
Reinforcement	Learning

Robotica	Probabilistica

Reinforcement Learning

Learning from rewards (and punishments)

Learning to assess the value of states.

Learning goal directed behavior.

RL has been developed rather independently from two
different fields:

1) Dynamic Programming and Machine Learning (Bellman
Equation).

2) Psychology (Classical Conditioning) and later
Neuroscience (Dopamine System in the brain)

Reinforcement	Learning

• Task
– Learn	how	to	behave	successfully	to	achieve	a	goal	
while	interacting	with	an	external	environment
Learn	through	experience	from	trial	and	error

• Examples
– Game	playing:	The	agent	knows	it	has	won	or	lost,	but	
it	doesn’t	know	the	appropriate	action	in	each	state

– Control:	a	traffic	system	can	measure	the	delay	of	cars,	
but	not	know	how	to	decrease	it.

Reinforcement	Learning

Learner
passive

active
Sequential decision problems

Approaches:
1. Learn values of states (or state histories) & try to maximize

utility of their outcomes.
• Need a model of the environment: what ops & what

states they lead to
2. Learn values of state-action pairs

• Does not require a model of the environment (except
legal moves)

• Cannot look ahead

Elements	of	RL

• Transition	model, how	action	influence	states
• Reward	R,	immediate	value	of	state-action	transition

• Policy	p,	maps	states	to	actions

Agent

Environment

State Reward Action

Policy

! sss 221100 r a
2

r a
1

r a
0 ¾¾ ®¾¾¾ ®¾¾¾ ®¾ :::

Elements	of	RL

r(state, action)
immediate reward values

100

0

0

100

G

0

0

0

0

0

0

0

0

0

Elements	of	RL

• Value	function: maps	states	to	state	values

Discount	factor g Î [0,	1)							(here	0.9)

V*(state) valuesr(state, action)
immediate reward values

100

0

0

100

G

0

0

0

0

0

0

0

0

0
G

90 100 0

81 90 100

() () () ()+++++º 2 11π trγtγrtrsV ...

G
90 100 0

81 90 100

G
90 100 0

81 90 100

Computing	return	from	rewards

• episodic	(vs.	continuing)	tasks
– “game	over”	after	N	steps
– optimal	policy	depends	on	N;	harder	to	analyze

• additive	rewards
– V(s0,	s1,	…)	=	r(s0)	+	r(s1)	+	r(s2)	+	…
– infinite	value	for	continuing	tasks

• discounted	rewards
– V(s0,	s1,	…)	=	r(s0)	+	γ*r(s1)	+	γ2*r(s2)	+	…
– value	bounded	if	rewards	bounded

Value	functions
• state	value	function:	Vp(s)

– expected	return	when	starting	in	s and	following	p
• state-action	value	function:	Qp(s,a)

– expected	return	when	starting	in	s,	performing	a,
and	following	p

• useful	for	finding	the	optimal	policy
– can	estimate	from	experience
– pick	the	best	action	using	Qp(s,a)

• Bellman	equation

s

a

s’

r

Optimal	value	functions
• there’s	a	set	of	optimal policies

– Vp defines	partial	ordering	on	policies

– they	share	the	same	optimal	value	function
• Bellman	optimality	equation

– system	of	n	non-linear	equations
– solve	for	V*(s)
– easy	to	extract	the	optimal	policy

• having	Q*(s,a)	makes	it	even	simpler

s

a

s’

r

Reinforcement	Learning
• Execute	actions	in	environment,	

observe	results.

• Learn	action	policy	p :	state® action that	
maximizes	expected	discounted	reward

E	[r(t)	+	gr(t +	1) +	g2r(t +	2) +	…]

from	any	starting	state	in	S

Reinforcement	Learning

• Target	function	is	p :	state® action

• However…

– We	have	no	training	examples	of	form	<state,	
action>

– Training	examples	are	of	form	

<<state,	action>,	reward>

Utility-based	agents
• Try	to	learn	V	p*	(abbreviated	V*)
• Perform	look	ahead	search	to	choose	best	action	from	any	state	s

