The Policy Iteration Algorithm

function POLICY-ITERATION(M, R) returns a policy
inputs: M, a transition model

R, a reward function on states local variables: U, a utility function, initially identical to RP, a policy, initially optimal with respect to U

repeat

 $U \leftarrow \text{VALUE-DETERMINATION}(P, U, M, R)$ $unchanged? \leftarrow \text{true}$ for each state *i* do if max_a $\sum_{j} M_{ij}^{a} U[j] > \sum_{j} M_{ij}^{P[i]} U[j]$ then $P[i] \leftarrow \arg \max_{a} \sum_{j} M_{ij}^{a} U[j]$ $unchanged? \leftarrow \text{false}$ end $U(s_{i}) = R(s_{i}) + \sum_{j} P_{ij}^{\pi(s_{i})} U(s_{j})$ $U'(s_{i}) \leftarrow R[i] + \sum_{j} P_{ij}^{\pi(s_{i})} U(s_{j})$

POMDPs

- MDPs policy: to find a mapping from states to actions
- POMDPs policy: to find a mapping from probability distributions (over states) to actions.
 - belief state: a probability distribution over states
 - belief space: the entire probability space, infinite

POMDPs

Partially Observable MDPs

A partially observable Markov decision process can be described as a tuple $\langle S, A, T, R, \Omega, O \rangle$, where

- S, A, T, and R describe a Markov decision process;
- Ω is a finite set of observations the agent can experience of its world; and
- O: S × A → Π(Ω) is the observation function, which gives, for each action and resulting state, a probability distribution over possible observations (we write O(s', a, o) for the probability of making observation o given that the agent took action a and landed in state s').

POMDPs

- In POMDPs we apply the very same idea as in MDPs.
- Since the state is not observable, the agent has to make its decisions based on the belief state which is a posterior distribution over states.
- Let b be the belief of the agent about the state under consideration.
- POMDPs compute a value function over belief space:

$$V_T(b) = \gamma \max_u \left[r(b, u) + \int V_{T-1}(b') p(b' \mid u, b) db' \right]$$

Problems

- Each belief is a probability distribution, thus, each value in a POMDP is a function of an entire probability distribution.
- This is problematic, since probability distributions are continuous.
- Additionally, we have to deal with the huge complexity of belief spaces.
- For finite worlds with finite state, action, and measurement spaces and finite horizons, however, we can effectively represent the value functions by piecewise linear functions.

A two state POMDP

- represent the belief state with a single number p.
- the entire space of belief states can be represented as a line segment.

belief space for a 2 state POMDP

belief state updating

- finite number of possible next belief states, given a belief state
 - a finite number of actions
 - a finite number of observations
- b' = T(b'| b, a, z). Given a and z, b' is fully determined.

belief state updating

- the process of maintaining the belief state is Markovian: the next belief state depends only on the current belief state (and the current action and observation)
- we are now back to solving a MDP policy problem with some adaptations

belief state updating continuous space. value function is some arbitrary function

- b: belief space
- V(b): value function
- Problem: how we can easily represent this value function?

Value function over belief space Fortunately, the finite horizon value function is piecewise linear and convex (PWLC) for every horizon length.

An Illustrative Example

The Parameters of the Example

- The actions u_1 and u_2 are terminal actions.
- The action u₃ is a sensing action that potentially leads to a state transition.
- The horizon is finite and $\gamma = 1$.

$$\begin{aligned} r(x_1, u_1) &= -100 & r(x_2, u_1) &= +100 \\ r(x_1, u_2) &= +100 & r(x_2, u_2) &= -50 \\ r(x_1, u_3) &= -1 & r(x_2, u_3) &= -1 \end{aligned}$$

- $p(x'_1|x_1, u_3) = 0.2 \qquad p(x'_2|x_1, u_3) = 0.8$ $p(x'_1|x_2, u_3) = 0.8 \qquad p(z'_2|x_2, u_3) = 0.2$
 - $p(z_1|x_1) = 0.7$ $p(z_2|x_1) = 0.3$ $p(z_1|x_2) = 0.3$ $p(z_2|x_2) = 0.7$

Payoff in POMDPs

- In MDPs, the payoff (or return) depended on the state of the system.
- In POMDPs, however, the true state is not exactly known.
- Therefore, we compute the expected payoff by integrating over all states:

$$r(b, u) = E_x[r(x, u)]$$

= $\int r(x, u)p(x) dx$
= $p_1 r(x_1, u) + p_2 r(x_2, u)$

Payoffs in Our Example (1)

