Reinforcement Learning

Robotica Probabilistica

Reinforcement Learning

Learning from rewards (and punishments)

Learning to assess the value of states.

Learning goal directed behavior.

RL has been developed rather independently from two
different fields:

1) Dynamic Programming and Machine Learning (Bellman
Equation).

2) Psychology (Classical Conditioning) and later
Neuroscience (Dopamine System in the brain)

Reinforcement Learning

e Task

— Learn how to behave successfully to achieve a goal
while interacting with an external environment

Learn through experience from trial and error

 Examples

— Game playing: The agent knows it has won or lost, but
it doesn’t know the appropriate action in each state

— Control: a traffic system can measure the delay of cars,
but not know how to decrease it.

Reinforcement Learning

Learner<
active

Sequential decision problems

passive

Approaches:
1. Learn values of states (or state histories) & try to maximize
utility of their outcomes.
« Need a model of the environment: what ops & what
states they lead to
2. Learn values of state-action pairs
* Does not require a model of the environment (except
legal moves)
e Cannot look ahead

Elements of RL

Agent Policy

State .‘.’: Reward @ \Action

Environment

ao:ro a1:r1 az:rz

S, >S, >S, >

* Transition model, how action influence states

* Reward R, immediate value of state-action transition

* Policy 7T, maps states to actions

Elements of RL

| ot

100

0

o

I

R

o

—

I
|

0] 0

. 100
0

—

H state, action)

immediate reward values

Elements of RL

6 100 0

— ' <::> 90 > 100 . <::> 0
G G

0 <«

| ! T

0] o | | | |

. 100
0 81 90 100

| ot

I A
| |

R

o

«— «— «— —

H state, action) V*(state) values
immediate reward values

* Value function: maps states to state values
V™ (s)=r(t)+yr (t +1)+y>r(t +1)+...

Discount factory € [0, 1) (here 0.9)

Computing return from rewards

e episodic (vs. continuing) tasks

— “game over” after N steps

— optimal policy depends on N; harder to analyze
* additive rewards

—V(Sg, Sy, ...) =1(Sg) + r(sy) +r(s,) + ...

— infinite value for continuing tasks
* discounted rewards

— V(sg, Sy, -o) = r(Sg) + V*r(s;) + y2*r(s,) + ...

— value bounded if rewards bounded

Value functions

state value function: V*(s)

— expected return when starting in s and following ©

state-action value function: Q*(s,a)

— expected return when starting in s, performing a,

and following &t

useful for finding the optimal policy A/ﬂﬁ\

— can estimate from experience
— pick the best action using Q"(s,a)

Bellman equation

S’

S

Optimal value functions

* there’s a set of optimal policies

— V™ defines partial ordering on policies

V*(s) = max V7™(s)

— they share the same optimal value function
* Bellman optimality equation

V*(s) = m(?xz P2, [rgs, + ’yV*(s’)]

— system of nsr/mn-linear equations 3

— solve for V*(s) .

— easy to extract the optimal policy
* having Q*(s,a) makes it even simpler

7*(s) = arg max Q*(s,a)

Reinforcement Learning
 Execute actions in environment,

observe results.

* Learn action policy &t : state — action that

maximizes expected discounted reward

E[r(t)+yr(t+1)+y?r(t+2)+..]

from any starting state in S

Reinforcement Learning

e Target function is & : state — action

* However...

— We have no training examples of form <state,

action>
— Training examples are of form

<<state, action>, reward>

Utility-based agents

Try to learn V™ (abbreviated V*)
Perform look ahead search to choose best action from any state s

m*(s)=arg m?x[r(s, a)+V*(&(s, a))

Works well if agent knows

— O : state x action — state

— r: state x action => R

When agent doesn’t know 0 and r, cannot choose actions this way

Q-values

* Q-values
— Define new function very similar to V*
Q(s, a)=r(s, a)+ NV *(8(s, a))
— |f agent learns Q, it can choose optimal action

even without knowing 0 or R

* Using Q

m* (s)=argmax Q(s, a)

Value Functions

State value function

\/":S = Real
or
V(s)

State-action value function

Q™S x A = Real
or

Q(s, a)

The expected sum of
discounted reward for
following the policy t from
state s to the end of time.

The expected sum of
discounted reward for
starting in state s, taking
action a once then following
the policy m from state s’ to
the end of time.

Solution Methods

* Model based:

— For example dynamic programming

— Require a model (transition function) of the environment
for learning

e Model free:

— Learn from interaction with the environment without
requiring a model

— For example Q-learning...

Monte Carlo methods

* don’t need full knowledge of environment
— just experience, or
— simulated experience

e but similar to DP

— policy evaluation, policy improvement

* averaging sample returns

— defined only for episodic tasks

 want to estimate V7(s)

Monte Carlo policy evaluation

= expected return starting from s and following

— estimate as average of observed returns in state s
e first-visit MC

— average returns foIIowing the first visit to state s

5o O——0—0—@ o+10 —e 00 O o+10 . o+5l R((s) = +2
S @——0—0—0—0—0—0—0——0—0—0—o 01
S @——0—0—0—0—0—0—0——0—0— 001 R,(s) = +1
S) O——0——0—0—0—0—0—0—0—0—0—0—0—0—1i R;(s) = -5
S @——0—0—0—0—0—0—0——0—0—0o 01
5, ——0——0—0—0—0—0—0—0—0—0—0—0—o1 R,(s) = +4

Vr(s) = (2+1-5+4)/4=0.5

TD Learing

TD learning is a combination of Monte Carlo ideas and dynamic programming (DP) ideas.
Like Monte Carlo methods, TD methods can learn directly from raw experience without
a model of the environment's dynamics.

