
1

Executive Frameworks

• RAP (http://people.cs.uchicago.edu/~firby/raps)

– Firby, J “Task Networks for Controlling Continuous Processes”,
Proceedings of Artificial Intelligence Planning conference, 1994.

• TCA (http://www-2.cs.cmu.edu/afs/cs/project/TCA/release/tca.orig.html, http://www-
2.cs.cmu.edu/afs/cs/project/TCA/release/tca.html)

– Simmons, R. “Structured Control for Autonomous Robots”, IEEE
Transactions on Robotics and Automation, Feb 1994.

• PRS (http://www.ai.sri.com/~prs)

– Reactive reasoning and planning: an experiment with a mobile robot,
M. Georgeff and A. Lansky, in Proceedings of AAAI, 1987.

• RMPL

http://www-2.cs.cmu.edu/afs/cs/project/TCA/release/tca.orig.html
http://www.ai.sri.com/~prs

2

Reactive Action Packages (RAP)

07.11.2006 3

Reactive Actions Packages

To cope with unpredictable details:

Choose the appropriate plan

completions at execution time.

07.11.2006 4

What is a RAP?

• A RAP is a representation that groups

together and describes all known ways

to carry out a task in different

situations.

• “Situation-driven execution”

07.11.2006 5

Situation-driven execution

Tasks should have a:

• Satisfaction test

• Window of activity

• Set of execution methods

07.11.2006 6

The RAPs architecture

07.11.2006

Example of RAP

07.11.2006

Reactive Action Packages

• RAPs are basic blocks

• Representation of task
in all situations

07.11.2006

General Structure of a RAP

• Make a sketchy plan

• Choose a task

• Assess current
situation

• Choose method

• Execute

Plan: set of partially ordered tasks

Task: Complex actions

Method: Set of actions

No guarantee of success

Success criterion

Execution of RAPs

11

Task Control Architecture (TCA)

• Vertical task decomposition: several task-
specific modules communicate through a
central control module

• Deliberation: top-down task-subtask, resolve
constraints

• Central control routes messages

– Inform, query, command, monitor

12

A Symbolic Discrete Task

13

Waiting for a signal to proceed

14

Concurrent
tasks

15

More
Complex
Task
Networks

TDL (Simmons 1998)

TDL

18

Ambler Walking Robot

19

Ambler Modules

20

Ambler Task Tree

21

TCA: Monitoring

• Central control traverses tree and handles
messages:
– asks gait planner to traverse arc,

– gait planner asks terrain mapper for elevation map
in order to take steps

– Gait planner asks leg recovery planner to place
leg, move leg, move body,

– Gait planner activates monitor whether achieved
position

22

TCA: Control

• Ordering and temporal constraints

• Delay planning constraint: goal cannot be issued until
previous task achieved

– Can do place leg planning while monitoring achieve
position

• Exception handling: error recovery modules examine
and modify task trees

– Eg: if position not achieved, add take steps subtask

23

Ambler Planning and Execution

Claraty

Planner

Executive

Functional

SYSTEM

A New View of Architecture Hierarchy

Typical 3 Level Architecture

• Functional Level is flat – typically a thin
layer over the hardware

• Planner has no access to Functional Layer.
• Abstraction and granularity is mixed with

intelligence.

Proposed 2 Layer Architecture

• Functional Layer contains object-oriented abstraction of
hardware at all levels of system granularity.

• Planner and Exec are similar, dominating at different
levels of granularity, sharing a common database.

• Planner does not have direct access to the Functional
Layer for execution, but executive may be minimized.

Functional

Executive

Planner

The Functional Layer • Object-oriented Hierarchy: captures granularity and
abstraction of the system.

• Resident State: the state of the system components
is contained in the appropriate objects and
obtained from it by query. This includes state
variables values, object state machine status,
resource usage, health monitoring, etc.

• Local Planners: part of the appropriate object. For
instance, trajectory planners for arm motion or
driving.

