
Applications of RL
• Checker’s [Samuel 59]

• TD-Gammon [Tesauro 92]

• World’s best downpeak elevator dispatcher [Crites at al ~95]

• Inventory management [Bertsekas et al ~95]
– 10-15% better than industry standard

• Dynamic channel assignment [Singh & Bertsekas, Nie&Haykin ~95]
– Outperforms best heuristics in the literature

• Cart-pole [Michie&Chambers 68-] with bang-bang control

• Robotic manipulation [Grupen et al. 93-]

• Path planning

• Robot docking [Lin 93]

• Parking

• Football

• Tetris

• Multiagent RL [Tan 93, Sandholm&Crites 95, Sen 94-, Carmel&Markovitch 95-, lots of
work since]

• Combinatorial optimization: maintenance & repair
– Control of reasoning [Zhang & Dietterich IJCAI-95]

Planning and Learning

• Dyna-Q algorithm

Experience can improve value and

policy functions either directly or

indirectly via the model. It is the latter,

which is sometimes called indirect

reinforcement learning, that is involved

in planning.

Planning and Learning

• Dyna-Q algorithm

Experience can improve value and

policy functions either directly or

indirectly via the model. It is the latter,

which is sometimes called indirect

reinforcement learning, that is involved

in planning.

The agent is always

reactive and always

deliberative, responding

instantly to the latest

sensory information and yet

always planning in the

background.

Problems of RL

Curse of Dimensionality

In real world problems ist difficult/impossible to define discrete state-action spaces.

(Temporal) Credit Assignment Problem

RL cannot handle large state action spaces as the reward gets too much dilited

along the way.

Partial Observability Problem

In a real-world scenario an RL-agent will often not know exactly in what state it will

end up after performing an action. Furthermore states must be history independent.

State-Action Space Tiling

Deciding about the actual state- and action-space tiling is difficult as it is often

critical for the convergence of RL-methods. Alternatively one could employ a

continuous version of RL, but these methods are equally difficult to handle.

Non-Stationary Environments

As for other learning methods, RL will only work quasi stationary environments.

Real-world behavior is hierarchical
H

ierarch
ical R

L: W
h

at is it?

1. set water temp

2. get wet

3. shampoo

4. soap

5. turn off water

6. dry off

add hot

success

add cold

wait 5sec

simplified control, disambiguation, encapsulation

1. pour coffee

2. add sugar

3. add milk

4. stir

Hierarchical Reinforcement Learning

• Exploits domain structure to facilitate learning
– Policy constraints

– State abstraction

• Paradigms: Options, HAMs, MaxQ

• MaxQ task hierarchy
– Directed acyclic graph of subtasks

– Leaves are the primitive MDP actions

• Traditionally, task structure is provided as
prior knowledge to the learning agent

S: start G: goal

Options: going to doors

Actions: + 2 door options

HRL: a toy example
H

ierarch
ical R

L: W
h

at is it?

Advantages of HRL

1. Faster learning
(mitigates scaling problem)

H
ierarch

ical R
L: W

h
at is it?

RL: no longer ‘tabula rasa’

2. Transfer of knowledge from previous tasks
(generalization, shaping)

Disadvantages (or: the cost) of HRL
H

ierarch
ical R

L: W
h

at is it?

1. Need ‘right’ options - how to learn them?

2. Suboptimal behavior (“negative transfer”; habits)

3. More complex learning/control structure

no free lunches…

Semi-Markov Decision Process

• Generalizes MDPs

• Action a takes N steps to complete in s

• P(s’,n | a, s), R(s’, N | a, s)

• Bellman equation:

Taxi Domain
• Motivational Example

• Reward: -1 actions,
-10 illegal, 20 mission.

• 500 states

• Task Graph:

HSMQ Alg. (Task Decomposition)

MAXQ Alg. (Value Fun. Decomposition)

• Want to obtain some sharing (compactness) in
the representation of the value function.

• Re-write Q(p, s, a) as

where V(a, s) is the expected total reward while executing action a,
and C(p, s, a) is the expected reward of completing parent task p
after a has returned

Hierarchical Structure

• MDP decomposed in task M0, … , Mn

• Q for the subtask i

Value Decomposition

Value Decomposition

• The value function can be decomposed as
follows

MAXQ Alg. (cont’d)
• An example

MAXQ Alg. (cont’d)

MAXQ Alg. (cont’d)

State Abstraction

Three fundamental forms

• Irrelevant variables
e.g. passenger location is irrelevant for the navigate and put subtasks

and it thus could be ignored.

• Funnel abstraction
A funnel action is an action that causes a larger number of initial states

to be mapped into a small number of resulting states. E.g., the
navigate(t) action maps any state into a state where the taxi is at
location t. This means the completion cost is independent of the
location of the taxi—it is the same for all initial locations of the taxi.

