Cognitive Architectures

What is Cognitive Architecture?

Blueprint for Intelligent Agents

It proposes (artificial) computational processes that act like
cognitive systems (human)

An approach that attempts to model behavioral as well as structural
properties of the modeled system.

Aim:
- to summarize the various results of cognitive psychology in a
comprehensive computer model

- to model systems that accounts for the whole of cognition.

1970

* GPS (Ernst & Newell, 1969) Means-ends analysis, recursive subgoals

* ACT (Anderson, 1976) Human semantic memory

* CAPS (Thibadeau, Just, Carpenter) Production system for modeling reading

1975

* Soar (Laird, & Newell, 1983) Multi-method problem solving, production systems, and problem spaces

* Theo (Mitchell et al., 1985) Frames, backward chaining, and EBL

1980

* PRS (Georgeff & Lansky, 1986) Procedural reasoning & problem solving

* BB1/AIS (Hayes-Roth & Hewitt 1988) Blackboard architecture, meta-level control

1985

* Prodigy (Minton et al., 1989) Means-ends analysis, planning and EBL

* MAX (Kuokka, 1991) Meta-level reasoning for planning and learning

1990

* Icarus (Langley, McKusick, & Allen,1991) Concept learning, planning, and learning

» 3T (Gat, 1991) Integrated reactivity, deliberation, and planning

1995

* CIRCA (Musliner, Durfee, & Shin, 1993) Real-time performance integrated with planning

* AIS (Hayes-Roth 1995) Blackboard architecture, dynamic environment

2000

* EPIC (Kieras & Meyer, 1997) Models of human perception, action, and reasoning

* APEX (Freed et al., 1998) Model humans to support human computer designs

Unified Theory of Cognition

Book by Allen Newell

Newell's aim:

To define the architecture of human cognition, which is the
way that humans process information. This architecture must
explain how we react to stimuli, exhibit goal directed

behavior,acquire rational goals, represent knowledge, and
learn.

Newell's Cognitive Model

Newell introduces Soar: architecture for general cognition.

Soar is a problem solver that creates its own subgoals and
learns from its own experience.

Soar operates with real-time constraints: immediate-response,
item-recognition tasks, etc..

What Is Soar?

Soar Is a symbolic cognitive architecture:
Al programming framework

Cognitive architectural framework to define and exploit
cognitive models

Architecture for knowledge-based problem solving, learning,
and interaction with external environments

History of Soar

Created by John Laird, Allen Newell, and Paul Rosenbloom at
Carnegie Mellon University in 1983.

John Laird Allen Newell Paul Rosenbloom

SOAR

Historically, Soar was for State, Operator And Result, because
problem solving in Soar is a search through a problem space In
which you apply an operator to a state to get results

Over time, the community no longer regarded Soar as an
acronym: this is why it is no longer written in upper case

Problem Spaces

Soar represents all tasks as collections of problem spaces

Problem spaces are made up of a set of states and operators that
manipulate the states.

Soar begins work on a task by choosing a problem space, then an
initial state in the space

Soar represents the goal of the task as some final state in the problem
space

Problem Space Level

* Behaviour seen as occurring in a problem spaces:
made up of States (S) and Operators (O or Op).

(The implementation, however, has changed somewhat from
Newell’s 1990 book.)

* Fluent behaviour is a cycle in which an operator is
selected, and is applied to the current state to give a
new (i.e. modified) current state

Problem Space Level

* Once the situation is set up and running, the main
activity is the repeated selection and then
application of one operator after another

* If something prevents that process from continuing
(e.g., no operators to apply to that state, or no
knowledge of how to choose) an impasse occurs

Some Definitions

Goal: is a desired situation.

State: representation of a problem solving
situation.

Problem space: set of states and operators for
the task.

Operator: transforms the state by some action.

Problem Solving

e Soar is based upon a theory of human
problem solving:
— problem solving activity is formulated as the

selection and application of operators to a state,
to achieve some goal.

Problem Solving

Newell introduces the problem space principle as follows.

"The rational activity in which people engage to solve a problem can
be described in terms of (1) a set of states of knowledge, (2) operators
for changing one state into another, (3) constraints on applying
operators and (4) control knowledge for deciding which operator to
apply next.”

Problem spaces (e.g. STRIPS domain) are commonly composed of a set
of goals, a state or set of states, and a set of valid operators which
contain the constraints under which the operator can be applied.