Like DP, TD methods update estimates based in part on other learned estimates,
without waiting for a final outcome (they bootstrap).

Whereas Monte Carlo methods must wait until the end of the episode to determine
the increment of V (only then is known), TD methods need wait only until the next time step.

Initialize V'(s) arbitrarily, = to the policy to be evaluated
Repeat (for each episode):
Initialize s
Repeat (for each step of episode):
a «— action given by 7 for s
Take action a; observe reward. r. and next state, s’
Vi(s) — Vi(s)+a [r FAV(s') — Vs ﬁ:||
!

S — S8

until s is terminal

TD methods learn their estimates in part on the basis of other estimates. They learn a
guess from a guess--they bootstrap

TD Learing

The next most obvious advantage of TD methods over Monte Carlo methods is that they
are naturally implemented in an on-line, fully incremental fashion.

With Monte Carlo methods one must wait until the end of an episode, because only then
is the return known, whereas with TD methods one need wait only one time step.

TD Learning

MC learning

V(St)(_ V(_\‘,) +d [R, - V(Sr)]

where R, is the actual return following state s, .

Monte Carlo uses an estimate of the actual return.

TD Learning

DP method

V(S_r)'IP E.rr {rul tY V(SF)}

00 OF O 0OO0FO O A O

ooﬂonooﬂ offe
SN / L P \ ;N :

The DP target is an estimate not because of the expected values, which are

assumed to be completely provided by a model of the environment, but because V=
is not known and the current estimate is used instead.

TD Learning

* Simplest TD method

V(s)= V() +afr, +yVis)-V(s,)]

f+1

S,

1+1

O OfF O O O [O O [7[1 O

ﬂ'Qﬂ'é"ﬂ'ﬂ offe

7
[/ P! /

TD samples the expected value and uses the current estimate of the value.

TD Learning

Tabular TD(0) for estimating J”
Initialize V(s) arbitrarily, 7 to the policy to be evaluated
Repeat (for each episode):
Initialize s
Repeat (for each step of the episode):
a + action given by 7 for s
Take action a; observe reward, r, and next state, s’
V(s) + V(s)+a[r+~V(s) —V(s)]
s+ 5 b v ’/
until s 1s terminal

wtemporal Difference*

Policy Improvement

* V™ not enough for policy improvement
— need exact model of environment

7'(s) = arg max Q" (s, a)

e estimate Q7(s,a)

7'('0—>EQ7TO—>I71'1—>EQ7T1—>I...—>I7T*—>EQ*

e MC control

V(s) = V(s) +a[R—-V(s)]
— update after each episode

SARSA: On-Policy TD

Estimate Q" for the current behavior policy 7.

r r
St+% St 941 St+2 0142
After every transition from a nonterminal state s,, do:

Q(sr,a) Q(s a) [f}+1 + }’Q(ﬁ}m”m) _Q(”}ﬂ”r)}

If 5,,, 1s terminal, then Q(s,,,.q,,,) =

SARSA: On-Policy TD

Turn this into a control method by always updating the
policy to be greedy with respect to the current estimate:

Initialize Q(s,a) arbitrarily
Repeat (for each episode):
Initialize s
Choose a from s using policy derived from Q (e.g., e-greedy)
Repeat (for each step of episode):
Take action a, observe r, s’
Choose a’ from s’ using policy derived from @Q (e.g., e-greedy)
Q(s,a) «— Q(s,a) + alr +vQ(s',a') — Q(s,a)]

§— 8 a—a

On-Policy

until s is terminal

(Sf ’ a.' ’ r.:+l ’ S:+I ’ ar+l) Quintupel

SARSA: On-Policy TD

Move from S to G, but consider the crosswind that moves you upward.
For example, if you are one cell to the right of the goal, then the action
left takes you to the cell just above the goal.

Windy Gridworld

T

standard
moves

0O 0 01 1 1 2 2 1 0 — strengthofthe wind

undiscounted, episodic task with constant rewards
reward = =1 until goal

SARSA: On-Policy TD

-

170 | Results of Sarsa
150 1 | on the Windy
S - o Gridworld
100 |
Episodes 0001112210 £ = 01,
07 o=0.1
B

1 | 1 1 I I I I 1
0 1000 2000 3000 4000 5000 6000 7000 8000

Time steps
Can Monte Carlo methods be used on this task?
No, since termination is not guaranteed for all policies.

And Sarsa?

Step-by-step learning methods (e.g. Sarsa) do not have this problem.
They quickly learn during the episode that such policies are poor, and
switch to something else.

Q-learning: Off-Policy TD control

One - step Q - learning :

Q(‘Kr'«‘“r){_ Q(S‘,y“f) + al:’}:-ﬂ +)/ max Q("Hl‘-‘“) - Q(SI "“1’)]

Initialize Q(s,a) arbitrarily
Repeat (for each episode):
Initialize s
Repeat (for each step of episode):
Choose a from s using policy derived from @ (e.g., e-greedy)
Take action a, observe r, s’

Q(s,a) — Q(s,a) + a[r + ymax, Q(s',a") — Q(s, a)]

s+ §;
until s is terminal \
Oft-Pol

1ICY

Reward
per
epsiode

Q-learning and SARSA

-

o=

The Cliff

,mw

=501

=757

FAT

AN f
e el \.f"”\. L

Sarsa

1

W W

Q-learning

"
./\-"\-"‘-
AYRAYAL A\
| | A\

g-greedy, e =0.1

-100
0

1
100

2(|]l1| P-IE}[}
Episodes

I
400

I
500

| safe path Reward is on all

transitions -1 except

. optimalpath those into the the region

marked "The CIiff."

