Task Planning

Architetture Robotiche

Architetture a 3 Livelli

- Deliberativo:
pianificazione, ragionamento, decisione

 Esecutivo:
monitoraggio dell’esecuzione,
sequenziamento dei comandi

* Funzionale:
funzionalita di controllo attuative e percettive

Deals with goals and resource
interactions

Task decomposition; Task
svnchronization; Monitoring;
Exception handling;
Resource management

Deals with sensors and
actuators

Architetture a 3 Livelli: ATLANTIS

* Explicit Separation of Planning, Sequencing. and Control
— Upper layers provide control flow for lower layers

— Lower layers provide sia7us (state change) and
synchronization (success/failure) for upper layers
* Heterogeneous Architecture
— Each layer utilizes algorithms tuned for 1ts particular role

— Each layer has a representation to support ifs reasoning
Goals

Arrange Tasks Task Commitments

Configure Signals

Actiators
Sensors

Esempio: RHINO Architettura

Architettura di RHINO la guida robotica User Inferface
del museo di Bonn (1995); simile I
MINERVA (1998) ad Atlanta

Task Planner

|

Architettura a 3 Livelli per un robot Mapping
mobile: / \
1 . Fun ZiO na |e . Localizzation , Path Planning

Mapping, Localizzazione, \
Avoi d ance Collision Avoidance

2. Esecutivo:

Sequencer, monitor Architetture di RIHINO
4

3. Deliberativo:
Task Planner

Rhino, 1997 Minerva, 1998

Architetture a 3 Livelli

* LAAS architecture: OFESATOR
mESE I I L]
1T
Tre Livelli: :ﬁ Pian Supenisor thH“‘I'““"'
- —
u 1
35 Task Superdisar ;::'PI-"-“_

1. Deliberativo

S
I

] | 1
g rmguesty | | stane
(temporal planner) i3 ——
2. Esecutivo b — T n
(PRS) e | —
|
3. Funzionale — !
{ .-"'El-:-:rr'nel:r--?"-I |
(G ENOM E) b path 4 I
E-BAMD LOCAL AW F |
Elastic Sard Mearest Diagram |
MWawigation | | Navigatian Motion Planrer I
-4 tpas g
% I:n., . - ~ _:-'re-:l:ex"'- I
) USIT 1T TrRacKmG gcal ™ "cal I
i — grid miap o Ll “.I.,.
& | User Interaction Goal Trackar = jegments “i e |
5 Caontro GRID SEGLOC | CAMERAS 1
- i Segment-Basad Cameras Imniages
Controllo di Rover T |
e ‘._ I
@m s} XR4DO0D — \ zcros) |
—| Locomofign. {ebet pesy . LRF I PLATFORM | ——
(a ecn}US & IR Cantrol [So 0 Laser Fange | Fan-Tit (| an-t
R Finder Control | Contrgl . 2nales)
| |
& e 0 ez # P
el rpesimrs sdorely [. volen B g e I “y pen il padem
|
|

CPU1 CPU2

Architetture a 3 Livelli

Xavier Task Planning
Architecture (Prodigy)
”99 .;) Path Planning

(Decision-Theoretic)
Map-Based Navigation
(POMDPs)

Local Obstacle Avoidance
(Curvature Velocity Method)

Servo-Control
(Commercial)

Pianificazione Deliberativa

Are often aligned with hierarchical control community
within robotics

Hierarchical planning systems typically share a structured
and clearly identifiable subdivision of functionality regarding
to distinct program modules that communicate with each
other in a predictable and predetermined manner.

At a hierarchical planner’s highest level, the most global and
least specific plan is formulated.

At the lowest levels, rapid real-time response is required,
but the planner is concerned only with its immediate
surroundings and has lost the sight of the big picture.

Spatial Time

Scope Planners World Model Horizon
Long - Term
Immediate
Vicinity

Actions Sensing Real - Time

Planning as Search

Planning is looking ahead, searching
The goal is a state.

The robot's entire state space is enumerated, and
searched, from the current state to the goal state.

Different paths are tried until one is found that reaches
the goal.

If the optimal path is desired, then all possible paths must
be considered in order to find the best one.

Plan-based vs. BB System

Plan-base control

Rely heavily on world models,
Can readily integrate world knowledge,
Have a broad perspective and scope.

BB Control Systems

afford modular development,

Real-time robust performance within a changing world,
Incremental growth

are tightly coupled with arriving sensory data.

10

Hybrid Control

The basic idea is simple: we want the best of both worlds
(if possible).

The goal is to combine closed-loop and open-loop
execution.

