HTN Planning

® Problem reduction
® Jasks (activities) rather than goals
® Methods to decompose tasks into subtasks
¢ Enforce constraints
» E.g., taxi not good for long distances

Backtrack 1f necessary

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

HTN Planning

More flexibility in modeling:

— incorporate procedural expert knowledge (modeling
means, speed up search)

More complex behavior

— pose complex restrictions on the desired solutions
Easier user integration in the plan generation process
— mixed initiative planning; MIP

Communicate plans on different levels of abstraction
Incorporate task abstraction in plan explanations

Task: | travel(x,y)

i

@ Method: taxi-travel(x,y) Method: air-travel(x,y) R
: T P get-ticket(a(x).a(y))
get-taxi[=| ride(x,y) [=>|pay-driver) fly(a(x).a(y)) = travel(a(y).y)
- 4 _ | ravel(x.a(x)))
travel(UMD, LAAS)
HTN Planning get-ticket(BWL, TLS) |/ ! \ get-ticket(IAD, TLS)

go-to-travel-web-site
tind-tlights(BWI.TLS)

H \ go-to-travel-web-site
find-flights(TAD.TLS)

® Problem reduction BACKTRACK F-* buy-ticket(IAD.TLS)
.o travel(UMD, TAD)
® Tasks (activities) rather than goals \get-taxi
@ Methods to decompose tasks into subtasks ride(UMD. IAD)
) pay-driver
® Enforce constraints
» E.g., taxi not good for long distances f\":“’e:(;m_ss LAAS)
e get-taxi
Backtrack if necessary ride(TLS, Toulouse)
pay-driver
Dana Nau: Lecture slides for Automated Planning 25

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: hitp://creativecommons.org/licenses/by-nc-sa/2.0/

HTN Planning

 “HTN planners differ from classical planners in what they plan
for and how they plan for it. In an HTN planner, the objective
is not to achieve a set of goals but instead to perform some

set of tasks.” (Ghallab, Nau, and Traverso; Automated
Planning: Theory and Practice)

* Main differences to classical planning problems:

— The goal is to find a refinement of the initial task(s), not to satisfy
some goal description

— No arbitrary task insertion: decompose compound tasks using their
pre-defined methods

HTN Planning

e HTN planners may be domain-specitic

® Or they may be domain-configurable

¢ Domain-independent planning engine

¢ Domain description that defines not only the operators, but

also the methods

Problem description

» domain description, initial state, initial task network

Task:

travel(x,y)

& Method: taxi-travel(x,y)

4

Method: air-travel(x,y)

get-taxi[~* ride(x,y) [—*|pay-driver

\

.

J

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

A

travel(x.a(x))

get-ticket(a(x).a(y))
) fly(a(x) ()

v

travel(a(y).y)

J

26

Simple Task Network (STN) Planning

® A special case of HIN planning
e States and operators
@ The same as in classical planning
® Task: an expression of the form #(u,....,u,)
@ /1s a fask symbol, and each u; 1s a term
¢ Two kinds of task symbols (and tasks):
» primitive: tasks that we know how to execute directly
» task symbol 1s an operator name
» nonprimitive: tasks that must be decomposed 1nto subtasks

 use methods (next slide)

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

27

Methods

e Totally ordered method: a 4-tuple

m = (name(m), task(m), precond(m), subtasks(m))

¢ name(m): an expression of the form n(x,....x,)

» X|,...,X, are parameters - variable symbols

¢ task(m): a nonprimitive task

precond(m): preconditions (literals)

subtasks(m): a sequence
of tasks {7, ;)

B ——

travel(x,y)

—

air-travel(x,y)

long-distance(x,y)

buy-ticket (a(x), a(y))

travel (x. a(x))

fly (a(x). a(y))

travel (a(y), y)

air-travel(x,y)
task: travel(x,y)
precond: long-distance(x,y)

subtasks: (buy-ticket(a(x), a(y)), travel(x,a(x)), fly(a(x), a(y)).

travel(a(y),y))