Q-learning learns quickly values
for the optimal policy, that which
travels right along the edge of the
cliff. Unfortunately, this results in its
occasionally falling off the cliff
because of the e-greedy action
selection.

Sarsa takes the action selection

into account and learns the longer
but safer path through the upper

part of the grid.

If € were gradually reduced, then
both methods would asymptotically
converge to the optimal policy.

TD Algorithmic Components

* Q-learning:

Qi(s.a) == (1 —a)Q 1(s.a) + a[r+ymaxQ, 1(s'.a")].
) '
. . . lim Z(r, =noc and lim Zn-f < X
— If infinitely often and oo 5 e 5

then converngence [Jaakkola,Jordan,Singh 94]
 SARSA(O):

Qi(s.a) = (1 —ay)Q; 1(s.a) + ap[r +~vQ, l(b".(l‘,”.

— Convergence if GLIE policy: infinitely often,
in the limit action chosen w.r.t. Q

Sarsa

e again, need Q(s,a), not just V(s)

. . rt. . r

Q(st, ar) — Q(st,ar)+a |re +vQ(se41, arr1) — Qsp, ar)]

Sup

t+1

e control
— start with a random policy
— update Q and & after each step
— need &-soft policies

SARSA

* SARSA(O) Update: Q(se, ar) — Qs ar) + [rrﬂ + vQ(81, appr) — Q5. a(]].
e SARSA algorithm (on-policy):

Initialize (Q(s.a) arbitrarily
Repeat (for each episode):
Initialize s
Choose a from s using policy derived from @ (e.g.. e-greedy)
Repeat (for each step of episode):
Take action a, observe r, s’
Choose a' from s' using policy derived from @ (e.g.. e-greedy)
Q(s.a) — Q(s,a) + a [r +~4Q(s',a") — Qls, (1.‘)]
s+— §'ia+—a';
until s is terminal
Decaying vs. Persistent exploration.

GLIE (“greedy in the limit with infinite exploration”):

1. Each action is executed infinitely often in every state that is visited infinitely often;
2. In the limit, the learning policy is greedy with respect to the Q-value function with
probability 1.

Q-Learning Algorithmic Components

* Learning update (to Q-Table):

Q(s, a) € (1-a)Q(s, a) +a[r+y " Q(s’, a’)]
or

Q(s,a) € Q(s,a)+afr+y . Qs a’) - Q(s, a)]

* Action selection (from Q-Table):

_ argmax

AQ(s, a))

What does an RL-agent do ?

Exploration — Exploitation Dilemma: The agent wants to get
as much cumulative reward (also often called return) as
possible. For this it should always perform the most
rewarding action “exploiting” its (learned) knowledge of the
state space. This way it might however miss an action which
leads (a bit further on) to a much more rewarding path.
Hence the agent must also “explore” into unknown parts of
the state space. The agent must, thus, balance its policy to
iInclude exploitation and exploration.

Policies

1) Greedy Policy: The agent always exploits and selects the
most rewarding action. This is sub-optimal as the agent
never finds better new paths.

Policies

2) e-Greedy Policy: With a small probability ¢ the agent
will choose a non-optimal action. *All non-optimal
actions are chosen with eqgual probability.* This can
take very long as it is not known how big ¢ should be.
One can also “anneal” the system by gradually
lowering ¢ to become more and more greedy.

3) Softmax Policy: e-greedy can be problematic because
of (*). Softmax ranks the actions according to their
values and chooses roughly following the ranking
using for example:

exp(ﬁ) where Q, is value of the currently
™ 1 to be evaluated actionaand T is a

Qyp temperature parameter. For large T
exp(T) all actions have approx. equal

b=1 probability to get selected.

Exploration

Tradeoff between exploitation (control) and exploration (identification)

Extremes: greedy vs. random acting

- Randomly selecting actions is known to give rise to very poor performance.
-e-Greedy, the agent chooses the action with the best long-term

effect with probability €, and it chooses an action uniformly at random, otherwise
(1- €) € is a tuning parameter, which is sometimes changed, either according to a
fixed schedule (making the agent explore less as time goes by),

or adaptively based on some heuristics

Q-learning converges to optimal Q-values if

* Every state is visited infinitely often (due to exploration),

* The action selection becomes greedy as time approaches infinity, and
* The learning rate o is decreased fast enough but not too fast

Exploration

Tradeoff between exploitation (control) and exploration (identification)

Extremes: greedy vs. random acting

Q-learning converges to optimal Q-values if

* Every state is visited infinitely often (due to exploration),

* The action selection becomes greedy as time approaches infinity, and
* The learning rate a is decreased fast enough but not too fast

Exploration

* Want to focus exploration on the good states
* Want to explore all states

* Solution: Randomly choose the next action
- Give a higher probability to the actions that currently
have better utility

Exploration

The specific control policy used is a standard one in the field and originally
comes from [Watkins, 1989] and [Sutton, 1990]. The agent tries out actions
probabilistically based on their Q-values using a Boltzmann or soft

max distribution. Given a state x, it tries out actiona with probability:

Q(x,a)
e~ T

— Q(z,b)
ZbeA € 7T

The temperature T controls the amount of exploration (the probability of executing
actions other than the one with the highest Q-value). If T is high, or if Q-values are
all the same, this will pick a random action. If T is low and Q-values are different, it
will tend to pick the action with the highest Q-value.

pe(a)

Exploration

The specific control policy used is a standard one in the field and originally
comes from [Watkins, 1989] and [Sutton, 1990]. The agent tries out actions
probabilistically based on their Q-values using a Boltzmann or soft

max distribution. Given a state x, it tries out actiona with probability:

Q(x,a)
e~ T

— Q(x,b)
ZbeA € 7T

. At the start, Q is assumed to be totally inaccurate, so T is high (high
exploration), and actions all have a roughly equal chance of being executed.
2. T decreases as time goes on. It becomes more and more likely to pick among

the actions with the higher Q-values.
3. Finally, as we assume Q is converging, T approaches zero (pure exploitation)
and we tend to only pick the action with the highest Q-value:

po(a) = { 1 if Q(z,0) = maxses @z, b)

pa(a)

0 otherwise

Actor Critic Methods

Y

LS

N . .
» Policy * Explicit representation of
- policy as well as value

Actor '
function
/— e C(Critic drives all learning

Critic / Jr?jr) * On policy method
- Value - , * Appealing as psychological
state Function action and neural models
71
reward

—[Environment }—

Separate structure to explicitly represent the policy. The policy is the actor (used
to select actions). The estimated value function is the critic. Learning is on-policy:
the critic must learn about and critique whatever policy is currently being followed
by the actor. The critique is a scalar: TD error.

Actor Critic Methods

N

<
Policy and value function L Poliey
After each action selection, —
the critic evaluates the new state i f,/ o)
to determine whether things have | FXr?cI:%i(ce)n EEa
gone better or worse than expected. v
That evaluation is the TD error: reward

0 = Tese1 + YV (Se41) — V(se), { Environment]«

TD error can be used to evaluate the action just selected:
pls,a)

m(s,a) = Pria,=al| s;=s} = 5= e
. er(sh)

P8y, ap) «— plsg.a;) + 30,

Another variantis p(s;.a;) < plsi.ai) + 39, [1 — (S, f}]-

Actor Critic Methods

Typically, the critic is a state-value function. After each action selection,
the critic evaluates the new state to determine whether things have gone

better or worse than expected. That evaluation is the TD error:
6 r+l+yv(s;+l) V(")

Let’s assume actions are determined by preferences, p(s,a), as follows:

pls.a)

} .
S =8t =~
! E{)p{s.h} ’

b

7,(s,a) = Pr{ ;

Then strengthening or weakening the preferences, p(s,a), depends on the
TD error (B — step size parameter):

p(s,,a,)< p(s,.a,)+ 0,

Another variantis p(s:.a;) «— pls;.ai) + 36 [1 — (S,)].

Applications of RL

Checker’s [Samuel 59]
TD-Gammon [Tesauro 92]
World’s best downpeak elevator dispatcher [Crites at al ~95]

Inventory management [Bertsekas et al ~¥95]
— 10-15% better than industry standard

Dynamic channel assignment [Singh & Bertsekas, Nie&Haykin ~95]
— Outperforms best heuristics in the literature

Cart-pole [Michie&Chambers 68-] with bang-bang control
Robotic manipulation [Grupen et al. 93-]

Path planning

Robot docking [Lin 93]

Parking

Football

Tetris

Multiagent RL [Tan 93, Sandholm&Crites 95, Sen 94-, Carmel&Markovitch 95-, lots of
work since]

Combinatorial optimization: maintenance & repair
— Control of reasoning [Zhang & Dietterich 1JCAI-95]

Proprieta

e Convergence: Our approximation will converge to
the true Q function
— But we must visit every state-action pair infinitely
many times!

e Table size can be very large for complex
environments like a game

* We do not estimate unseen values

e How to we fix these problems?

Rl in real world tasks...

4

0 2 2

S,

Q(S,,L)

Q(S,,R)

X DDD S: W

—>4

—0

model based vs. model free learning and control

Problems of RL

Curse of Dimensionality
In real world problems ist difficult/impossible to define discrete state-action spaces.

(Temporal) Credit Assignment Problem
RL cannot handle large state action spaces as the reward gets too much dilited
along the way.

Partial Observability Problem
In a real-world scenario an RL-agent will often not know exactly in what state it will
end up after performing an action. Furthermore states must be history independent.

State-Action Space Tiling

Deciding about the actual state- and action-space tiling is difficult as it is often
critical for the convergence of RL-methods. Alternatively one could employ a
continuous version of RL, but these methods are equally difficult to handle.

Non-Stationary Environments
As for other learning methods, RL will only work quasi stationary environments.