That means to combine reactive and deliberative control.

This implies combining the different time-scales and
representations.

This mix is called hybrid control.

Hybrid robotic architectures believe that a union of deliberative and
behavior-based approaches can potentially yield the best of both worlds.

11

Hybrid Systems

Planning and reaction can be tied: ~ More Deliberative

A: hierarchical integration - -

planning and reaction are involved
with different activities, time scales

Planner

Behavioral Advice
Configurations
Parameaters

B: Planning to guide reaction -
configure and set parameters for
the reactive control system.

C: coupled - concurrent activities

A 4

More Reactive -

A B

12

Hybrid Systems

It was observed that the emerging architectural design of choice is:
— multi-layered hybrid comprising of
*a top-down planning system and
* a lower-level reactive system.

— the interface (middle layer between the two components) design is
a central issue in differentiating different hybrid architectures.

In summary, a modern hybrid system typically consists of three components:
¢ a reactive layer
¢ a planner
¢ a layer that puts the two together.

=> Hybrid architectures are often called three-layer architectures.

The Magic Middle: Executive Control

e The middle layer has a hard job:

1) compensate for the limitations of both the planner and the reactive
system

2) reconcile their different time-scales.
3) deal with their different representations.

4) reconcile any contradictory commands between the two.

e This is the challenge of hybrid systems

=> achieving the right compromise between the two ends.

14

Planning & Execution

* Planning

— Generate a set of acfions — a plan — that can transform an
initial state of the world to a goal state

[Newell and Simon, 1950s]
« Execution

— Start at the nitial state, and perform each action of a
generated plan

Planning Problem

Newell anhd Simon 1956
« (Given the acfions available in a task domain.
« Given a problem specified as:

— an initial stafe of the world,
— a set of goals to be achieved.

« Find a solution to the problem, i.e., a way to transform
the initial state into a new state of the world where the
goal statement is true.

Action Model, State, Goals

Classical Planning

Action Model: complete, deterministic, correct, rich
representation

State: single initial state, fully known

Goals: complete satisfaction

Several different planning algorithms

Esempio: Blocks World

ol 0

[B] B
A [A] [c]

Table Table

Blocks are picked up and put down by the arm

Blocks can be picked up only if they are clear, 1.e., without
any block on top

The arm can pick up a block only if the arm 1s empty, 1.e.,
if 1t 1s not holding another block, 1.e., the arm can be pick
up only one block at a time

The arm can put down blocks on blocks or on the table

STRIPS Model

Pickup from table(b) Pickup from block(b, c)

Pre: Block(b). Handempty Pre: Block(b). Handempty
Clear(b). On(b, Table) Clear(b). On(b. ¢), Block(c)
Add: Holding(b) Add: Holding(b). Clear(c)
Delete: Handempty., Delete: Handempty,
On(b. Table) On(b. c)

Putdown_ on_table(b) Putdown_on_block(b, c)
Pre: Block(b). Holding(b) Pre: Block(b), Holding(b)
Add: Handempty, Block(c), Clear(c). b =¢

On(b. Table) Add: Handempty, On(b, ¢)

Delete: Holding(b) Delete: Holding(b), Clear(c)

Init: On(a,Table), On(b,table), On(c,table) Goal: On(a,table),On(b,a), On(c,b)

Spacecraft Domain

Observation-1

target — |

instruments
N

Observation-2
Observation-3

Observation-4

L— pointing

calibrated

Takelmage (?target, ?instr):
Pre: Status(?instr, Calibrated), Pointing(?target)
Eff: Image(?target)

Calibrate (?instrument):
Pre: Status(?instr, On), Calibration-Target(?target), Pointing(?target)
Eff. ~Status(?inst, On), Status(?instr, Calibrated)

Turn (?target):
Pre: Pointing(?direction), ?direction # ?target
Eff: =Pointing(?direction), Pointing(?target)

Planning Problem

* Planning Domain: Descrizione degli operatori
in termini di precondizioni ed effetti

* Planning Problem: Stato iniziale, Dominio,
Goals

Initial Conditions: | P, P, P, P,

pre,

Eﬁ1
pre, Op <

Eﬁz

pres

Operators:

Goals: Goal, Goal, Goal,

Tipi di Planning

Classical Planning

Temporal Planning
Conditional Planning
Decision Theoretic Planning

Least-Commitment Planning
HTN planning

Paradigms

Classical planning

(STRIPS, operator-based, first-principles)
“generative”

