The Policy Iteration Algorithm

function POLICY-ITERATION (M, R) returns a policy inputs: M, a transition model
R, a reward function on states
local variables: U, a utility function, initially identical to R
P, a policy, initially optimal with respect to U
repeat
$U \leftarrow$ Value-Determination (P, U, M, R)
unchanged? \leftarrow true
for each state i do
if $\max _{a} \sum_{j} M_{i j}^{a} U[j]>\sum_{j} M_{i j}^{P[i]} U[j]$ then $P[i] \leftarrow \arg \max _{a} \sum_{j} M_{i j}^{a} U[j]$ unchanged? \leftarrow false
end
until unchanged?
return P

Value Determination

$$
\begin{aligned}
& U\left(s_{i}\right)=R\left(s_{i}\right)+\sum_{j} P_{i j}^{\pi\left(s_{i}\right)} U\left(s_{j}\right) \\
& U^{\prime}\left(s_{i}\right) \leftarrow R[i]+\sum_{j} P_{i j}^{\pi\left(s_{i}\right)} U\left(s_{j}\right)
\end{aligned}
$$

POMDPs

- MDPs policy: to find a mapping from states to actions
- POMDPs policy: to find a mapping from probability distributions (over states) to actions.
- belief state: a probability distribution over states
- belief space: the entire probability space, infinite

POMDPs

■ Partially Observable MDPs

A partially observable Markov decision process can be described as a tuple $\langle\mathcal{S}, \mathcal{A}, T, R, \Omega, O\rangle$, where

- $\mathcal{S}, \mathcal{A}, T$, and R describe a Markov decision process;
- Ω is a finite set of observations the agent can experience of its world; and
- $O: \mathcal{S} \times \mathcal{A} \rightarrow \Pi(\Omega)$ is the observation function, which gives, for each action and resulting state, a probability distribution over possible observations (we write $O\left(s^{\prime}, a, o\right)$ for the probability of making observation o given that the agent took action a and landed in state s^{\prime}).

POMDPs

- In POMDPs we apply the very same idea as in MDPs.

■ Since the state is not observable, the agent has to make its decisions based on the belief state which is a posterior distribution over states.

- Let b be the belief of the agent about the state under consideration.
- POMDPs compute a value function over belief space:
$V_{T}(b)=\gamma \max _{u}\left[r(b, u)+\int V_{T-1}\left(b^{\prime}\right) p\left(b^{\prime} \mid u, b\right) d b^{\prime}\right]$

Problems

- Each belief is a probability distribution, thus, each value in a POMDP is a function of an entire probability distribution.
- This is problematic, since probability distributions are continuous.
- Additionally, we have to deal with the huge complexity of belief spaces.
- For finite worlds with finite state, action, and measurement spaces and finite horizons, however, we can effectively represent the value functions by piecewise linear functions.

A two state POMDP

- represent the belief state with a single number p.
- the entire space of belief states can be represented as a line segment.

belief space for a 2 state POMDP

belief state updating

- finite number of possible next belief states, given a belief state
- a finite number of actions
- a finite number of observations
- $\mathrm{b}^{\prime}=T\left(\mathrm{~b}^{\prime} \mid \mathrm{b}, \mathrm{a}, \mathrm{z}\right)$. Given a and $z, \mathrm{~b}^{\prime}$ is fully determined.

belief state updating

- the process of maintaining the belief state is Markovian: the next belief state depends only on the current belief state (and the current action and observation)
- we are now back to solving a MDP policy problem with some adaptations

belief state updating

 value function is some arbitrary function- b: belief space
- V(b): value function
- Problem: how we can easily represent this value function?

- Value function over belief space

Fortunately, the finite horizon value function is piecewise linear and convex (PWLC) for every horizon length.