• Works	well	if	agent	knows

– d :	state ´ action® state

– r	:	state ´ action® R
• When	agent	doesn’t	know	d and	r,	cannot	choose	actions	this	way

() () ()()[]a s,δ*Va s,rmaxargsπ*
a

+º

Q-values

• Q-values

– Define	new	function	very	similar	to	V*

– If	agent	learns	Q,	it	can	choose	optimal	action	

even	without	knowing	d or	R

• Using	Q

() () ()()a s,δ*Va s,ra s,Q g+º

() ()a s,Q maxargsπ*
a

º

Value	Functions
State	value	function

Vπ:S	à Real	
or	

Vπ(s)

State-action	value	function

Qπ:S	x	A	à Real	
or	

Qπ(s,	a)

The	expected	sum	of	
discounted	reward	for	
following	the	policy	π from	
state	s	to	the	end	of	time.

The	expected	sum	of	
discounted	reward	for	
starting	in	state	s,	taking	
action	a	once	then	following	
the	policy	π from	state	s’	to	
the	end	of	time.

Solution	Methods

• Model	based:	
– For	example	dynamic	programming
– Require	a	model	(transition	function)	of	the	environment	
for	learning

• Model	free:
– Learn	from	interaction	with	the	environment	without	
requiring	a	model

– For	example	Q-learning…

Monte	Carlo	methods

• don’t	need	full	knowledge	of	environment
– just	experience,	or
– simulated	experience

• but	similar	to	DP
– policy	evaluation,	policy	improvement

• averaging	sample	returns
– defined	only	for	episodic	tasks

Monte	Carlo	policy	evaluation

• want	to	estimate	Vp(s)
=	expected	return	starting	from	s	and	following	p
– estimate	as	average	of	observed	returns	in	state	s

• first-visit	MC
– average	returns	following	the	first	visit	to	state	s

s0

s s

+1 -2 0 +1 -3 +5
R1(s) = +2

s0

s0

s0

s0

s0

R2(s) = +1
R3(s) = -5

R4(s) = +4

Vp(s) ≈ (2 + 1 – 5 + 4)/4 = 0.5

TD	Learing
TD learning is a combination of Monte Carlo ideas and dynamic programming (DP) ideas.
Like Monte Carlo methods, TD methods can learn directly from raw experience without
a model of the environment's dynamics.

Like DP, TD methods update estimates based in part on other learned estimates,
without waiting for a final outcome (they bootstrap).

Whereas Monte Carlo methods must wait until the end of the episode to determine
the increment of V (only then is known), TD methods need wait only until the next time step.

TD methods learn their estimates in part on the basis of other estimates. They learn a
guess from a guess--they bootstrap

TD	Learing
The next most obvious advantage of TD methods over Monte Carlo methods is that they
are naturally implemented in an on-line, fully incremental fashion.

With Monte Carlo methods one must wait until the end of an episode, because only then
is the return known, whereas with TD methods one need wait only one time step.

TD	Learning

• MC	learning

TD	Learning

• DP	method

TD	Learning

• Simplest	TD	method

TD	Learning

Policy	Improvement

• Vp not	enough	for	policy	improvement
– need	exact	model	of	environment

• estimate	Qp(s,a)

• MC	control

– update	after	each	episode

SARSA:	On-Policy	TD

SARSA:	On-Policy	TD

SARSA:	On-Policy	TD

SARSA:	On-Policy	TD

Q-learning:	Off-Policy	TD	control

Q-learning	and	SARSA

TD	Algorithmic	Components

• Q-learning:

– If infinitely often and
then converngence [Jaakkola,Jordan,Singh 94]	

• SARSA(0):

– Convergence if GLIE	policy:	infinitely often,		
in	the	limit action chosen w.r.t. Q

Sarsa
• again,	need	Q(s,a),	not	just	V(s)

• control
– start	with	a	random	policy
– update	Q	and	p after	each	step	
– need	e-soft	policies

st st+1at st+2at+1 at+2
rt rt+1

SARSA
• SARSA(0)	update:
• SARSA	algorithm	(on-policy):

Decaying vs. Persistent exploration.