Hierarchical Task Network planning
“practical” planning

MDP & POMDP planning

planning under uncertainty

State Space vs. Plan Space

* Planning in the state space:

— sequence of actions, from the initial state to the
goal state

* Planning in the plan space:

— Sequence of plan transformations, from an initial
plan to the final one

Plan-State Search

» Search space 15 set of partial plans
* Plan 1s mple =4, O, B=
— Az et of actions, of the form (a; : Op,)
— O et of orderings. of the form (a; < a;)
— B: Setof bindings. of the form (v; = C). (v; =C). (v;=v;) or
(v; =V;)
« Imitial plan:
— < {srart, finish}, {start < finish}, {}=
— srart has no preconditions; Its effects are the mitial state
— finish has no effects; Its preconditions are the goals

State-Space vs Plan-Space

Planning problem

Find a sequence of actions that make instance of the goal true

Nodes in search space

Standard search: node = concrete world state

Planning search: node = partial plan

(Partial) Plan consists of

& Set of operator applications §;
& Partial (temporal) order constraints §; < SJ-

& Causal links §; — §;

11

Meaning: *S, achieves ¢ €]JF({’E.‘E’J!Id(SJ') (record purpose of steps)

Search in the Plan-Space

Operators on partial plans

& add an action and a causal link to achieve an open condition
& add a causal link from an existing action to an open condition

& add an order constraint to order one step w.r.t. another

Open condition

A precondition of an action not yet causally linked

Plan-State Search

i

"(gck‘.ﬂ::\"'"
PrA B
- \/ ot o))

,f) | PuniA B) |

Pick(A, 7} o pros wnk'n:-:w
Pu:i_-L g kTic) |

Orde *“«,____
P::k.L]ﬁ /%pma o) gﬂ%"‘ LI

Pll:liTl._ o ﬂ-{ PickT(C) |

PJ:“.L B un:a B) \PutrA B/

/\7/ ‘x_%___,f
pmk(a C) o

f/ LkTEEh

'-.-'
'-ﬁt-f.. B/

Partially-Ordered Plans

Start
Start =T 3
Sk Sook
LeftShoeOm, lﬁ'ﬂbhfﬁhﬂﬂﬂﬂ | eftSockonr RightSock Orr

Lesft Ricgint
Finish Shoo Shoe

LeftShoeOn, RightShoeC

Finish

Special steps with empty action

Start no precond, initial assumptions as effect)

Finish goal as precond, no effect

Partial-Order Plans

Complete plan

A planis complete iff every precondition is achieved

A precondition ¢ of a step §; is achieved (by ;) if
& 5{' - 5;
& c € effect(S;)

& thereisno S with §; <S8 <S§; and —c € effecr(S;)
(otherwise S; is called a clobberer or threat)

Clobberer / threat

A potentially intervening step that destroys the condition achieved
by a causal link

Example

Go(Home)

e

IIIII__,.- s

Partial-Order Plans

clobbers Ar(HWS)

" ™\ DEMOTION
Go(HWS) l|
l
\
N~
e Gl lome)
ff At(Home)
At{HWS) [j
Buy(Dill) |
; /
~__ 7
PROMOTION AtHEme)

Finish

Demotion

Put before Go(HWS)

Promotion

Put after Buy(Drill)

General Approach

* (general Approach
— Find unachieved precondition
* Add new action or hink to existing action
— Determune 1f conflicts occur
* Previcusly aclueved precondition 1= “clobbered”
» Fix conflicts (reorder, bind, .)

* Partial-order planning can easily (and optimallv) solve
blocks world problems that involve goal mteractions (e.g..
the “Sussman Anomalyv™ problem)

C

. al:
| B
A B '
Initial State oal

Blocks World

"Sussman anomaly” problem

BI[A

Start State Goal State
Clear(x) On(x,z) Clear(y) Clear(x) On(x,z)
PutOn(x,y) PutOnTable(x)
~0On(x,z) ~Clear(y) ~0On(x,z) Clear(z) On(x, Table)

Clear(z) On(x,y)

+ several inequality constraints

Blocks World

START
On(C,A) On(A,Table) CiB) On(B, Table) CIC)

OnA,B) OnB.C)
FINISH

A
B

Blocks World

START
On(C,A) On(A, Table) CKB) On(B.Table) CIC)

\l

C-';B) Dﬁ,ﬁ,z) Cﬂ’?C)
PutOn(B,C)

/

On(A,B) Dﬂ(éc)
FINISH

A
B

Blocks World

B
On(C.A) On(A, Table) CB) On(B.Table) CI(C)

PutOn(A,B)

clobbers CHB)

