The Policy Iteration Algorithm

function POLICY-ITERATION(M, R) returns a policy
inputs: M, a transition model
R, a reward function on states
local variables: U, a utility function, initially identical to R
P, a policy, initially optimal with respectto U

repeat
U — VALUE-DETERMINATION(P, U, M, R)
unchanged? — true
for each state i do .
if max, > M¢ U[j] > Z M Ulj] then
j

P[i] +— arg max, Z M” Ulj]

i Value Determination
unchanged? — fd]qe

end U(s:) = R(s:) + &, PE0U(s))
until unchanged?

return P U'(s,) — R[]+ 5, PIPU(s))

POMDPs

m MDPs policy: to find a mapping from
states to actions

m POMDPs policy: to find a mapping
from probability distributions (over
states) to actions.

m belief state: a probability distribution
over states

m belief space: the entire probability
space, infinite

52

POMDPs
m Partially Observable MDPs

A partially observable Markov decision process can be deseribed as a tuple
(S, AT, R, Q, 0O), where

S. A T, and R describe a Markov decision process:

U115 a fnite set obf observations the acent can experience of 1ts world: and
():85 x A — 1) is the observation function. which eives. for each action
and resulting state, a probability distribation over possible observations (we
write ()&, a,0) for the probability of making observation o given that the
acent took action o and landed in state 57,

Aetion

Observation

AGENT

53

POMDPs

m In POMDPs we apply the very same idea as in
MDPs.

m Since the state is not observable, the agent has
to make its decisions based on the belief state
which is a posterior distribution over states.

m Let b be the belief of the agent about the state
under consideration.

s POMDPs compute a value function over belief
space:

Vi) = ymax|r(bw) + [V a()p(t' | u,b) dv

54

Problems

Each belief is a probability distribution, thus,
each value in a POMDP is a function of an
entire probability distribution.

This is problematic, since probability
distributions are continuous.

Additionally, we have to deal with the huge
complexity of belief spaces.

For finite worlds with finite state, action, and
measurement spaces and finite horizons,
however, we can effectively represent the
value functions by piecewise linear
functions.

55

A two state POMDP

m represent the belief state with a single
number p.

m the entire space of belief states can be
represented as a line segment.

belief space for a 2 state POMDP

56

belief state updating

m finite number of possible next belief states,
given a belief state
= a finite number of actions
= a finite number of observations

m b’ =T(b’| b, a, z). Given a and z, b’ is fully

determined.
a2

57

belief state updating

m the process of maintaining the belief
state is Markovian: the next belief
state depends only on the current
belief state (and the current action
and observation)

m wWe are now back to solving a MDP
policy problem with some adaptations

58

belinetf state updating

m continuous space.
value function is
some arbitrary
function
m b: belief space

= V(b): value function

V(b)

m Problem: how we 0 b 1
can easily
represent this mValue function over

inn?
value function- belief space

59

Fortunately, the finite horizon value
function is piecewise linear and convex
(PWLC) for every horizon length.

o

0 -Samp/e! 1
PWLC
function

An Illustrative Example

measurements | state x; action u, state x, measurements
0.8
&V z 1
0.7 Zs
0.8
0.2
U, actions u; u,
—100 100 100 =50
‘ payoff ‘ ‘ payoff ‘

61

The Parameters of the Example

m The actions u, and u, are terminal actions.
m The action u; is a sensing action that potentially

leads to a state transition.
m The horizon is finite and y=1.

r(zy,u1) = —100 r(zo,u1)
r(zy1,up) = —+100 r(zo,un)
T‘(.’E]_,’U,3) — _1 T(LUQ,U?,)
p(.’]ﬁ&lﬂ?l,u?)) = 0.2 p($,2|331,fU,3)
p(zi|zp,u3) = 0.8 (25|20, u3)
p(z1|z1) = 0.7 p(z2|z1)
p(z1|zp) = 0.3 p(z2|x2)

+100

= =50

0.8
0.2

.S

0.7
62

Payoff in POMDPs

m In MDPs, the payoff (or return)
depended on the state of the system.