GLIE (“greedy in the limit with infinite exploration”):
1. Each action is executed infinitely often in every state that is visited infinitely often;
2. In the limit, the learning policy is greedy with respect to the Q-value function with
probability 1.

Q-Learning	Algorithmic	Components

• Learning	update (to	Q-Table):

Q(s,	a)	ß (1-α)Q(s,	a)	+	α[r	+	γ Q(s’,	a’)]
or

Q(s,	a)	ß Q(s,	a)	+	α[r	+	γ Q(s’,	a’)	- Q(s,	a)]

• Action	selection (from	Q-Table):

a	=												f(Q(s,	a))

a'
max

a'
max

a
argmax

Exploration – Exploitation Dilemma: The agent wants to get
as much cumulative reward (also often called return) as
possible. For this it should always perform the most
rewarding action “exploiting” its (learned) knowledge of the
state space. This way it might however miss an action which
leads (a bit further on) to a much more rewarding path.
Hence the agent must also “explore” into unknown parts of
the state space. The agent must, thus, balance its policy to
include exploitation and exploration.

What does an RL-agent do ?

Policies
1) Greedy Policy: The agent always exploits and selects the

most rewarding action. This is sub-optimal as the agent
never finds better new paths.

Policies
2) e-Greedy Policy: With a small probability e the agent

will choose a non-optimal action. *All non-optimal
actions are chosen with equal probability.* This can
take very long as it is not known how big e should be.
One can also “anneal” the system by gradually
lowering e to become more and more greedy.

3) Softmax Policy: e-greedy can be problematic because
of (*). Softmax ranks the actions according to their
values and chooses roughly following the ranking
using for example:

P

b= 1

n
exp(T

Qb)

exp(T
Qa) where Qa is value of the currently

to be evaluated action a and T is a
temperature parameter. For large T
all actions have approx. equal
probability to get selected.

Exploration
Tradeoff between exploitation (control) and exploration (identification)

Extremes: greedy vs. random acting

- Randomly selecting actions is known to give rise to very poor performance.
-ϵ-Greedy, the agent chooses the action with the best long-term
effect with probability ϵ, and it chooses an action uniformly at random, otherwise
(1- ϵ) ϵ is a tuning parameter, which is sometimes changed, either according to a
fixed schedule (making the agent explore less as time goes by),
or adaptively based on some heuristics

Q-learning converges to optimal Q-values if
* Every state is visited infinitely often (due to exploration),
* The action selection becomes greedy as time approaches infinity, and
* The learning rate a is decreased fast enough but not too fast

Exploration

Tradeoff between exploitation (control) and exploration (identification)

Extremes: greedy vs. random acting

Q-learning converges to optimal Q-values if
* Every state is visited infinitely often (due to exploration),
* The action selection becomes greedy as time approaches infinity, and
* The learning rate a is decreased fast enough but not too fast

Exploration

Exploration
The specific control policy used is a standard one in the field and originally
comes from [Watkins, 1989] and [Sutton, 1990]. The agent tries out actions
probabilistically based on their Q-values using a Boltzmann or soft
max distribution. Given a state x, it tries out actiona with probability:

The temperature T controls the amount of exploration (the probability of executing
actions other than the one with the highest Q-value). If T is high, or if Q-values are
all the same, this will pick a random action. If T is low and Q-values are different, it
will tend to pick the action with the highest Q-value.

Exploration
The specific control policy used is a standard one in the field and originally
comes from [Watkins, 1989] and [Sutton, 1990]. The agent tries out actions
probabilistically based on their Q-values using a Boltzmann or soft
max distribution. Given a state x, it tries out actiona with probability:

1. At the start, Q is assumed to be totally inaccurate, so T is high (high
exploration), and actions all have a roughly equal chance of being executed.

2. T decreases as time goes on. It becomes more and more likely to pick among
the actions with the higher Q-values.

3. Finally, as we assume Q is converging, T approaches zero (pure exploitation)
and we tend to only pick the action with the highest Q-value:

Actor	Critic	Methods

Separate structure to explicitly represent the policy. The policy is the actor (used
to select actions). The estimated value function is the critic. Learning is on-policy:
the critic must learn about and critique whatever policy is currently being followed
by the actor. The critique is a scalar: TD error.