— order after
PutOn(B,C)

'}Bj Dn',B z) r:f?c,i
_~| Puton(B,C)

PutOn(AB) |~ /
On}tlﬁ‘) C'ﬂ(écj

FINISH

Cl(A) onr,! z) G’(gj

A
B

Blocks World

START
On(C.A) On(A,Table) CKB) On(B,Table) CIC)

BllA

/ PULON(A,B)
clobbers CHB)
p P =:-Pnnder Eﬂer
on(C,z) CI(C) 0
PUtONTable(C) | _ Eﬁgg’%}m
~ == order after
\ PutOnTable(C)
~ g ~_ € }B) C’””B,E) C} C)
CliA) On(:!,z) CiBy ™~

—| PutOn (B,G}

PUtOn(AB) ==~ /
Oﬂ}ﬂﬁ) C'”(é@

FINISH

Blocks World

1 c|l |
| Stant Al |B

On(C, A) Onf{A Table) On(B, Takle)
Clear{C), Clear{3)

A
On{A, B) On(B, C) B
| Finizh | i

3. [Start]
On{C, A) On{d Tsble)Qn(B, Tabls)
Clegt(C) Cle

Clear{C)

Move(C, Table)

2. | Start |

On{C, A) OnfA, Table) Bn(B, Takle)
Clear(C) Clear(EB)
Clear Claar(C)

Move(B, C)

On{A, B) On(E
| Finish

Clear{B%Clear(C)

Claarf AN On(C, Table)
AMove(B, C)

Clear{A)|Clear(B)
Move(A, B)

Blocks World

4. | Start | 5. | Start |
Co(C, A) OniA. Table) Qu(B, Table) CmiC, A) OniA. Table) Ou(E, Table)
Clglar{C) Clear(ClgnC) Clear(B)

Clear{C) CleariC)

Move(C, Table) [~ CloarEN Cloar(C: Move(C, Table) Clear(B) Clear(C)
Clear(A|On(C, Table) [—te) e o c:.?]:-]\\\ Y

Clearf AN Clear(B) Clear(C [lea:[i],_['.ea:[ﬂ}.f/—f CleanC)

Move(A, B) Move(A, B)

~Clear{B)
s) OngE, O Ly) O, C)

| Fimsh | | Fimsh |

Least Commitment

 Basic [dea

— Make choices that are relevant fo selving the current
part of the problem

« [east Comnutment Choices

— Orderings: Leave actions unordered. unless they must be
sequential

— Bindings: Leave variables unbound, unless needed to unmfy
with conditions beiwng achieved

— Actions: Usnally not subject to “least commatment™
« Refinement

— Oaly add information to the current plan
— Transformational planning can remove choices

Terminology
Totally Ordered Plan

— There exists sufficient orderings O such that all actions in A4
are ordered with respect to each other

Fully Instantiared Plan

— There exists sufficient constraints in 5 such that all variables
are constramned to be equal to some constant

Consistenr Plan

— There are no contradictions i O or 8

Complete Plan
— Every precondition p of every action a, in 4 15 aclieved:
There exists an effect of an action a; that comes before o, and
unifies with p, and no action a, that deletes p comes between

a; and a,

POP-Algorithm

function POP (initial, goal, operators) returns plan

plan — MAKE- MINIMAL-PLAN(/nitial, goal)
loop do
if SOLUTION?(plan) then return plan % complete and consistent
Sneed, ¢ — SELECT-SUBGOAL(plan)
CHOOSE-OPERATOR(plan, operators, S,eed, C)
RESOLVE-THREATS(plan)
end

function SELECT-SUBGOAL(plan) returns S,,cqq. ¢

pick a plan step S;eeq from STEPS(plan)
with a precondition ¢ that has not been achieved
return S,eeqd, ¢

POP-Algorithm

procedure CHOOSE-OPERATOR(plan, operators, S,,c¢d, C)

choose a step S,44 from operators or STEPS(plan) that has ¢ as an effect
if there is no such step then fail
add the causal link Sgqq <. Sueed to LINKS(plan)

add the ordering constraint Sgqd < Sneed 10 ORDERINGS(plan)
if Sqqq 18 a newly added step from operators then
add S, to STEPS(plan)

add Srart < S,3q4 < Finish to ORDERINGS(plan)

POP-Algorithm

procedure RESOLVE-THREATS(plan)

for each S,;,., that threatens a link §; _ <. S in LINKS(plan) do
choose either
Demotion: Add S;ppeqe = Si to ORDERINGS(plan)
Promotion: Add §; < Sipreqr 10 ORDERINGS(plan)
if not CONSISTENT(plan) then fail
end