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

28

Methods (Continued)

e Partially ordered method: a 4-tuple
m = (name(m), task(m), precond(m1), subtasks(m))

name(m): an expression of the form n(x,,....x,)

» X|,...,X, are parameters - variable symbols
¢ task(m): a nonprimitive task f'

¢ precond(m): preconditions (literals)

¢ subtasks(m): a partially ordered
set of tasks s T | i} long-distance(x,y)

travel(x,y)

buy-ticket (a(x), a(y))| |travel (x, a(x))||fly (a(x), a(y))||travel (a(y), y)

air-travel(x,y) _/\, < 7
travel(x,y)

task:

precond: long-distance(x,y)

network: wu,=buy-ticket(a(x),a(y)), u,= travel(x,a(x)), us= fly(a(x), a(v))
u,=travel(a(y),y), {(uy.us), (tt5,115), (115 ,0,)}

Dana Nau: Lecture slides for Automated Planning 29
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Domains, Problems, Solutions

e STN planning domain: methods, operators
® STN planning problem: methods, operators, initial state, task list
e Total-order STN planning domain and planning problem:

¢ Same as above except that
all methods are totally ordered

nonprimitive task

method instance

® Solution: any executable plan
that can be generated by DfeCOE

recursively applying S
primitive task primitive task

€ methods to

non-primitive tasks @ator mst@ @ator mst@

® operators to
primitive tasks

So precond effects S precond effects S,

Dana Nau: Lecture slides for Automated Planning 0
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Example

® Suppose we want to move three stacks of containers in a way that

preserves the order of the containers

£ - & c

l cranel l crane2 * crane3

c31
/7| c2 7 74 €32 v .

ci1 plc c22 p2c c33 p3c
A c12 y 4 c23 y 4 | ¢34 y 4
ETE plb —555— p2b‘ —355— p3b1

locl loc2 loc3

(a) initial state

2 i Z

‘ cranel ‘ crane2 ‘ crane3 c31

c21 c32

cll c22 K

cl2 A €23 . c34

plc p2c p3c¢

— L7 L_—— S — L7
pia plb 42%%%2} p2b‘ n3a p3b
locl loc2 loc3

(b) goal

Example (continued)

® A way to move each stack:

& first move the

containers P p— p—
from p to an i
. . /7| c21 7| 32
intermediate ol pic [c22 53 33 a—
. a2y L—7 23 L—7 34
pile r o1 p1b o p2b s p3b
locl loc2 loc3
(a) initial state
& then move
them from ¢ &
crane ran crane
1 crane2 5 ane3 c31
to q c21 c32
cli c22 c33
] c12 u c23 > c34
bic ~5%c =3

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http:/creativecommons.org/licenses/by-nc-sa/2.0/

(b) goal

using crane k at location |, take container c from object x1 (container or

take-and-put(c, k, l1, l2, p1, p2, Z1, T2):
task: move-topmost-container(p1, p2)
precond: top(e,p1), on(e,z1), , true if p1 is not empty

pallet) in pile p1 and put it onto object x2 in pile p2

Total-Order

attached(p1, 1), belong(k, 1), ; bindly andk Formulation

attached(pe, l2), top(z2,p2) ; bind la and 2
subtasks: (take(k,l1,c,z1,p1), put(k,lo,c, o2, p2))

recursive-move(p, g, ¢,):
task: move-stack(p, q)
precond: top(e,p), on(c,z) ; true if p is not empty
subtasks: (move-topmost-container(p, g), move-stack(p, q))
;» the second subtask recursively moves the rest of the stack

do-nothing(p, q)
task: move-stack(p, q)
precond: top(pallet,p) ; true if p is empty
subtasks: () ; no subtasks, because we are done

move-each-twice()

task: move-all-stacks()
precond: ; no preconditions
subtasks: ; move each stack twice:

(move-stack(pla,plb), move-stack(plb,plc),
move-stack(p2a,p2b), move-stack(p2b,p2c),
move-stack(p3a,p3b), move-stack(p3b,p3c))

cranel
A4
cll plc
c12 %bj
pla
locl
i
cranel
cll
cl2
plc
Y 4
D@ pib
locl

take-and-put(c, k, l1, l2, p1, p2, 1, T2):

task: move-topmost-container(pi, p2) Pa r‘t|a I -0 rder

precond: top(e,p1), on(c,z1), true if p1 is not empty
attached(ps, 1), belong(k, 1), ; bindl; andk FOrmulation
attached(po, l2), top(z2,p2) ; bind l2 and z

subtasks: (take(kyllacaxlapl)l pUt(ks lZ:Ca .’172,])2))

recursive-move(p, g, ¢, T): e
task: move-stack(p, q)
precond: top(c,p), on(e,z) ; true if p is not empty
subtasks: (move-topmost-container(p, q), move-stack(p, q)) = Cege
;; the second subtask recursively moves the rest of the stack ;112 % 4§
do-nothing(p, q) loc1
task: move-stack(p, q)

precond: top(pallet,p) ; true if p is empty
subtasks: () ; no subtasks, because we are done

move-each-twice() cranel
task: move-all-stacks() o1l
precond: ; no preconditions c12
network: ; move each stack twice: pre
u; =move-stack(pla,plb), uz =move-stack(plb,plc), <o “eib ¢
ug =move-stack(p2a,p2b), us =move-stack(p2b,p2c), locl

us =move-stack(p3a,p3b), ug =move-stack(p3b,p3c),
{(U1,U2), ('U.3,U4), (U5, Uﬁ)} 33

Solving Total-Order STN Planning Problems

TFD(s, (t15..., t), O, M) Total-order Forward Decomposition (TFD)

if k = 0 then return () (i.e., the empty plan)
if ; is primitive then
active < {(a,o) | a is a ground instance of an operator in O,
o is a substitution such that a is relevant for o (t;),
and a is applicable to s}
if active = @ then return failure
nondeterministically choose any (a,0) € active

n <« TFD(y(s,a),0({t2,..., %)), O, M) action|a

if & = failure then return failure

state s: task list T=(|t, |t,....)

else return a. state|y(s,a) . task list T=(t,, ...)

else if #; is nonprimitive then
active < {m | mis a ground instance of a method in M,
o is a substitution such that m is relevant for o (#).

and m is applicable to s} task list T

if active = @ then return failure ,
method 1nstance

t

m

nondeterministically choose any (m,o) € active
w < subtasks(m). o ((t,...,) e (Iﬁ

return TFD(s, w, O, M)

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http:/creativecommons.org/licenses/by-nc-sa/2.0/

wt7~.---)

ts,...)

35

Applicability and Relevance

* A method instance m is applicable in a state s if
— precond(m) satisfied in s

e A method instance mis relevant for a task t if
— there is a substitution o such that o(t) = task(m).

 The decomposition of a task t by a relevant
method m under o is

— 6(t,m,o) = o(network(m)) or
— 6(t,m,o) = o((subtasks(m))) if m is totally ordered.

forward or backward

Comparison to
Forward and Backward Search

® In state-space planning, must choose whether to search

<

ce e

S

e In HTN planning, there are rwo choices to make about direction:

& forward or backward

¢ up or down

e TFD goes
down and
forward

So

Dana Nau: Lecture slides for Automated Planning

task t,

. -_. Si_l

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Limitation of Ordered-Task Planning

® TFD requires totally ordered

get-both(p,q)

/\

methods / \
get(p) get(q)
walk(a,b) | | pickup(p) | | walk(b,a) | walk(a,b) | | Pickup(q) | | walk(b,a)

e Can’t interleave subtasks of different tasks

® Sometimes this makes things awkward

® Need to write methods that reason
globally instead of locally

get-both(p,q)

m

goto(b) pickup-both(p,q) | | goto(a)
/ il \
VNN
walk(a,b) | | pickup(p) | | pickup(q) || walk(b,a)

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

38

Partially Ordered Methods

e With partially ordered methods, the subtasks can be interleaved

get-both(p,q)