Actor	Critic	Methods
• Policy	and	value	function
• After	each	action	selection,	

the	critic	evaluates	the	new	state	
to	determine	whether	things	have	
gone	better	or	worse	than	expected.	

• That	evaluation	is	the	TD	error:

• TD	error	can	be	used	to	evaluate	the	action	just	selected:

Another variant is

Actor	Critic	Methods

Another variant is

Applications	of	RL
• Checker’s	[Samuel	59]
• TD-Gammon	[Tesauro	92]
• World’s	best	downpeak	elevator	dispatcher	[Crites	at	al	~95]
• Inventory	management	[Bertsekas	et	al	~95]

– 10-15%	better	than	industry	standard
• Dynamic	channel	assignment	[Singh	&	Bertsekas,	Nie&Haykin	~95]

– Outperforms	best	heuristics	in	the	literature
• Cart-pole	[Michie&Chambers	68-]	with	bang-bang	control
• Robotic	manipulation	[Grupen	et	al.	93-]
• Path	planning
• Robot	docking	[Lin	93]
• Parking
• Football
• Tetris
• Multiagent	RL	[Tan	93,	Sandholm&Crites	95,	Sen	94-,	Carmel&Markovitch	95-,	lots	of	

work	since]
• Combinatorial	optimization:	maintenance	&	repair

– Control	of	reasoning	[Zhang	&	Dietterich	IJCAI-95]

Proprietà

RL in real world tasks…

model based vs. model free learning and control

Q(S1,L) 4
Q(S1,R) 2

Q(S2,L) 4
Q(S2,R) 0

Q(S3,L) 2
Q(S3,R) 2 S1

S3

S2L

R

L

R
L

R

=	4

=	0

=	2

=	2

S1

S3S2

4 0 2 2

RL

Problems of RL
Curse of Dimensionality
In real world problems ist difficult/impossible to define discrete state-action spaces.

(Temporal) Credit Assignment Problem
RL cannot handle large state action spaces as the reward gets too much dilited
along the way.

Partial Observability Problem
In a real-world scenario an RL-agent will often not know exactly in what state it will
end up after performing an action. Furthermore states must be history independent.

State-Action Space Tiling
Deciding about the actual state- and action-space tiling is difficult as it is often
critical for the convergence of RL-methods. Alternatively one could employ a
continuous version of RL, but these methods are equally difficult to handle.

Non-Stationary Environments
As for other learning methods, RL will only work quasi stationary environments.

Real-world behavior is hierarchical
Hierarchical	RL:	W

hat	is	it?

1.	set	water	temp

2.	get	wet

3.	shampoo

4.	soap

5.	turn	off	water

6.	dry	off

add	hot

success

add	cold

wait	5sec

simplified control, disambiguation, encapsulation

1.	pour	coffee

2.	add	sugar

3.	add	milk

4.	stir

Hierarchical	Reinforcement	Learning

• Exploits	domain	structure	to	facilitate	learning
– Policy	constraints
– State	abstraction

• Paradigms:	Options,	HAMs,	MaxQ
• MaxQ	task	hierarchy

– Directed	acyclic	graph	of	subtasks
– Leaves	are	the	primitive	MDP	actions

• Traditionally,	task	structure	is	provided	as	
prior	knowledge	to	the	learning	agent

S:	start G:	goal
Options:	going	to	doors

HRL: a toy example
Hierarchical	RL:	W

hat	is	it?

Advantages of HRL
1. Faster learning

(mitigates scaling problem)

Hierarchical	RL:	W
hat	is	it?

RL: no longer ‘tabula rasa’

2.	 Transfer	of	knowledge from	previous	tasks
(generalization,	shaping)

Solution

Disadvantages (or: the cost) of HRL
Hierarchical	RL:	W

hat	is	it?