Real-world behavior is hierarchical
* (==

1. pour coffee |

P

??2 2. add sugar
o) 23

3. add milk
@ T o add hot
4. stir \yadd ol
/6"

1. set water temp /;f% wait 5sec
%‘\ o 2. get wet % success
'»“ 3. shampoo
' 4. soap

5. turn off water

6. dry off

§31'SLIBYM Ty [BIIYDIRIDIH

simplified control, disambiguation, encapsulation

Hierarchical Reinforcement Learning

* Exploits domain structure to facilitate learning
— Policy constraints
— State abstraction
* Paradigms: Options, HAMs, MaxQ
 MaxQ task hierarchy
— Directed acyclic graph of subtasks
— Leaves are the primitive MDP actions

* Traditionally, task structure is provided as
prior knowledge to the learning agent

HRL: a toy example

100

90

80

S:start G: goal

Options: goi;g‘té doors

§11'S1IBYM 1Y [Bd1YDIRIDIH

Advantages of HRL

600 -

1. Faster learning
(mitigates scaling problem]) 500

2. Transfer of knowledge from previous tasks *°
(generalization, shaping)

Primitive actions only

/

With options

/

300+

Steps

200

100+

1 L ' T it th— T I)
20 40 60 80 100 120 140 160 180 200
Episode

0

§31'SLIBYM Ty [BIIYDIRIDIH

RL: no longer tabula rasa’

Example 1: Hierarchical Distance to Goal (Kaelbling)

H H i H

H H i H
SNSRI SIS S SUUU S

i. ! !

H H i

H H

e States: 10,000 combinations of location of agent and location of goal.

e Actions: North, South, East, West. Each action succeeds with probability 0.8 and fails (moving

perpendicularly) with probability 0.2.

e Reward Function: Cost of 1 unit for each action until goal is reached.

lue function requires representing 10,000 values (or 40,000 values using Q learning).

Example 1: Decomposition Strategy

e Impose a set of landmark states. Partitions the state space into Voronoi cells.

e Constrain the policy. The policy will go from the starting cell via a series of landmarks until

it reaches the landmark in the goal cell. From there, it will go to the goal.

e Decompose the value function.

e

de

QO

.......................

o J[oTo"

Example 1: Formulation of Subtasks

Subtasks:

e GotoLmk(z,l): Go from current location x to landmark [, where [is the landmark defining the

current cell or any of its neighboring cells. [Vi(x,1)]
e LmktoLmk(l,l5): Go from landmark [; to landmark ly. [V5(ly,l5)] (uses GotoLmk as a subroutine)

e GotoGoal(z, g): Go from current location z to the goal location g (within current cell). [V3(z, g)]

The cost of getting to the goal is now the cost of getting from z to one of the neighbor landmarks [y,

then from /; to the landmark in the goal cell /,, and then from I, to the goal ¢:

V(z,g) = minjenvi)Vi(e, 1) + Va(l, NL(g)) + V3(N L(g), 9)]

This requires only 6,070 values to store as a set of) functions (compared to 40,000 for the original

problem).

Each of these subtasks can be shared by many combinations of initial states and goal states.

_

Solution

e Solve all possible GotoLmk and GotoGoal subtasks.
e Solve LmktoLmk task using GotoLmk as a subroutine.

e Choose actions by using combined value function.

Disadvantages (or: the cost) of HRL

1. Need ‘right’ options - how to learn them?
2. Suboptimal behavior (“negative transfer”; habits)
3. More complex learning/control structure

§11'S1IBYM 1Y [Bd1YDIRIDIH

100 120 140 160 180 200
pisode

no free lunches...

Example problem

e actions: North, South, East, West SRRt SEEELEEES

]
e rewards: Bach action costs —1. Goal gives A A
reward of 0. R N S B
S S N B -

Options (Sutton; Precup; Singh)
An option is a macro action defined as follows:
e A region of the state space. The option can begin execution from any state in this region.
e A policy 7. This tells for all states in the problem, what action the option will perform.

e A termination condition. This tells, for each state, the probability that the option will

terminate if it enters that state.

Example: “Exit room by upper door”

e Initiation region: Any point in left room.
e Policy: See figure.

e Termination condition: Terminate with

probability 1 in any state outside the room; 0

inside the room.

Partial Policies (Parr and Russell)

Partial Policy

e Mapping from states to sets of possible actions.
Example:

m(s1) = {South}
7(s9) = {North, South}

Only need to learn what to do when the partial policy

lists more than one possible action to perform.

Subtasks

A subtask is defined by

e A region of state space. The subtask is only “active” within this region.
e A termination condition. This indicates when the subtask has completed execution.

e A pseudo-reward function. This determines the value of each of the terminal states.

Example: Exit by nearest door

e Region: Left room.
e Termination condition: Outside left room.

e Pseudo-reward: 0 inside left room; +10 in

both “boundary states”.

Semi-Markov Decision Process

Generalizes MDPs

Action a takes N steps to completeins
P(s'n | a,s),R(s, N [a,s)
Bellman equation:

v

Ve

"(s) = R(s

(s) = Z P(s'. N s m(s)) {R(s’. N s.m(s)) + “,"'\ Ve
s' N

”*ZP“ Nis.m(s))y V7 (s").

(s)] .

Task 1: Learning a policy over options

Basic idea: Treat each option as a primitive action.
Complication: The actions take different amounts of time.

Fundamental Observation: MDP + options = Semi-Markov Decision Problem (Parr)

Semi-Markov Q learning (Bradke/Duff, Parr)

e In s, choose option a and perform it
e Observe resulting state s’, reward r, and number of time steps N

e Perform the following update:
Qs,a) = (1 —)Q(s,a) + a - [r + 7" max Q(s', a')

Under suitable conditions, this will converge to the best possible policy definable over the options.

Observations

e Only need to learn () values for a subset of the states: All possible initial states.