N

get(p) get(q)
ol s

walk(a,b) | | stay-at(b) | | pickup(p) | | pickup(q) || walk(b,a) || stay-at(a)

e Fits many planning domains better

® Requires a more complicated planning algorithm

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

e w0 Algorithm for Partial-Order STNs

if w = @ then return the empty plan Partial-order Forward Decomposition (TFD)

nondeterministically choose any u € w that has no predecessors in w
if ¢, is a primitive task then
active < {(a,o) | a is a ground instance of an operator in O,
o is a substitution such that name(a) = o (t,),
and a is applicable to s}
if active = @ then return failure n={ay,..., ag}; W
nondeterministically choose any (a, o) € active
n <« PFD(y(s,a),0(w — {u}), O, M)
if w = failure then return failure y u}
else return a. g

else
active < {(m,o) | m is a ground instance of a method in M,
o is a substitution such that name(m) = o (t,.),

and m is applicable to s}

if active = @ then return failure W=

m

nondeterministically choose any (m, o) € active method mstance

nondeterministically choose any task network w' € 8(w, u, m,o’) /

return(PFD(s, w/, O, M)

Dana Nau: Lecture slides for Automated Planning

g
11/ _{ tll,.oo,tlk -

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http:/creativecommons.org/licenses/by-nc-sa/2.0/

tla]

e o Algorithm for Partial-Order STNs
if w = @ then return the emp¥y plan

inw
e Intuitively, w 1s a partially ordered set of tasks {¢#,, 75, ...}
¢ But w may contain a task more than once),
» e.g., travel from UMD to LAAS twice (tu),

¢ The mathematical definition of a set doesn’t allow this \ {
. f} W=
e Define w as a partially ordered set of rask nodes {u, u,, ...} |
instance
¢ Each task node « corresponds to a task 7,

e In my explanations, I talk about 7 and ignore «
BSe TetUrT @. 77

else

active < {(m,o) | m is a ground instance of a method in M,

o is a substitution such that name(m) = o (t,),
and m is applicable to s}

. . o | [|] PR
if active = @ then return failure {tpte--)
nondeterministically choose any (m,o) € active method mstance|m
nondeterministically choose any task network w' € 8(w, u, m, o) /

/
return(PFD(s, w', O, M) o PR F.
Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 4

e w0 Algorithm for Partial-Order STNs

if w = @ then return the empty plan
nondeterministically choose any u € w that has no predecessors in w
if ¢, is a primitive task then
active < {(a,o’) | a is a ground instance of an operator in O,
o is a substitution such that name(a) = o (t,),
and a is applicable to s}
if active = @ then return failure m={a,,..., a}; w={
nondeterministically choose any (a, o) € active
n < PFD(y (s, a),0(w — {u}), O, M)

if m = failure then return failure —r) u}
else return a. : 5
else

active < {(m,o) | m is a ground instance of a method in M,
o is a substitution such that name(m) = o (t,.),
and m is applicable to s}

: : : ={t,|t,....
if active = @ then return failure - {ta)ts
nondeterministically choose any (m, o) € active method mstance |m
nondeterministically choose any task network w' € 8(w, u, m,o’) /

return(PFD(s, w/, O, M)

r—
. . 1V _{ tll,.oo,tlk .,t‘)._,...
Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http:/creativecommons.org/licenses/by-nc-sa/2.0/

e w0 Algorithm for Partial-Order STNs

if w = @ then return the empty plan

nondeterministically choose any u € w that has no predecessors in w
if t, is a primitive tack then

active < d(w, u, m, ¢) has a complicated definition in the book. Here’s
what it means:

e We nondeterministically selected 7, as the task to do first

if active | ¢ Must do t,’s first subtask before the first subtask of every 7, # 7,
nondeter . . :
T < PFI e Insert ordering constraints to ensure that this happens
if & = failure then return failure _ -
n={a;ap |a|};: w={t,.t;
else return a.
else

active < {(m,o) | m is a ground instance of\q method in M,
o is a substitution such that nametn) = o (t.,),
and m is applicable to s}

if active = @ then return failure

nondeterministically choose any (m, o) € active l method mstance|m

nondeterministically choose any task network w' € 8(w, u, m, o) /

return(PFD(s, w’, O, M) .