m In POMDPs, however, the true state is
not exactly known.

m Therefore, we compute the expected
payoff by integrating over all states:

r(b,u) = FEgz[r(xz,u)]
/'r'(a:,u)p(a?) dx

P1 ’I"(ZL’]_, ’LL) +p2 ’I"(IL‘Q,U)

Payoffs in Our Example (1)

m If we are totally certain that we are in state x, and
execute action u,, we receive a reward of -100

m If, on the other hand, we definitely know that we
are in x, and execute u,, the reward is +100.

m In between it is the linear combination of the
extreme values weighted by the probabilities

r(b,u1) =

T(bv u2)

r(b,u3)

—100 p7 + 100 po
—100 P1 T 100 (1 — pl)

100 p1 — 50 (1 —p1)

—1
64

Payoffs in Our Example (2)

100

50F

0_

-50r

r(b,uq)

=50

—10q)

1007

507

0.2

r(b, u3)

0.4

06

08

1

-100

-50f

-100

0.2

0.4

0.6

0.8

-50

-100

r(b, uo)

100;

50¢

0_

V1(b) = maxyr(b,u)
50¢

=

0 02 04 08 08 1
65

The Resulting Policy for T=1

m Given we have a finite POMDP with
T=1, we would use V,(b) to
determine the optimal policy.

m In our example, the optimal policy
for T=1is

up ifpp <2
m1(b) = .

u-” ifp1>7

m This is the upper thick graph in the
diagram.

66

Piecewise Linearity, Convexity

m The resulting value function V,() is
the maximum of the three functions
at each point

Vi(b) = max r(b,u)

(—100p; +100 (1 —pq) "
= max{ 100p; —50(1—p71) ;
—1

\ /

m [t is piecewise linear and convex.

67

Pruning

m If we carefully consider V,(b), we see
that only the first two components
contribute.

m The third component can therefore
safely be pruned away from V,(b).

_ ~100p; 4100 (1 —p1)
valia = max{ 100p; 50 (1 - p1)

68

Increasing the Time Horizon

m Assume the robot can make an observation before
deciding on an action.

V,(b)

69

Increasing the Time Horizon

m Assume the robot can make an observation before
deciding on an action.

m Suppose the robot perceives z, for which
p(z; | x)=0.7 and p(z,| x5)=0.3.

m Given the observation z, we update the belief using
Bayes rule.

0.7
pvl — pl
p(z,)
0.3(1—
p'z — (pl)
p(z,)

p(z,)=0.7p, +0.3(1-p,)=0.4p,+0.3

70

Value Function

b’(b|z,)

100

V,(b)

S0

10

Vl(b | Zl) -100,

-100
0

S0

O
(%
O
N
o\
o)
O
oo
—

Increasing the Time Horizon

m Assume the robot can make an observation before
deciding on an action.

m Suppose the robot perceives z, for which
p(z; | x1)=0.7 and p(z,| x5)=0.3.

m Given the observation z, we update the belief using
Bayes rule.

m Thus V,(b| z,) is given by

(. 0.7 pg - 03(1—p1))
100 +100 o)

Max { >
\ p(z1) p(z1))
1 —70p1 430 (1 —p1)
max
p(z1) { 70p1 —15(1—p1)

Vi(b| z1)

72

Expected Value after Measuring

m Since we do not know in advance what the
next measurement will be, we have to
compute the expected belief

AORPACRIE WIENACIED

ip)V[p(z |x1)p1j

i=1 p(z;)

2
> Ve x)p,)

i=1

73

Expected Value after Measuring

m Since we do not know in advance what the
next measurement will be, we have to
compute the expected belief

Vi(b) = E.[Vi(b| 2)]
>
= Y p(z) Vi(b| #)
=1

max{ ~70p1 +30 (1 - p1) }

70p; —15(1 —p1)

~30p; +70 (1 —p1)
+max{ 30 py —35(1—p1)}

74

Resulting Value Function

m The four possible combinations yield the
following function which then can be simplified
and pruned.