- If we are totally certain that we are in state x₁ and execute action u₁, we receive a reward of -100
- If, on the other hand, we definitely know that we are in x_2 and execute u_1 , the reward is +100.
- In between it is the linear combination of the extreme values weighted by the probabilities

$$r(b, u_1) = -100 p_1 + 100 p_2$$

= -100 p_1 + 100 (1 - p_1)

$$r(b, u_2) = 100 p_1 - 50 (1 - p_1)$$

$$r(b, u_3) = -1$$

Payoffs in Our Example (2)

The Resulting Policy for T=1

- Given we have a finite POMDP with T=1, we would use V₁(b) to determine the optimal policy.
- In our example, the optimal policy for T=1 is

$$\pi_1(b) = \begin{cases} u_1 & \text{if } p_1 \leq \frac{3}{7} \\ u_2 & \text{if } p_1 > \frac{3}{7} \end{cases}$$

This is the upper thick graph in the diagram.

Piecewise Linearity, Convexity

The resulting value function V₁(b) is the maximum of the three functions at each point

$$V_{1}(b) = \max_{u} r(b, u)$$

=
$$\max \left\{ \begin{array}{cc} -100 \ p_{1} & +100 \ (1 - p_{1}) \\ 100 \ p_{1} & -50 \ (1 - p_{1}) \\ -1 \end{array} \right\}$$

It is piecewise linear and convex.

Pruning

- If we carefully consider V₁(b), we see that only the first two components contribute.
- The third component can therefore safely be pruned away from $V_1(b)$.

$$V_1(b) = \max \left\{ \begin{array}{rrr} -100 \ p_1 & +100 \ (1-p_1) \\ 100 \ p_1 & -50 \ (1-p_1) \end{array} \right\}$$

Increasing the Time Horizon

 Assume the robot can make an observation before deciding on an action.

Increasing the Time Horizon

- Assume the robot can make an observation before deciding on an action.
- Suppose the robot perceives z_1 for which $p(z_1 | x_1) = 0.7$ and $p(z_1 | x_2) = 0.3$.
- Given the observation z₁ we update the belief using Bayes rule.

$$p'_{1} = \frac{0.7 p_{1}}{p(z_{1})}$$

$$p'_{2} = \frac{0.3(1 - p_{1})}{p(z_{1})}$$

$$p(z_{1}) = 0.7 p_{1} + 0.3(1 - p_{1}) = 0.4 p_{1} + 0.3$$

Value Function

Increasing the Time Horizon

- Assume the robot can make an observation before deciding on an action.
- Suppose the robot perceives z_1 for which $p(z_1 | x_1) = 0.7$ and $p(z_1 | x_2) = 0.3$.
- Given the observation z₁ we update the belief using Bayes rule.
- Thus $V_l(b \mid z_l)$ is given by

$$V_{1}(b \mid z_{1}) = \max \begin{cases} -100 \cdot \frac{0.7 p_{1}}{p(z_{1})} + 100 \cdot \frac{0.3 (1-p_{1})}{p(z_{1})} \\ 100 \cdot \frac{0.7 p_{1}}{p(z_{1})} - 50 \cdot \frac{0.3 (1-p_{1})}{p(z_{1})} \end{cases} \\ = \frac{1}{p(z_{1})} \max \begin{cases} -70 p_{1} + 30 (1-p_{1}) \\ 70 p_{1} - 15 (1-p_{1}) \end{cases} \end{cases}$$

Expected Value after Measuring

Since we do not know in advance what the next measurement will be, we have to compute the expected belief

$$\overline{V_1}(b) = E_z[V_1(b \mid z)] = \sum_{i=1}^2 p(z_i)V_1(b \mid z_i)$$
$$= \sum_{i=1}^2 p(z_i)V_1\left(\frac{p(z_i \mid x_1)p_1}{p(z_i)}\right)$$
$$= \sum_{i=1}^2 V_1(p(z_i \mid x_1)p_1)$$

