Task Planning

Robotic Architectures

Architetture a 3 Livelli

« Deliberativo:
pianificazione, ragionamento, decisione

* Esecutivo:
monitoraggio dell’esecuzione,
sequenziamento dei comandi

* Funzionale:
funzionalita di controllo attuative e percettive

Deals with goals and resource
interactions

Task decomposition; Task
svynchronization; Monitoring;
Exception handling;
Resource management

Deals with sensors and
actuators

Architetture a 3 Livelli: ATLANTIS

* Explicit Separation of Planning. Sequencing. and Control
— Upper layers provide control flow for lower layers

— Lower layers provide sia7us (state change) and
synchronization (success/failure) for upper layers
* Heterogeneous Architecture
— Each layer utilizes algorithms tuned for 1ts particular role

— Each layer has a representation to support its reasoning
Goals

Arrange Tasks Task Commitments

Configure Signals

Actuartors
Sensors

Pianificazione Deliberativa

Are often aligned with hierarchical control community
within robotics.

Hierarchical planning systems typically share a structured
and clearly identifiable subdivision of functionality regarding
to distinct program modules that communicate with each
other in a predictable and predetermined manner.

At a hierarchical planner’s highest level, the most global and
least specific plan is formulated.

At the lowest levels, rapid real-time response is required,
but the planner is concerned only with its immediate
surroundings and has lost the sight of the big picture.

Spatial Time

Scope Hierarchical World Model Horizon
Planner
Long - Term
Global
Immediate
Vicinity

Actions Sensing Real - Time

Planning as Search

Planning is looking ahead, searching
The goal is a state.

The robot's entire state space is enumerated, and
searched, from the current state to the goal state.

Different paths are tried until one is found that reaches
the goal.

If the optimal path is desired, then all possible paths must
be considered in order to find the best one.

SPA = Planner-based

e Planner-based (deliberative) architectures typically involve three
generic sequential steps or functional modules:

1) sensing (S)

2) planning (P)

3) acting (A), executing the plan
e Thus, they are called SPA architectures.
e SPA has serious drawbacks.

It takes a very (prohibitively) long time to search in a real
Problem 1:

. robot's state space, as that space is typically very large.
Time Scale

1 Real robots may have collections of simple digital sensors
(e.g., switches, IRs), a few more complex ones (e.g.,
cameras), or analog sensors (e.g., encoders, gauges, etc.)

[1 =>"too much information"

[J] =>Generating a plan is slow.

SPA = Planner-based

[It takes a lot of space (memory) to represent and

Problem 2: , | ,
manipulate the robot's state space representation.
Space
1 The representation must contain all information needed
for planning.
=> Generating a plan can be large.
Space is not nearly as much of a problem as time, in
practice.
[1 The planner assumes that the representation of the state
space is accurate and up-to-date.
Problem 3: .
) [1 =>The representation must be constantly updated and
Information checked

1 The more information, the better.

[1 =>"too little information"

SPA = Planner-based

Problem 4: The resulting plan is only useful if:

Use of Plans a) the environment does not change during the

execution of a plan in a way that affects the plan.

b) the representation was accurate enough to generate a
correct plan.

c) the robot's effectors are accurate enough to perfectly
execute each step of the plan in order to make the
next step possible

Deliberation in Summary

% In short, deliberative (SPA, planner-based) approaches:
¢ require search and planning, which are slow
¢ encourage open-loop plan execution, which is limiting and dangerous

% Note that if planning were not slow (computationally expensive) then
execution would not need to be open-loop, since re-planning could be done.

Hierarchical Planners vs. BBS

Hierarchical Planners

Rely heavily on world models,
Can readily integrate world knowledge,
Have a broad perspective and scope.

BB Control Systems

afford modular development,

Real-time robust performance within a changing world,
Incremental growth

are tightly coupled with arriving sensory data.

10

Hybrid Control

The basic idea is simple: we want the best of both worlds
(if possible).

The goal is to combine closed-loop and open-loop
execution.

That means to combine reactive and deliberative control.

This implies combining the different time-scales and
representations.

This mix is called hybrid control.

Hybrid robotic architectures believe that a union of deliberative and
behavior-based approaches can potentially yield the best of both worlds.