The state consists of a set of literals that describe the knowledge of the
agent and the present model of the world.

Structure of Soar

Soar can be layered into 3 levels :

1. Memory Level
2. Decision Level
3. Goal Level

Memory Level

A general intelligence requires a memory with a large capacity
for the storage of knowledge.

A variety of types of knowledge must be stored, including :
- Declarative knowledge
- Procedural knowledge
- Episodic knowledge

Soar Architecture

Long-term memory
(I‘roducnon memory Semantic memory EP!SOd " ry
="
=== Ht2
N 7
S %X L
RL Chunking \ !Scmannc S AEpisode learning
Working memory
Evaluation — Decision cycle
 i——— |

Perception Action
T

Long-term Production Memory

All of Soar's long-term knowledge is stored in a single production
memory.

Each production is a condition-action structure that performs its
actions when its conditions are met.

Memory access consists of the execution of these productions.

During the execution of a production, variables in its actions are
Instantiated with value.

Working Memory

The result of memory access is the retrieval of information into a
global working memory.

It is the temporary memory that contains all of Soar's short-term
processing context. It has 3 components :

- The context stack specifies the hierarchy of active goals,
problem spaces, states and operators

- ODbjects, such as goals and states (and their subobjects)

- Preferences that encode the procedural search-control
knowledge

Production Memory

Working-Memory
Manager

Decision
Procedure

Fig 5§ Architectural structure of SOAR

Preferences

There is one special type of working memory structure - “the
preference”

Preferences encode control knowledge about the acceptability
and desirability of actions

Acceptablility preferences determine which actions should be
considered as candidates

Desirability preferences define a partial ordering on the
candidate actions.

Decision Level

- The decision level is based on the memory level plus an
architecturally provided, fixed, decision procedure.

- The decision level proceeds in a two phase elaborate-decide
cycle.

- During elaboration, the memory is accessed repeatedly, in parallel,
until quiescence is reached (no more productions can execute).

- This results in the retrieval into working memory of all of the
accessible knowledge that is relevant to the current decision.

- After quiescence has occurred, the decision procedure selects one
of the retrieved actions based on the preferences that were
retrieved into working memory.

Decision Level

Two phase decision cycle: elaboration and decision. The two phases
are repeated until the goal of the current task is reached.

* Elaboration phase:

— all productions which match the current working memory fire. All
productions fire in parallel.

— The elaboration phase runs to Quiescence (until no more productions fire).

* Decision phase:

— examines any preferences put into preference memory (either in this phase,
or previous ones), and chooses the next problem space, state, operator or
goal to place in the context stack.

Decision Level

If there is not enough information (or contradictory) for the decision
phase to choose the next value, then an impasse results.

* There are four types of impasses:

— When two are more elements have equal preference, then there is a "tie
impasse".

— When no preferences are in working memory, this causes a "no-change
impasse"

— When the only preferences in working memory are rejected by other
preferences, then there is a "reject impasse".

— A "conflict impasse" results when preferences claim that two or more
elements are each better choices then the others.

 When Soar reaches an impasse, it chooses a new problem space in
an attempt to resolve the impasse.

Goal Level

- A general intelligence must be able to set and work towards
goals.This level is based on the decision level.

- Goals are set whenever a decision cannot be made; that is,
when the decision procedure reaches an impasse.

- Impasses occur when there are no alternatives that can be
selected (no-change and rejection impasses) or when there are
multiple alternatives that can be selected, but insufficient
discriminating preferences exist to allow a choice to be made
among them (tie and conflict impasses).

Impasse Resolution

- Whenever an impasse occurs, the architecture generates the
goal of resolving the impasse which becomes the subgoal.

- Along with this goal, a new performance context is created.

- The creation of a new context allows decisions to continue to
be made in the service of achieving the goal of “resolving the
impasse”.

- A stack of impasses is possible.

- The original goal is resumed after all the impasse stack is
cleared.

Learning

- Chunking: new chunks to overcome empasses
- Reinforcement Learning: better operator selection

- Episodic and Semantic Learing: working memory re-organization

Learning through Chunking

- In addition to all above levels, a general intelligence requires
the ability to learn.

- All learning occurs by the acquisition of chunks--productions
that summarize the problem solving that occurs in subgoals, a
mechanism called “Chunking”

- The actions of a chunk represent the knowledge generated
during the subgoal, that is, the results of the subgoal.

Soar 9

- Unifying Cognitive Functions and Emotional Appraisal

- The functional and computational role of emotion is open to
debate.