POP-Algorithm

Non-deterministic search for plan,
backtracks over choicepoints on failure:

— choice of 5,44 to achieve S,,cc4
— choice of promotion or demotion for clobberer

Sound and complete

There are extensions for:
disjunction, universal quantification, negation, conditionals

Efficient with good heuristics from problem description
But: very sensitive to subgoal ordering

Good for problems with loosely related subgoals

POP-Algorithm

* Advantages
— Parfial order planning 1s seund and complete
— Twypically produces opfimal solutions (plan length)
— Least commitment mav lead to shorter search times

« Disadvantages
— Significantly more complex algonithms (higher per-node
cost)
— Hard to determine what 15 true in a state
— Larger search space (Infinite!)

Plan Monitoring

Execution monitoring

Faillure: Preconditions of remaining plan not met

Action monitoring

Faillure: Preconditions of next action not met

(or action itself fails, e.qg., robot bump sensor)

Consequence of failure

MNeed to replan

Preconditions for the rest of the plan

Start

AtHWS) Sella HWWS, Dirilly

BTy
I ;HW;__ T T AWHWS
Havey Driffy
Gio(SI) Sells(SM.Barn.)
Sells(SM,Mifk)

AlSM) Sellg SMMilk)
Buy(Milk) Buv(Ban.)

\Aruﬂ—?/

Go{Homie)

Havey i) Atf-Home) H=seiBan.,) HBss O
| Finish |

Replanning

Simplest

On failure, replan from scratch

Better

Plan to get back on track by reconnecting to best continuation

O—O0—O0—H—0—0—0
|

I
!
;.-'
_-" Failure

-

START
Color(Chait,Blua) tmvefﬁed;

Get(Red)

H&VQLE&’}

Paint(Red)

{kmrﬁlﬂmﬁhﬂ

FINISH

Replanning

PRECONDITIONS FAILURE RESPONSE
none N/A
Have(Red) Fetch more red
Color(Chair,Red) Repaint

Motivation

 We may already have an idea how to go about solving
problems in a planning domain

 Example: travel to a destination that’s far away:
— Domain-independent planner:
* many combinations of vehicles and routes
— Experienced human: small number of “recipes”
e.g., flying:
. buy ticket from local airport to remote airport
. travel to local airport

1

2

3. fly to remote airport

4. travel to final destination

* How to enable planning systems to make use of such recipes?

Task: | travel(x,y)

-

W\

Method: taxi-travel(x,y)

get-taxi—{ ride(x,y) |—>|pay-driver

Method: air-travel(x,y)

~

-

get-ticket(a(x),a(y))
Y fly.a0)

\ 4

travel(a(y),y)

J | travel(x,a(x))

: go-to-travel-web-site
H T N P I annin g find-flights(BWI,TLS) ’

)

travel(UMD, LAAS)

get-ticket(BWI, TLS)

/

4
'

BACKTRACK -

Problem reduction

— Tasks (activities) rather than goals

— Methods to decompose tasks into
subtasks

— Enforce constraints
e E.g., taxi not good for long distances
— Backtrack if necessary

f\
]
1
]
/

get-ticket(1AD, TLYS)

\

go-to-travel-web-site
find-flights(IAD, TLYS)
buy-ticket(IAD,TLYS)

travel(UMD, IAD)

\

get-taxi
ride(UMD, I1AD)
pay-driver

fly(BWI, Toulouse)
travel(TLS, LAAS)

\

get-taxi
ride(TLS, Toulouse)
pay-driver

HTN Planning

* HTN planners may be domain-specific

* Or they may be domain-configurable

— Domain-independent planning engine

— Domain description that defines not only the operators,
but also the methods

— Problem description

* domain description, initial state, initial task network

Task: | travel(x,y)

W\

Method: air-travel(x,y)

\

C Method: taxi-travel(x,y)
get-taxif| ride(x,y) [—>|pay-driver
o J _

travel(x,a(x))

A\ 4

travel(a(y),y)

get-ticket(a(x),a(y))
Y fya@.a)

J

Simple Task Network (STN) Planning

* A special case of HTN planning
e States and operators

— The same as in classical planning

* Task: an expression of the form t(u,,...,u,)
— tis a task symbol, and each u; is a term
— Two kinds of task symbols (and tasks):

e primitive: tasks that we know how to execute directly

— task symbol is an operator name

* nonprimitive: tasks that must be decomposed into
subtasks

— use methods

Methods

* Totally ordered method: a 4-tuple

m = (name(m), task(m), precond(m), subtasks(m))

