
Cognitive Architectures

What is Cognitive Architecture?

Blueprint for Intelligent Agents

It proposes (artificial) computational processes that act like

cognitive systems (human)

An approach that attempts to model behavioral as well as structural

properties of the modeled system.

Aim:

- to summarize the various results of cognitive psychology in a

comprehensive computer model

- to model systems that accounts for the whole of cognition.

1970

1975

1980

1985

1990

1995

2000

• GPS (Ernst & Newell, 1969) Means-ends analysis, recursive subgoals

• ACT (Anderson, 1976) Human semantic memory

• CAPS (Thibadeau, Just, Carpenter) Production system for modeling reading

• Soar (Laird, & Newell, 1983) Multi-method problem solving, production systems, and problem spaces

• Theo (Mitchell et al., 1985) Frames, backward chaining, and EBL

• PRS (Georgeff & Lansky, 1986) Procedural reasoning & problem solving

• BB1/AIS (Hayes-Roth & Hewitt 1988) Blackboard architecture, meta-level control

• Prodigy (Minton et al., 1989) Means-ends analysis, planning and EBL

• MAX (Kuokka, 1991) Meta-level reasoning for planning and learning

• Icarus (Langley, McKusick, & Allen,1991) Concept learning, planning, and learning

• 3T (Gat, 1991) Integrated reactivity, deliberation, and planning

• CIRCA (Musliner, Durfee, & Shin, 1993) Real-time performance integrated with planning

• AIS (Hayes-Roth 1995) Blackboard architecture, dynamic environment

• EPIC (Kieras & Meyer, 1997) Models of human perception, action, and reasoning

• APEX (Freed et al., 1998) Model humans to support human computer designs

Unified Theory of Cognition

Book by Allen Newell

Newell's aim:

To define the architecture of human cognition, which is the

way that humans process information. This architecture must

explain how we react to stimuli, exhibit goal directed

behavior,acquire rational goals, represent knowledge, and

learn.

Newell's Cognitive Model

Newell introduces Soar: architecture for general cognition.

Soar is a problem solver that creates its own subgoals and

learns from its own experience.

Soar operates with real-time constraints: immediate-response,

item-recognition tasks, etc..

What is Soar?

Soar is a symbolic cognitive architecture:

• AI programming framework

• Cognitive architectural framework to define and exploit

cognitive models

• Architecture for knowledge-based problem solving, learning,

and interaction with external environments

History of Soar

Created by John Laird, Allen Newell, and Paul Rosenbloom at

Carnegie Mellon University in 1983.

John Laird Allen Newell Paul Rosenbloom

SOAR

Historically, Soar was for State, Operator And Result, because

problem solving in Soar is a search through a problem space in

which you apply an operator to a state to get results

Over time, the community no longer regarded Soar as an

acronym: this is why it is no longer written in upper case

Problem Spaces

Soar represents all tasks as collections of problem spaces

Problem spaces are made up of a set of states and operators that
manipulate the states.

Soar begins work on a task by choosing a problem space, then an
initial state in the space

Soar represents the goal of the task as some final state in the problem
space

11

Problem Space Level

• Behaviour seen as occurring in a problem spaces:
made up of States (S) and Operators (O or Op).
(The implementation, however, has changed somewhat from
Newell’s 1990 book.)

• Fluent behaviour is a cycle in which an operator is
selected, and is applied to the current state to give a
new (i.e. modified) current state

Op1 Op2 Op3

S S' S"

12

Problem Space Level

• Once the situation is set up and running, the main
activity is the repeated selection and then
application of one operator after another

• If something prevents that process from continuing
(e.g., no operators to apply to that state, or no
knowledge of how to choose) an impasse occurs

13

Some Definitions

• Goal: is a desired situation.

• State: representation of a problem solving
situation.

• Problem space: set of states and operators for
the task.

• Operator: transforms the state by some action.

14

Problem Solving

• Soar is based upon a theory of human
problem solving:

– problem solving activity is formulated as the
selection and application of operators to a state,
to achieve some goal.

15

Problem Solving

Newell introduces the problem space principle as follows.

"The rational activity in which people engage to solve a problem can
be described in terms of (1) a set of states of knowledge, (2) operators
for changing one state into another, (3) constraints on applying
operators and (4) control knowledge for deciding which operator to
apply next.“

Problem spaces (e.g. STRIPS domain) are commonly composed of a set
of goals, a state or set of states, and a set of valid operators which
contain the constraints under which the operator can be applied.