- Appraisal theory is the idea that emotions are extracted from
our evaluations (appraisals) of events that cause specific
reactions in different people.

- The main controversy surrounding these theories argues that
emotions cannot happen without physiological arousal.

Appraisal’'s Detector

This theory proposes that an agent continually evaluates a
situation and that evaluation leads to emotion.

The evaluation is hypothesized to take place along multiple
dimensions, such as

- goal relevance
- goal conduciveness
- causality and control

These dimensions are exactly what an intelligent agent needs to
compute as it pursues its goals while interacting with an
environment.

ACT-R

ACT-R is a cognitive architecture, a theory
about how human cognition works.
— Looks like a (procedural) programming language.

— Constructs based on assumptions about human
cognitions

ACT-R

e ACT-R is a framework

— Researchers can create models that are written in
ACT-R including

* ACT-R’s assumptions about cognition.
* The researcher’s assumptions about the task.

— The assumptions are tested against data.
* Reaction time

* Accuracy
* Neurological data (fMRI)

ACT-R

Subset of psycholbgy experiments Experiment-—.-————
4 FPredictions
General assumptions ¢ ¢
about human cognition _
g Human subjects ACT-R model
Quantitative Quantitative
.IE'I.I:T—H ﬁssumptigns ahg uta medsures Medsures
particular domain
v v Latency
—
Accuracy [————

ACT-R Model FMRI data

ACT-R

 ACT-Ris an integrated cognitive architecture.

— Brings together not just different aspects of cognition, but
of
* Cognition
* Perception
* Action
— Runs in real time.
— Learns.

— Robust behavior in the face of error, the unexpected, and
the unknown.

Overview of ACT-R

 ACT-R is made up of
— Modules.
— Buffers.
— A subsymbolic level.

ACT-R: Architecture

(Basal Ganglia)

Baddeley Model

Central

Executive

I

Visuospatial Episodic
Sketchpad Buffer

Phonological

Loop

|

/

Long-Term Memory

ACT-R: Cycle

ACT-R accesses its modules (except for the procedural-memory module) through
buffers. For each module, a dedicated buffer serves as the interface with that

module. The contents of the buffers at a given moment in time represents the
state of ACT-R at that moment.

Visual . Motor
Module [|Environmeni—————®=| piodle

ACT-R Buffers -

Procedural i

. e Declarative
attern
Memory matching Memory
Production
execution

Perceptual-Motor Modules

* Takes care of the interface with the “real”
world.
e Visual module
e Auditory module

e Motor module
e etc

Perceptual-Motor Modules

* 3 tones: low, med, high

— 445ms

* 3 positions: left, middle, right
— 279ms

* Tones and positions
— 456ms

— 283ms

Perceptual-Motor Modules

{1 VM

.. Vision -

VM Feature Prep VM Init

VM RS
+ AV P

/

AV
Delay

AV

AV Init

AV Detect

time

AV RS \ .. Cognition

Y

Declarative Module

* Declarative memory:

— Facts
* Washington, D.C. is the capital of the U.S.
* 2+3=5.
— Knowledge a person might be expected to have to
solve a problem.

— Called chunks

Declarative Module

(CHUNK-TYPE NAME SLOT1 SLOT2 SLOTN)

(b

isa count-order
first 1
second 2

Procedural Module

* Procedural memory: Knowledge about how to
do something.

— How to type the letter “Q”.
— How to drive.
— How to perform addition.

Procedural Module

e Made of condition-action data structures
called production rules.

e Each production rule takes 50ms to fire.
* Serial bottleneck in this parallel system.

Procedural Module

(P name

condition part Specification of
Buffer Tests
delimiter —=>
action part Specification of

Buffer Transformations

Procedural Module

example-counting
=goal>
isa count
state counting
number =num1
=retrieval>
isa count-order
first =num1
second =num?2

=goal>
number =num2
+retrieval>
isa count-order
first =num?2

Buffers

* The procedural module accesses the other
modules through buffers.

* For each module (visual, declarative, etc), a
dedicated buffer serves as the interface with
that module.

* The contents of the buffers at any given time
represent the state of ACT-R at that time.

