Exploit Policies
* Greedy action is action maximizing estimated Q-value

Q(s,a)=R(s)+ B> T(s,a,s'V(s")

— where V is current value function estimate, and R, T are current
estimates of model

e Solution 2: Boltzmann Exploration

— Select action a with probability,
Pr(als) — exp(Q(s,a)/T)
> exp(Q(s,a’)/T)

a'eA

— Tis the temperature. Large T means that each action has about
the same probability. Small T leads to more greedy behavior.

— Typically start with large T and decrease with time
30

TD-based Active RL

Start with initial utility/value function

2. Take action according to an explore/exploit policy
(should converge to greedy policy, i.e. GLIE)

3. Update estimated model
4. Perform TD update

V(s) <=V (s)+a(R(s)+ BV (s) -V (s))

V(s) is new estimate of optimal value function at state s.
5. Goto2

Just like TD for passive RL, but we follow explore/exploit policy

Given the usual assumptions about learning rate and GLIE,
TD will converge to an optimal value function!

5.

TD-based Active RL

Start with initial utility/value function

Take action according to an explore/exploit policy
(should converge to greedy policy, i.e. GLIE)

Update estimated model
Perform TD update

V(s) <=V (s)+a(R(s)+ BV (s) =V (s))

V(s) is new estimate of optimal value function at state s.
Goto 2

Requires an estimated model. Why?
To compute Q(s,a) for greedy policy execution

Can we construct a model-free variant?
32

Q-Learning: Model-Free RL

Instead of learning the optimal value function V, directly learn the

optimal Q function.
— Recall Qfs,a) is expected value of taking action a in state s and then
following the optimal policy thereafter

The optimal Q-function satisfies ~ V (s) = max Q(s,a")
which gives: 2

Q(s,a)=R(s)+ B> T(s,a,s'V(s")
=R(s)+ B> T(s,a,s") max Q(s, a’)

Given the Q function we can act optimally by select action
greedily according to Q(s,a)

How can we learn the Q-function directly?

33

Q-Learning: Model-Free RL

Bellman constraints on optimal Q-function:

Q(s,a)=R(s)+ B> T(s,a,s') max Q(s, a’)

* We can perform updates after each action just
like in TD.

— After taking action a in state s and reaching state s’
do:
(note that we directly observe reward R(s))

Q(s,a) <~ Q(s,a) + (R(s) + max Q(s',a’) = Q(s,))

~
(noisy) sample of Q-value
based on next state

34

Q-Learning

1. Start with initial Q-function (e.g. all zeros)

2. Take action according to an explore/exploit policy
(should converge to greedy policy, i.e. GLIE)

3. Perform TD update

Q(s,a) <~ Q(s,a) + a(R(s) + fmax Q(s', a') —Q(s, a))

Q(s,a) is current estimate of optimal Q function.
4. Goto 2

* Does not require model since we learn Q directly
* Uses explicit |S|x|A| table to represent Q

* Explore/exploit policy directly uses Q-values
~ E.g. use Boltzmann exploration.

35

Q-Learning Algorithmic Components

* Q-learning:

Qi(s.a) == (1 —) 1(s.a)+aplr+7 AxX () [:-.:". u.’]].

il

.
« e 11111 op =0nc and lim af < oo
— If infinitely oftenand ZJ f 2

then converngence [Jaakkola,Jordan,Singh 94]

* SARSA(O):

Qi(s,a) = (1 —ay)Qy ((s.a) +aylr +~vQ, (s, a")].

— Convergence if GLIE policy: infinitely often,
in the limit action chosen w.r.t. Q

SARSA

* SARSA(state-action-reward-state-action) equation

Qi(s.a) = (1 —a)Q 1(s.a)+aylr +~Q, (s, a")].

where a’ is the action actually taken in state s'.
 Therule is applied at the end of each s,a,r,5",a’".

e Difference with Q learning:

Q-learning backs up the best Q-value from the state
reached while SARSA waits until an action is taken and
then backs up the Q-value from that action.

r ¥
@ d I+I(§_\ * Him *—

- 141 . 142 , - .-
St 14 —/ Speplpe] 2 Sp2 o

SARSA

Initialize €)(s,a) arbitrarily
Repeat (for each episode):
Initialize s
Choose a from s using policy derived from @) (e.g., e-greedy)
Repeat (for each step of episode):
Take action a, observe r, s’
Choose a' from s" using policy derived from Q) (e.g.. e-greedy)
Q(s.a) — Q(s,a) + alr +Q(s',a’) — Q(s,a)]
s+— 8 a+—a

until s is terminal

Actor Critic Method

* Policy structure (actor): it selects the actions,
e Value function (critic): it criticizes the actions made by the actor.

;Nll * Explicit representation of
— | "oy /) olicy as well as value
Actor unction

* Minimal computation to
D select actions

Critic ..
vl e * Can learn an explicit
alue , . X
Function action stochastic policy

77 * Can put constraints on
policies
* Appealing as psychological

. and neural models
Environment

state p—

reward

Actor-Critic Details

TD-error 1s used to evaluate actions:
5 t+1 +V(St+1) V(S)

If actions are determined by preferences, p(s,a), as follows:

PACL)
7T (s,a) = Pr{at = alst = S}: (softmax)

Zep(s,b) ’

b

then you can update the preferences like this :
p(s,,a) < p(s,a,)+ o,

p(s, a) tendency to select
(preference for) each action

40

RL in real world tasks...

4

0 2 2

S,

Q(s,L)

Q(s,.R)

X DDD S»

>4
=0

) L
Q(S;,R) [—>2 51R<I

model based vs. model free learning and control

Real-world behavior is hierarchical

1. pour coffee

?PP 2. add sugar G

3. add milk 2P
@ !.: O add hot
: ©
4. stir %add cold
1. set water temp 500 :
/2;\@ wait 5sec
ﬁ‘@h 2. get wet 7lghy~ success
3. shampoo

4. soap

5. turn off water

6. dry off

£ 'STIRYM T [Ed1YdJeIlH

simplified control, disambiguation, encapsulation

Hierarchical Reinforcement Learning

Exploits domain structure to facilitate learning

— Policy constraints
— State abstraction

Paradigms: Options, HAMs, MaxQ
MaxQ task hierarchy

— Directed acyclic graph of subtasks
— Leaves are the primitive MDP actions

Traditionally, task structure is provided as
prior knowledge to the learning agent

HRL: a toy example

100

90

80

70

60

50

S:start G: goal

Options: going to doors

Actions: + % options

§31'SLIBYM 1Y [ed1YdJeIRlH

Advantages of HRL

. Faster learning
(mitigates scaling problem)

2. Transfer of knowledge from previous tasks
(generalization, shaping)

Steps

600 -

500

400 +

300+

200

100 -

0

Primitive actions only

/

With options

y

20 40 60 80 100 120 140 160 180 200
Episode

1 SI1BYM 1TY [Bd1YdUEIDIH

RL: no longer ‘tabula rasa’

Disadvantages (or: the cost) of HRL

1. Need ‘right’ options - how to learn them?
2. Suboptimal behavior (“negative transfer”; habits)
3. More complex learning/control structure

§31'SLIBYM 1Y [ed1YdJeIRlH

100 120 140 160 180 200
pisode

no free lunches...