All states where some option could terminate.

e Learned policy may not be optimal.
The optimal policy may not be representable by some combination of given options. For example,
if we only have the option Exit-by-nearest-door, then this will give a suboptimal result for states

one move above the level of the lower door.
e If v =1 (no discounting), Semi-Markov Q learning = ordinary Q learning

e Model-based algorithms are possible. The model must predict the probability distribution

over the possible result states (and the expected rewards that will be received).

Learning with partial policies

e Basic Idea: Execute the partial policy until it reaches a “choice state” (i.e., a state

with more than one possible action)
e This defines a Semi-MDP
— States: all initial states and all choice state
— Actions: actions given by 7(s)
— Reward: sum of rewards until next choice state

e Apply Semi-Markov Q learning

Converges to best possible refinement of given policy.

Hierarchies of Abstract Machines (HAM)

Parr extended the partial policy idea to work with hierarchies of partial policies. Within a partial
policy, an action can be any of:

¢ Primitive action

e Call another partial policy as a subroutine

e RETURN (return to caller)

Convert the hierarchy into a flat SMDP:

e States: pairs of [state, call-stack| pairs
e Actions: as dictated by partial policy

e Reward function: same as original reward function.

Apply SMDP Q learning

Task 2: Example: Parr’s Maze Problem

llllll

llllll

artial Policies

e PerpFive(d, d>)

o]
e TraverseHallway(d) : . ﬁﬂm- EE
calls ToWallBouncing and BackOut. i RESHEE
e ToWallBouncing(d,, ds) ; , Bl el
calls ToWall, FollowWall ;; : ;a n aas w m
o FollowWall(d) -~ ﬂ 1 [[t el
o ToWall(d) i : || N i RS
T HE e o, g :
e BackOut(dy, do) Ei [[[[[[-
| + Rl HH Ml
calls BackOne, PerpFive g ﬂ J m E;
e BackOne(d) - fEEiHiE Eﬁ

28

Task 2: Results (Parr)

30 T T T T T T T T T
Without HAM ——
With HAM -+---
25 .
20 F .
At
L ***
= i
g /
> 15 |+
2 i
°© E
&~ |
10 H
() -le o e e o & ol 1 1 1 1 L
0 500000 1et+06 1.5e+06 2e+06 2.5¢+06 3e+06 3.5¢+06 4e¢+06 4.5¢+06 5e+06
Number of iterations

Value of starting state. Flat () learning ultimately gives a better policy.

Learn policies for a given set of sub-tasks

Each subtask is an MDP

e States: All non-terminated states.
e Actions: The primitive actions in the domain.

e Reward: Sum of original reward function and pseudo-reward function.

Learning hierarchical sub-tasks

e At state s inside subtask i, choose child subtask j and invoke it (recursively)

e When it returns, observe resulting state s’, total reward r, and number of time

steps NV
Qi s,7) = (1 —)Q(i, s,) + afr + Ri(s') + vV max Q(i, s', a')]

If each subtask executes a GLIE policy (Greedy in the Limit with Infinite Exploration), then this will

converge (Dietterich).

However, it converges to only a locally optimal policy.

Hierarchical Optimality versus Recursive Optimality

e Hierarchical Optimality: The overall learned policy is the best policy consistent

with the hierarchy

e Recursive Optimality: The policy for a task is optimal given the policies learned
by its children

e Parr’s partial policy method learns hierarchically optimal policies. Information

about the value of the result states can propagate “into” the subproblem.

e Hierarchical SMDP (Q learning converges to a recursively optimal policy. Infor-

mation about the value of result states is blocked from flowing “into” the subtask.

37

Example

Locally optimal Optimal for the entire
task

500 states
Task Graph:

Pickup

Taxi Domain
Motivational Example

Reward: -1 actions,
-10 illegal, 20 mission.

Get

t/source

o it o) =N

Root

t/destination

Navigate(t)
North South East West

)

Putdown

HSMQ Alg. (Task Decomposition)

function HSMQ(state s, subtask p) returns float
Let Total Reward = 0
while p is not terminated do
Choose action a = 7, (s) according to exploration policy ,
Execute a.
if a is primitive, Observe one-step reward r
else r := HSM(@(s,a), which invokes subroutine a and
returns the total reward received while a executed.
Total Reward := Total Reward + r
Observe resulting state s’
Update Q(p,s,0) := (1= a)Q(p,,0) + o [r + max Q(p,',)
end // while

return Total Reward
end

MAXQ

Break original MDP into multiple sub-MDP’s

Each sub-MDP is treated as a temporally
extended action

Define a hierarchy of sub-MDP’s (sub-tasks)

Each sub-task M, defined by:

— T = Set of terminal states

— A, = Set of child actions (may be other sub-tasks)
— R’. = Local reward function

MAXQ Alg. (Value Fun. Decomposition)

* Want to obtain some sharing (compactness) in
the representation of the value function.

 Re-write Q(p, s, a) as
Q(p,s,a) =V(a,s) + C(p,s,a)

V(p,s) = max [V (a,s) + C(p,s,a)]

where V(aq, s) is the expected total reward while executing action a,

and C(p, s, a) is the expected reward of completing parent task p
after a has returned

Hierarchical Structure

* MDP decomposed in task Mo, ..., Mn

Theorem 1 Given a task graph over tasks M. M,, and a hierarchical policy m. each
subtask M; defines a semi-Markov decision process with states S;. actions A;. probability
transition function P’ (s'. N s,a), and expected reward function R(s.a) = V™(a.s), where
V(a.s) 1s the projected value function for child task M, in state s. If a is a primitive
action, V™ (a. s) 1s defined as the expected immediate reward of executing a in s: V7 (a.s) =

S o P(s's.a)R(s" s, a).