An Illustrative Example

The Parameters of the Example

- The actions u_{1} and u_{2} are terminal actions.
- The action u_{3} is a sensing action that potentially leads to a state transition.
- The horizon is finite and $\gamma=1$.

$$
\begin{array}{rlrl}
r\left(x_{1}, u_{1}\right) & =-100 & r\left(x_{2}, u_{1}\right) & =+100 \\
r\left(x_{1}, u_{2}\right) & =+100 & r\left(x_{2}, u_{2}\right) & =-50 \\
r\left(x_{1}, u_{3}\right) & =-1 & r\left(x_{2}, u_{3}\right) & =-1 \\
p\left(x_{1}^{\prime} \mid x_{1}, u_{3}\right) & =0.2 & p\left(x_{2}^{\prime} \mid x_{1}, u_{3}\right) & =0.8 \\
p\left(x_{1}^{\prime} \mid x_{2}, u_{3}\right) & =0.8 & p\left(z_{2}^{\prime} \mid x_{2}, u_{3}\right) & =0.2 \\
& & p\left(z_{2} \mid x_{1}\right) & =0.3 \\
p\left(z_{1} \mid x_{1}\right) & =0.7 & p\left(z_{2} \mid x_{2}\right) & =0.7
\end{array}
$$

Payoff in POMDPs

- In MDPs, the payoff (or return) depended on the state of the system.
- In POMDPs, however, the true state is not exactly known.
- Therefore, we compute the expected payoff by integrating over all states:

$$
\begin{aligned}
r(b, u) & =E_{x}[r(x, u)] \\
& =\int r(x, u) p(x) d x \\
& =p_{1} r\left(x_{1}, u\right)+p_{2} r\left(x_{2}, u\right)
\end{aligned}
$$

Payoffs in Our Example (1)

- If we are totally certain that we are in state x_{I} and execute action u_{l}, we receive a reward of -100
- If, on the other hand, we definitely know that we are in x_{2} and execute u_{1}, the reward is +100 .
- In between it is the linear combination of the extreme values weighted by the probabilities

$$
\begin{aligned}
r\left(b, u_{1}\right) & =-100 p_{1}+100 p_{2} \\
& =-100 p_{1}+100\left(1-p_{1}\right) \\
r\left(b, u_{2}\right) & =100 p_{1}-50\left(1-p_{1}\right) \\
r\left(b, u_{3}\right) & =-1
\end{aligned}
$$

Payoffs in Our Example (2)

$r\left(b, u_{3}\right)$

The Resulting Policy for $\mathbf{T = 1}$

- Given we have a finite POMDP with T=1, we would use $V_{l}(b)$ to determine the optimal policy.
- In our example, the optimal policy for $T=1$ is

$$
\pi_{1}(b)= \begin{cases}u_{1} & \text { if } p_{1} \leq \frac{3}{7} \\ u_{2} & \text { if } p_{1}>\frac{3}{7}\end{cases}
$$

- This is the upper thick graph in the diagram.

Piecewise Linearity, Convexity

- The resulting value function $V_{l}(b)$ is the maximum of the three functions at each point
$V_{1}(b)=\max _{u} r(b, u)$

$$
=\max \left\{\begin{array}{rr}
-100 p_{1} & +100\left(1-p_{1}\right) \\
100 p_{1} & -50\left(1-p_{1}\right) \\
-1 &
\end{array}\right\}
$$

- It is piecewise linear and convex.

Pruning

- If we carefully consider $V_{l}(b)$, we see that only the first two components contribute.
$■$ The third component can therefore safely be pruned away from $V_{l}(b)$.

$$
V_{1}(b)=\max \left\{\begin{array}{rr}
-100 p_{1} & +100\left(1-p_{1}\right) \\
100 p_{1} & -50\left(1-p_{1}\right)
\end{array}\right\}
$$

Increasing the Time Horizon

- Assume the robot can make an observation before deciding on an action.