(—70p1 +30(1—-p1) —30p; +70(1—p1))
—70p; +30(1—p1) +30p; —35(1—p1)
+70p1 —-15(1-p1) —30p; +70(1—pq)
| +70p; —15(1—p1) +30p1 —-35(1—p1) |

(—100p; +100 (1 —pq) }

V1(b)

MaX <

"

max{ 440p; 455 (1—py)
| +100p; —50(1—p1)

75

Value Function

1007

50\/

=501
-100
0

1007

S0

OF--—z-="-"=c
=z b
‘-"d-
-

0.2

0.4

0.6

0.8

-_—

0.2

0.4

0.6

0.8

.

p(z,) Vi(blz;)

V1(b)

p(z,) Va(b|z,)

1

76

State Transitions (Prediction)

m When the agent selects u; its state
potentially changes.

m When computing the value function, we
have to take these potential state
changes into account.

1 = Ezlp(z1 |2, u3)]
2

> p(z1 | @i, u3)p;
i—1
0.2p1 +0.8(1 — p1)

0.8 — 0.6p1

77

State Transitions (Prediction)

p1 = Exzlp(z1 |z, u3)] 08
2 0.6
= > p(x1 |z u3)p; N
1=1 |
= 0.2p1 +0.8(1 —p1) oz
= 0.8 —-0.6p; % 02 04 06 08

78

Resulting Value Function after
executing u;

m Taking the state transitions into account,
we finally obtain.

(—70p; +30(1—-p1) —-30p; +70(1 —pq1))

—70p1 +30(1—p1) +30p; —35(1—p1)

| +70p; —15(1—p1) +30p1 —35(1 —p1) |

(—100p; +100 (1 —p1) }

"

V1(b)

MaX <

= maxqy +40p; +55(1—p1)
| +100p; —50 (1 —py)

(60p; —60(1—p1) }
79

Vl(b | ’11.3) = Mmaxy/ 52 P1 +43 (]— _pl)
—20p; +70 (1 —p1)

Value Function after executing
Us

V1(b)

100‘\ /
50r
O_
1r
0.8 =50
0.6 ~100 ' ' ' ‘
0 0.2 0.4 06 0.8 1
0.4r
100r
0.2t)
0 50t
0 0.2 0.4 0.6 0.8 1
O_
0.2 0.4 0.6 0.8 1

1(b | u3) .,

Value Function for T=2

m Taking into account that the agent can
either directly perform u, or u, or first us
and then u; or u,, we obtain (after

pruning)

_ (—100p1 +100 (1 —py)
Vo(b) = max< 100py —-50(1—1pq)
. 51py +42(1-—p1) |

Y

81

Graphical Representation
of I',(b)

100N, optimal u, optimal

50

O -
outcome of
measurement
—o07. - is important
he
-100

82

Value Iteration

Immediate
Rewards

~ al ~

23

_ e

Horizon 1
Value Function

!

0 I 0

Transformed value function

(al,a2,al)

(a2,a1,41) (2,a2,a1) \L (“’f"’z)

Partition for action a1

S(alzl) S(al,z2) S(al,z3)
s Ry \ E \
10 1 0 1

Transformed value function for all observations

N

(a2,a1,41) (a2,02,81) (al,82,01) (al,62,82)

Value function and partition for action a1 83

Value Iteration

(al,a2,81) (a2,a2,al)
Value function and partition for action a2 Combined a1 and a2 value functions
N
oo™
/
al al a2 al

Value function for horizon 2

84

Deep Horizons and Pruning

s We have now completed a full backup in
belief space.

m This process can be applied recursively.
m The value functions for T=10 and T=20 are

100 100

80(80,

60 60"

407 40+

20} 207

Deep Horizons and Pruning

100y
100

50 50
0 0
-50 =50
-100

-100
0 0

100

50

=50

-100
0

100
100y

50

=100
[¢]

86

m |S| =3
m Hyper-planes

m Finite number
of regions over
the simplex

mSample value function for |S| = 3

87

m Repeat the process for value
functions of 3-horizon,..., and k-
horizon POMDP

V; (b)= maX[Zb% +) bV [T(ba,2)]]

acA
i,],z

V(b) = max l 2 Ri(s.a)b(s)+ 7 2 max 2 2 -I'(_._H..H’:IS?I:_(.I,.‘1’_i.':](}fli.‘w'.}lf(h]}
acA ' : a'ev’
’ SE S oe O seS s'€eS

88

Why Pruning is Essential

Each update introduces additional linear
components to 7.