State Abstraction (cont’d)

• Structure constraints

- E.g. if a task is terminated in a state s, then there is no need to
represent its completion cost in that state

- Also, in some states, the termination predicate of the child task implies
the termination predicate of the parent task

Effect

- reduce the amount memory to represent the Q-function.

14,000 q values required for flat Q-learning

3,000 for HSMQ (with the irrelevant-variable abstraction

632 for C() and V() in MAXQ

- learning faster

State Abstraction (cont’d)

Wargus Resource-Gathering Domain

Induced Wargus Hierarchy
Root

Harvest WoodHarvest Gold

Get Gold Get Wood

Goto(loc)

Mine Gold Chop WoodGDeposit

Put Gold Put Wood

WGoto(townhall)GGoto(goldmine) WGoto(forest)GGoto(townhall)

WDeposit

Induced Abstraction & Termination
Task Name State Abstraction Termination Condition

Root req.gold, req.wood req.gold = 1 && req.wood = 1

Harvest Gold req.gold, agent.resource, region.townhall req.gold = 1

Get Gold agent.resource, region.goldmine agent.resource = gold

Put Gold req.gold, agent.resource, region.townhall agent.resource = 0

GGoto(goldmine) agent.x, agent.y agent.resource = 0 && region.goldmine = 1

GGoto(townhall) agent.x, agent.y req.gold = 0 && agent.resource = gold && region.townhall = 1

Harvest Wood req.wood, agent.resource, region.townhall req.wood = 1

Get Wood agent.resource, region.forest agent.resource = wood

Put Wood req.wood, agent.resource, region.townhall agent.resource = 0

WGoto(forest) agent.x, agent.y agent.resource = 0 && region.forest = 1

WGoto(townhall) agent.x, agent.y req.wood = 0 && agent.resource = wood && region.townhall = 1

Mine Gold agent.resource, region.goldmine NA

Chop Wood agent.resource, region.forest NA

GDeposit req.gold, agent.resource, region.townhall NA

WDeposit req.wood, agent.resource, region.townhall NA

Goto(loc) agent.x, agent.y NA

Note that because each subtask has a unique terminal state,

Result Distribution Irrelevance applies

Claims

• The resulting hierarchy is unique

– Does not depend on the order in which goals and
trajectory sequences are analyzed

• All state abstractions are safe
– There exists a hierarchical policy within the induced hierarchy that will

reproduce the observed trajectory

– Extend MaxQ Node Irrelevance to the induced structure

• Learned hierarchical structure is “locally optimal”

– No local change in the trajectory segmentation can
improve the state abstractions (very weak)

Experimental Setup

• Randomly generate pairs of source-target resource-
gathering maps in Wargus

• Learn the optimal policy in source

• Induce task hierarchy from a single (near) optimal
trajectory

• Transfer this hierarchical structure to the MaxQ
value-function learner for target

• Compare to direct Q learning, and MaxQ learning on
a manually engineered hierarchy within target

Hand-Built Wargus Hierarchy

Root

Get Gold Get Wood

Goto(loc)Mine Gold Chop Wood Deposit

GWDeposit

Hand-Built Abstractions & Terminations

Task Name State Abstraction
Termination

Condition

Root req.gold, req.wood, agent.resource req.gold = 1 && req.wood = 1

Harvest Gold agent.resource, region.goldmine agent.resource ≠ 0

Harvest Wood agent.resource, region.forest agent.resource ≠ 0

GWDeposit req.gold, req.wood, agent.resource, region.townhall agent.resource = 0

Mine Gold region.goldmine NA

Chop Wood region.forest NA

Deposit req.gold, req.wood, agent.resource, region.townhall NA

Goto(loc) agent.x, agent.y NA

Results: Wargus
Wargus domain: 7 reps

-1000

0

1000

2000

3000

4000

5000

6000

7000

8000

0 10 20 30 40 50 60 70 80 90 100

Episode

T
o

ta
l

D
u

ra
ti

o
n

Induced (MAXQ)

Hand-engineered (MAXQ)

No transfer (Q)

References and Further Reading
• Sutton, R., Barto, A., (2000) Reinforcement Learning: an

Introduction, The MIT Press

http://www.cs.ualberta.ca/~sutton/book/the-book.html

• Kaelbling, L., Littman, M., Moore, A., (1996) Reinforcement
Learning: a Survey, Journal of Artificial Intelligence Research,
4:237-285

• Barto, A., Mahadevan, S., (2003) Recent Advances in Hierarchical
Reinforcement Learning, Discrete Event Dynamic Systems:
Theory and Applications, 13(4):41-77

http://www.cs.ualberta.ca/~sutton/book/the-book.html