The state consists of a set of literals that describe the knowledge of the
agent and the present model of the world.

Structure of Soar

Soar can be layered into 3 levels :

1. Memory Level

2. Decision Level

3. Goal Level

Memory Level

A general intelligence requires a memory with a large capacity

for the storage of knowledge.

A variety of types of knowledge must be stored, including :

- Declarative knowledge

- Procedural knowledge

- Episodic knowledge

Soar Architecture

Long-term Production Memory

All of Soar's long-term knowledge is stored in a single production

memory.

Each production is a condition-action structure that performs its

actions when its conditions are met.

Memory access consists of the execution of these productions.

During the execution of a production, variables in its actions are

instantiated with value.

Working Memory

The result of memory access is the retrieval of information into a

global working memory.

It is the temporary memory that contains all of Soar's short-term

processing context. It has 3 components :

- The context stack specifies the hierarchy of active goals,

problem spaces, states and operators

- Objects, such as goals and states (and their subobjects)

- Preferences that encode the procedural search-control

knowledge

Soar

Architecture

Preferences

There is one special type of working memory structure - “the

preference”

Preferences encode control knowledge about the acceptability

and desirability of actions

Acceptability preferences determine which actions should be

considered as candidates

Desirability preferences define a partial ordering on the

candidate actions.

Decision Level

- The decision level is based on the memory level plus an

architecturally provided, fixed, decision procedure.

- The decision level proceeds in a two phase elaborate-decide

cycle.

- During elaboration, the memory is accessed repeatedly, in parallel,

until quiescence is reached (no more productions can execute).

- This results in the retrieval into working memory of all of the

accessible knowledge that is relevant to the current decision.

- After quiescence has occurred, the decision procedure selects one

of the retrieved actions based on the preferences that were

retrieved into working memory.

Decision Level
Two phase decision cycle: elaboration and decision. The two phases
are repeated until the goal of the current task is reached.

• Elaboration phase:
– all productions which match the current working memory fire. All

productions fire in parallel.

– The elaboration phase runs to Quiescence (until no more productions fire).

• Decision phase:
– examines any preferences put into preference memory (either in this phase,

or previous ones), and chooses the next problem space, state, operator or
goal to place in the context stack.

Decision Level
If there is not enough information (or contradictory) for the decision
phase to choose the next value, then an impasse results.

• There are four types of impasses:
– When two are more elements have equal preference, then there is a "tie

impasse".

– When no preferences are in working memory, this causes a "no-change
impasse"

– When the only preferences in working memory are rejected by other
preferences, then there is a "reject impasse".

– A "conflict impasse" results when preferences claim that two or more
elements are each better choices then the others.

• When Soar reaches an impasse, it chooses a new problem space in
an attempt to resolve the impasse.

Goal Level

- A general intelligence must be able to set and work towards

goals.This level is based on the decision level.

- Goals are set whenever a decision cannot be made; that is,

when the decision procedure reaches an impasse.

- Impasses occur when there are no alternatives that can be

selected (no-change and rejection impasses) or when there are

multiple alternatives that can be selected, but insufficient

discriminating preferences exist to allow a choice to be made

among them (tie and conflict impasses).

Impasse Resolution

- Whenever an impasse occurs, the architecture generates the

goal of resolving the impasse which becomes the subgoal.

- Along with this goal, a new performance context is created.

- The creation of a new context allows decisions to continue to

be made in the service of achieving the goal of “resolving the

impasse”.

- A stack of impasses is possible.

- The original goal is resumed after all the impasse stack is

cleared.

Learning

- Chunking: new chunks to overcome empasses

- Reinforcement Learning: better operator selection

- Episodic and Semantic Learing: working memory re-organization

Learning through Chunking

- In addition to all above levels, a general intelligence requires

the ability to learn.

- All learning occurs by the acquisition of chunks--productions

that summarize the problem solving that occurs in subgoals, a

mechanism called “Chunking”

- The actions of a chunk represent the knowledge generated

during the subgoal; that is, the results of the subgoal.

Soar 9

- Unifying Cognitive Functions and Emotional Appraisal

- The functional and computational role of emotion is open to

debate.

- Appraisal theory is the idea that emotions are extracted from

our evaluations (appraisals) of events that cause specific

reactions in different people.