Buffers

. Goal Buffer (=goal, +goal)
-represents where one is in the task
-preserves information across production cycles

. Retrieval Buffer (=retrieval, +retrieval)
-holds information retrieval from declarative memory

-seat of activation computations

. Visual Buffers

-location (=visual-location, +visual-location)

-visual objects (=visual, +visual)

-attention switch corresponds to buffer transformation

. Auditory Buffers (=aural, +aural)
-analogous to visual

. Manual Buffers (=manual, +manual)
-elaborate theory of manual movement include feature
preparation, Fitts law, and device properties

Subsymbolic Level

The production system is symbolic.

The subsymbolic structure is a set of parallel processes that can be
summarized by a number of mathematical equations.

The subsymbolic equations control many of the symbolic processes.

Subsymbolic, parallel
processes

v 4

Symbolic processes
(pattern matching)

Subsymbolic Level

The subsymbolic equations control many of the symbolic processes.

If several productions match the state of the buffers, a subsymbolic utility
equation estimates the relative cost and benefit associated with each
production and decides to select for the production with the highest utility.

Similarly, whether (or how fast) a fact can be retrieved from declarative memory
depends on subsymbolic retrieval equations, which take into account the
context and the history of usage of that fact.

Subsymbolic mechanisms are also responsible for most learning processes in
ACT-R.

Subsymbolic, parallel
processes

v 4

Symbolic processes
(pattern matching)

Subsymbolic Level

* |f several productions match the state of the
buffers, a subsymbolic utility equation
estimates the relative cost and benefit
associated with each production and selects
the production with the highest utility.

Production Utility

Expected Gain = E=PG -C P expected probability of success
G value of goal
C expected cost

Ei/t

Probability of choosing i = —g 77 thoisein evaluation (temperature

] in the Bolztman equation)
>.€
]

Successes
Successes + Failures

P —_
oL prior successes
m experienced successes
Successes = o + m B prior failures
Failures = +n n experienced failures

Subsymbolic Level

* Whether and how fast a chunk can be
retrieved from declarative memory depends
on the subsymbolic retrieval equations, which
take into account the context and the history
of usage of that fact.

Chunk Activation

* The activation of a chunk is a sum of base-
level activation, reflecting its general
usefulness in the past, and an associative

activation, reflecting it’s relevance in the
current context.

Chunk Activation

Attentional weighting of
Activation of Chunk i Element j of Chunk i

. /

A=B +x Wiji
N\

Strength of association

Base-level activation of Element j to Chunk i
(Higher if used recently)

Chunk Activation

J

S..

ji

Twelve

addend1 addend 2
Eight > <
W, Sj S

B.

Sum

Four

Chunk Activation

addendl <«addend 2
Eight - Four
W, 5; Sji W,

Sji Sum

Twelve

Wj decreases with the number of elements associated with
Chunk i.

S;; decreases with the number of chunks associated with the
element.

Probability of Retrieval

* The probability of retrieving a chunk is given
by

P.=1/(1+exp(-(A -1)/s))

Retrieval Time

 The time to retrieve a chunk is given by

T.= F exp(-A))

Subsymbolic Level

* The equations that make up the subsymbolic
level are not static and change with
experience.

* The subsymbolic learning allows the system to
adapt to the statistical structure of the
environment.

Intentional
module

Goal
Buffer

ACT-R/E

Embodied: spatial reasoning

Declarative Imaginal Temporal
Module Module Module
Retrieval Imaginal Temporal

Buffer Buffer Buffer

Matching

Procedural Mo

dule

Selection

uonnNoaxg

Visual Aural Vocal Motor Configural || Manipulative
Buffer Buffer Buffer Buffer Buffer Buffer
Visual Aural Vocal Motor Configural || Manipulative
Module Module Module Module Module Module
N | i | 1 |] | N 1 |
Robot Sensors and Effectors
| | TH TN I} | TH TH

Environment

e HRI tasks

ACT-R/E

Task

Components of
ACT-R/E

Dataset

Gaze following

Hide and seek

Interruption and
resumption

Theory of mind

Manipulative module
Configural module
Utility learning
Imaginal module
Visual module

Vocal module
Declarative module
Intentional module
Imaginal module
Procedural module
Declarative module
Architecture as a whole

Corkum & Moore (1998)
Moll & Tomasello (2006)

Trafton, Schultz, Perzanowski, et al. (2006)

Trafton et al. (2012)

Leslie, German, & Polizzi (2005)
Wellman, Cross, & Watson (2001)

(1) test and evaluate each component separately, to validate it against human subject

data;

(2) test different sets of the components as they interact;
(3) show how our models increase the ability, breadth, and parsimony of cognitive

models.