* Qforthe subtask i
Q7(i.s.a) =V™{a.s) + 3 PI(s. Nis.a)y" Q7(i. 8" . m(s)).
"N

Q" (i.s.a) = V™(a.s) + O™ (i. 5,a).

Value Decomposition

Definition 6 7The completion function, C7(i.s.a). s the expected discounted cumulative
reward of completing subtask M; after invoking the subroutine for subtask M, in state s.
The reward is discounted back to the point in time where a begins execution.

C™(i.s.a) =Y PT(s". Nis.a)y Q" (i.s" . 7(s")) (9)
of \

With this definition. we can express the () function recursively as

()’

1%

(i.s.a) = V™(a.s)+ C™(i. s.a). (10)
Finally. we can re-express the definition for V(4. s) as

Q" (i.s.mi(s)) if 7 1s composite

. . e C 11
S o P(s's.i)R(s"s.4) if i is primitive (11)

MAXQ Alg.

* An example

-~
¥
i

Taxi Task
-5
Get Passenger Finish
Taxi Task
12
-4
Navigate(Y) Finish
Get
-1
West Finish
Navigate(Y)
-1 -3

-
/

Vi(root.s)

|
A

V(Get.s) C(root.s.Get)

12

-

V(Navigate(Y).s) C(Get.s.Nav(Y))
-1

V(West,s) C(Nav(Y).s.West)

=1 3

Fig. 5. An example of the MAXQ value function decomposition for the state in which
the taxi is at location (2,2), the passenger is at (0,0), and wishes to get to (3,0). The
left tree gives English descriptions, and the right tree uses formal notation.

Value Decomposition

* The value function can be decomposed as
follows

VT0.s) = VTam.s)+C"(aym 1.8.a;) + ...+ C"(ay.s.a2) +C™(0.s.a;)

V¥(Root,s1) = V7"(North,s;) + C"(Navigate(R), i, North) +
C'"(Get, s1, Navigate(R)) + C"(Root, s, Get)
= 140+ —-14+12

V(0. s)
— 10 - I

V™(ar, s)
V™am, 1, 8)
Vilam.s) CTam 1,8 a.m) C™ (a; (0, 1)
" o I ra ! ! ! (A " " " [

MAXQ Alg. (cont’d)

V(root, s) = V (west, s) + C'(navigate(Y), s, west)
+ C(get, s, navigate(Y))
+ C'(root, s, get).

Passenger at Y Passenger In Taxi
4 4
3 3
2 8 2
1 9 7 1
0 8 6 0
0O 1 2 3 4

Fig. 4. Value function for the case where the passenger is at (0,0) (location Y) and
wishes to get to (0,4) (location R).

MAXQ Alg. (cont’d)

function MAXQQ(state s, subtask p) returns float
Let Total Reward = ()
while p is not terminated do
Choose action a = m,(s) according to exploration policy
Execute a.
if @ is primitive, Observe one-step reward r
else r := MAXQQ(s,a), which invokes subroutine a and
returns the total reward received while a executed.
Total Reward := Total Reward + r
Observe resulting state s’
if a is a primitive
V(a,s):=(1-a)V(a,s)+ar
else a is a subroutine
C(p,a,s) := (1 —a)C(p,s,a) + amaxy [V(a',s') + C(p,s',a')]
end // while

return Total Reward
end

State Abstraction

Three fundamental forms
* |rrelevant variables

e.g. passenger location is irrelevant for the navigate and put subtasks
and it thus could be ignored.

e Funnel abstraction

A funnel action is an action that causes a larger number of initial states
to be mapped into a small number of resulting states. E.g., the
navigate(t) action maps any state into a state where the taxi is at
location t. This means the completion cost is independent of the
location of the taxi—it is the same for all initial locations of the taxi.

State Abstraction (cont’d)

* Structure constraints

- E.g. if a task is terminated in a state s, then there is no need to
represent its completion cost in that state

- Also, in some states, the termination predicate of the child task
implies the termination predicate of the parent task

Effect

- reduce the amount memory to represent the Q-function.
14,000 g values required for flat Q-learning
3,000 for HSMQ_ (with the irrelevant-variable abstraction
632 for C() and V() in MAXQ

- learning faster

State Abstraction (cont’d)

MAXQ+Abstraction

-200

-400

No Abstraction

Mean Cumulative Reward

-600 | - i
;
-800 |- i .
. ;x ’
P42
_1000 1 1 HEURH | 1 1 1 1 1

0 20000 40000 60000 80000 100000 120000 140000 160000
Primitive Actions

Fig. 7. Comparison of Flat Q learning, MAXQ Q learning with no state abstraction,
and MAXQ Q learning with state abstraction on a noisy version of the taxi task.