Increasing the Time Horizon

- Assume the robot can make an observation before deciding on an action.
- Suppose the robot perceives z_{l} for which $p\left(z_{1} \mid x_{1}\right)=0.7$ and $p\left(z_{1} \mid x_{2}\right)=0.3$.
- Given the observation z_{l} we update the belief using Bayes rule.

$$
\begin{aligned}
& p_{1}^{\prime}=\frac{0.7 p_{1}}{p\left(z_{1}\right)} \\
& p_{2}^{\prime}=\frac{0.3\left(1-p_{1}\right)}{p\left(z_{1}\right)} \\
& p\left(z_{1}\right)=0.7 p_{1}+0.3\left(1-p_{1}\right)=0.4 p_{1}+0.3
\end{aligned}
$$

Value Function

(1)

Increasing the Time Horizon

- Assume the robot can make an observation before deciding on an action.
- Suppose the robot perceives z_{l} for which $p\left(z_{1} \mid x_{1}\right)=0.7$ and $p\left(z_{1} \mid x_{2}\right)=0.3$.
- Given the observation z_{1} we update the belief using Bayes rule.
- Thus $V_{l}\left(b \mid z_{1}\right)$ is given by

$$
\begin{aligned}
V_{1}\left(b \mid z_{1}\right) & =\max \left\{\begin{aligned}
-100 \cdot \frac{0.7 p_{1}}{p\left(z_{1}\right)} & +100 \cdot \frac{0.3\left(1-p_{1}\right)}{p\left(z_{1}\right)} \\
100 \cdot \frac{0.7 p_{1}}{p\left(z_{1}\right)} & -50 \cdot \frac{0.3\left(1-p_{1}\right)}{p\left(z_{1}\right)}
\end{aligned}\right\} \\
& =\frac{1}{p\left(z_{1}\right)} \max \left\{\begin{array}{rr}
-70 p_{1} & +30\left(1-p_{1}\right) \\
70 p_{1} & -15\left(1-p_{1}\right)
\end{array}\right\}
\end{aligned}
$$

Expected Value after Measuring

- Since we do not know in advance what the next measurement will be, we have to compute the expected belief

$$
\begin{aligned}
\bar{V}_{1}(b) & =E_{z}\left[V_{1}(b \mid z)\right]=\sum_{i=1}^{2} p\left(z_{i}\right) V_{1}\left(b \mid z_{i}\right) \\
& =\sum_{i=1}^{2} p\left(z_{i}\right) V_{1}\left(\frac{p\left(z_{i} \mid x_{1}\right) p_{1}}{p\left(z_{i}\right)}\right) \\
& =\sum_{i=1}^{2} V_{1}\left(p\left(z_{i} \mid x_{1}\right) p_{1}\right)
\end{aligned}
$$

Expected Value after Measuring

- Since we do not know in advance what the next measurement will be, we have to compute the expected belief

$$
\begin{aligned}
\bar{V}_{1}(b)= & E_{z}\left[V_{1}(b \mid z)\right] \\
= & \sum_{i=1}^{2} p\left(z_{i}\right) V_{1}\left(b \mid z_{i}\right) \\
= & \max \left\{\begin{array}{rr}
-70 p_{1} & +30\left(1-p_{1}\right) \\
70 p_{1} & -15\left(1-p_{1}\right)
\end{array}\right\} \\
& +\max \left\{\begin{array}{rr}
-30 p_{1} & +70\left(1-p_{1}\right) \\
30 p_{1} & -35\left(1-p_{1}\right)
\end{array}\right\}
\end{aligned}
$$

Resulting Value Function

- The four possible combinations yield the following function which then can be simplified and pruned.

$$
\begin{aligned}
\bar{V}_{1}(b) & =\max \left\{\begin{array}{rlll}
-70 p_{1} & +30\left(1-p_{1}\right) & -30 p_{1} & +70\left(1-p_{1}\right) \\
-70 p_{1} & +30\left(1-p_{1}\right) & +30 p_{1} & -35\left(1-p_{1}\right) \\
+70 p_{1} & -15\left(1-p_{1}\right) & -30 p_{1} & +70\left(1-p_{1}\right) \\
+70 p_{1} & -15\left(1-p_{1}\right) & +30 p_{1} & -35\left(1-p_{1}\right)
\end{array}\right\} \\
& =\max \left\{\begin{array}{rr}
-100 p_{1} & +100\left(1-p_{1}\right) \\
+40 p_{1} & +55\left(1-p_{1}\right) \\
+100 p_{1} & -50\left(1-p_{1}\right)
\end{array}\right\}
\end{aligned}
$$

Value Function

State Transitions (Prediction)

- When the agent selects u_{3} its state potentially changes.
- When computing the value function, we have to take these potential state changes into account.