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

w={t,|.t,...

1“' _{ tll,.c.,tlk ,t'),...

43

Comparison to Classical Planning

STN planning 1s strictly more expressive than classical planning

® Any classical planning problem can be translated into an ordered-
task-planning problem in polynomial time

e Several ways to do this. One is roughly as follows:
¢ For each goal or precondition e, create a task 7,
¢ For each operator o and effect e, create a method m,,
» Task: 7,

» Subtasks: 7., 1.5, ..., 1

-» 0, Where ¢, ¢,, ..., ¢, are the
preconditions of o

» Partial-ordering constraints: each 7., precedes o

® (I left out some details, such as how to handle deleted-condition
interactions)

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons org/licenses/by-nc-sa/2.0/

Comparison to Classical Planning (cont.)

e Some STN planning problems aren’t expressible in classical planning

e Example:
& Two STN methods:

» No arguments S met;wd1 :> method2
» No preconditions

a . b 2 b

- t

¢ Two operators, @ and b
» Again, no arguments and no preconditions

¢ Initial state 1s empty, initial task 1s t

¢ Set of solutions 1s {@"’b” | n > 0}

¢ No classical planning problem has this set of solutions
» The state-transition system is a finite-state automaton
» No finite-state automaton can recognize {@’b” | n> 0}

e (Can even express undecidable problems using STNs

Dana Nau: Lecture slides for Aufomated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

SHOP2

e SHOP2: implementation of PFD-like algorithm + generalizations

¢ Won one of the top four awards in the AIPS-2002 Planning
Competition

@ Freeware, open source
¢ Implementation available at

http://www.cs.umd.edu/projects/shop

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

HTN Planning

® HTN planning 1s even more general
¢ Can have constraints associated with tasks and methods
» Things that must be true before, during, or afterwards

4 Some algorithms use causal links and threats like those in PSP

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

HTN Planning

Hierarchical Task Networks generalise Simple Task Networks:

— no forward decomposition is necessary, a task network w consists of a set
of task nodes and a set of constraints

(HTN Planning Problem) An HTN planning problem is a 3-tuple P
= (Sg, Wg, D) where s, is the initial state, wy is a task network
called the initial task network, and D is the HTN planning domain
which consists of a set of operators and methods.

A planm = [aq, ...,a,] is a solution for a planning problem if there
is a ground instance (U, Cy) of (U, C) and a total ordering
[uq, ..., U] of the nodes of U0 such that

— the plan mtis executable in s, and the total ordering fulfills all constraints.

HTN Planning

Hierarchical Task Networks generalise Simple Task Networks:
— no forward decomposition is necessary, a task network w consists of a set

of task nodes and a set of constraints

A (hierarchical) task network is a pair w=(U,C), where:
U is a set of tasks and
C is a set of constraints of the following types:

t1<t2: precedence constraint between tasks satisfied if in every solution
e last({t}, i) < first({t},m);

before(U’,1): satisfied if in every solution t: literal | holds in the state just
before first(U’,mt);

after(U’,l): satisfied if in every solution mt: literal | holds in the state just
after last(U’,m);

between(U’,U” 1): satisfied if in every solution m: literal | holds in every
state after last(U’,it) and before first(U”,m).

first(U'.1r) = the action a=A(U’) that occurs first in ;
and

last(U’.1m) = the action a=A(U’) that occurs last in 7.

HTN Planning

* Hierarchical Task Networks generalise Simple Task Networks:

— no forward decomposition is necessary, a task network w consists of a
set of task nodes and a set of constraints

* Let MS be a set of method symbols. An HTN method is a 4-
tuple m=(name(m),task(m),subtasks(m),constr(m)) where:
— name(m): the name of the method

* syntactic expression of the form n(x1,...,xk)
* nEMS: method symbol
e x1,...,xk: variable symbols that occur in m;
— task(m): a non-primitive task;
— (subtasks(m),constr(m)): a task network.