A\l
Prepare Instant Coffee
B

Supervisory Attentional System

¥ b 8
Milk into Coffec Grinds into Coffee

e
Sugar into Coffec

Cognitive Control Model

Supervisory
attentional
system

Inhibitory
" ’l n . W Sn:uu P&u

links
=) [y b
| f | { Pnl. Up PutDown Tegr igre
[§= ' heiidh :
| | ig. 2. Schema/goal organisation in the coffec preparation domain. Schemas are indicated by italic typ
f ,{._"1 {
| / /
| Perceptual ’_’ s Contention |
| system I i e scheduling |
f f | f
' >/ f'
f / | '// ™ }."
I" l\~—/ "
J J {

e el
R
Schema control

units
¥ ,m@ Action

Architetture cognitive e Robotica

Le architetture cognitive vengono utilizzate prevalentemente in
contesti di interazione uomo-macchina.

Nel contesto della robotica cognitiva, pero, si riscontrano ulteriori
problemi:

» La gestione e |'elaborazione di grandi quantita di informazioni
spesso derivanti da fonti eterogenee.

» La necessita di eseguire diverse operazioni (sia motorie che
deliberative) contemporaneamente.

» L'obbligo di operare in tempo reale ed in maniera

h IHHMman-awWware

ADAPT

ADAPT e una architettura cognitiva sviluppata appositamente per
la robotica e strutturata a partire dai sistemi SOAR ed ACT-R.

Il sistema ha lo scopo di implementare nei robot comportamenti
sofisticati in diversi campi (visione, elaborazione del linguaggio,
problem solving, learning). Esso si basa su due principi:

» La percezione & un processo attivo sensibile sia al goal che al
contesto, quindi, vengono percepite piu attentamente le
porzioni di input inerenti allo scopo.

» |l robot deve poter ragionare in parallelo ed in tempo reale tra
azioni concorrenti.

ADAPT

ADAPT’s Structure
RS / Soar
Vision
Robot ERVisio
[S:“’:’ } [m‘n J n] J
\ /
[£ OROEC EOBAkS Aty] Sensory input goes to
? Soar, not the world
v model. ADAPT’s goal

[Environment] is to comprehend.

ADAPT vs. Soar

SOAR possiede un singolo buffer per ogni goal, cio consente, per
ogni goal, la selezione di un solo operatore alla volta.

ACT-R consente il firing di una sola regola di produzione alla
volta basandosi sulla utilita della stessa nel contesto attuale.

In entrambi i sistemi il parallelismo & difficilmente implementabile
(se non esplicitamente vietato). Con ADAPT si cerca
principalmente di risolvere tale limitazione.

ADAPT

ADAPT, analogamente a SOAR, confronta continuamente le
regole con il contenuto della memoria di lavoro, aggiornandola con
| risultati ottenuti, inoltre il sistema possiede una memoria a lungo
termine come in ACT-R dove vengono mantenuti gli schemi.

Uno schema ¢ |'equivalente dell’'operatore di SOAR o del chunk di
ACT-R.

» ¢ basato sullo schema theory e possiede quindi schema
percettivo e motorio.

» combina conoscenza procedurale e dichiarativa, consentendo
di utilizzare tali informazioni per risolvere i goal o per
ragionare sul comportamenti stessi.

ADAPT

Ad ogni step il sistema puo effettuare una delle seguenti
operazioni:

» scomporre uno schema in sottoschemi

» instanziare variabili in uno schema (unificandole
eventualmente con altri schemi)

> eseguire uno schema
» sospendere |'esecuzione di uno schema
» terminare e rimuovere uno schema

La scelta delle azioni da compiere puo essere effettuata tramite
ricerca nello spazio del problema (SOAR-like) oppure mediante

metodi bayesiani (ACT-R-like).

ADAPT

The RS (Robot Schemas) language 1s the basis of the robotics
capabilities of ADAPT. RS 1s precise and mature.

RS 1s a CSP-type programming language for robotics, that
controls a hierarchy of concurrently executing schemas.