Semi-Markov Decision Process

Generalizes MDPs

Action a takes N steps to complete in s
P(s"'n| a,s),R(s, N | a,s)

Bellman equation:

V() = 32 P(s' Nisom(s)) [Ns,m(s)) + M V()]
s N\

Vi(s) = ﬁ[a m(s)) + Z P[HI. N s, ?T[H'J.J’"fr"whﬁ IT[““IJ
st N

Y

Motivational Example

Taxi

Reward: -1 actions,

-10 illegal, 20 mission.

500 states
Task Graph:

Pickup

Get

Domain

L B S T 'S T

Root

Put

’_,-"
’_/

t/source _—"tdestinatio

“
Navigate(t)

i —
I —
—— —
I —
P S
I T—
e —
" T —
o —

Nonhl

South East

-

I West

—

Putdown

HSMQ Alg. (Task Decomposition)

function HSMQ(state s, subtask p) returns float
Let Total Reward = 0
while p is not terminated do
Choose action a = 7, (s) according to exploration policy ,
Execute a.
if a is primitive, Observe one-step reward r
else r := HSM(@(s,a), which invokes subroutine a and
returns the total reward received while a executed.
Total Reward := Total Reward + r
Observe resulting state s’
Update Q(p, s,a) := (1 — a)Q(p, s,a) + a [7‘ +max Q(p, s, a’)]
end // while

return Total Reward
end

MAXQ Alg. (Value Fun. Decomposition)

e Want to obtain some sharing (compactness) in
the representation of the value function.

* Re-write Q(p, s, a) as
Q(p,s,a) = V(a,s) + C(p,s,a)

V(p,s) = max [V (a,s) + C(p,s,a)]

where V(a, s) is the expected total reward while executing action a,

and C(p, s, a) is the expected reward of completing parent task p
after a has returned

Hierarchical Structure

* MDP decomposed in task Mo, ..., Mn

Theorem 1 Given a task graph over tasks My. M, and a hierarchical policy w, each
subtask M, defines a semi-Markov decision process wnith states S;. actions A;. probability

transition function P(s', N's,a), and expected reward function R(s.a) = V7 (a,s), where
V™ (a, s) 1s the projected value function for cheld task M, in state s. If a is a primetive
action, V7" (a, s) 1s defined as the expected immediate reward of executing a m s: V7 (a, s) =
> o P s.a)R(s" s,a).

e Q for the subtask i

f)ﬁ[# S, !’.I.jl = I__.-"W[{.L “'-'J L Z R_W[Hr. Nls. !’_I.:'I":,-"JI" f{\'ﬁ[; ___;’_ ﬂ_['\i’]].
s' N

Q" (i.s.a) = V7 (a.5) + C7(i. 5.a).

Value Decomposition

Definition 6 The completion function, C7 (1. s.a). s the expected discounted cumulative
reward of completing subtask M, after invoking the subroutine for subtask M, in state s.
The reward is discounted back to the point in time where a begins execution.

C™(i.5.a) ZP ! Nls.a)yN Q™ (i.s". m(s")) (9)

With this definition. we can express the () function recursively as
Q" (i.s.a) =V (a.s)+ C" (1. s.a). (10)

Finally, we can re-express the definition for V7(i, s) as

(11)

V(i s) Q" (i, s, mi(s)) if 1 1s composite
S P(s" s i)R(s"s.1) if i is primitive

Value Decomposition

* The value function can be decomposed as
follows

VT0.s) = VT a,.s)+C" (am 1.8.am) + ...+ C"(ay.s.a2) +C"(0.s.a;)

V™ (Root.s1) = V™(North.s;) + C™(Navigate(R), s1. North) +
C"(Get, 1, Navigate(R)) + C"(Root, s, Get)
= 1+04+-1+12

V(0. 9)
= 10 - e

-E_Tlirrl, -]
-E_TI:N,.., 1 '-]
I_T[r:,,_.n‘] ('T[r:,;. l..a:.r:,,._] (q[r:[.ﬁ:.rrg] ('T[[J.n‘.u[]
" I s ! I I ! o ' iz Fia ' 4

MAXQ Alg. (cont’d)

* An example

-~
¥
i

/
i

Taxi Tazk Vi(rooct.s)
Get Passenger Finish V(Get.s) C(root.s.Get)
Taxi Task 12
12)
-4 -4
Navigate(Y) Finish V(Navigate(Y).s) C(Get.s.Nav(Y))
Get -1
-1
West Finish V(West,s) C(Nawv(Y).s.West)
Navigate(Y) -1 3
-1 -3

Fig. 5. An example of the MAXQ value function decomposition for the state in which
the taxi is at location (2,2), the passenger is at (0,0), and wishes to get to (3,0). The
left tree gives English descriptions, and the right tree uses formal notation.

MAXQ Alg. (cont’d)

V(root, s) = V (west, s) + C'(navigate(Y), s, west)
+ C(get, s, navigate(Y))
+ C(root, s, get).

Passenger at Y Passenger In Taxi
4 4
3 3
2 8 2
1 9 7 1
0 8 6 0
0O 1 2 3 4

Fig. 4. Value function for the case where the passenger is at (0,0) (location Y) and
wishes to get to (0.,4) (location R).

MAXQ Alg. (cont’d)

function MAXQQ(state s, subtask p) returns float
Let Total Reward = ()
while p is not terminated do
Choose action a = m,(s) according to exploration policy
Execute a.
if @ is primitive, Observe one-step reward r
else r := MAXQQ(s,a), which invokes subroutine a and
returns the total reward received while a executed.
Total Reward := Total Reward + r
Observe resulting state s’
if a is a primitive
V(a,s):=(1-a)V(a,s)+ar
else a is a subroutine
C(p,a,s) := (1 —a)C(p,s,a) + amax, [V(a',s') + C(p,s',a')]
end // while

return Total Reward
end

State Abstraction

Three fundamental forms
* |rrelevant variables

e.g. passenger location is irrelevant for the navigate and put subtasks
and it thus could be ignored.

e Funnel abstraction

A funnel action is an action that causes a larger number of initial states
to be mapped into a small number of resulting states. E.g., the
navigate(t) action maps any state into a state where the taxi is at
location t. This means the completion cost is independent of the
location of the taxi—it is the same for all initial locations of the taxi.