1. Need	‘right’	options	- how	to	learn	them?
2. Suboptimal	behavior	(“negative	transfer”;	habits)
3. More	complex	learning/control	structure

no free lunches…

Example	problem

Semi-Markov	Decision	Process

• Generalizes	MDPs
• Action	a takes	N steps	to	complete	in	s
• P(s’,n |	a,	s),	R(s’,	N |	a,	s)
• Bellman	equation:

Observations

Learning	with	partial	policies

Hierarchies	of	Abstract	Machines	(HAM)

Learn	policies	for	a	given	set	of	sub-tasks

Learning	hierarchical	sub-tasks

Example

Locally optimal Optimal for the entire
task

Taxi	Domain
• Motivational	Example
• Reward:	-1	actions,
-10	illegal,	20	mission.

• 500	states
• Task	Graph:

HSMQ	Alg.	(Task	Decomposition)

MAXQ

• Break	original	MDP	into	multiple	sub-MDP’s
• Each	sub-MDP	is	treated	as	a	temporally	
extended	action

• Define	a	hierarchy	of	sub-MDP’s	(sub-tasks)

• Each	sub-task	Mi defined	by:
– T	=	Set	of	terminal	states
– Ai =	Set	of	child	actions	(may	be	other	sub-tasks)
– R’i =	Local	reward	function

MAXQ	Alg.	(Value	Fun.	Decomposition)

• Want	to	obtain	some	sharing	(compactness)	in	
the	representation	of	the	value	function.

• Re-write	Q(p,	s,	a)	as

where	V(a,	s) is	the	expected	total	reward	while	executing	action	a,	
and	C(p,	s,	a)	is	the	expected	reward	of	completing	parent	task	p
after	a has	returned

Hierarchical	Structure
• MDP	decomposed	in	task	M0,	…	,	Mn

• Q	for	the	subtask	i

Value	Decomposition

MAXQ	Alg.	
• An	example

Value	Decomposition

• The	value	function	can	be	decomposed	as	
follows

MAXQ	Alg.	(cont’d)

MAXQ	Alg.	(cont’d)

State	Abstraction

Three	fundamental	forms
• Irrelevant	variables
e.g.	passenger	location	is	irrelevant	for	the	navigate and	put subtasks	
and	it	thus	could	be	ignored.

• Funnel	abstraction
A	funnel	action	is	an	action	that	causes	a	larger	number	of	initial	states	
to	be	mapped	into	a	small	number	of	resulting	states.	E.g.,	the	
navigate(t) action	maps	any	state	into	a	state	where	the	taxi	is	at	
location	t.	This	means	the	completion	cost	is	independent	of	the	
location	of	the	taxi—it	is	the	same	for	all	initial	locations	of	the	taxi.

State	Abstraction	(cont’d)

• Structure	constraints
- E.g.	if	a	task	is	terminated	in	a	state	s,	then	there	is	no	need	to	

represent	its	completion	cost	in	that	state

- Also,	in	some	states,	the	termination	predicate	of	the	child	task	
implies	the	termination	predicate	of	the	parent	task

Effect
- reduce	the	amount	memory	to	represent	the	Q-function.								
14,000	q	values	required	for	flat	Q-learning	
3,000	for	HSMQ	(with	the	irrelevant-variable	abstraction
632	for	C()	and	V()	in	MAXQ

- learning	faster

State	Abstraction	(cont’d)

Wargus	Resource-Gathering	Domain

Induced	Wargus	Hierarchy
Root

Harvest WoodHarvest Gold

Get Gold Get Wood

Goto(loc)

Mine Gold Chop WoodGDeposit

Put Gold Put Wood

WGoto(townhall)GGoto(goldmine) WGoto(forest)GGoto(townhall)

WDeposit

Induced	Abstraction	&	Termination
Task Name State Abstraction Termination Condition
Root req.gold, req.wood req.gold = 1 && req.wood = 1

Harvest Gold req.gold, agent.resource, region.townhall req.gold = 1

Get Gold agent.resource, region.goldmine agent.resource = gold

Put Gold req.gold, agent.resource, region.townhall agent.resource = 0

GGoto(goldmine) agent.x, agent.y agent.resource = 0 && region.goldmine = 1

GGoto(townhall) agent.x, agent.y req.gold = 0 && agent.resource = gold && region.townhall = 1