Jomnt(s)() = [Jpos,)(x), Iset(s, x)(u), Jmot.(u)()]
c0: (Jpos;, x) (Jset, x) (Jset, u) (Jmot;, u)

Jpos;()(x) continuously reports the position of joint 1 on port x

Jmot.(u)() accepts a signal on port u and applies 1t to the actuator of joint 1

Jset;(s, x)(u) accepts a setpoint on port s and iteratively inputs a joint position on
port X and outputs a motor signal on port u to drive the joint position to the
setpoint

ADAPT
P=(0 L Xo p t)where
(O 1s the set of states

L 1sthe set of ports
X = (X |ie L) 1sthe event alphabet for each port

XL=1{(X)|ie L }1e., adisjoint union of L and X

0. OxXL— 29 is the transition function
L= (B |ie L) P,: Q = X, is the output map for port i
Te 29 1s the set of start states

ADAPT

The behavior of every RS schema 1s defined using port
automata. This provides precision to the semantics and also
a constructive means of reasonmg about the behavior and
meaning of schemas.

Jmot;

ADAPT

1. Sequential Composition: T = P;Q. The process T behaves like the process P until that terminates,

and then behaves like the process (regardless of P 's termination status).

2. Concurrent Composition: T = (P | Q)°. The process T behaves like P and Q running in parallel and

with the input ports of one connected to the output ports of the other as indicated by the port-to-port
connection map ¢. This can also be written as T = (| Pi) for a set of processes indexed by 1.
el
3. Conditional Composition: T = P{v) : Q,. The process T behaves like the process P until that
terminates. If P aborts, then T aborts. If P terminates normally. then the value v calculated by

TS T wasian i L L | T . e A1 PR | "R M, e L fa]
P 15 used o intialize tne process §, and T then penaves 1nKe gy .

4. Disabling Composition: T = P#Q. The process T behaves like the concurrent composition of P and
Q until either terminates, then the other is aborted and T terminates. At most one process can stop:
the remainder are aborted.

5. Synchronous Recurrent Composition: T = P{v) :; Q,. This is a recursively defined as follows:
P:Q=P:(Q:P::Q).
6. Asynchronous Recurrent Composition: T = P{v) :: Q,. This is recursively defined as follows:

P:Q=P:(Q|(P:Q)).

Operator Precedence: The operator precedence from loosest to tightest is as follows: Concurrent; Disabling;

Sequential; Conditional: Synchronous Recurrent: Asynchronous Recurrent.

ADAPT

Schemas, facts, and hypotheses are nodes 1n a graph.
Links implement the composition operations, as well as otl
relations, including deductive and evidential inference.

Automata that implement a schema are built as needed.

- o
s s

ADAPT

The basic loop of ADAPT is:

1 - check Soar's output link to see if there are any commands, which may be
either motion commands for the robot or modeling commands for the World
Model,

2 - blend the motion commands that are to be sent to the robot,

3 - send all robot commands both to the robot and to the virtual robot in the
World Model,

4 - send all other commands to the World Model,

5 — periodically (every tenth of a second) fetch data from the robot to be put
into Soar's working memory,

6 - periodically fetch data from the Vision System, compare it to visual data
from the World Model, and put any significant differences into Soar's
working memory.

ADAPT

Il principale metodo di apprendimento & basato sul chunking
learning del SOAR e consiste nella generazione di nuovi chunk.

| chunk generati possono essere di due tipi:

1. sfrutta una stima bayesiana per decidere |'azione da compiere.
Questo permette di effettuare |la stessa scelta che farebbe
ACT-R in un singolo step.

2. riassume il risultato di una ricerca effettuando la stessa scelta
di SOAR in un singolo step.

| risultato dell’apprendimento comporta la modifica degli schemi
esistenti.

ICARUS

lcarus designed as an integrated acrchitecture for
controlling an agent that exists in a complicated
physical environment.

The agent was to be able to navigate and manipulate
objects in the environement.

The design is modular, using separate modules for
planning, perception, execution and long-term

memory.

ICARUS

Designs for ICARUS have been guided by six principles:

. Cognitive reality of physical objects

. Cognitive separation of categories and skills

. Primacy of categorization and skill execution

. Hierarchical organization of long-term memory

o A~ W N B

. Correspondence of long-term/short-term structures
6. Modulation of symbolic structures with utility functions

These ideas distinguish ICARUS from most other architectures.

ICARUS

Designs for ICARUS

1. ARGUS — perception

an attention mechanism to determine which of these
changes is worthy of attention

2. DAEDALUS — planning

heuristic best-first search through the problem space.