- The main controversy surrounding these theories argues that

emotions cannot happen without physiological arousal.

Appraisal's Detector

This theory proposes that an agent continually evaluates a

situation and that evaluation leads to emotion.

The evaluation is hypothesized to take place along multiple

dimensions, such as

- goal relevance

- goal conduciveness

- causality and control

These dimensions are exactly what an intelligent agent needs to

compute as it pursues its goals while interacting with an

environment.

ACT-R

• ACT-R is a cognitive architecture, a theory
about how human cognition works.

– Looks like a (procedural) programming language.

– Constructs based on assumptions about human
cognitions

ACT-R

• ACT-R is a framework
– Researchers can create models that are written in

ACT-R including
• ACT-R’s assumptions about cognition.

• The researcher’s assumptions about the task.

– The assumptions are tested against data.
• Reaction time

• Accuracy

• Neurological data (fMRI)

ACT-R

ACT-R

• ACT-R is an integrated cognitive architecture.

– Brings together not just different aspects of cognition, but
of

• Cognition

• Perception

• Action

– Runs in real time.

– Learns.

– Robust behavior in the face of error, the unexpected, and
the unknown.

Overview of ACT-R

• ACT-R is made up of

– Modules.

– Buffers.

– A subsymbolic level.

ACT-R: Architecture

Environment

P
ro

d
u
ct

io
n
s

(B
as

al
 G

an
g
li

a)

Retrieval Buffer

(VLPFC)

Matching (Striatum)

Selection (Pallidum)

Execution (Thalamus)

Goal Buffer

(DLPFC)

Visual Buffer

(Parietal)

Manual Buffer

(Motor)

Manual Module

(Motor/Cerebellum)

Visual Module

(Occipital/etc)

Intentional Module

(not identified)

Declarative Module

(Temporal/Hippocampus)

Baddeley Model

ACT-R: Cycle
ACT-R accesses its modules (except for the procedural-memory module) through
buffers. For each module, a dedicated buffer serves as the interface with that
module. The contents of the buffers at a given moment in time represents the
state of ACT-R at that moment.

Perceptual-Motor Modules

• Takes care of the interface with the “real”
world.

• Visual module

• Auditory module

• Motor module

• etc

Perceptual-Motor Modules

• 3 tones: low, med, high

– 445ms

• 3 positions: left, middle, right

– 279ms

• Tones and positions

– 456ms

– 283ms

Perceptual-Motor Modules

Declarative Module

• Declarative memory:

– Facts

• Washington, D.C. is the capital of the U.S.

• 2+3=5.

– Knowledge a person might be expected to have to
solve a problem.

– Called chunks

Declarative Module

count-order

first 1

second 2

b(

)

isa

CHUNK-TYPE NAME SLOT1 SLOT2 SLOTN()

Procedural Module

• Procedural memory: Knowledge about how to
do something.
– How to type the letter “Q”.

– How to drive.

– How to perform addition.

Procedural Module

• Made of condition-action data structures
called production rules.

• Each production rule takes 50ms to fire.

• Serial bottleneck in this parallel system.

Procedural Module

(p

==>

)

Specification of

Buffer Transformations

condition part

delimiter

action part

name

Specification of

Buffer Tests

Procedural Module

(p

==>

)

example-counting

=goal>

isa count

state counting

number =num1

=retrieval>

isa count-order

first =num1

second =num2

=goal>

number =num2

+retrieval>

isa count-order

first =num2

IF the goal is

to count

the current state is counting

there is a number called =num1

and a chunk has been retrieved

of type count-order

where the first number is =num1

and it is followed by =num2

THEN

change the goal

to continue counting from =num2

and request a retrieval

of a count-order fact

for the number that follows =num2

Buffers

• The procedural module accesses the other
modules through buffers.

• For each module (visual, declarative, etc), a
dedicated buffer serves as the interface with
that module.

• The contents of the buffers at any given time
represent the state of ACT-R at that time.

Buffers

1. Goal Buffer (=goal, +goal)
-represents where one is in the task
-preserves information across production cycles

2. Retrieval Buffer (=retrieval, +retrieval)
-holds information retrieval from declarative memory
-seat of activation computations

3. Visual Buffers
-location (=visual-location, +visual-location)
-visual objects (=visual, +visual)
-attention switch corresponds to buffer transformation

4. Auditory Buffers (=aural, +aural)
-analogous to visual

5. Manual Buffers (=manual, +manual)
-elaborate theory of manual movement include feature

preparation, Fitts law, and device properties

Subsymbolic Level

• The production system is symbolic.