Harvest Wood req.wood, agent.resource, region.townhall req.wood = 1

Get Wood agent.resource, region.forest agent.resource = wood

Put Wood req.wood, agent.resource, region.townhall agent.resource = 0

WGoto(forest) agent.x, agent.y agent.resource = 0 && region.forest = 1

WGoto(townhall) agent.x, agent.y req.wood = 0 && agent.resource = wood && region.townhall = 1

Mine Gold agent.resource, region.goldmine NA

Chop Wood agent.resource, region.forest NA

GDeposit req.gold, agent.resource, region.townhall NA

WDeposit req.wood, agent.resource, region.townhall NA

Goto(loc) agent.x, agent.y NA

Note that because each subtask has a unique terminal state,
Result Distribution Irrelevance applies

Claims

• The	resulting	hierarchy	is	unique
– Does	not	depend	on	the	order	in	which	goals	and	
trajectory	sequences	are	analyzed

• All	state	abstractions	are	safe
– There	exists	a	hierarchical	policy	within	the	induced	hierarchy	that	will	

reproduce	the	observed	trajectory
– Extend	MaxQ	Node	Irrelevance	to	the	induced	structure

• Learned	hierarchical	structure	is	“locally	optimal”
– No	local	change	in	the	trajectory	segmentation	can	
improve	the	state	abstractions	(very	weak)

Experimental	Setup

• Randomly	generate	pairs	of	source-target resource-
gathering	maps	in	Wargus

• Learn	the	optimal	policy	in	source

• Induce	task	hierarchy	from	a	single	(near)	optimal	
trajectory

• Transfer	this	hierarchical	structure	to	the	MaxQ	
value-function	learner	for	target

• Compare	to	direct	Q	learning,	and	MaxQ	learning	on	
a	manually	engineered	hierarchy	within	target

Hand-Built	Wargus	Hierarchy

Root

Get Gold Get Wood

Goto(loc)Mine Gold Chop Wood Deposit

GWDeposit

Hand-Built	Abstractions	&	Terminations

Task Name State Abstraction Termination
Condition

Root req.gold, req.wood, agent.resource req.gold = 1 && req.wood = 1

Harvest Gold agent.resource, region.goldmine agent.resource ≠ 0

Harvest Wood agent.resource, region.forest agent.resource ≠ 0

GWDeposit req.gold, req.wood, agent.resource, region.townhall agent.resource = 0

Mine Gold region.goldmine NA

Chop Wood region.forest NA

Deposit req.gold, req.wood, agent.resource, region.townhall NA

Goto(loc) agent.x, agent.y NA

Results:	Wargus
Wargus domain: 7 reps

-1000

0

1000

2000

3000

4000

5000

6000

7000

8000

0 10 20 30 40 50 60 70 80 90 100
Episode

To
ta

l D
ur

at
io

n

Induced (MAXQ)
Hand-engineered (MAXQ)
No transfer (Q)

Limitations

• Recursively	optimal	not	necessarily	optimal
• Model-free	Q-learning
Model-based	algorithms	(that	is,	algorithms	that	try	to	learn	
P(s’|s,a) and	R(s’|s,a)) are	generally	much	more	efficient	
because	they	remember	past	experience	rather	than	having	
to	re-experience	it.

Planning,	Acting,	Learning

• On-line	planning
• RL	Learning
• Dyna-Q

starting states and
actions for the simulated
experiences generated
by the model

RL methods to the
simulated experiences
just as if they had
really happened

The reinforcement learning method is thus the "final common path" for
both learning and planning

Planning,	Acting,	Learning

• Dyna-Q	alg.

References	and	Further	Reading
• Sutton,	R.,	Barto,	A.,	(2000)	Reinforcement	Learning:	an	

Introduction,	The	MIT	Press
http://www.cs.ualberta.ca/~sutton/book/the-book.html

• Kaelbling,	L.,	Littman,	M.,	Moore,	A.,	(1996)	Reinforcement	
Learning:	a	Survey,	Journal	of	Artificial	Intelligence	Research,	
4:237-285

• Barto,	A.,	Mahadevan,	S.,	(2003)	Recent	Advances	in	Hierarchical	
Reinforcement	Learning,	Discrete	Event	Dynamic	Systems:	
Theory	and	Applications,	13(4):41-77

