

HTN Planning

• More flexibility in modeling:
– incorporate procedural expert knowledge (modeling

means, speed up search)
• More complex behavior

– pose complex restrictions on the desired solutions
• Easier user integration in the plan generation process

– mixed initiative planning; MIP
• Communicate plans on different levels of abstraction
• Incorporate task abstraction in plan explanations

HTN Planning

• “HTN planners differ from classical planners in what they plan
for and how they plan for it. In an HTN planner, the objective
is not to achieve a set of goals but instead to perform some
set of tasks.” (Ghallab, Nau, and Traverso; Automated
Planning: Theory and Practice)

• Main differences to classical planning problems:
– The goal is to find a refinement of the initial task(s), not to satisfy

some goal description
– No arbitrary task insertion: decompose compound tasks using their

pre-defined methods

using crane k at location l, take container c from object x1 (container or
pallet) in pile p1 and put it onto object x2 in pile p2

Total-order Forward Decomposition (TFD)

Applicability and Relevance

• A method instance m is applicable in a state s if
– precond(m) satisfied in s

• A method instance m is relevant for a task t if
– there is a substitution σ such that σ(t) = task(m).

• The decomposition of a task t by a relevant
method m under σ is
– δ(t,m,σ) = σ(network(m)) or
– δ(t,m,σ) = σ(subtasks(m)) if m is totally ordered.

Partial-order Forward Decomposition (TFD)

HTN Planning
• Hierarchical Task Networks generalise Simple Task Networks:

– no forward decomposition is necessary, a task network w consists of a set
of task nodes and a set of constraints

• (HTN Planning Problem) An HTN planning problem is a 3-tuple
଴ ଴ where ଴ is the initial state, ଴ is a task network

called the initial task network, and is the HTN planning domain
which consists of a set of operators and methods.

• A plan ଵ ௞ is a solution for a planning problem if there
is a ground instance ଴ ଴ of and a total ordering

ଵ ௞ of the nodes of U0 such that
– the plan π is executable in ௢ and the total ordering fulfills all constraints.

HTN Planning
• Hierarchical Task Networks generalise Simple Task Networks:

– no forward decomposition is necessary, a task network w consists of a set
of task nodes and a set of constraints

• A (hierarchical) task network is a pair w=(U,C), where:
• U is a set of tasks and
• C is a set of constraints of the following types:

– t1 t2: precedence constraint between tasks satisfied if in every solution
π: last({t},π) first({t},π);

– before(U’,l): satisfied if in every solution π: literal l holds in the state just
before first(U’,π);

– after(U’,l): satisfied if in every solution π: literal l holds in the state just
after last(U’,π);

– between(U’,U’’,l): satisfied if in every solution π: literal l holds in every
state after last(U’,π) and before first(U’’,π).

HTN Planning

• Hierarchical Task Networks generalise Simple Task Networks:
– no forward decomposition is necessary, a task network w consists of a

set of task nodes and a set of constraints

• Let MS be a set of method symbols. An HTN method is a 4-
tuple m=(name(m),task(m),subtasks(m),constr(m)) where:
– name(m): the name of the method

• syntactic expression of the form n(x1,…,xk)
• n∈MS: method symbol
• x1,…,xk: variable symbols that occur in m;

– task(m): a non-primitive task;
– (subtasks(m),constr(m)): a task network.

HTN Planning

HTN Planning

HTN Planning

HTN Planning

HTN Planning

• HTN are particularly well-suited for planning in
dynamic worlds (e.g., robotics [Bevacqua et al.
2015], games [Neil Wallace 2004, p.235])

• Planning is performed at multiple levels within a
hierarchy.

• The search space is reduced. Invalid plans can
often be ruled out early on. Hierarchical planners
support replanning on the fly and can be used in
dynamic worlds.

HTN Extension

• Hybrid Planning
• Task Insertion
• Temporal/resource constraints
• State Abstraction
• …