• Resource Usage Predictors: part of the appropriate
objects. The prediction can have specified levels of
fidelity. For high levels, access of subordinate
objects may be needed.

• Encoded Functionality: objects contain basic
functionality for themselves, accessible from within
the Functional Layer, as well as the Decision Layer.

• Simulation: system simulation can be obtained at
various levels of fidelity by disconnecting
subordinate objects from superior ones.

• Test and Debug: objects contain test and debug
interfaces and have external exercisers.

Functional Layer Object-Oriented Hierarchy

Implementation Instance: Functional Layer
software controlling the system is an
instance of software derived from more
abstract classes.

A
B

ST
R

A
C

TI
O

N

Abstraction dimension: In addition to
system, granularity, and intelligence.

Inheritance: Abstraction dimension is best
described by the inheritance properties of an
object oriented description

Aggregate Functionality: Centralizes and
enhances capabilities.

The Decision Layer • Goal Net: temporal constraint network at
planning level, task tree at executive level.

• Goals: specified as constraints on state over
time. Consistent with MDS, and ASPEN/CASPER.
Runtime loadable. (“What not to do.”)

• Tasks: specified as explicitly parallel or
sequential activities that are tightly linked.
Consistent with TDL. Compiled in. (“What to
do.”)

• Commands: termination fringes of goal net
where the Functional Layer is accessed.

• The Line: the lower border of the elaborated
goal net. It is floating, according to the current
elaboration. When projected on the Functional
Layer, it denotes the border below which the
system is a “black box”.

• State: the state of the Functional Layer is
obtained by query. The state of the Decision
Layer, which is essentially its plan, the active
elaboration, and history of execution, is
maintained by this layer. It may be save, or
reloaded, in whole or part.

Decision/Functional Layer Connectivity

Lower Granularity

• Enable global decisions that are lacking in Functional Layer.

• Utilize better decision making capability for smaller scale issues.

• Bypass built-in default capabilities of Functional Layer.

• Take advantage of faster planner or exec.

Higher Granularity

• Take advantage of built in capabilities of Functional Layer

• Avoid second guessing Functional Layer algorithms and error handling.

• Approach planning and commanding at appropriate level of granularity for the
problem – don’t micro-manage the system.

• Allow the use of slower Decision Layer tools.

Timeline Interaction

R
ES

O
U

R
C

ES
A

C
TI

V
IT

IE
S

TIME

Now Plan freeze Plan horizon

EXEC
DOMAIN

PLANNER
DOMAIN

EXECUTION
HISTORY

• Elaboration/Planning: expansion of
goals/activities, along with resource prediction
requests from Functional Layer

• Scheduling: rearrangement of activities based
on resource constraints.

• Execution: Executive expands activities into task
trees or directly into commands. Conditional
activities plus state feedback cause changes in
resource usage values.

• Plan Repair: Planner iteratively repairs the plan
based on the new projections of resources.

31

An Alternative to TCA’s Vertical Capabilities:
Horizontal Layered Control

Reason about behavior of objects

Plan changes to the world

Identify objects

Monitor changes

Build maps

Explore

Wander

Avoid objects

BDI Systems

[Bratman,1987]. Intention, Plans, and Practical Reason.

- BDI model inspired by the Michael Bratman's theory of human practical

reasoning:

- resource-bounded agent

- intention and desire are proactive, intentions as commitments

Core concepts
Beliefs = information the agent has about the world

Desires = state of affairs that the agent would wish to bring about

Intentions = desires (or actions) that the agent has committed to achieve

Belief: the agent knowledge about about the world (belief set)

Desires: motivational state, objectives, tasks to be acheived (goals)

Intentions: desires with commitment, i.e. plans ready for the execution (plans)

BDI Systems

BDI particularly compelling because:

• philosophical component - based on a theory of rational actions in
humans

• software architecture - it has been implemented and successfully used in
a number of complex fielded applications

– IRMA - Intelligent Resource-bounded Machine Architecture

– PRS - Procedural Reasoning System

• logical component - the model has been rigorously formalized in a family
of BDI logics