State Abstraction (cont’d)

e Structure constraints

- E.g. if a task is terminated in a state s, then there is no need to
represent its completion cost in that state

- Also, in some states, the termination predicate of the child task implies
the termination predicate of the parent task

Effect

- reduce the amount memory to represent the Q-function.
14,000 g values required for flat Q-learning
3,000 for HSMQ, (with the irrelevant-variable abstraction
632 for C() and V() in MAXQ
- learning faster

State Abstraction (cont’d)

MAXQ+Abstraction

Mean Cumulative Reward

-400 g
ki
No Abstraction &
-600 | i -
|
800 | f 2
' L :
i
_1000 1 1 HEREH | 1 1 1 1 1

0 20000 40000 60000 80000 100000 120000 140000 160000
Primitive Actions

Fig. 7. Comparison of Flat Q learning, MAXQ Q learning with no state abstraction,
and MAXQ Q learning with state abstraction on a noisy version of the taxi task.

Wargus Resource-Gathering Domain

Peasant

Town hall

Region of sight

Tree

Goldmine

State variables

Peasant location: a.l

Peasant resource: a.r

Gold mine within sight radius: reg.gold
Trees within sight radius: reg.wood

Town hall within sight radius: reg.townhall
Required gold quota: req.gold

Required wood quota: req.wood

Primitive actions
Mine gold: MG

Chop wood: CW
Deposit: Dep
Navigate: Goto(loc)

Induced Wargus Hierarchy

Induced Abstraction & Termination

Task Name | State Abstraction Termination Condition

Root req.gold, req.wood req.gold = 1 && req.wood = 1

Harvest Gold req.gold, agent.resource, region.townhall | req.gold =1

Get Gold agent.resource, region.goldmine agent.resource = gold

Put Gold req.gold, agent.resource, region.townhall | agent.resource = 0

GGoto(goldmine) | agent.x, agent.y agent.resource = (&& region.goldmine = 1

GGoto(townhall) | agent.x, agent.y req.gold = 0 && agent.resource = gold && region.townhall = 1
Harvest Wood req.wood, agent.resource, region.townhall | req.wood = 1

Get Wood agent.resource, region.forest agent.resource = wood

Put Wood req.wood, agent.resource, region.townhall | agent.resource = 0

WGoto(forest) agent.x, agent.y agent.resource = () && region.forest = 1

WGoto(townhall) | agentx, agent.y req.wood = 0 && agent.resource = wood && region.townhall = 1
Mine Gold agent.resource, region.goldmine NA

Chop Wood agent.resource, region.forest NA

GDeposit req.gold, agent.resource, region.townhall | NA

WDeposit req.wood, agent.resource, region.townhall | NA

Goto(loc) agent.x, agent.y NA

Note that because each subtask has a unique terminal state,

Result Distribution Irrelevance applies

Claims

* The resulting hierarchy is unique
— Does not depend on the order in which goals and
trajectory sequences are analyzed

e All state abstractions are safe

— There exists a hierarchical policy within the induced hierarchy that will
reproduce the observed trajectory

— Extend MaxQ Node Irrelevance to the induced structure

e Learned hierarchical structure is “locally optimal”

— No local change in the trajectory segmentation can
improve the state abstractions (very weak)

Experimental Setup

Randomly generate pairs of source-target resource-
gathering maps in Wargus
Learn the optimal policy in source

Induce task hierarchy from a single (near) optimal
trajectory

Transfer this hierarchical structure to the MaxQ
value-function learner for target

Compare to direct Q learning, and MaxQ learning on
a manually engineered hierarchy within target

Hand-Built Wargus Hierarchy

Hand-Built Abstractions & Terminations

Task Name | State Abstraction Terml‘n‘anon
Condition

Root req.gold, req.wood, agent.resource req.gold = 1 && req.wood = 1
Harvest Gold agent.resource, region.goldmine agent.resource # 0

Harvest Wood agent.resource, region.forest agent.resource # 0
GWDeposit req.gold, req.wood, agent.resource, region.townhall agent.resource = (

Mine Gold region.goldmine NA

Chop Wood region.forest NA

Deposit req.gold, req.wood, agent.resource, region.townhall NA

Goto(loc) agent.x, agent.y NA

Results: Wargus

Total Duration

Wargus domain: 7 reps

8000
h = |nduced (MAXQ)
7000 - == Hand-engineered (MAXQ)
== NO transfer (Q)
6000 A
5000 - l/
4000 A
3000
2000 -
1000 -
DA -
e " — S A A a'a
0 -
-1000
0 10 20 30 40 50 60 70 80 90 100

Episode

Limitations

* Recursively optimal not necessarily optimal

* Model-free Q-learning

Model-based algorithms (that is, algorithms that try to learn
P(s’[s,a) and R(s’[s,a)) are generally much more efficient
because they remember past experience rather than having
to re-experience it.

References and Further Reading

* Sutton, R., Barto, A., (2000) Reinforcement Learning: an
Introduction, The MIT Press

http://www.cs.ualberta.ca/~sutton/book/the-book.html

* Kaelbling, L., Littman, M., Moore, A., (1996) Reinforcement

Learning: a Survey, Journal of Artificial Intelligence Research,
4:237-285

* Barto, A., Mahadevan, S., (2003) Recent Advances in Hierarchical
Reinforcement Learning, Discrete Event Dynamic Systems:
Theory and Applications, 13(4):41-77

http://www.cs.ualberta.ca/~sutton/book/the-book.html

Task Planning

Architetture Robotiche

Architetture a 3 Livelli

* Deliberativo:
pianificazione, ragionamento, decisione

* Esecutivo:
monitoraggio dell’esecuzione,
sequenziamento dei comandi

* Funzionale:
funzionalita di controllo attuative e percettive

Deals with goals and resource
interactions

Task decomposition; Task
svnchronization; Monitoring:
Exception handling;
Resource management

Deals with sensors and
actuators

Architetture a 3 Livelli: ATLANTIS

* Explicit Separation of Planning. Sequencing. and Control
— Upper layers provide control flow for lower layers

— Lower layers provide sia7us (state change) and
synchronization (success/failure) for upper layers
* Heterogeneous Architecture
— Each layer utilizes algorithms tuned for its particular role
— Each layer has a representation to support its reasoning
Goals

Arrange Tasks Task Commitments

Configure Signals

Actiators
Sensors

Esempio: RHINO Architettura

Architettura di RHINO la guida robotica User Interface
del museo di Bonn (1995); simile I
MINERVA (1998) ad Atlanta

Task Planner

|

Architettura a 3 Livelli per un robot Mapping

mobile: / \

1. Fu nziona |e: Localizzation Path Planning
Mapping, Localizzazione, -
AVO I d ance Collisicn Avoidance

2. Esecutivo: I —
Sequencer monitor Architetture di RIHINO

3. Deliberativo:
Task Planner

Rhino, 1997 Minerva, 1998

Architetture a 3 Livelli

* LAAS architecture:

Tre Livelli:

1. Deliberativo
(temporal planner)

2. Esecutivo
(PRS)

3. Funzionale
(GENOME)

Controllo di Rover

DFERATOR
mission I | TS
—
g Fran Supeniso W oo -
13 — Flarme
3% 1
a5k Supersizar i::'nmi.
[] 1 1
gk requests | | stare
=]
L} Exszutye
‘%S I] %J '--_____+
_——'______ 1 i .,
T i
I
* .-"'E|-:-:rr'i:I:rqE""-I I
h_path J |
E-B&ND LOCAL H&W F I
Elastic Sard Mearest Diagram |
Mavigation | | Navigatan Motion Planrer I
" Toes o
.ﬁ I:I'l' - 'F-.-I - ':ITEEE\' I
7 LSIT T TRackmz chc:l"‘x el I
i A p—— arid miam or Ll
- User '1LF ackan Goal Trackar 4 2o ":“f |
5 A ZRID SEGLOC | CAMERAS =
- _ Segment-Basad Cameras Imnages
e Localizatizn | Contro e
|
T |
IIH_J- ey '\,_‘-'?Er'_r'l |
.,15 schosf XR4000 e zohes I
| Locomotion, {=EetFesy " LRF I PLATFORM [——
(5 ecnad US & IR Cantrol [S2T0 Lasar Rangs | Pan-TI (] pan-tE
M Finder Coinol I Coniral angles /
| !
o) e o oz * G
nerel rpedssimrs sdomely s wlwms vk B g ke I T x pEncllpatem
|
|
cPU1 | CPU 2

Architetture a 3 Livelli

Xavier Task Planning
Architecture (Prodigy)
(199 .;) Path Planning

!DE‘[‘iSiﬂl‘l—ThE‘ﬂl‘Pﬁ(‘};

Local Obstacle Avoidance
(Curvature Velocity Method)

Servo-Control
(Commercial)

Pianificazione Deliberativa

Are often aligned with hierarchical control community
within robotics.

Hierarchical planning systems typically share a structured
and clearly identifiable subdivision of functionality regarding
to distinct program modules that communicate with each
other in a predictable and predetermined manner.

At a hierarchical planner’s highest level, the most global and
least specific plan is formulated.

At the lowest levels, rapid real-time response is required,
but the planner is concerned only with its immediate
surroundings and has lost the sight of the big picture.

76

Spatial Time

Scope Hierarchical World Model Horizon
Planner
Long - Term
Global
Immediate
Vicinity

Actions Sensing Real - Time

77

Planning as Search

Planning is looking ahead, searching
The goal is a state.

The robot's entire state space is enumerated, and
searched, from the current state to the goal state.

Different paths are tried until one is found that reaches
the goal.

If the optimal path is desired, then all possible paths must
be considered in order to find the best one.

78

SPA = Planner-based

e Planner-based (deliberative) architectures typically involve three
generic sequential steps or functional modules:

1) sensing (S)

2) planning (P)

3) acting (A), executing the plan
e Thus, they are called SPA architectures.
e SPA has serious drawbacks.

It takes a very (prohibitively) long time to search in a real
Problem 1:

. robot's state space, as that space is typically very large.
Time Scale

1 Real robots may have collections of simple digital sensors
(e.g., switches, IRs), a few more complex ones (e.g.,
cameras), or analog sensors (e.g., encoders, gauges, etc.)

[1 =>"too much information"

[J] =>Generating a plan is slow.

SPA = Planner-based

[It takes a lot of space (memory) to represent and

Problem 2: , | ,
manipulate the robot's state space representation.
Space
1 The representation must contain all information needed
for planning.
=> Generating a plan can be large.
Space is not nearly as much of a problem as time, in
practice.
[] The planner assumes that the representation of the state
space is accurate and up-to-date.
Problem 3: .
. [1 =>The representation must be constantly updated and
Information checked

1 The more information, the better.

[1 =>"too little information"

SPA = Planner-based

Problem 4: The resulting plan is only useful if:

Use of Plans a) the environment does not change during the

execution of a plan in a way that affects the plan.

b) the representation was accurate enough to generate a
correct plan.

c) the robot's effectors are accurate enough to perfectly
execute each step of the plan in order to make the
next step possible

Deliberation in Summary

% In short, deliberative (SPA, planner-based) approaches:
¢ require search and planning, which are slow
¢ encourage open-loop plan execution, which is limiting and dangerous

% Note that if planning were not slow (computationally expensive) then
execution would not need to be open-loop, since re-planning could be done.

Hierarchical Planners vs. BBS

Hierarchical Planners

Rely heavily on world models,
Can readily integrate world knowledge,
Have a broad perspective and scope.

BB Control Systems

afford modular development,

Real-time robust performance within a changing world,
Incremental growth

are tightly coupled with arriving sensory data.

82

Hybrid Control

The basic idea is simple: we want the best of both worlds
(if possible).

The goal is to combine closed-loop and open-loop
execution.

That means to combine reactive and deliberative control.

This implies combining the different time-scales and
representations.

This mix is called hybrid control.

Hybrid robotic architectures believe that a union of deliberative and
behavior-based approaches can potentially yield the best of both worlds.

83

Organizing Hybrid Systems

Planning and reaction can be tied: ~ More Deliberative

: L : Planner

A: hierarchical integration - _

planning and reaction are involved _
with different activities, time scales

Behavioral Advice
Configurations
Parameters

B

B: Planning to guide reaction -
configure and set parameters for
the reactive control system.

C: coupled - concurrent activities

More Reactive

A

84

Organizing Hybrid Systems

It was observed that the emerging architectural design of choice is:
— multi-layered hybrid comprising of
* a top-down planning system and
* a lower-level reactive system.

— the interface (middle layer between the two components) design is
a central issue in differentiating different hybrid architectures.

In summary, a modern hybrid system typically consists of three components:
¢ a reactive layer
¢ a planner
¢ a layer that puts the two together.

=> Hybrid architectures are often called three-layer architectures.

The Magic Middle: Executive Control

e The middle layer has a hard job:

1) compensate for the limitations of both the planner and the reactive
system

2) reconcile their different time-scales.

3) deal with their different representations.

4) reconcile any contradictory commands between the two.
e This is the challenge of hybrid systems

=> achieving the right compromise between the two ends.

86

The middle layer services.

Reusing Plans

Some frequently useful planned decisions may need to be reused, so
to avoid planning, an intermediate layer may cache and look those

up. These can be:

— intermediate-level actions (ILAs): stored in contingency tables.

— macro operators: plans compiled into more general operators for future use.

Dynamic Re-planning

Reaction can influence planning.

Any "important” changes discovered by the low-level controller are
passed back to the planner in a way that the planner can use to re-plan.

The planner is interrupted when even a partial answer is needed in real-
time.

The reactive controller (and thus the robot) is stopped if it must wait for

the planner to tell it where to go.
87

The middle layer services.

Planner - Driven Reaction

* Planning can also influence reaction.

* Any "important" optimizations the planner discovers are passed down
to the reactive controller.

* The planner’s suggestions are used if they are possible and safe.

=> Who has priority, planner or reactor? It depends, as we will see...

Types of “Reaction <> Planning”
Interaction

¢ Selection: Planning is viewed as configuration.
¢ Advising: Planning is viewed as advice giving.
¢ Adaptation: Planning is viewed as adaptation of controller.