11

Organizing Hybrid Systems

Planning and reaction can be tied: ~ More Deliberative

: L : Planner

A: hierarchical integration - _

planning and reaction are involved _
with different activities, time scales

Behavioral Advice
Configurations
Parameters

B

B: Planning to guide reaction -
configure and set parameters for
the reactive control system.

C: coupled - concurrent activities

More Reactive

A

12

Organizing Hybrid Systems

It was observed that the emerging architectural design of choice is:
— multi-layered hybrid comprising of
*a top-down planning system and
* a lower-level reactive system.

— the interface (middle layer between the two components) design is
a central issue in differentiating different hybrid architectures.

In summary, a modern hybrid system typically consists of three components:
¢ a reactive layer
¢ a planner
¢ a layer that puts the two together.

=> Hybrid architectures are often called three-layer architectures.

The Magic Middle: Executive Control

e The middle layer has a hard job:

1) compensate for the limitations of both the planner and the reactive
system

2) reconcile their different time-scales.

3) deal with their different representations.

4) reconcile any contradictory commands between the two.
e This is the challenge of hybrid systems

=> achieving the right compromise between the two ends.

14

The middle layer services.

Reusing Plans

Some frequently useful planned decisions may need to be reused, so
to avoid planning, an intermediate layer may cache and look those

up. These can be:

— intermediate-level actions (ILAs): stored in contingency tables.

— macro operators: plans compiled into more general operators for future use.

Dynamic Re-planning

Reaction can influence planning.

Any "important” changes discovered by the low-level controller are
passed back to the planner in a way that the planner can use to re-plan.

The planner is interrupted when even a partial answer is needed in real-
time.

The reactive controller (and thus the robot) is stopped if it must wait for

the planner to tell it where to go.
15

The middle layer services.

Planner - Driven Reaction

* Planning can also influence reaction.

* Any "important" optimizations the planner discovers are passed down
to the reactive controller.

* The planner’s suggestions are used if they are possible and safe.

=> Who has priority, planner or reactor? It depends, as we will see...

Types of “Reaction <> Planning”
Interaction

¢ Selection: Planning is viewed as configuration.
¢ Advising: Planning is viewed as advice giving.
¢ Adaptation: Planning is viewed as adaptation of controller.

¢ Postponing: Planning is viewed as a least commitment process.
16

Universal Plans

e Suppose for a given problem, all possible plans are generated for all
possible situations in advance, and stored.

e |f for each situation a robot has a pre-existing optimal plan, it can react
optimally, be reactive and optimal.

e |t has a universal plan (These are complete reactive mappings).

Viability of Universal Plans
e A system with a universal plan is reactive; the planning is done at
compile-time, not at run-time.
e Universal plans are not viable in most domains, because:
— the world must be deterministic.
— the world must not change.

— the goals must not change.

— the world is too complex (state space is too large).
17

Planning & Execution

* Planning

— Generarte a set of acfions — a plan — that can transform an
initial state of the world to a goal state

[Newell and Simon, 1950s]
» Execution

— Start at the nitial state, and perform each action of a
generated plan

Planning Problem

Newell anhd Simon 1956
« (Given the acfions available in a task domain.
« Given a problem specified as:

— an initial stafe of the world,
— a set of goals to be achieved.

« Find a solution to the problem, i.e., a way to transform
the initial state into a new state of the world where the
goal statement is true.

Action Model, State, Goals

Classical Planning

Action Model: complete, deterministic, correct, rich
representation

State: single initial state, fully known

Goals: complete satisfaction

Several different planning algorithms

Esempio: Blocks World

ol o

[B] B
A [A] [C]

Table Table

Blocks are picked up and put down by the arm

Blocks can be picked up only if they are clear, 1.e., without
any block on top

The arm can pick up a block only if the arm 1s empty, 1.e.,
if 1t 1s not holding another block, 1.e., the arm can be pick
up only one block at a time

The arm can put down blocks on blocks or on the table

STRIPS Model

Pickup from table(b) Pickup from block(b, c)

Pre: Block(b). Handempty Pre: Block(b). Handempty
Clear(b). On(b, Table) Clear(b), On(b, c). Block(c)
Add: Holding(b) Add: Holding(b). Clear(c)
Delete: Handempty, Delete: Handempty,
On(b. Table) On(b. ¢)