— name(m): an expression of the form n(x,...,x,)

* X,,..,X, are parameters - variable symbols

— task(m): a nonprimitive task

travel(x,y)

/

— precond(m): preconditions (literals) @

— subtasks(m): a sequence
of tasks (t,, ..., t)

long-distance(x,y)

B

buy-ticket (a(x), a(y))

travel (x, a(x))| [fly (a(x), a(y))||travel (a(y), y)

air-travel(x,y)
task: travel(x,y)
precond: long-distance(x,y)

subtasks: (buy-ticket(a(x), a(y)), travel(x,a(x)), fly(a(x), a(y)),

travel(a(y),y))

Methods (Continued)

* Partially ordered method: a 4-tuple
m = (name(m), task(m), precond(m), subtasks(m))

— name(m): an expression of the form n(x,...,x,)

* X,,..,X, are parameters - variable symbols
— task(m): a nonprimitive task /

— precond(m): preconditions (literals) @

— subtasks(m): a partially ordered |
set of tasks {t,, ..., t;} long-distance(x,y)

// \\‘

buy-ticket (a(x), a(y)) | |travel (x, a(x))|[fly (a(x), a(y))||travel (a(y), y)

\\%\/

travel(x,y)

air-travel(x,y)
task: travel(x,y)
precond: long-distance(x,y)
network: u,=buy-ticket(a(x),aly)), u,= travel(x,a(x)), us=fly(a(x), a(y))
u,= travel(a(y),y), {(us,us), (usus), (us,uy))

Domains, Problems, Solutions

STN planning domain: methods, operators

STN planning problem: methods, operators, initial state, task
list

Total-order STN planning domain and planning problem:

nonprimitive task

Solution: any executable plan @

that can be generated by

recursively applying precond
— methods to e
nonprimitive tasks primitive task primitive task

— operators to | '
primitive tasks @tor ins@ @tor ins@
N\ RN

So | |precond| |effects| |s;| |precond| |effects| | s

Example

* Suppose we want to move three stacks of containers in a way that
preserves the order of the containers

I

‘ cranel $ crane? * cranesl
c31
L 7l cll L 7| 32 L7
cll . plc c22 . pc c33 - P3¢
cl?2 L 7 c23 A c34 A4
pla plb v Y p2b _ p3a p3b ,
locl loc2 loc3
(a) initial state
If L Ij
‘ cranel l crang2 * crane3 c31
£21 c32
clil £22 c33
clz2 c23 c3d
. plc o plc L p3c
S 7 s 7 s 7
YA 1D A 52D YA 53D
pla 7 pZa : p3a ;
loc1 loc2 loc3

(b) goal

Example (continued)
* A way to move each stack:

— first move the

containers cranel crane2 crane3
from p to an =
intermediate A4 S /| 32 a—
_ cil pic | c22 p2c 33 p3C
pile r c12 7 23 L7 c34 7
pla plb | VE p2h p3a p3b
locl loc2 _ loc3
— then move (a) initial state
them from
rtoq .
cranel crane? * crane3 c31
e21 c32
cll cl2 c33
cl2 c23 c34
plc plc p3c
amy, T ey T A ey
pia plb | VE p2b n3a p3b
locl ' loc2 loc3

(b) goal

ta kE-Eﬂd-pUt(C, k‘! Ila Iiaplapga L1, "T?):
task: move-topmost-container(p1, p2)

precond: top(e,p1), on(e,z1), ; true if p1 is not empty TOtaI'O rder

attached(pi,11), belong(k,l1), ; bindl; and k

attached(ps.). top(za,) . bind1» and 2 FOrMuUlation

subtasks: {t.’:’lk&(k, ‘E].i C, "T‘lipl)l pUt(kﬂ 325 c, :‘-’“25102))

recursive-move(p, q, ¢, T):
task: move-stack(p, q)
precond: top(c,p), on(c,z) ; true if p is not empty
subtasks: (move-topmost-container(p, g), move-stack(p, q))
;; the second subtask recursively moves the rest of the stack

do-nothing(p, q)
task: move-stack(p, q)
precond: top(pallet,p) ; true if p is empty
subtasks: () ; no subtasks, because we are done

move-each-twice()

task: move-all-stacks()
precond: ; no preconditions
subtasks: ; move each stack twice:

(move-stack(pla,plb), move-stack(plb,plc),
move-stack(p2a,p2b), move-stack(p2b,p2c),
move-stack(p3a,p3b), move-stack(p3b,p3c))