$$
\begin{aligned}
p_{1}^{\prime} & =E_{x}\left[p\left(x_{1} \mid x, u_{3}\right)\right] \\
& =\sum_{i=1}^{2} p\left(x_{1} \mid x_{i}, u_{3}\right) p_{i} \\
& =0.2 p_{1}+0.8\left(1-p_{1}\right) \\
& =0.8-0.6 p_{1}
\end{aligned}
$$

State Transitions (Prediction)

$$
\begin{aligned}
p_{1}^{\prime} & =E_{x}\left[p\left(x_{1} \mid x, u_{3}\right)\right] \\
& =\sum_{i=1}^{2} p\left(x_{1} \mid x_{i}, u_{3}\right) p_{i} \\
& =0.2 p_{1}+0.8\left(1-p_{1}\right) \\
& =0.8-0.6 p_{1}
\end{aligned}
$$

Resulting Value Function after executing u_{3}

- Taking the state transitions into account, we finally obtain.

$$
\begin{aligned}
& \bar{V}_{1}(b)=\max \left\{\begin{array}{rrrr}
-70 p_{1} & +30\left(1-p_{1}\right) & -30 p_{1} & +70\left(1-p_{1}\right) \\
-70 p_{1} & +30\left(1-p_{1}\right) & +30 p_{1} & -35\left(1-p_{1}\right) \\
+70 p_{1} & -15\left(1-p_{1}\right) & -30 p_{1} & +70\left(1-p_{1}\right) \\
+70 p_{1} & -15\left(1-p_{1}\right) & +30 p_{1} & -35\left(1-p_{1}\right)
\end{array}\right\} \\
&=\max \left\{\begin{array}{rr}
-100 p_{1} & +100\left(1-p_{1}\right) \\
+40 p_{1} & +55\left(1-p_{1}\right) \\
+100 p_{1} & -50\left(1-p_{1}\right)
\end{array}\right\} \\
& \bar{V}_{1}\left(b \mid u_{3}\right)=\max \left\{\begin{array}{rr}
60 p_{1} & -60\left(1-p_{1}\right) \\
52 p_{1} & +43\left(1-p_{1}\right) \\
-20 p_{1} & +70\left(1-p_{1}\right)
\end{array}\right\}
\end{aligned}
$$

Value Function after executing

 \boldsymbol{u}_{3}

Value Function for $\mathbf{T = 2}$

- Taking into account that the agent can either directly perform u_{1} or u_{2} or first u_{3} and then u_{1} or u_{2}, we obtain (after pruning)
$\bar{V}_{2}(b)=\max \left\{\begin{array}{rr}-100 p_{1} & +100\left(1-p_{1}\right) \\ 100 p_{1} & -50\left(1-p_{1}\right) \\ 51 p_{1} & +42\left(1-p_{1}\right)\end{array}\right\}$

Graphical Representation

 of $V_{2}(b)$

Value Iteration

Value Iteration

Value function and partition for action a2

Combined a1 and a2 value functions

Value function for horizon 2

Deep Horizons and Pruning

- We have now completed a full backup in belief space.
- This process can be applied recursively.
- The value functions for $\mathrm{T}=10$ and $\mathrm{T}=20$ are

Deep Horizons and Pruning

- $|S|=3$
- Hyper-planes
- Finite number of regions over the simplex
-Sample value function for $|S|=3$
- Repeat the process for value functions of 3 -horizon,.. , and khorizon POMDP

$$
\begin{aligned}
& V_{t}^{*}(b)=\max _{a \in A}\left[\sum_{i} b_{i} q_{i}^{a}+\sum_{i, j, z} b_{i} p_{i j}^{a} r_{j z}^{a} V_{t-1}^{*}[T(b \mid a, z)]\right]
\end{aligned}
$$

Why Pruning is Essential

- Each update introduces additional linear components to V.
- Each measurement squares the number of linear components.
- Thus, an un-pruned value function for $\mathrm{T}=20$ includes more than 10547,864 linear functions.
- At $\mathrm{T}=30$ we have $10561,012,337$ linear functions.
- The pruned value functions at $\mathrm{T}=20$, in comparison, contains only 12 linear components.
- The combinatorial explosion of linear components in the value function are the major reason why POMDPs are impractical for most applications.