Putdown on_table(b) Putdown_on_block(b, c)
Pre: Block(b). Holding(b) Pre: Block(b). Holding(b)
Add: Handempty, Block(c), Clear(c). b =¢

On(b. Table) Add: Handempty, On(b, ¢)

Delete: Holding(b) Delete: Holding(b), Clear(c)

Init: On(a,Table), On(b,table), On(c,table) Goal: On(a,table),On(b,a), On(c,b)

Spacecraft Domain

Observation-1

target — |

instruments
N

Observation-2
Observation-3

Observation-4

— pointing

calibrated

Takelmage (?target, ?instr):
Pre: Status(?instr, Calibrated), Pointing(?target)
Eff: Image(?target)

Calibrate (?instrument):
Pre: Status(?instr, On), Calibration-Target(?target), Pointing(?target)
Eff: ~Status(?inst, On), Status(?instr, Calibrated)

Turn (?target):
Pre: Pointing(?direction), ?direction # ?target
Eff: =Pointing(?direction), Pointing(?target)

Planning Problem

* Planning Domain: Descrizione degli operatori
in termini di precondizioni ed effetti

* Planning Problem: Stato iniziale, Dominio,
Goals

Initial Conditions: | P, P, P, P,

pre,

Eﬂ'-1
pre, Op <

Eﬁ-z

pres

Operators:

Goals: Goal, Goal, Goal,

Tipi di Planning

Classical Planning

Temporal Planning
Conditional Planning
Decision Theoretic Planning

Least-Commitment Planning
HTN planning

Paradigms

Classical planning

(STRIPS, operator-based, first-principles)
“generative”

Hierarchical Task Network planning
“practical” planning

MDP & POMDP planning

planning under uncertainty

State Space vs. Plan Space

* Planning in the state space:

— sequence of actions, from the initial state to the
goal state

* Planning in the plan space:

— Sequence of plan transformations, from an initial
plan to the final one

Plan-State Search

» Search space 15 set of parfial plans
+ Plan 1s mple =4, O, B=
— A: Set of actions, of the form (a; : Op;)
— O Set of orderings, of the form (a; < an]
— B: Setof bindings, of the form (v, =C), (v; =C). (v;=v) or
(v; =) ‘
» Imitial plan:
— ={start, finish}, {start < finish}, {}=
— start has no preconditions; Its effects are the mnital state
— Jfinish has no effects; Its preconditions are the goals

State-Space vs Plan-Space

Planning problem

Find a sequence of actions that make instance of the goal true

Nodes in search space

Standard search: node = concrete world state

Planning search: node = partial plan

(Partial) Plan consists of

& Set of operator applications §;
¢ Partial (temporal) order constraints §; < §;
s Causal links §; —— §;

Meaning: “S; achieves ¢ € precond(S;)” (record purpose of steps)

Search in the Plan-Space

Operators on pattial plans

& add an action and a causal link to achieve an open condition
& add a causal link from an existing action to an open condition

& add an order constraint to order one step w.r.t. another

Open condition

A precondition of an action not yet causally linked

Plan-State Search

a2

Par{A E)
 Orde ﬁ:ﬂﬂ(-:* ""“‘--..__‘_' o u]
o - | Put(A. B]
Pick(A, 7} oo \ B TI)
\ puga, 7y PTE) Order,””
-~) / Pik(A,) Order *5-:&&1}
l ‘ PickT(E) —*l PickT(C) |
PJIZ..'-"._E] Putf4, B) BkT(C
= Bind 5‘&___ - Rihu }
Pl Add ord —
PickiA, O) Er l,.'/ -\'\-,I
\Put(4, B), PickT(C))
A | BickiA. ©) |

\ParAL B/
A

Partially-Ordered Plans

Start
Start L=t t
Sook Sook
LeftShroaC, l HigintShoeCn [eftSockonT RightSock O
Left Rigiit
Finish Shoe Shoe

\

 eftShoeOn, RightShoaeln

Finish

Special steps with empty action

Start no precond, initial assumptions as effect)

Finish - goal as precond, no effect

Partial-Order Plans

Complete plan

A plan is complete iff every precondition is achieved

A precondition ¢ of a step §; is achieved (by $;) if
& 55 - 5;
& c € effect(S;)