• The subsymbolic structure is a set of parallel processes that can be
summarized by a number of mathematical equations.

• The subsymbolic equations control many of the symbolic processes.

Subsymbolic Level
• The subsymbolic equations control many of the symbolic processes.

• If several productions match the state of the buffers, a subsymbolic utility
equation estimates the relative cost and benefit associated with each
production and decides to select for the production with the highest utility.

• Similarly, whether (or how fast) a fact can be retrieved from declarative memory
depends on subsymbolic retrieval equations, which take into account the
context and the history of usage of that fact.

• Subsymbolic mechanisms are also responsible for most learning processes in
ACT-R.

Subsymbolic Level

• If several productions match the state of the
buffers, a subsymbolic utility equation
estimates the relative cost and benefit
associated with each production and selects
the production with the highest utility.

Making Choices: Conflict Resolution

Expected Gain = E = PG -C

Probability of choosing i =
e

E
i
/ t

e

E
j
/ t

j

P =

Successes = + m

Failures = + n

Successes

Successes + Failures

Production Utility

P expected probability of success

G value of goal

C expected cost

t noise in evaluation (temperature

in the Bolztman equation)

 prior successes

m experienced successes

 prior failures

n experienced failures

Subsymbolic Level

• Whether and how fast a chunk can be
retrieved from declarative memory depends
on the subsymbolic retrieval equations, which
take into account the context and the history
of usage of that fact.

Chunk Activation

• The activation of a chunk is a sum of base-
level activation, reflecting its general
usefulness in the past, and an associative
activation, reflecting it’s relevance in the
current context.

Chunk Activation

Activation of Chunk i

Base-level activation
(Higher if used recently)

Attentional weighting of
Element j of Chunk i

Strength of association
of Element j to Chunk i

j
Ai = Bi + WjSji

Chunk Activation

Addition-FactEight

Twelve

Four
addend1 addend 2

SumSji

SjiSjiWj Wj

Bi

Chunk Activation

Addition-FactEight

Twelve

Four
addend1 addend 2

SumSji

SjiSjiWj Wj

Bi

Wj decreases with the number of elements associated with
Chunk i.

Sji decreases with the number of chunks associated with the
element.

Probability of Retrieval

• The probability of retrieving a chunk is given
by

Pi = 1 / (1 + exp(-(Ai -)/s))

Retrieval Time

• The time to retrieve a chunk is given by

Ti = F exp(-Ai)

Subsymbolic Level

• The equations that make up the subsymbolic
level are not static and change with
experience.

• The subsymbolic learning allows the system to
adapt to the statistical structure of the
environment.

ACT-R/E

• Embodied: spatial reasoning

ACT-R/E
• HRI tasks

(1) test and evaluate each component separately, to validate it against human subject
data;
(2) test different sets of the components as they interact;
(3) show how our models increase the ability, breadth, and parsimony of cognitive
models.

Supervisory Attentional System

• Cognitive Control Model

Architetture cognitive e Robotica

ADAPT

ADAPT

ADAPT vs. Soar

ADAPT

ADAPT

ADAPT

ADAPT

ADAPT

ADAPT

ADAPT

ADAPT

ADAPT

ICARUS

Icarus designed as an integrated acrchitecture for
controlling an agent that exists in a complicated
physical environment.

The agent was to be able to navigate and manipulate
objects in the environement.

The design is modular, using separate modules for
planning, perception, execution and long-term
memory.

ICARUS

1. Cognitive reality of physical objects

2. Cognitive separation of categories and skills

3. Primacy of categorization and skill execution

4. Hierarchical organization of long-term memory

5. Correspondence of long-term/short-term structures

6. Modulation of symbolic structures with utility functions

Designs for ICARUS have been guided by six principles:

These ideas distinguish ICARUS from most other architectures.