Wargus Resource-Gathering Domain

Peasant

Town hall

Region of sight

Tree

Goldmine

State variables

Peasant location: a.l

Peasant resource: a.r

Gold mine within sight radius: reg.gold
Trees within sight radius: reg.wood

Town hall within sight radius: reg.townhall
Required gold quota: req.gold

Required wood quota: req.wood

Primitive actions
Mine gold: MG

Chop wood: CW
Deposit: Dep
Navigate: Goto(loc)

Induced Wargus Hierarchy

Induced Abstraction & Termination

Task Name | State Abstraction Termination Condition

Root req.gold, req.wood req.gold = 1 && req.wood = 1

Harvest Gold req.gold, agent.resource, region.townhall | req.gold = 1

Get Gold agent.resource, region.goldmine agent.resource = gold

Put Gold req.gold, agent.resource, region.townhall | agent.resource = 0

GGoto(goldmine) | agent.x, agent.y agent.resource = 0 && region.goldmine = 1

GGoto(townhall) agent.x, agent.y req.gold = 0 && agent.resource = gold && region.townhall = 1
Harvest Wood req.wood, agent.resource, region.townhall | req.wood = 1

Get Wood agent.resource, region.forest agent.resource = wood

Put Wood req.wood, agent.resource, region.townhall | agent.resource = 0

WGoto(forest) agent.x, agent.y agent.resource = 0 && region.forest = 1

WGoto(townhall) | agent.x, agent.y req.wood = 0 && agent.resource = wood && region.townhall = 1
Mine Gold agent.resource, region.goldmine NA

Chop Wood agent.resource, region.forest NA

GDeposit req.gold, agent.resource, region.townhall | NA

WDeposit req.wood, agent.resource, region.townhall | NA

Goto(loc) agent.x, agent.y NA

Note that because each subtask has a unique terminal state,
Result Distribution Irrelevance applies

Claims

* The resulting hierarchy is unique
— Does not depend on the order in which goals and
trajectory sequences are analyzed

e All state abstractions are safe

— There exists a hierarchical policy within the induced hierarchy that will
reproduce the observed trajectory

— Extend MaxQ Node Irrelevance to the induced structure

e Learned hierarchical structure is “locally optimal”

— No local change in the trajectory segmentation can
improve the state abstractions (very weak)

Experimental Setup

Randomly generate pairs of source-target resource-
gathering maps in Wargus
Learn the optimal policy in source

Induce task hierarchy from a single (near) optimal
trajectory

Transfer this hierarchical structure to the MaxQ
value-function learner for target

Compare to direct Q learning, and MaxQ learning on
a manually engineered hierarchy within target

Hand-Built Wargus Hierarchy

Hand-Built Abstractions & Terminations

Task Name | State Abstraction Term%xwtatlon
Condition

Root req.gold, req.wood, agent.resource req.gold = 1 && req.wood = 1
Harvest Gold agent.resource, region.goldmine agent.resource 7 0

Harvest Wood agent.resource, region.forest agent.resource 7 0
GWDeposit req.gold, req.wood, agent.resource, region.townhall agent.resource = 0

Mine Gold region.goldmine NA

Chop Wood region.forest NA

Deposit req.gold, req.wood, agent.resource, region.townhall NA

Goto(loc) agent.x, agent.y NA

Results: Wargus

Total Duration

Wargus domain: 7 reps

8000

7000 -

6000 A

5000 -

4000 -

3000

2000 A

1000 A

= |nduced (MAXQ)
- Hand-engineered (MAXQ)
== NO transfer (Q)

-1000

10

20

30 40 50
Episode

60

70

80

90

100

Limitations

* Recursively optimal not necessarily optimal

 Model-free Q-learning

Model-based algorithms (that is, algorithms that try to learn
P(s’|s,a) and R(s’[s,a)) are generally much more efficient
because they remember past experience rather than having
to re-experience it.

Planning, Acting, Learning

* On-line planning
RL Learning
RL methods to the
imulated experien
Dyna-Q /N ilstasiftheyhad |

P/olicy)value fun\ct\ions really happened

planning update
value/policy

direct RL simulated
aciing update . — exper:ence
planning oo -expenence cearch
At learning control

model experlence Model

[Environment]

model
learning

starting states and

actions for the simulated
The reinforcement learning method is thus the "final common path" for experiences generated

both learning and planning by the model

Planning, Acting, Learning

Dyna-Q alg.

Initialize Q(s,a) and Model(s,a) for all s
Do forever:

€8 and a € A(s)

(a} « current (nonterminal) state

(b) a «— z-greedy(s, Q)

(L] E\eulte action a: observe resultant state, s’ , and reward, r
(d) Q(s,a) — Q(s,a) + « [7 + ymaxy Q(s',a’) — Q(s, (I)}

(e) M od(l [s,a) « s',r (assuming det@llllllllbtlc environment)
(f) Repeat N times:

s «— random previously observed state

a +— random action previously taken in s

s', v« Model(s.a)

Q(s.a) — Q(s,a) + a[r + ymax, Q(s',a') — Q(s. a)]

800+

600+

WITHOUT PLANNING (N=0)

WITH PLANNING (N= 50)

Steps
[} G R ‘ ‘ — * s G per 400
* * . * ‘ * episode
S S | — ‘ —- * ;f}:fiff * 200,
il | i | | | —_— *
B o * — - * 14

q r
-

_|>

actions

0 planning steps
(direct RL only)

5 planning steps

50 planning steps

I
2 10 20 30 40 50

Episodes

References and Further Reading

e Sutton, R,, Barto, A., (2000) Reinforcement Learning: an
Introduction, The MIT Press

http://www.cs.ualberta.ca/~sutton/book/the-book.html

* Kaelbling, L., Littman, M., Moore, A., (1996) Reinforcement
Learning: a Survey, Journal of Artificial Intelligence Research,
4:237-285

* Barto, A., Mahadevan, S., (2003) Recent Advances in Hierarchical
Reinforcement Learning, Discrete Event Dynamic Systems:
Theory and Applications, 13(4):41-77