– Rao & Georgeff, Wooldrige

– (Int Ai) (Bel Ai)

Practical Reasoning Agents:
Deliberation: Intentions and Desires

– intentions are stronger than desires

– “My desire to play basketball this afternoon is merely a
potential influencer of my conduct this afternoon. It must vie
with my other relevant desires [. . .] before it is settled what I
will do. In contrast, once I intend to play basketball this
afternoon, the matter is settled: I normally need not continue
to weigh the pros and cons. When the afternoon arrives, I will
normally just proceed to execute my intentions.” [Bratman,
1990]

Practical Reasoning Agents: Intentions

1. agents are expected to determine ways of achieving intentions
• If I have an intention to Φ, you would expect me to devote resources to deciding how to bring about Φ

2. agents cannot adopt intentions which conflict
• If I have an intention to Φ , you would not expect me to adopt an intention Ψ that was incompatible with Φ

3. agents are inclined to try again if their attempts to achieve their intention fail
• If an agent’s first attempt to achieve Φ fails, then all other things being equal, it will try an alternative plan to

achieve Φ

4. agents believe their intentions are possible
• That is, they believe there is at least some way that the intentions could be brought about.

5. agents do not believe they will not bring about their intentions
• It would not be rational of me to adopt an intention to Φ if I believed that I would fail with Φ

6. under certain circumstances, agents believe they will bring about their intentions
• If I intend Φ, then I believe that under “normal circumstances” I will succeed withΦ

7. agents need not intend all the expected side effects of their intentions
• I may believe that going to the dentist involves pain, and I may also intend to go to the dentist — but this does

not imply that I intend to suffer pain!

3. BDI Architecture
Belief revision

Deliberation process

percepts

Desires
Opportunity

analyzer

Intentions

Filter

Means-ends

reasoner

Plans

Intentions structured

in partial plans

Executor

B = brf(B, p)

D = options(B, D, I)

I = filter(B, D, I)

 = plan(B, I)

Library of plans

actions

Beliefs
Knowledge

Practical Reasoning Agents

• agent control loop

while true

observe the world;

update internal world model;

deliberate about what intention to achieve next;

use means-ends reasoning to get a plan for the

intention;

execute the plan

end while - when to reconsider intentions !?

- what are the options (desires) ?

- how to choose an option ?

- incl. filter

- chosen option intention …

Implementing Practical Reasoning Agents

• Let’s make the algorithm more formal:

39

Procedural Reasoning System (PRS)

• Framework for symbolic reactive control
systems in dynamic environments

– Eg Mobile robot control

– Eg diagnosis of the Space Shuttle’s Reaction
Controls System

Implementing Practical Reasoning Agents

• optimal behaviour if
• deliberation and means-ends reasoning take a small

amount of time;

• the world is guaranteed to remain static while the agent
is deliberating and performing means-ends reasoning;

• an intention that is optimal when achieved at time t0
(the time at which the world is observed) is guaranteed
to remain optimal until time t2 (the time at which the
agent has found a course of action to achieve the
intention).

Deliberation

• The deliberate function can be decomposed into two distinct functional
components:

– option generation
the agent generates a set of possible alternatives. A function, options, takes
the agent’s current beliefs and current intentions, and from them
determines a set of options (= desires)

– filtering
the agent chooses between competing alternatives, and commits to
achieving them. In order to select between competing options, an agent
uses a filter function.

Deliberation

Practical Reasoning Agents
If an option has successfully passed trough the filter function and is chosen by
the agent as an intention, we say that the agent has made a commitment to
that option.

Commitment implies temporal persistence of intentions; once an intention is
adopted, it should not be immediately dropped out.