& thereisno S, with §; <5, <5, and —c € effect(S;)
(otherwise §;. is called a clobberer or threat)

Clobberer / threat

A potentially intervening step that destroys the condition achieved
by a causal link

Example

Go(Home)

e

IIIII__.- T

Partial-Order Plans

clobbers A:(HWS)

g ™\ DEMOTION
Go(HWS) l|
l
\
N
> Goll lome)
f;” At(Home)
At{HWS) [f
Buy(Dxill) J
; /
~_ _7
PROMOTION AtHBme)

Finish

Demotion

Put before Go(HWS)

Promotion

Put after Buy(Drill)

General Approach

* (general Approach
— Find unachieved precondition

* Add new action or hink to existing action
— Determine 1f conflicts occur

* Previcusly aclueved precondition 1= “clobbered”
» Fix conflicts (reorder, bind, .)

* Partial-order planning can easily (and optimallv) solve
blocks world problems that involve goal mteractions (e.g..
the “Sussman Anomalv problem)

n s
EE C

Imitial State Cxoal

Blocks World

"Sussman anomaly” problem

BI{A

Start State Goal State
Clear(x) On(x,z) Clear(y) Clear(x) On(x,z)
PutOn(x,y) PutOnTable(x)
~0On(x,z) ~Clear(y) ~0On(x,z) Clear(z) On(x, Table)
Clear(z) On(x,y)

+ several inequality constraints

Blocks World

START
On(C,A) On(A,Table) CiB) On(B, Table) CIC)

On(A,B) On(B,C)
FINISH

A
B

Blocks World

START
On(C,A) On(A, Table) CKB) On(B.Table) CIC)

\!

C-'PB) Dﬂ’,B,z) CJC)
PutOn(B,C)

/

On(A,B) on;{c,:
FINISH

A
B

Blocks World

START B)

On(C.A) On(A, Table) CKB) On(B.Table) CIC)

PutOn(A.B)

clobbers CHB)

= order after
PutOn(B,C)

l! 5 CPB) Gn’,B,z) c:f,-C-‘)
CA oA SB[5 onB.0)
PUONAB) [+~ / |
on},qﬁ,: Dnrﬁ'CJ E
FINISH

Blocks World

START
On(C.A) On(A,Table) CKB) On(B,Table) CIC)

BllA

/ PUON(A,B)
clobbers CHB)
p P =:-Pm1der gﬂer
on(C.z) Ci(C) B
PUtONTable(C) | _ Effbl{g’%}um
- = order after
\ PutOnTable(C)
N ,! g ~o C;}BJ Gn,B,zJ C}C)
CliA) On(A,z) Cl ~.
@) OnA2) CiE) _2) PutOn(B,C)
PutOn(AB) ==~ /
Dﬂ}ﬂﬁ) Oﬂfﬁ:@

FINISH

Blocks World

1 c|l)

| Start | _lA] [B

On(C, A) OnfA, Table) On(B, Takle)
Clear{C), Clear{B]}

3. [Start]
OniC, A) Onid Table)Qn(B, Table)
Clegt(C) Cle

Clear{C)

Move(C, Table)

A
On(A, B) On(B. C) 5
| Finish | C
2. | Start |

On{C, A) OnfA, Table) Bpn(B, Takle)
Clear(C) Clear(E)
CleariBS% Claar{C)

Move(B, C)

On{A, B) On(B &
| Finish

Clear(2% Clear(C)

Clearf AN Onu(C, Table)
AMove(B, C)

Clear{A)|Clear(B)
Move(A, B)

oni B o C)

Blocks World

4. | Start | 5. | Start |
Co(C, A) OniA. Table) QuiB, Table) CmiC, A) OniA. Table) On(E, Table)
Clglar{C) Clear(ClginC) Clear(B)

Clear{C) CleariC)
Move(C, Table) i Move(C, Table)) _
. — CleanBwC lear{C) . — Clear{B) Clear(C)
Clear(A Cn{C, Takl Clear{ AN Cn{C, Tabl
AN O TR S Y fove(B, ©) =S N Move(B, C)
Clear[A)Clear(B) Clear[ANClear(B) ~Clear(C)
Move(A, B) Move(A, B) —