I

‘cranel
A
cl1 . plc
cl2 g7
nia plb
locl
If
lcr‘anel
cl1
clz
. plc
— A
oia plb
locl

take-and-put(c, k‘! Ila Iﬁaplapﬂa L1, 'Tfi]:
task: move-topmost-container(p1, p2)

precond: top(c,p1), on(e,xz1), ; true if p1 is not empty Pa rtia I'O rder

attached(pi, 1), belong(k,l1), ; bindly and k

attached(pa. Io). top(za,pe) : bind s and 2, FOFMUlation

subtasks: {tEkE(k, "!11 C, -Tflupl]- pUt(ki I..'?.a c, $25p2)>

recursive-move(p, g, ¢, T):
task: move-stack(p, q)
precond: top(c,p), on(c,z) ; true if p is not empty
subtasks: {move-topmost-container(p, ¢), move-stack(p, q))
;; the second subtask recursively moves the rest of the stack

do-nothing(p, q)
task: move-stack(p, q)
precond: top(pallet,p) ; true if p is empty
subtasks: () ; no subtasks, because we are done

move-each-twice()
task: move-all-stacks()
precond: ; no preconditions
network: : move each stack twice:

u; =move-stack(pla,plb), us =move-stack(plb,plc),
u3z =move-stack(p2a,p2b), us =move-stack(p2b,p2c),
us =move-stack(p3a,p3b), ug =move-stack(p3b,p3c),
{(u1,u2), (ug, ua), (us, ug) }

I

‘cranel
A
cl1 . plc
cl2 g7
nia plb
locl
If
lcr‘anel
cl1
clz
. plc
— A
oia plb
locl

Solving Total-Order STN Planning Problems

TED(s, (#1;. .., 1), O, M) Total-order Forward Dec
if k = 0 then return () (i.e., the empty plan)

if t; is primitive then
active < {(a,o) | a is a ground instance of an operator in O,
o 1s a substitution such that a is relevant for o(t;),
and a is applicable to s}
if active = @ then return failure
nondeterministically choose any (a,0) € active

state s; task list T=(|t,|t,,...)

m <« TFD(y(s,a),o0({t2,...,), O, M) action/a
if r = failure then return failure
else return a. st state|y(s,a); task list T=(t,, ...)

else if #; is nonprimitive then

active < {m | m is a ground instance of a method in M,

o 1s a substitution such that m is relevant for o (t;),

and m is applicable to s} task list T=(t,] t,....)
if active = @ then return failure
nondeterministically choose any (m, o) € active
w <— subtasks(m).o({t2,..., %))
return TFD(s, w, O, M)

method instance m

task list T=(|uy,...,u, t,,...)

Comparison to
Forward and Backward Search

In state-space planning, must choose whether to search

forward or backward <

% -op,)-

s [opy

82'

In HTN planning, there are two choices to make about direction:

— forward or backward

— up or down

down and task t

forward >\

task t,

Comparison to

Forward and Backward Search

Like a backward search,
TFD is goal-directed

— Goals

Like a forward search, it generates actions

task t

1

correspond /4>\
S

to tasks
So

task t,

in the same order in which they’ll be executed

Whenever we want to plan the next task

— we’ve already planned everything that comes before it

— we know the current state of the world

Limitation of Ordered-Task Planning
* TFED requires totally ordered

methods get-both(p,q)

walk(a,b) pickup(p) walk(b,a) walk(a,b) pickup(p) walk(b,a)

e Can’t interleave subtasks of get-both(p,q)

N,
different tasks / \\

: . oto(b ickup-both(p, oto(a
* Sometimes this makes %7 PPRXNRO 0ORE

: AN
things awkward walk(a,) pickup(p) pickup(q) walk(b.a)

— Need to write methods that
reason globally instead of locally

Partially Ordered Methods

* With partially ordered methods, the subtasks can

be interleaved
get-both(p,q)

get(p) get(q)
—

walk(a,b) stay-at(b) pickup(p) pickup(g) walk(b,a) stay-at(a)