¢ Postponing: Planning is viewed as a least commitment process.
88

Universal Plans

e Suppose for a given problem, all possible plans are generated for all
possible situations in advance, and stored.

e |f for each situation a robot has a pre-existing optimal plan, it can react
optimally, be reactive and optimal.

e |t has a universal plan (These are complete reactive mappings).

Viability of Universal Plans
e A system with a universal plan is reactive; the planning is done at
compile-time, not at run-time.
e Universal plans are not viable in most domains, because:
— the world must be deterministic.
— the world must not change.

— the goals must not change.

— the world is too complex (state space is too large).
89

Planning & Execution

* Planning

— Generate a set of actfions — a plan — that can transform an
initial state of the world to a goal state

[Newell and Simon, 1950s]
* Execution

— Start at the nitial state, and perform each action of a
generated plan

Planning Problem

Newell anhd Simon 1956
« (Given the acfions available in a task domain.
« Given a problem specified as:

— an initial stafe of the world,
— a set of goals to be achieved.

« Find a solution to the problem, i.e., a way to transform
the initial state into a new state of the world where the
goal statement is true.

Action Model, State, Goals

Classical Planning

Action Model: complete, deterministic, correct, rich
representation

State: single initial state, fully known

Goals: complete satisfaction

Several different planning algorithms

Esempio: Blocks World
i 5]
A

[B] B
Al [C] [a] [C]

Table Table

Blocks are picked up and put down by the arm

Blocks can be picked up only if they are clear, 1.e., without
any block on top

The arm can pick up a block only if the arm 1s empty, 1.e.,
if 1t 1s not holding another block, 1.e., the arm can be pick
up only one block at a time

The arm can put down blocks on blocks or on the table

STRIPS Model

Pickup from table(b) Pickup from block(b, c)

Pre: Block(b). Handempty Pre: Block(b). Handempty
Clear(b). On(b, Table) Clear(b), On(b, c). Block(c)
Add: Holding(b) Add: Holding(b). Clear(c)
Delete: Handempty, Delete: Handempty,
On(b. Table) On(b. ¢)

Putdown on_table(b) Putdown_on_block(b, c)
Pre: Block(b). Holding(b) Pre: Block(b). Holding(b)
Add: Handempty, Block(c), Clear(c), b =¢

On(b. Table) Add: Handempty, On(b. c)

Delete: Holding(b) Delete: Holding(b), Clear(c)

Init: On(a,Table), On(b,table), On(c,table) Goal: On(a,table),0On(b,a), On(c,b)

Spacecraft Domain

Observation-1

target — |

instruments
N

Observation-2
Observation-3

Observation-4

— pointing

calibrated

Takelmage (?target, ?instr):
Pre: Status(?instr, Calibrated), Pointing(?target)
Eff: Image(?target)

Calibrate (?instrument):
Pre: Status(?instr, On), Calibration-Target(?target), Pointing(?target)
Eff: ~Status(?inst, On), Status(?instr, Calibrated)

Turn (?target):
Pre: Pointing(?direction), ?direction # ?target
Eff: =Pointing(?direction), Pointing(?target)

Planning Problem

* Planning Domain: Descrizione degli operatori
in termini di precondizioni ed effetti

* Planning Problem: Stato iniziale, Dominio,
Goals

Initial Conditions: | P, P, P, P,

preq

Eﬂ'-1
pre, Op <

EHQ

pres

Operators:

Goals: Goal, Goal, Goal,

Tipi di Planning

Classical Planning

Temporal Planning
Conditional Planning
Decision Theoretic Planning

Least-Commitment Planning
HTN planning

Paradigms

Classical planning

(STRIPS, operator-based, first-principles)
“generative”

Hierarchical Task Network planning
“practical” planning

MDP & POMDP planning

planning under uncertainty

State Space vs. Plan Space

* Planning in the state space:

— sequence of actions, from the initial state to the
goal state

* Planning in the plan space:

— Sequence of plan transformations, from an initial
plan to the final one

Plan-State Search

» Search space 15 set of parfial plans
* Plan 1s mple =4, O, B=
— A: Set of actions, of the form (a; : Op;)
— O Set of orderings, of the form (a, < an]
— B Setof bindings, of the form (v, =C), (v; =C). (v;=v) or
(v; = ;) ‘
» Imitial plan:
— ={start, finish}, {start < finish}, {}=
— start has no preconditions; Its effects are the mitial state
— Jfinish has no effects; Its preconditions are the goals

State-Space vs Plan-Space

Planning problem

Find a sequence of actions that make instance of the goal true

Nodes in search space

Standard search: node = concrete world state

Planning search: node = partial plan

(Partial) Plan consists of

& Set of operator applications §;
¢ Partial (temporal) order constraints §; < §;
s Causal links §; —— §;

Meaning: “S; achieves ¢ € precond(S;)” (record purpose of steps)

Search in the Plan-Space

Operators on pattial plans

& add an action and a causal link to achieve an open condition
& add a causal link from an existing action to an open condition

& add an order constraint to order one step w.r.t. another

Open condition

A precondition of an action not yet causally linked

Plan-State Search

a2

Par{A E)
_ Orde ﬁmm-:* ""“'--..____. Fickia. U]
f,f”" | Put(A. B]
Dick(A. ", S :*L'E.TI:':"
\/\ , -&mﬂ Ci
Eu?ifﬂ”*'mmc,. rder | PLkTiC) |
Bind 1‘*«.._ | / \PurA.E)/
AT AAdd —
(DickiA, O Order 2N
\ PatiA, B) BickT(C)\
SN S | Pack(A. C

- \Put{A. B)/
Iy

Partially-Ordered Plans

Start
Start L=t t
Sook Sook
LeftShroaC, l HigintShoeCn [eftSockonT RightSock O
Left Rigiit
Finish Shoe Shoe

\

 eftShoeOn, RightShoaeln

Finish

Special steps with empty action

Start no precond, initial assumptions as effect)

Finish - goal as precond, no effect

Partial-Order Plans

Complete plan

A plan is complete iff every precondition is achieved

A precondition ¢ of a step §; is achieved (by ;) if
& 55 - 5;
& c € effect(S;)

& thereisno S with S§; <5 <S5, and —c € effect(S;)
(otherwise §; is called a clobberer or threat)

Clobberer / threat

A potentially intervening step that destroys the condition achieved
by a causal link

Example

Go(Home)

e

IIIII__.- T

Partial-Order Plans

clobbers A:(HWS)

g ™\ DEMOTION
Go(HWS) l|
l
\
N
> Goll lome)
f;” At(Home)
At{HWS) [f
Buy(Dxill) J
; /
~_ _7
PROMOTION AtHBme)

Finish

Demotion

Put before Go(HWS)

Promotion

Put after Buy(Drill)

General Approach

* (eneral Approach
— Find unaclieved precondition

* Add new action or hnk to existing action
— Determine 1f conflicts occur

* Previcusly aclueved precondition 1 “clobbered”
» Fix conflicts (reorder, bind, .)