POMDP Summary

- POMDPs compute the optimal action in partially observable, stochastic domains.
- For finite horizon problems, the resulting value functions are piecewise linear and convex.
- In each iteration the number of linear constraints grows exponentially.

POMDP Approximations

- Point-based value iteration
- QMDPs
- AMDPs

Point-based Value Iteration

- Maintains a set of example beliefs
- Only considers constraints that maximize value function for at least one of the examples
- Occasionally add new belief points
- Can do point updates in polytime, no pruning

Point-based Value Iteration

Value functions for $\mathrm{T}=30$

Exact value function

PBVI

Example Application

$\operatorname{Pr}\left(\right.$ Robot $=s_{10} \mid$ Robot $=s_{0}$, North $)=1$
$\operatorname{Pr}\left(\right.$ Opponent $=s_{16} \mid$ Opponent $=s_{15} \&$ Robot $\left.=s_{0}\right)=0.4$
$\operatorname{Pr}\left(\right.$ Opponent $=s_{20} \mid$ Opponent $=s_{15} \&$ Robot $\left.=s_{0}\right)=0.4$
$\operatorname{Pr}\left(\right.$ Opponent $=s_{15} \mid$ Opponent $=s_{15} \&$ Robot $\left.=s_{0}\right)=0.2$

					20	21	22		
10	11	12	13	14	15_{0}	$\xrightarrow{16}$	17	18	19
0	1	2	3	4	5	6	7	8	9

Example Application

QMDPs

- QMDPs only consider state uncertainty in the first step
- After that, the world becomes fully observable.

1:	Algorithm $\operatorname{QMDP}\left(b=\left(p_{1}, \ldots, p_{N}\right)\right):$
2:	$\hat{V}=$ MDP_discrete_value_iteration ()$^{\text {3: }}$
5:	for all control actions u do
6:	$Q\left(x_{i}, u\right)=r\left(x_{i}, u\right)+\sum_{j=1}^{N} \hat{V}\left(x_{j}\right) p\left(x_{j} \mid u, x_{i}\right)$
	endfor

Augmented MDPs

- Augmentation adds uncertainty component to state space, e.g.,
$\bar{b}=\binom{\arg \max b(x)}{H_{b}^{x}(x)}$,

$$
H_{b}(x)=-\int b(x) \log b(x) d x
$$

- Planning is performed by MDP in augmented state space
- Transition, observation and payoff models have to be learned

Due fasi: learning (2-19) e value iteration (20-27)
n campioni per ogni b-e u
$b(x)$ è gaussiana simmetrica

Aggiornamento basato su frequenza

Value Iteration

```
Algorithm AMDP_value_iteration():
    for all }\overline{b}\mathrm{ do // learn model
        for all u do
            for all }\overline{b}\mathrm{ do // initialize model
                \mathcal{P}}(\overline{b},u,\mp@subsup{\overline{b}}{}{\prime})=
            endfor
                \hat { \mathcal { R } } ( \overline { b } , u ) = 0
            repeat }n\mathrm{ times // learn model
            generate b with f(b)=\overline{b}
            sample }x~b(x) // belief samplin
            sample }\mp@subsup{x}{}{\prime}~p(\mp@subsup{x}{}{\prime}|u,x)\quad// motion mode
            sample z~p(z|\mp@subsup{x}{}{\prime})\quad// measurement model
            calculate }\mp@subsup{b}{}{\prime}=B(b,u,z)\quad// Bayes filter
            calculate }\mp@subsup{\overline{b}}{}{\prime}=f(\mp@subsup{b}{}{\prime})\quad// belief state statisti
            \mathcal{P}}(\overline{b},u,\mp@subsup{\overline{b}}{}{\prime})=\hat{\mathcal{P}}(\overline{b},u,\mp@subsup{\overline{b}}{}{\prime})+\frac{1}{n}/// learn transitions prob'
            \hat { \mathcal { R } } ( \overline { b } , u ) = \hat { \mathcal { R } } ( \overline { b } , u ) + \frac { r ( u , s ) } { n } \quad / / ~ l e a r n ~ p a y o f f ~ m o d e l ~
            endrepeat
        endfor
    endfor
    for all }\overline{b
        \hat{V}}(\overline{b})=\mp@subsup{r}{\mathrm{ min}}{
    endfor
    repeat until convergence // value iteration
        for all }\overline{b}\mathrm{ do
            V}(\overline{b})=\gamma\mp@subsup{\operatorname{max}}{u}{}[\hat{\mathcal{R}}(u,\overline{b})+\mp@subsup{\sum}{\mp@subsup{\overline{b}}{}{\prime}}{}\hat{V}(\mp@subsup{\overline{b}}{}{\prime})\hat{\mathcal{P}}(\overline{b},u,\mp@subsup{\overline{b}}{}{\prime})
            endfor
            return }\hat{V},\hat{\mathcal{P}},\hat{\mathcal{R}
                                // return value fct & model
```