3. MAENDER — execution

executes all the primitive actions

4. LABYRINTH — memory

probabilistic hierarchy to store the knowledge

Long-Term
Conceptual
Memory

Long-Term
Skill Memory

Categorization
and Inference

Means-Ends
Analysis

Overview of the IcArus Architecture

Perceptual
Buffer

A

Short-Term
Conceptual
Memory

A\ 4

Skill
Retrieval

a

\ 4

Perception

a

Environment

Short-Term
Skill Memory

Motor
Buffer

Skill
Execution

a

Some Concepts from the Blocks World

(on (?block1 ?block2)
:percepts ((block ?blockl xpos ?x1 ypos ?y1)

(block ?block2 xpos ?x2 ypos ?y2 height ?h2))
:tests ((equal ?x1 ?x2)

(>= ?yl ?y2)

(<= 72yl (+ ?y2 ?h2))))

(clear (?block)
:percepts ((block ?block))
:negatives ((on ?other ?block)))

(unstackable (?block ?from)
:percepts ((block ?block) (block ?from))
:positives ((on ?block ?from)

(clear ?block)

(hand-empty)))

Primitive Skills from the Blocks World

(pickup (?block ?from)

:percepts

:start
:requires
:actions
:effects

value

((block ?block xpos ?x)

(table ?from height ?h))
((pickupable ?block ?from))

()

((x move ?block ?x (+ ?h 10)))
((holding ?block))

1.0)

(stack (?block ?to)

:percepts

:start
:requires
:actions
:effects

value

((block ?block)

(block ?to xpos ?x ypos ?y height ?h))
((stackable ?block ?to))

()

((x move ?block ?x (+ ?y ?h)))

((on ?block ?to)

(hand-empty))
1.0)

A Nonprimitive Skill from the Blocks World

(puton (?block ?from ?to)

:percepts
:start

:requires
:ordered
-effects

value

((block ?block) (block ?from) (table ?to))
((ontable ?block ?from) (clear ?block)
(hand-empty) (clear ?to))

()

((pickup ?block ?from) (stack ?block ?to))
((on ?block ?to))

1.0)

(puton (?block ?from ?to)

:percepts
:start

:requires
:ordered
:effects
:value

((block ?block) (block ?from) (block ?to))
((on ?block ?from) (clear ?block)
(hand-empty) (clear ?to))

()

((unstack ?block ?from) (stack ?block ?to))
((on ?block ?to))

1.0)

Hierarchical Organization of Memory

ICARUS’ long-term memories are organized into hierarchies:

e concepts can refer to percepts and to other concepts;
e skills refer to percepts, to concepts, and to other skills.

Conceptual memory is similar to a network, but each node
represents a meaningful category.

Different expansions for skills and concepts also make them
similar to Horn clause programs.

These hierarchies are encoded by direct reference, rather than
through working-memory elements, as in ACT and Soar.

Categorization and Inference

Perceptual |
Buffer)

(Il-g Riﬁﬁ; Ca'lcﬁfgeorreiaziteion ggﬁ::te_giﬂg Perception
Memory Memory

|I;or];feach cycle, perception puts object descriptions into the perceptual
uffer.

The system matches its concepts against the contents of this buffer.
Categorization proceeds in an automatic, bottom-up manner.

Monotonic inference that adds concept instances to short-term memory.

Retrieving and Matching Skill Paths

For each cycle, ICARUS finds all paths through

its skill hierarchy: Pegﬁ:ﬁa'
e begin with an instance in skill STM; Short-Term
Conceptual
. . Memory
e start and requires fields that match;

e effects fields that do not match.

Each instantiated path terminates in an CD
_ Retrieval
executable action.]

ICARUS adds these candidate actions to its

motor buffer for possible execution.
Short-Term
Skill Memory
Long-Term
Skill Memory Motor
Buffer

Evaluating and Executing Skills

For each selected path, ICARUS computes a utility by
summing the values of each skill along that path.

For each path, with decreasing utility:

e If required resources are available, execute
actions;

e |f executed, commit the resources for this cycle. Environment

These actions alter the environment, which affects
the perceptual buffer and the conceptual memory.

Short-Term Skill
Skill Memory Execution

Motor
Buffer

Cognitive Systems and
Robotics

e Since 2001: Cognitive Systems intensely funded by the
EU "Robots need to be more robust, context-aware
and easy-to-use. Endowing them with advanced
learning, cognitive and reasoning capabilities will help
them adapt to changing situations, and to carry out
tasks intelligently with people”

 More than 100 projects on Cognitive Systems funded;
many have an attention module (e.g. MACS, Paco-plus,
CogX)