* Partial-order planning can easily (and optimallv) solve
blocks world problems that involve goal interactions (e.g.,
the “Sussman Anomalv problem)

n s
EE C

Imifial State Cxoal

Blocks World

"Sussman anomaly” problem

BI[A

Start State Goal State
Clear(x) On(x,z) Clear(y) Clear(x) On(x,z)
PutOn(x,y) PutOnTable(x)
~0On(x,z) ~Clear(y) ~0On(x,z) Clear(z) On(x, Table)
Clear(z) On(x,y)

+ several inequality constraints

Blocks World

START
On(C,A) On(A,Table) CiB) On(B, Table) CIC)

On(A,B) On(B,C)
FINISH

A
B

Blocks World

START
On(C.A) On(A, Table) CKB) On(B.Table) CIC)

\l

C-'PB) Dﬂ,B,z) CJC)
PutOn(B,C)

/

On(A,B) anﬁ'c,:
FINISH

A
B

Blocks World

START

On(C.A) On(A, Table) CkB) On(B.Table) CIC)

Cl(A) Gn(:!,z) c;(g;
PUtON(AB) ==~

\

\

N

-—

CPB) Dﬂ?ﬁ,z) CJ}C}
—| PutOn(B,C)

/

OnyA,B) Dﬂfﬁ@

FINISH

BllA

PutOn(A,B)
clobbers CHB)
= order after

PutOn(B,C)

A
B

Blocks World

START
On(C.A) On(A,Table) CkB) On(B, Table) C{C)

BllA

/ PUON(A,B)
clobbers CHB)
p P :rpﬂl'dﬁ'gﬂer
on(C.z) CI(C) B
PutOnTable(C) K. _ Eﬂ?hl{g’%}m:}
- — order after
\ PutOnTable(C)
A ,! g“% CI(B) Gn,B,z) c:f?c,:
CliA) On(A,z) Cl ~.
(A) On(A,z) CI(B) ;: PUION(B.C)
PutoOn(AB) ==~ /
Oﬂ}ﬂ.ﬂ) anﬁ:C)

FINISH

Blocks World

1 c|l)

| Start | _lA] [B

On(C, A) OnfA, Table) On(B, Takle)
Clear{C), Clear{B]}

3. [Start]
OniC, A) Onid Table)Qn(B, Table)
Clegt(C) Cle

Clear{C)

Move(C, Table)

A
On(A, B) On(B. C) 5
| Finish | C
2. | Start |

On{C, A) OnfA, Table) Bpn(B, Takle)
Clear(C) Clear(E)
CleariBS% Claar{C)

Move(B, C)

On{A, B) On(B &
| Finish

Clear(2% Clear(C)

Clearf AN Onu(C, Table)
AMove(B, C)

Clear{A)|Clear(B)
Move(A, B)

oni B o C)

Blocks World

4. | Start | 5. | Start |
Co(C, A) OniA. Table) QuB. Table) CmiC, A) OniA. Table) On(E, Table)
Clghr{C) Clear(ClginC) Clear(B)

Clear{iC) CleariC)
Aove(C, Table) i Move(C, Table)) _
. — ClaariBwClear(C) . — Clear{B) Clear(C)
Clear(A)|On(C, Takl Clear{ AN Cn{C, Tabl
A O TR S Y fove(B, ©) =S N Move(B, C)
Clear[A)Clear(2) Clear[ANClear(B) ~Clear(C)
Move(A, B) Move(A, B) —

~Clear{B)
O s YO, O Ly VO, ©)

| Fimsh | | Fimsh |

Least Commitment

 Basic [dea

— Make choices that are relevant fo solving the current
part of the problem

« [east Comnutment Choices

— Orderings: Leave actions unordered, unless they must be
sequential

— Bindings: Leave variables unbound, unless needed to unify
with conditions beimng achieved

— Actions: Usunally not subject to “least commuitment™

« Refinement
— Caly add information to the current plan
— Transformational planning can remove choices

Terminology
Totally Ordered Plan

— There exists sufficient orderings O such that all actions in A
are ordered with respect to each other

Fully Instantiated Plan

— There exists sufficient constraints i 5 such that all variables
are constrained to be equal to some constant

Consistent Plan

— There are no contradictions i O or B

Complete Plan
— Every precondition p of every action a, in 4 15 aclieved:
There exists an effect of an action a; that comes before o, and
unifies with p. and no action a, that deletes p comes between

a; and a,

POP-Algorithm

function POP(initial, goal, operators) returns plan

plan — MAKE- MINIMAL-PLAN(/nitial, goal)
loop do
if SOLUTION?(plan) then return plan % complete and consistent
Sneed, ¢ <— SELECT-SUBGOAL(plan)
CHOOSE-QOPERATOR(plan, operators, Syeed, C)
RESOLVE-THREATS(plan)
end

function SELECT-SUBGOAL(plan) returns S,,c04. ¢

pick a plan step S;eeq from STEPS(plan)
with a precondition ¢ that has not been achieved
return S,eeq. €

POP-Algorithm

procedure CHOOSE-QOPERATOR(plan, operators, S,,ced, C)

choose a step S, 4 from operators or STEPS(plan) that has ¢ as an effect
if there is no such step then fail

add the causal link Sggq <. Sueed to LINKS(plan)

add the ordering constraint S04 = Sneeqd 10 ORDERINGS(plan)
if Sqqq 1s a newly added step from operators then
add S,44 to STEPS(plan)

add Srart < Sggq0 < Finish to ORDERINGS(plan)

POP-Algorithm

procedure RESOLVE-THREATS(plan)

for each S;j,.4 that threatens alink §; . §; in LINKS(plan) do
choose either
Demotion: Add S;preqe < Si to ORDERINGS(plan)
Promotion: Add 5; < Sijreq; 10 ORDERINGS(plan)
if not CONSISTENT(plan) then fail
end

POP-Algorithm

Non-deterministic search for plan,
backtracks over choicepoints on failure:

— choice of 5,4 to achieve S,,.c4
— choice of promotion or demotion for clobberer

Sound and complete

There are extensions for:
disjunction, universal quantification, negation, conditionals

Efficient with good heuristics from problem description
But: very sensitive to subgoal ordering

Good for problems with loosely related subgoals

POP-Algorithm

* Advantages

— Partial order planning 1s sennd and complere
— Twypically produces opfimal solutions (plan length)

— Least commitment may lead to shorter search times

« Disadvantages

— Significantly more complex algonthms (hagher per-nods
Cioat)

— Hard to determine what 15 true 10 a state
— Larger search space (infinite!)