Each measurement squares the number of
linear components.

Thus, an un-pruned value function for T=20
includes more than 10°47/:864 |[inear functions.

At T=30 we have 10°61,012,337 |inear functions.

The pruned value functions at T=20, in
comparison, contains only 12 linear components.

The combinatorial explosion of linear components
in the value function are the major reason why
POMDPs are impractical for most

applications. "

POMDP Summary

m POMDPs compute the optimal action in
partially observable, stochastic domains.

m For finite horizon problems, the resulting
value functions are piecewise linear and
convex.

m In each iteration the number of linear
constraints grows exponentially.

90

POMDP Approximations

m Point-based value iteration
s QMDPs

m AMDPs

91

Point-based Value Iteration

m Maintains a set of example beliefs

m Only considers constraints that maximize
value function for at least one of the
examples

m Occasionally add new belief points

m Can do point updates in polytime, no
pruning

V=1 c:u,:::l,c::}

bl bl b0 b3
92

Point-based Value Iteration

Value functions for T=30

Exact value function PBVI

93

Example Application

PriRobot = 819 | Robot = sg, North) =1

PriOpponent = =15 | Opponent = 8158 Robot = 2p) = 0.4

Pr(Opponend = sag | Opponent = s15& Hobot = 50} = 0.4

PriOpponent = 815 | Opponent = s158 Robot = 5p) = 0.2

26 |27 |28
23 |24 |25
20 (21 |22
A
10 |11 |12 |13 |14 lSCL 16 17 (18 |19
;[:——b
0&1 2 13 4 |5 |6 7 |8 |9

94

Example Application

95

QMDPs

m QMDPs only consider state
uncertainty in the first step

m After that, the world becomes fully
observable.

96

s

n

Algorithm QMDP(b = (p1,....pn)):

V = MDP_discrete_value_iteration()

for all control actions u do
_"1".'7
Qzi,u) = r(x;,u) + Z Viiay) nloy | U 2;)
j=1
endfor
A

return arg max p; Qx;, u)

i =4

97

Augmented MDPs

m Augmentation adds uncertainty
component to state space, e.qg.,

_ (argmax b(x)
b:[o J Hb(x):—j b(x)log b(x)dx

m Planning is performed by MDP in
augmented state space

m Transition, observation and payoff
models have to be learned

98

Due fasi: learning
(2-19) e value
iteration (20-27)

n campioni per
ogni b- e u

b(x) e gaussiana

simmetrica

Aggiornamento
basato su
frequenza

Value Iteration

15

17
18:
19:
20:
21:
22:
23:
24

26:
7

Algorithm AMDP_value_iteration():

for all b do
for all u do

for all b do
P(b,u,b') =0

endfor
R(b,u) =0

repeatl n times
generate b with f(b) = b
sample x ~ b(x)
sample z' ~ p(z' | u,z)
samplez ~ p(z | z')
calculate b’ = B(b,u, z)

!

calculate b’ = f(b')
P(b,u,b') = P(b,u,b’) +
R(b,u) = R(b,u) + k—J
endrepeat
endfor
endfor
for all b
V()= Fuiia
endfor

repeat until convergence
for all bdo

// learn model

// initialize model

// learn model

// belief sampling

// motion model

// measurement model
// Bayes filter

// belief state statistic

// learn transitions prob’s
// learn payoff model

// initialize value function

/ / value iteration

V() = 7 max |R(u,8) + Y V() Pb,u.b)

b’

endfor
returnV,P. R

// return value fct & model

99

Algorithm policy AMDP(V, P, R, b):

b= f(b)

return arg max

T

RwB) + V) P ub)
E;