Expected Value after Measuring

Since we do not know in advance what the next measurement will be, we have to compute the expected belief

$$\overline{V}_{1}(b) = E_{z}[V_{1}(b \mid z)] \\
= \sum_{i=1}^{2} p(z_{i}) V_{1}(b \mid z_{i}) \\
= \max \left\{ \begin{array}{cc} -70 \ p_{1} & +30 \ (1-p_{1}) \\ 70 \ p_{1} & -15 \ (1-p_{1}) \end{array} \right\} \\
+ \max \left\{ \begin{array}{cc} -30 \ p_{1} & +70 \ (1-p_{1}) \\ 30 \ p_{1} & -35 \ (1-p_{1}) \end{array} \right\}$$

Resulting Value Function

The four possible combinations yield the following function which then can be simplified and pruned.

$$\bar{V}_{1}(b) = \max \begin{cases} -70 \ p_{1} \ +30 \ (1-p_{1}) \ -30 \ p_{1} \ +70 \ (1-p_{1}) \\ -70 \ p_{1} \ +30 \ (1-p_{1}) \ +30 \ p_{1} \ -35 \ (1-p_{1}) \\ +70 \ p_{1} \ -15 \ (1-p_{1}) \ -30 \ p_{1} \ +70 \ (1-p_{1}) \\ +70 \ p_{1} \ -15 \ (1-p_{1}) \ +30 \ p_{1} \ -35 \ (1-p_{1}) \end{pmatrix} \\ = \max \begin{cases} -100 \ p_{1} \ +100 \ (1-p_{1}) \\ +40 \ p_{1} \ +55 \ (1-p_{1}) \\ +100 \ p_{1} \ -50 \ (1-p_{1}) \end{cases} \end{cases}$$

Value Function

State Transitions (Prediction)

- When the agent selects u₃ its state potentially changes.
- When computing the value function, we have to take these potential state changes into account.

$$p_1' = E_x[p(x_1 | x, u_3)]$$

= $\sum_{i=1}^{2} p(x_1 | x_i, u_3) p_i$
= $0.2p_1 + 0.8(1 - p_1)$
= $0.8 - 0.6p_1$

State Transitions (Prediction)

Resulting Value Function after executing u_3

Taking the state transitions into account, we finally obtain.

$$\bar{V}_{1}(b) = \max \begin{cases} -70 \ p_{1} \ +30 \ (1-p_{1}) \ -30 \ p_{1} \ +70 \ (1-p_{1}) \\ -70 \ p_{1} \ +30 \ (1-p_{1}) \ +30 \ p_{1} \ -35 \ (1-p_{1}) \\ +70 \ p_{1} \ -15 \ (1-p_{1}) \ -30 \ p_{1} \ +70 \ (1-p_{1}) \\ +70 \ p_{1} \ -15 \ (1-p_{1}) \ +30 \ p_{1} \ -35 \ (1-p_{1}) \end{pmatrix} \\ = \max \begin{cases} -100 \ p_{1} \ +100 \ (1-p_{1}) \\ +40 \ p_{1} \ +55 \ (1-p_{1}) \\ +100 \ p_{1} \ -50 \ (1-p_{1}) \end{cases} \end{cases}$$

$$\bar{V}_{1}(b \mid u_{3}) = \max \begin{cases} 60 \ p_{1} \ -60 \ (1-p_{1}) \\ 52 \ p_{1} \ +43 \ (1-p_{1}) \\ -20 \ p_{1} \ +70 \ (1-p_{1}) \end{cases}$$

Value Function after executing *u*₃

Value Function for T=2

Taking into account that the agent can either directly perform u₁ or u₂ or first u₃ and then u₁ or u₂, we obtain (after pruning)

$$\bar{V}_{2}(b) = \max \left\{ \begin{array}{rrr} -100 \ p_{1} & +100 \ (1-p_{1}) \\ 100 \ p_{1} & -50 \ (1-p_{1}) \\ 51 \ p_{1} & +42 \ (1-p_{1}) \end{array} \right\}$$

Graphical Representation of V₂(b)

Value Iteration

Value function and partition for action a2

Combined a1 and a2 value functions

Value function for horizon 2

Deep Horizons and Pruning

- We have now completed a full backup in belief space.
- This process can be applied recursively.
- The value functions for T=10 and T=20 are