Plan Monitoring

Execution monitoring

Fallure: Preconditions of remaining plan not met

Action monitoring

Fallure: Preconditions of next action not met

(or action itself fails. e.q.. robot bump sensor)

Consequence of failure

MNeed to replan

Preconditions for the rest of the plan

Start

AtHWS) Sedls HIWS, Dirilly
Buy (Dl

AtHIALS)

Havey Driffy
Sells(SM.Can.)
Sells(SMMilk)

AlSM) Sells(SM,Milk)
Buy(Milk)

Havey i) AtiHome) H=weiBan.) HzsxsDril
| Finish |

Replanning

Simplest

On failure, replan from scratch

Better

Plan to get back on track by reconnecting to best continuation

o—O0—~_0—0-—""0C—"_0C—0

|
|

Q/ " Failure

START
Color(Chait,Blue) IvHave{Hedj

Get(Red)

H&v&L&d}

Paint(Red)

cafw{c!m, Red)

FINISH

Replanning

PRECONDITIONS FAILURE RESPONSE
hone N/A
Have(Red) Fetch more red
Color(Chair,Red) Repaint

Classical Planning: Limits

Instantaneous actions
No temporal constraints

No concurrent actions

No continuous quantities

Spacecraft Domain

Observation-1
priority
time window
target
instruments
duration

Observation-2
Observation-3

Observation-4

Obijective:
maximize science return

Spacecraft Domain

Observation-1
priority

time winduy
target
instruments —
duration
Obsewatiun-Z\

Observation-3

linked

Observation-4

. angle between targets

— turn duration

- calibration
target1
target2

Based on slides by Dave Smith, NASA Ames

consumables:

fuel
power

data storage

Objective:
maximize science return

cryogen

Time
Resources
Constraints
Uncertainty
Utility

Extensions

Model

State-centric (Mc Carthy):
for each time describe propositions that are true

Pointing(Earth)
Status(Cam2, Calibrated)

= Image(AT)

Pointing(A7)
| Status(Camz, Calibrated)
= Image(AT)

Turn(A7)

History-based (Hayes):
for each proposition describe times it is true

Pointing(Earth) Turn(A7) Pointing(A7)

Status(Camz2, Calibrated)

Based on slides by Dave Smith, NASA Ames

Temporal Interval Relations

A before B A B
A meets B A B
A
A overlaps B
B
_ A
A contains B
B
A
A=B
B
A
A starts B
B
A
A ends B
Based on slides by Dave Smith, NASA Ames B

Temporal Operators

Takelmage (?target, ?instr):
Pre: Status(?instr, Calibrated), Pointing(?target)

Eff: Image(?target)

Takelmage (?target, ?instr)
contained-by Status(?instr, Calibrated)
contained-by Pointing(?target)
meets Image(“target)

Baszed on slides by Dave Smith, MASA Ames

Temporal Operators

Takelmage (?target, ?instr)

contained-by Status(?instr, Calibrated)
contained-by Pointing(?target)
meets Image(?target)

Pointing(?target)

l contains

Takelmage(?target, 7instr)

T contains

meets

Status(?instr, Calibrated)

Based on slides by Dave Smith, NASA Ames

Image(?target)

Temporal Operators

Takelmage (“target, ?instr)
contained-by Status(?instr, Calibrated)
contained-by Pointing(?target)
meets Image(?target)

J

Takelmage(?target, ?instr),
— Jp {Status(?instr, Calibrated), A Contains(p, A)}

A da {Pointing(?target)a A Contains(q, A)}

A JR {Image(7?target)s A Meets(A, R)}

Bazed on slides by Dave Smith, NASA Ames

Temporal Operators

Turn (?target)

met-by Pointing(”direction)
meets Pointing(”target)
Pointing(?direction) meets, Turn(?target) mees, Pointing(?target)

Bas

Temporal Operators

Calibrate (?instr)
met-by Status(?instr, On)
contained-by CalibrationTarget(?target)
contained-by Pointing(?target)
meets Status(?instr, Calibrated)
Pointing(7target)
contains
Status(Zinstr, On) =2 Calibrate(Zinstr) oo Status(7instr, Calibrated)
ncontains

CalibrationTarget(?target)

ed on slides by Dave Smith, MASA Ames

Temporal Planning Problem

Pointing(Earth)

Status(Cam1, Off)

Past eets

Ba

Image(?target)

meels

—co \ Status(Cam2, On)

CalibrationTarget(T17)

sed on slides by Dave Smith, MASA Ames

b

Future

Fast

Consistent Complete Plan

Painting{Earth)

Turmi{T 17}

Status(Cam1, Off)

Tum{aT) [~Pess

Pointing (A7)

Mees

Pointing(T 17}

 contains

J, contains

Takelmage(AT, Cam2)

Image(AT) -

Futurs

contains

Status(Cam2, Cn)

EEATT

Calibrate{Cam2) [HesE

Status({Cam2, Calbrated)

contains

CalibratiocnTarget(T17)

Based on slides by Dave Smith, HASA Ames

CBI-Planning

Choose:

Introduce an action & instantiate constraints
coalesce propositions

Propagate constraints

Basad on slides by Dave Smith, NASA Ames

Past

eels

Initial Plan

Pointing(Earth)

Status(Cam1, Off)

Image(?target)

meets

Status(Camz2, On)

CalibrationTarget(T17)

Future

e =]

eets

Expansion

Pointing(Earth) before

Status(Cam1, Off)

Status(Cam2, On)

CalibrationTarget(T17)

Pointing(A7)
contains
| Takelmage(A7, ?instr) |ﬁ>‘ats
contains

Status(?instr, Calibrated)

Image(AT)

meeis

L 2

Future

Expansion

ing({Earth)

tus(Cam1, Off)

tus(Cam2, On)

rationTarget(T17)

before

Status(?instr,
On)

Bazed on slides by Dave Smith, HASA Ames

meets meets
Fointing(?direction) Turn{A7)

Pointing(?caltarget)

contains

Calibrate(7instr)

contains

CalibrationTarget(?caltarget
)

FPointing(AT)

contains

Takelmage(A7, ?instr)

meets

A

3

contains

Status(?instr, Calibrated)

Imag

Coalescing

1g(Earth)

before

us(Cam, Off)

meels

FPointing(?direction)

before

Pointing(T17)

contains

meets

Status(Camz2, On)

b

Calibrate(Cam2)

Pointing(AT)

meels

l contains

meels

Takelmage(A7, Cam2)

&

contains

-~

contains

CalibrationTarget(T17)

Status(Cam2, Calibrated)

Image|

ting(Earth)

before

atus(Cam1, Off)

Status(Cam2, On)

Coalescing

Tum(AT7)

meets

meeis

Pointing(AT)

Pointing(T17)

contains

meets

Calibrate(Cam2)

meefs

contains
L J

Takelmage(A7, Cam2)

E 9

contains

meets

f 3

contains

CalibrationTarget(T17)

Status(Cam2, Calibrated)

Imag

Expansion

Pointing(?direction)
ing(Earth) I

Turn(A7T)

meets

meeis

Pointing(A7)

Pointing(T17)

itus(Cam 1, Off)

meels

contains

Status(Cam2, On)

k.