100

Coastal Navigation

Starting Position

Non
considera
l'incertezza di
misura '
Start Position
Considera

l'incertezza di
misura

Goal oy

v
S

1

101

Multimodal Communication

« Dialogue manager

action Belief
Fusion Engine Estimator
[a1 u anU]
[hyp',
[User 1

f reply (
Fission Module

hyp"]

Dialogue
Policy

action

machine

Dialogue Manager

» Dialogue state estimation according to the interaction

» User intentions recognition from context and disambig
multiple hypotheses arising due to noisy or ambiguous

» Dialogue coordination and action execution

Semantic Level

System
Action

u

Dialogue Manager

‘ N-Best User Actions

Fusion Engine

Classification Results

ZPpow S!SGIOdﬁH';’r

oW sisajadin-N
NPoW sisejadil-N

— e P sl ey s iaf] i — — o 22

00 &

‘ i i i Raw Data

Input Sensors

A Dialogue System for Multimodal Human-Robot Interaction , L. Lucignano, F.
Cutugno, S. Rossi, A. Finzi, In Proceedings of 15° ACM International Conference on
Multimodal Interaction - ICMI 2013

Multimodal Communication

- Dialogue manager

= The system is provided with a set of interaction models
named “dialogue flows”, which describe how the dialogue
can develop

user actions
observed with
N associated
probabilities

Dialogue Flow 1,
with 4 nodes

State ID=1

current state
of the
conversation

Edges between
nodes, belonging
to different
graphs, are also
allowed

State ID=3

machine action
expected by user

Dialogue Flow 1,

Multimodal Communication

Dialogue manager

= The system is provided with a set of interaction models
named “dialogue flows”, which describe how the dialogue
can develop

XML description O chinnc o tome-Close [0 [swrtupa |
of a dialogue fMachinehct L N Greeto6
flow e ot / :) ,
»1</Link |Greet:0.4 | 1 ICome_HereO 5 J Close_To_Me:0.5
\ e

(Close_To_User 1 “Close_To_User:1\

2 | Pick:l —_
’ NJdle:1 Search a basket:0.45
/ ~ «
| Search a basket:0.45 | 3 | Palm_Up:1 ‘

brck_from_Hand 1/

4 | Searchil |—"

Multimodal Communication

- Dialogue manager

The Dialogue is represented by a Partially Observable Markov
Decision Problem [Young10, Jurafsky0OO0] extended to the
multimodal case [Lucignano et al. 2013]

POMDP state is a tuple (500) Y

l. 3 flow v Snode o a,]

e A ol
diglogue flow ID flow siate ID lasi user's acfion

t+1

POMDP soved using approximation methods:

= Point Based Value Iteration [Pineau et al. 2003], that approximates
the value function only at a finite set of belief points

= Augmented MDP, that performs the optimization in a summary space
rather than in the original space [Roy et al. 2000]

Monte Carlo POMDPs

m Represent beliefs by samples

m Estimate value function on sample
sets

m Simulate control and observation
transitions between beliefs

106

17
18:
19:
20:

24:

Algorithm MC-POMDP(b, V):

repeat until convergence
sample x ~ b(x) // initialization
initialize X with M samples of b(z)

repeat until episode over
for all control actions u do // update value function

Qu) =0

repeat n times
select randomz € X
sample z’ ~ p(a' | u, x)
sample z ~ p(z | z’)
X' = Particle_filter(X, u, 2)

QW = QM) + 7 (@, w) + V(X"

endrepeat
endfor
V(X) = max Q(u) // update value function
u™ = argmax Q(u) // select greedy action
sample z’ ~ p(z' | u,z) // simulate state transition

sample z ~ p(z | z')
X' = Particle_filter(X, u,2) // compute new belief
setx =2/; X = X' // update state and belief
endrepeat
endrepeat

return V'

107