HTN Planning

take-and-put(c,k,[,p,,p 4 X0 Xy)
® task: move-topmost(p,,p,)

* network:
*® subtasks: {t,=take(k./,c,x,.p,), t,=put(k,/.c.x 4p4)}

® constraints: {t,<t,, before({t,}, top(c,p,)).
before({t;}, on(c,x,)), before({t,}, attached(p,./)),
before({t;}, belong(k./)), before({t,}, attached(p,./)),

before({t,}, top(x,,P4))}

recursive-move(p,,p4C.X,)
* task: move-stack(p,.p,)
* network:
* subtasks: {t,=move-topmost(p,.p,). L,=move-stack(p,.p,)}
* constraints: {t,<t,, before({t,}, top(c.p,)). before({t,}. on(c.,x,))}
move-one(p,,pC)
* task: move-stack(p,.p,)
* network:
* subtasks: {t,=move-topmost(p,.p,)}
* constraints: {before({t,}, top(c.p,)). before({t,}, on(c,pallet))}

HTN Planning

Let (U, C% be a primitive HTN. A plan 7= (a,,...,a,) is a
solution for 2=(s,(U,C),O,M) if there is a ground mstance

(o(U),0(C)) of (U C) and a total ordering (t,,...,t,) of tasks in

c(U) such that:
* for /=1...n: name(a,) = t;

* mis executable in s, i.e. y(s,, 1) is defined:;

. th(c-:é ?rdering of (t,,.. .,t,,jj::' respects the ordering constraints in
o]

* for every constraint before(U"/) in o(C) where f,=first(U’,m): /
must hold in y(s;, (a4,...,8k1));

* for every constraint after(U [) in o(C) where t,=last(U’,m): | must
hold in y(s;, (@y,...,a8y);

* for ever?/ constraint between(U’,U",/) in o(C) where t,=first(U’,m)
and f, =last(U",m): I must hold in every state y(s; (a;....,a)),

Jelk.. m-1}

HTN Planning

Let w = (U,C) be a non-primitive HTN. A
plan m = (a,,...,a,) is a solution for
2=(s,w,0,M) if there is a sequence of
task decompositions that can be applied
to w such that:

® the result of the decompositions is a primitive
HTN w’ and
® mis a solution for 2'=(s,w’,0O,M).

HTN Planning

function Abstract-HTN(s,U,C,O,M)
If (U,C).isInconsistent() then return failure
If U.isPrimitive() then
return extractSolution(s,U,C,0)
else
return decomposeTask(s,U,C,0O M)

function extractSolution(s,U,C,0) function decomposeTask(s,U,C,0,M)
(ty,....t,) € U.chooseSequence(C) t € U.nonPrimitives().selectOne()
(B B methods € {(m,o) | meM and o(task(m))= o(t)}

(t,,-.:)-ehoosoCreunding(s,C,0y Wmelhods.sEmplyy) then returiajilre
..... L, C,
if (a,,...,a,).satisfies(C) then (m,o) € methods.chooseOne()

t (U',C) € B((U,C).t,m,0)
return (a,....ay (U',C)) € (U',C").applyCritic()
return failure return Abstract-HTN(s,U’.C’,0.M)

Domain-Configurable Planners
Compared to Classical Planners

e Disadvantage: writing a knowledge base can be more
complicated than just writing classical operators

e Advantage: can encode “recipes’” as collections of methods
and operators

¢ Express things that can’t be expressed 1n classical planning
¢ Specity standard ways of solving problems
» Otherwise, the planning system would have to derive
these again and again from “first principles,” every time
it solves a problem
» Can speed up planning by many orders of magnitude
(e.g., polynomial time versus exponential time)

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http:/creativecommons.org/licenses/by-nc-sa/2.0/

HTN Planning

 HTN are particularly well-suited for planning in
dynamic worlds (e.g., robotics [Bevacqua et al.
2015], games [Neil Wallace 2004, p.235])

* Planning is performed at multiple levels within a
hierarchy.

* The search space is reduced. Invalid plans can
often be ruled out early on. Hierarchical planners
support replanning on the fly and can be used in
dynamic worlds.

HTN Extension

Hybrid Planning

Task Insertion
Temporal/resource constraints
State Abstraction