Deep Horizons and Pruning

86

- |*S*| = 3
- Hyper-planes
- Finite number of regions over the simplex

Sample value function for |S| = 3

Repeat the process for value functions of 3-horizon,..., and khorizon POMDP

$$V_t^*(b) = \max_{a \in A} \left[\sum_i b_i q_i^a + \sum_{i,j,z} b_i p_{ij}^a r_{jz}^a V_{t-1}^* [T(b \mid a, z)] \right]$$

$$V(b) = \max_{a \in A} \left[\sum_{s \in S} R(s, a)b(s) + \gamma \sum_{o \in O} \max_{\alpha' \in V'} \sum_{s \in S} \sum_{s' \in S} T(s, a, s')\Omega(o, s', a)\alpha'(s')b(s) \right]$$

Why Pruning is Essential

- Each update introduces additional linear components to V.
- Each measurement squares the number of linear components.
- Thus, an un-pruned value function for T=20 includes more than 10^{547,864} linear functions.
- At T=30 we have 10^{561,012,337} linear functions.
- The pruned value functions at T=20, in comparison, contains only 12 linear components.
- The combinatorial explosion of linear components in the value function are the major reason why POMDPs are impractical for most applications.

POMDP Summary

- POMDPs compute the optimal action in partially observable, stochastic domains.
- For finite horizon problems, the resulting value functions are piecewise linear and convex.
- In each iteration the number of linear constraints grows exponentially.

POMDP Approximations

Point-based value iteration

QMDPs

Point-based Value Iteration

- Maintains a set of example beliefs
 - Only considers constraints that maximize value function for at least one of the examples
 - Occasionally add new belief points
 - Can do point updates in polytime, no pruning

Point-based Value Iteration

Value functions for T=30

Example Application

$Pr(Robot = s_{10} \mid Robot = s_0, North) = 1$					26	27	28			
$Pr(Opponent = s_{16} \mid Opponent = s_{15}\& Robot = s_0) = 0.4$ $Pr(Opponent = s_{20} \mid Opponent = s_{15}\& Robot = s_0) = 0.4$ $Pr(Opponent = s_{15} \mid Opponent = s_{15}\& Robot = s_0) = 0.2$					23	24	25			
$Pr(Opponent = s_{15} Opponent$	$tent = s_1$	15 & ROOO	$u = s_0)$	- 0.2		20	21	22		
	10	11	12	13	14	150	16	17	18	19
	0 	1	2	3	4	5	6	7	8	9

Example Application

- QMDPs only consider state uncertainty in the first step
- After that, the world becomes fully observable.

1: Algorithm QMDP(
$$b = (p_1, ..., p_N)$$
):
2: $\hat{V} = \text{MDP_discrete_value_iteration}()$
3: for all control actions u do
4: $Q(x_i, u) = r(x_i, u) + \sum_{j=1}^N \hat{V}(x_j) p(x_j | u, x_i)$
5: endfor
6: return $\arg \max_u \sum_{i=1}^N p_i Q(x_i, u)$

Augmented MDPs

Augmentation adds uncertainty component to state space, e.g.,

$$\overline{b} = \begin{pmatrix} \arg \max b(x) \\ x \\ H_b(x) \end{pmatrix}, \qquad H_b(x) = -\int b(x) \log b(x) dx$$

- Planning is performed by MDP in augmented state space
- Transition, observation and payoff models have to be learned

	1:	Algorithm AMDP_value_iteration():	
	2:	for all \overline{b} do	// learn model
	3:	for all u do	G- 8A
Due fasi: learning	4:	for all \overline{b} do	// initialize model
(2-19) e value	5:	$\hat{\mathcal{P}}(\bar{b}, u, \bar{b}') = 0$	
iteration (20-27)	6:	endfor	
	7:	$\hat{\mathcal{R}}(\bar{b}, u) = 0$	
n campioni per ogni b- e u	8:	repeat n times	// learn model
ogni D- e u	9:	generate b with $f(b) = \overline{b}$	
$h(u) \rightarrow a a u a a i a n a$	10:	sample $x \sim b(x)$	// belief sampling
b(x) è gaussiana simmetrica	11:	sample $x' \sim p(x' \mid u, x)$	// motion model
Similetilea	12:	sample $z \sim p(z \mid x')$	// measurement model
	13:	calculate $b' = B(b, u, z)$	// Bayes filter
	14:	calculate $\overline{b}' = f(b')$	// belief state statistic
Aggiornamento	15:	$\hat{\mathcal{P}}(\bar{b}, u, \bar{b}') = \hat{\mathcal{P}}(\bar{b}, u, \bar{b}') + \frac{1}{n}$	// learn transitions prob's
basato su frequenza	16:	$\hat{\mathcal{R}}(\bar{b}, u) = \hat{\mathcal{R}}(\bar{b}, u) + \frac{r(u, s)}{n}$	// learn payoff model
nequenza	17:	endrepeat	
	18:	endfor	
	19:	endfor	
	20:	for all \overline{b}	// initialize value function
	21:	$\hat{V}(ar{b}) = r_{\min}$	
	22:	endfor	
	23:	repeat until convergence	// value iteration
Value Iteration	24:	for all \overline{b} do	
	25:	$\hat{V}(\bar{b}) = \gamma \max_{u} \left[\hat{\mathcal{R}}(u,\bar{b}) + \sum_{\bar{b}'} \hat{V} \right]$	$\hat{\mathcal{P}}(\bar{b}') \ \hat{\mathcal{P}}(\bar{b}, u, \bar{b}') $
	26:	endfor	
	27:	return $\hat{V}, \hat{\mathcal{P}}, \hat{\mathcal{R}}$	// return value fct & model