1:	Algorithm policy_AMDP $(\hat{V}, \hat{\mathcal{P}}, \hat{\mathcal{R}}, b):$
2:	$\bar{b}=f(b)$
3:	return $\underset{u}{\arg \max }\left[\hat{\mathcal{R}}(u, \bar{b})+\sum_{\bar{b}^{\prime}} \hat{V}\left(\bar{b}^{\prime}\right) \hat{\mathcal{P}}\left(\bar{b}, u, \bar{b}^{\prime}\right)\right]$

Coastal Navigation

Non
considera
l'incertezza di misura

Considera l'incertezza di misura

Multimodal Communication

- Dialogue manager

- Dialogue state estimation according to the interaction
- User intentions recognition from context and disambig multiple hypotheses arising due to noisy or ambiguous
- Dialogue coordination and action execution

Multimodal Communication

- Dialogue manager
- The system is provided with a set of interaction models named "dialogue flows", which describe how the dialogue can develop

Multimodal Communication

- Dialogue manager
- The system is provided with a set of interaction models named "dialogue flows", which describe how the dialogue can develop

Multimodal Communication

- Dialogue manager
- The Dialogue is represented by a Partially Observable Markov Decision Problem [Young10, Jurafsky00] extended to the multimodal case [Lucignano et al. 2013]
- POMDP state is a tuple

- POMDP soved using approximation methods:
- Point Based Value Iteration [Pineau et al. 2003], that approximates the value function only at a finite set of belief points
- Augmented MDP, that performs the optimization in a summary space rather than in the original space [Roy et al. 2000]

Monte Carlo POMDPs

- Represent beliefs by samples
- Estimate value function on sample sets
- Simulate control and observation transitions between beliefs

```
Algorithm MC-POMDP( }\mp@subsup{b}{0}{},V)
    repeat until convergence
        sample }x~b(x) // initializatio
```



```
    repeat until episode over
        for all control actions u do // update value function
                Q(u)=0
                repeat n times
```



```
                    sample }\mp@subsup{x}{}{\prime}~p(\mp@subsup{x}{}{\prime}|u,x
                    sample z~p(z| 秋)
                    \mathcal{X}}=\mathbf{Particle_filter (\mathcal{X},u,z)
                    Q(u)=Q(u)+\frac{1}{n}\gamma[r(x,u)+V(\mathcal{X})]
            endrepeat
        endfor
        V(\mathcal{X})=\mp@subsup{\operatorname{max}}{u}{}Q(u) // update value function
        u*}=\underset{u}{\operatorname{argmax}}Q(u)\quad// select greedy action
        sample }\mp@subsup{x}{}{\prime}~p(\mp@subsup{x}{}{\prime}|u,x) // simulate state transitio
        sample z~p(z| \mp@subsup{x}{}{\prime})
        \mp@subsup{\mathcal{X}}{}{\prime}=P\mathbf{Particle_filter }(\mathcal{X},u,z) // compute new belief
        set }x=\mp@subsup{x}{}{\prime};\mathcal{X}=\mp@subsup{\mathcal{X}}{}{\prime}\quad// update state and belief
        endrepeat
    endrepeat
    return V
```