How committed an agent should be to its intentions?
• degrees of commitments

– blind commitment

» ≈ fanatical commitment: continue until achieved

– single-minded commitment

» continue until achieved or no longer possible

– open-minded commitment

» continue until no longer believed possible

Commitment Strategies

• An agent has commitment both
– to ends (i.e., the wishes to bring about)

– and means (i.e., the mechanism via which the agent
wishes to achieve the state of affairs)

• current version of agent control loop is
overcommitted, both to means and ends

modification: replan if ever a plan goes
wrong

Reactivity, replan

“Blind commitment”

Commitment Strategies

• this version still overcommitted to intentions:

– never stops to consider whether or not its intentions
are appropriate

modification: stop for determining
whether

intentions have succeeded or whether
they are impossible:

“Single-minded commitment”

Single-minded Commitment

Dropping intentions

that are impossible

or have succeeded

Reactivity, replan

Intention Reconsideration
• Our agent gets to reconsider its intentions when:
– it has completely executed a plan to achieve its current

intentions; or
– it believes it has achieved its current intentions; or
– it believes its current intentions are no longer possible.

 This is limited in the way that it permits an agent to
reconsider its intentions
modification:

Reconsider intentions after executing every
action

“Open-minded commitment”

Open-minded Commitment

Intention Reconsideration

• But intention reconsideration is costly!
A dilemma:

– an agent that does not stop to reconsider its intentions sufficiently
often will continue attempting to achieve its intentions even after it is
clear that they cannot be achieved, or that there is no longer any
reason for achieving them

– an agent that constantly reconsiders its attentions may spend
insufficient time actually working to achieve them, and hence runs the
risk of never actually achieving them

• Solution: incorporate an explicit meta-level control component, that
decides whether or not to reconsider

meta-level control

Possible Interactions

• The possible interactions between meta-level
control and deliberation are:

Intention Reconsideration

• Situations
– In situation (1), the agent did not choose to deliberate, and as consequence, did not

choose to change intentions.
Moreover, if it had chosen to deliberate, it would not have changed intentions.

the reconsider(…) function is behaving optimally.

– In situation (2), the agent did not choose to deliberate, but if it had done so, it
would have changed intentions.

the reconsider(…) function is not behaving optimally.

– In situation (3), the agent chose to deliberate, but did not change intentions.
the reconsider(…) function is not behaving optimally.

– In situation (4), the agent chose to deliberate, and did change intentions.
the reconsider(…) function is behaving optimally.

• An important assumption: cost of reconsider(…) is much less than the cost of the
deliberation process itself.

Optimal Intention Reconsideration

• Kinny and Georgeff’s experimentally investigated
effectiveness of intention reconsideration strategies

• Two different types of reconsideration strategy were used:

– bold agents
never pause to reconsider intentions, and

– cautious agents
stop to reconsider after every action

• Dynamism in the environment is represented by the rate of
world change, g

Optimal Intention Reconsideration

• Results (not surprising):
– If g is low (i.e., the environment does not change

quickly),
bold agents do well compared to cautious ones.
• cautious ones waste time reconsidering their

commitments while bold agents are busy working
towards — and achieving — their intentions.

– If g is high (i.e., the environment changes
frequently), cautious agents tend to outperform
bold agents.
• they are able to recognize when intentions are doomed,

and also to take advantage of serendipitous situations
and new opportunities when they arise.

Implemented BDI Agents: IRMA

• IRMA – Intelligent Resource-bounded Machine Architecture –

Bratman, Israel, Pollack

• IRMA has four key symbolic data structures:
• a plan library

• explicit representations of
– beliefs: information available to the agent — may be

represented symbolically, but may be simple variables

– desires: those things the agent would like to make true — think
of desires as tasks that the agent has been allocated;

– intentions: desires that the agent has chosen and committed to

IRMA

• Additionally, the architecture has:
• a reasoner

– for reasoning about the world; an inference engine

• a means-ends analyzer
– determines which plans might be used to achieve intentions

• an opportunity analyzer
– monitors the environment, and as a result of changes, generates

new options

• a filtering process
– determines which options are compatible with current

intentions

• a deliberation process
– responsible for deciding upon the ‘best’ intentions to adopt