~Clear{B)
s) O,) Ly VO, ©)

| Fimsh | | Fimsh |

Least Commitment

« Basic [dea

— Make choices that are relevant to solving the current
part of the problem

« [east Commutment Choices

— Orderings: Leave actions unordered. unless they must be
sequential

— Bindings: Leave variables unbound, unless needed to unify
with conditions being achieved

— Actions: Usnally not subject to “least commatment™

« Refinement
— Caly add information to the current plan
— Transformational planning can remove choices

Terminology
Totally Ordered Plan

— There exists sufficient orderings O such that all actions in A4
are ordered with respect to each other

Fully Instantiated Plan

— There exists sufficient constraints in 5 such that all variables
are constramned to be equal to some constant

Consistent Plan

— There are no contradictions i O or 8

Complete Plan
— Every precondition p of every action a, in 4 15 aclieved:
There exists an effect of an action a; that comes before o, and
unifies with p, and no action a, that deletes p comes between

a; and a,

POP-Algorithm

function POP (initial, goal, operators) returns plan

plan — MAKE-MINIMAL-PLAN(/nitial, goal)
loop do
if SOLUTION?(plan) then return plan % complete and consistent
Sneed, ¢ < SELECT-SUBGOAL(plan)
CHOOSE-QPERATOR(plan, operators, Syeed, C)
RESOLVE-THREATS(plan)
end

function SELECT-SUBGOAL(plan) returns S,cq4. ¢

pick a plan step Syeeqd from STEPS(plan)
with a precondition ¢ that has not been achieved
return S,ceq. C

POP-Algorithm

procedure CHOOSE-QOPERATOR(plan, operators, S,,ced, C)

choose a step S, 4 from operators or STEPS(plan) that has ¢ as an effect
if there is no such step then fail

add the causal link Sggq <. Sueed to LINKS(plan)

add the ordering constraint S04 = Sneeqd 10 ORDERINGS(plan)
if Sqqq 1s a newly added step from operators then
add S,44 to STEPS(plan)

add Srart < Sggq0 < Finish to ORDERINGS(plan)

POP-Algorithm

procedure RESOLVE-THREATS(plan)

for each S, that threatens a link §; . §; in LINKS(plan) do
choose either
Demotion: Add S;preqe = Si to ORDERINGS(plan)
Promotion: Add S; < Sijreq: 10 ORDERINGS(plan)
if not CONSISTENT(plan) then fail
end

POP-Algorithm

Non-deterministic search for plan,
backtracks over choicepoints on failure:

— choice of 5,4 to achieve S,,.c4
— choice of promotion or demotion for clobberer

Sound and complete

There are extensions for:
disjunction, universal quantification, negation, conditionals

Efficient with good heuristics from problem description
But: very sensitive to subgoal ordering

Good for problems with loosely related subgoals

POP-Algorithm

+ Advantages

— Partial order planning 1s sennd and complere
— Typically produces opfimal solutions (plan length)

— Least commitment may lead to shorter search tumes

* Disadvantages

— Significantly more complex algorithms (hagher per-nods
COst)

— Hard to determine what 15 true in a state
— Larger search space (infinite!)

Plan Monitoring

Execution monitoring

Fallure: Preconditions of remaining plan not met

Action monitoring

Fallure: Preconditions of next action not met

(or action itself fails, e.qg., robot bump sensor)

Consequence of failure

MNeed to replan

Preconditions for the rest of the plan

Start

AtTHWS) Sedls HWWS, Dirilly
Buy(Dally

AtHIALS)

HaveDriff
SellsceM.Ban.)
Sells(SM,Milk)

AlSM) Sellg(SM,Milk)
=0]

Havey i) AtiHome) H=weiBan.) HssOril
| Finish |

Replanning

Simplest

On failure, replan from scratch

Better

Plan to get back on track by reconnecting to best continuation

O0—O0—0—P—0—0—0

|
|

Q/ " Failure

START
Color(Chait,Blue) tmvafﬁed;

Get(Red)

HavJ—'ied}

Paint(Red)

cafw(clm Red)

FINISH

Replanning

PRECONDITIONS FAILURE RESPONSE
none N/A
Have(Red) Fetch more red
Color(Chair,Red) Repaint