ICARUS

1. ARGUS – perception

an attention mechanism to determine which of these
changes is worthy of attention

2. DAEDALUS – planning
heuristic best-first search through the problem space.

3. MAENDER – execution
executes all the primitive actions

4. LABYRINTH – memory
probabilistic hierarchy to store the knowledge

Designs for ICARUS

Overview of the ICARUS Architecture

Long-Term
Conceptual

Memory

Long-Term
Skill Memory

Short-Term
Conceptual

Memory

Short-Term
Skill Memory

Categorization
and Inference

Skill
Execution

Perception

Environment

Perceptual
Buffer

Means-Ends
Analysis

Motor
Buffer

Skill
Retrieval

Some Concepts from the Blocks World

(on (?block1 ?block2)
:percepts ((block ?block1 xpos ?x1 ypos ?y1)

(block ?block2 xpos ?x2 ypos ?y2 height ?h2))
:tests ((equal ?x1 ?x2)

(>= ?y1 ?y2)
(<= ?y1 (+ ?y2 ?h2))))

(clear (?block)
:percepts ((block ?block))
:negatives ((on ?other ?block)))

(unstackable (?block ?from)
:percepts ((block ?block) (block ?from))
:positives ((on ?block ?from)

(clear ?block)
(hand-empty)))

(pickup (?block ?from)
:percepts ((block ?block xpos ?x)

(table ?from height ?h))
:start ((pickupable ?block ?from))
:requires ()

:actions ((* move ?block ?x (+ ?h 10)))
:effects ((holding ?block))

:value 1.0)

(stack (?block ?to)
:percepts ((block ?block)

(block ?to xpos ?x ypos ?y height ?h))
:start ((stackable ?block ?to))
:requires ()

:actions ((* move ?block ?x (+ ?y ?h)))
:effects ((on ?block ?to)

(hand-empty))
:value 1.0)

Primitive Skills from the Blocks World

(puton (?block ?from ?to)
:percepts ((block ?block) (block ?from) (table ?to))
:start ((ontable ?block ?from) (clear ?block)

(hand-empty) (clear ?to))
:requires ()
:ordered ((pickup ?block ?from) (stack ?block ?to))
:effects ((on ?block ?to))

:value 1.0)

(puton (?block ?from ?to)
:percepts ((block ?block) (block ?from) (block ?to))
:start ((on ?block ?from) (clear ?block)

(hand-empty) (clear ?to))
:requires ()
:ordered ((unstack ?block ?from) (stack ?block ?to))
:effects ((on ?block ?to))
:value 1.0)

A Nonprimitive Skill from the Blocks World

Hierarchical Organization of Memory

 concepts can refer to percepts and to other concepts;

 skills refer to percepts, to concepts, and to other skills.

ICARUS’ long-term memories are organized into hierarchies:

Conceptual memory is similar to a network, but each node
represents a meaningful category.

Different expansions for skills and concepts also make them
similar to Horn clause programs.

These hierarchies are encoded by direct reference, rather than
through working-memory elements, as in ACT and Soar.

Categorization and Inference

For each cycle, perception puts object descriptions into the perceptual
buffer.

The system matches its concepts against the contents of this buffer.

Categorization proceeds in an automatic, bottom-up manner.

Monotonic inference that adds concept instances to short-term memory.

Long-Term
Conceptual

Memory

Short-Term
Conceptual

Memory

Categorization
Inference Perception

Perceptual
Buffer

Retrieving and Matching Skill Paths

For each cycle, ICARUS finds all paths through
its skill hierarchy:

 begin with an instance in skill STM;

 start and requires fields that match;

 effects fields that do not match.

Each instantiated path terminates in an
executable action.

ICARUS adds these candidate actions to its
motor buffer for possible execution.

Short-Term
Conceptual

Memory

Short-Term
Skill Memory

Perceptual
Buffer

Motor
Buffer

Skill
Retrieval

Long-Term
Skill Memory

Evaluating and Executing Skills

For each selected path, ICARUS computes a utility by
summing the values of each skill along that path.

For each path, with decreasing utility:

 If required resources are available, execute
actions;

 If executed, commit the resources for this cycle.

These actions alter the environment, which affects
the perceptual buffer and the conceptual memory.

Short-Term
Skill Memory

Skill
Execution

Environment

Motor
Buffer

Cognitive Systems and
Robotics

• Since 2001: Cognitive Systems intensely funded by the
EU "Robots need to be more robust, context-aware
and easy-to-use. Endowing them with advanced
learning, cognitive and reasoning capabilities will help
them adapt to changing situations, and to carry out
tasks intelligently with people"

• More than 100 projects on Cognitive Systems funded;
many have an attention module (e.g. MACS, Paco-plus,
CogX)