1:	: Algorithm policy_AMDP($\hat{V}, \hat{\mathcal{P}}, \hat{\mathcal{R}}, b$):			
2:	$\bar{b} = f(b)$			
3:	return $\underset{u}{\operatorname{argmax}} \left[\hat{\mathcal{R}}(u, \bar{b}) + \sum_{\bar{b}'} \hat{V}(\bar{b}') \; \hat{\mathcal{P}}(\bar{b}') \right]$	(ar b, u, ar b') igg]		

Coastal Navigation

101

Raw Data

Input Sensors

- User intentions recognition from context and disambig multiple hypotheses arising due to noisy or ambiguous
- Dialogue coordination and action execution

A Dialogue System for Multimodal Human-Robot Interaction, L. Lucignano, F. Cutugno, S. Rossi, A. Finzi, In Proceedings of 15° ACM International Conference on Multimodal Interaction - ICMI 2013

Dialogue manager

 The system is provided with a set of interaction models named "dialogue flows", which describe how the dialogue can develop

Dialogue manager

 The system is provided with a set of interaction models named "dialogue flows", which describe how the dialogue can develop

Dialogue manager

 The Dialogue is represented by a Partially Observable Markov Decision Problem [Young10, Jurafsky00] extended to the multimodal case [Lucignano et al. 2013]

- POMDP soved using approximation methods:
 - Point Based Value Iteration [Pineau et al. 2003], that approximates the value function only at a finite set of belief points
 - Augmented MDP, that performs the optimization in a summary space rather than in the original space [Roy et al. 2000]

Monte Carlo POMDPs

- Represent beliefs by samples
- Estimate value function on sample sets
- Simulate control and observation transitions between beliefs

1:	Algorithm MC-POMDP(b_0 , V):			
2:	repeat until convergence			
3:	sample $x \sim b(x)$	// initialization		
4:	<i>initialize</i> X <i>with</i> M <i>samples</i> of $b($	x)		
5:	repeat until episode over			
6:	for all control actions u do // update value funct			
7:	Q(u) = 0	atheftit the A. Conserver		
8:	repeat n times			
9:	select random $x \in \mathcal{X}$			
10:	sample $x' \sim p(x' \mid u, x)$			
11:	sample $z \sim p(z \mid x')$			
12:	$\mathcal{X}' = \mathbf{Particle_filter}(\mathcal{X})$	${\cal K}, u, z)$		
13:	$Q(u) = Q(u) + \frac{1}{n} \gamma [r(u)]$	$(x,u)+V(\mathcal{X}')]$		
14:	endrepeat			
15:	endfor			
16:	$V(\mathcal{X}) = \max_{u} Q(u)$	// update value function		
17:	$u^* = \operatorname*{argmax}_{u} Q(u)$	// select greedy action		
18:	sample $x' \sim p(x' \mid u, x)$	// simulate state transition		
19:	sample $z \sim p(z \mid x')$			
20:	$\mathcal{X}' = \mathbf{Particle_filter}(\mathcal{X}, u, z)$	// compute new belief		
21:	set $x = x'$; $\mathcal{X} = \mathcal{X}'$	// update state and belief		
22:	endrepeat			
23:	endrepeat			
24:	return V			