Calibrate{Cam2)

meets

contains

v

meets

Takelmage(A7, Cam2) [—*

[

contains

k

contains

CalibrationTarget(T17)

Status(Camz2, Calibrated)

Imag:

nting(Earth) %ets‘
Tum(T17)

Coalescing

Tum(AT)

meets

meels

Pointing(AT7)

meets

tatus(Cam1, Off)

Pointing(T17)

Status(Cam2, On)

meels

3

contains

W

Calibrate(Cam2)

meets

contains
v

L3

contains

meets [
Takelmage(A7, Cam2) —*

1|.

contains

CalibrationTarget(T17)

Status(Cam2, Calibrated)

CBI-Algorithm

Expand(TQAs. constraints)

. If the consftraints are inconsistent, fail
. If all TQAS have causal explanations. return{ TQAS, constraints)

1
2
3. Selecta g = TQAs with no causal explanation
4. Choose:

Choose another p = TQAS such that g can be coalesced with p under constraints C
Expand(TQAs-g, constraints . C)
Choose an action that would provide a causal explanation for g

Let A be a new TQA for the action,
and let R be the set of new TQAs implied by the axioms for A

Let C be the constraints between A and R
Expand(TQAs v {A}w R, constraints o C)

CBI-Planners

Zeno (Penberthy)
Trains (Allen)
Descartes (Joslin)
IXTeT (Ghallab)

HSTS (Muscettola)

EUROPA (Jonsson)

intervals, no CSP

extreme least commitment

functional rep.

functional rep., activities

functional rep., activities

CBIl vs POP

CBl is similar to POP because least
commitment and partial order

But, temporal constraints in CBI ...

Contraints Temporal Network associated with
a plan

Constraint propagation

Temporal Constraints

y after x

shefoey IS

X meets y

covetlapsy | X [N v overlapped-by X
X during y - x[* y contains X

X finishes y

y met-by x

y started-by x

y fiished-by x

X equals y

y equals x

RAX Example: DS1

|
SEP_Stank contained_by N

contained_by

contained _ |
Accum | |
equals
| . ;. | qus |
SEP Actioh < |
. []
I Stﬂ'llt_Up Shll‘_Dﬂ“-ﬂ St _Ll] Dl‘"ltal Ed b}f Sllllt_Dﬂ“]l I
I |
Attitude | Tve) I
I I
' [|
Poke

Bazed on slides by Dave Smith, MASA Ames

Temporal Constraints as Inequalities

* X beforey X <Y

* Xmeetsy X =Y

* xoverlapsy (Y <=X)&(X <Y
*+ xXduringy (Y <=X)&(XT<Y)
* Xstarts y (X =Y)& (X" <Y
* X finishesy (X =<Y) &X' =Y
* Xequalsy (X =Y)&(X"=Y)

Inequalities may be expressed as binary interval relations:
X" -Y" < |-nf, O]

Metric Constraints

* Going to the store takes at least 10 minutes and at most 30 minutes.
— 10 < [T (store) — T-(store)] < 30

* Bread should be eaten within a day of baking.
— 0 < [T*(baking) — T-(eating)] < 1 day

* Inequalities. X™ < Y. may be expressed as binary interval relations:
— -mf<[X7-Y]<0

Temporal Constraint Networks

* A set of time pomts X, at which events occur.

* Unary constraints

(a,=X.<by)or(a, =X.<b,)or..

* Binary constraints

(ap = X;-X;=by)or(a, =X;-X;<b;)or..

Temporal Constraint Satisfaction

Problem
[30:4[]}
[10.20] _ [60.inf]

Simple Temporal Networks

Simple Temporal Networks:

» A set of time pomts X. at which events occur.

¢ LTHEII'V CGIIStf‘]ill[S
(3, < X;<b,)

* Biary constraints
(8, = X -X;=by)

Sufficient to represent:
» most Allen relations

* simple metric constraints

Can’t represent:
* Disjoint activities

Simple Temporal Networks

[30,40]

[10,20]

STN example

430,340

A Complete CBI-Plan is a STN
o [N Detta_V(@irection=b, magnitude=200)
Goals

Point(2) NG ~ Point(h)

Attitude

A Complete CBI-Planis a STN

[1035, 1035]

<0, 0>

DS1: Remote Agent
Remote Agent on Deep Space 1

16.412/6.834], Fall 03

Remote Agent Experiment: RAX

Remote Agent Experiment

See rax.arc.nasa.gov
May 17-18th experiment

Generate plan for course correction and thrust
Diagnose camera as stuck on
— Power constraints violated, abort current plan and replan
Perform optical navigation
Perform ion propulsion thrust

May 21th experiment.
Diagnose faulty device and
— Repair by issuing reset.
Diagnose switch sensor failure.
— Determine harmless, and continue plan.
Diagnose thruster stuck closed and
— Repair by switching to alternate method of thrusting,.
Back to back planning

Copyright B. Williams 16.4127/6.834]. Fall 03

Remote Agent

Remote Agent

Mission
Maﬂ

Planner/

Scheduler Diagﬂos_is
& Repair

Planning Experts
‘incl. Navigation

Copynght B. Wilhams 16.412J/6. 8347, Fall 03

Remote Agent

Thrust
Goals

Attitude

16.412J/6.834], Fall 03

Remote Agent

* Mission Manager

Thrust
Goals Delta V(direction=b, magnitude=200)

Attitude

Copyright B. Williams 16.412/6.834], Fall 03

Remote Agent

 Constraints:

Delta V(direction=b, magnitude=200)

Engine

Copyright B. Williams 16.4121/6.8347, Fall 03

Remote Agent

* Planner starts

Thrust
Goals Delta V(direction=b, magnitude=200)

Attitude

Copyright B. Williams 16.4121/6 8341, Fall 03

Remote Agent

* Planning

Thrust — .
Goals Delta V(direction=b, magnitude=200)

Attitude

Copyright B. Williams 16.4121/6.8347, Fall 03

Remote Agent

 Final Plan

Thrust
Goals Delta V(direction=b, magnitude=200)

Attitude

Copyright B. Williams 16.4121/6 8341, Fall 03

Remote Agent

* Constraints

Thrust : : .
Goals Delta V(direction=b, magnitude=200)

Attitude

Engine

Copyright B. Williams 16.4121/6.8347, Fall 03

Remote Agent

* Flexible Temporal Plan through least
commitment

Remote Agent

* Executive system dispatch tasks

Remote Agent

Mission
Maﬂ
Planner/ a .
Scheduler Dlagﬂﬂs_l 3
& Repair

Planning Experts
incl. Navigation

Copyright B. Williams 16.4121/6.834], Fall 03

Remote Agent
* Executing Flexible Plans

* Propagate temporal constraints
* Select enabled events

« Terminate preceding activities
* Run next activities

16.412)/6.834J, Fall 03

Remote Agent

* Constraint propagation can be costly

CONTROLLED SYSTEM

16.412)/6.834J, Fall 03

Remote Agent

* Constraint Propagation can be costly

CONTROLLED SYSTEM

Copyright B. Williams 16.4121/6.834J, Fall 03

Remote Agent

e Solution: compile temporal constraints to an
efficient network

CONTROLLED SYSTEM

Copyright B. Williams 16.412J/6.834J, Fall 03