* Fits many planning domains better
* Requires a more complicated planning algorithm

o w0y Algorithm for Partial-Order STNs

if w = @ then return the empty pl_an Partial-order Forward Dec
nondeterministically choose any u € w that has no predecessors in w
if t,, is a primitive task then
active < {(a,o) | a is a ground instance of an operator in O,
o 15 a substitution such that name(a) = o(t,),
and a is applicable to s}
if active = @ then return failure n={a,,..., ar}; w={[t,|t,, t;...}
nondeterministically choose any (a, o) € active
m < PFD(y(s,a),0(w — {u}), O, M)
if m = failure then return failure
else return a.
else
active < {(m, o) | m is a ground instance of a method in M,
o 1s a substitution such that name(m) = o (t,),
and m is applicable to s}

operator instance| a

n={a, ..., a,|al}; w={t, t;, ...}

~ : - =1t |,t,...
if active = @ then return failure | w={ G-
nondeterministically choose any (m, o) € active method instance|m
nondeterministically choose any task network w' € 8(w, u, m, o) /

return(PFD(s, w', O, M) W' ={

tyy ety it }

Classical Planning: Limits

Instantaneous actions
No temporal constraints

No concurrent actions

No continuous quantities

Spacecraft Domain

Observation-1
priority
time window
target
instruments
duration

Observation-2

Observation-3

Observation-4

Obijective:
maximize science return

Spacecraft Domain

Observation-1
priority

time winduy
target
instruments —
duration
Obsewatiun-Z\

Observation-3

linked

Observation-4

. angle between targets

— turn duration

- calibration
target1
target2

Based on slides by Dave Smith, NASA Ames

consumables:

fuel
power

data storage

Objective:
maximize science return

cryogen

Time
Resources
Constraints
Uncertainty
Utility

Extensions

Model

State-centric (Mc Carthy):
for each time describe propositions that are true

Pointing(Earth)
Status(Cam2, Calibrated)

= Image(AT)

Pointing(A7)
| Status(Camz, Calibrated)
= Image(AT)

Turn(A7)

History-based (Hayes):
for each proposition describe times it is true

Pointing(Earth) Turn(AT) Pointing(A7)

Status(Camz2, Calibrated)

Based on slides by Dave Smith, NASA Ames

Temporal Interval Relations

A before B A B
A meets B A B
A
A overlaps B
B
A
A contains B
B
A
A=B
B
A
A staris B
B
A
A ends B
Baszed on slides by Dave Smith, HASA Ames B

Temporal

Operators

Takelmage (?target, ?instr):

Eff: Image(?target)

Pre: Status(?instr, Calibrated), Pointing(?target)

!

Takelmage (?target, ?instr)
contained-by Status(?instr, Calibrated)
contained-by Pointing(?target)
meets Image(“target)

Bazed on slides by Dave Smith, HASA Ames

Temporal Operators

Takelmage (?target, ?instr)
contained-by Status(?instr, Calibrated)
contained-by Pointing(?target)
meets Image(?target)

Pointing(?target)

l contains

: meets
Takelmage(?target, 7instr) —| Image(?target)

T contains
Status(?instr, Calibrated)

Based on slides by Dave Smith, NASA Ames

Temporal Operators

Takelmage (7target, ?instr)
contained-by Status(?instr, Calibrated)
contained-by Pointing(?target)
meets Image(?target)

J

Takelmage(?target, ?instr),
— dp {Status(?instr, Calibrated), A Contains(p, A)}

A da {Pointing(”?target), A Contains(q, A)}

A JR {Image(?target)s A Meets(A, R)}

Based on slides by Dave Smith, NAZA Ames

Temporal Operators

Turn (?target)

met-by Pointing(”direction)
meets Pointing(“target)
Pointing(?direction) meets, Turn(?target) meets, Pointing(?target)

Bas

Temporal Operators

Calibrate (?instr)
met-by Status(?instr, On)
contained-by CalibrationTarget(?target)
contained-by Pointing(?target)
meets Status(?instr, Calibrated)
Pointing(?target)
contains
Status(Zinstr, On) =2 Calibrate(2instr) oo Status(7instr, Calibrated)
“contains

CalibrationTarget(?7target)

ed on slides by Dave Smith, MASA Ames

Temporal Planning Problem

Pointing(Earth)

Status(Cam1, Off)

Past eets

Ba

Image(?target)

meeis

—oo \ Status(Cam2, On)

CalibrationTarget(T17)

sed on slides by Dave Smith, NASA Ames

b

Future

Fast

Consistent Complete Plan

Pointing{Earth)

Tumi{a7T) [Pee

Fointing{A7)

Status(Cam, Off)

J, contains

Takelmage(AT, Cam2)

Image(AT) .

Future

contains

Status(Cam2, Cn)

mests
Tum(T17) [—Peads Pointing(T17)
y contains
| reaE

Calibrate{Cam2) [HesE

Status{Cam2, Calibrated)

contains

CalibrationTarget(T17)

Based on slides by Dave Smith, HASA Ames

CBI-Planning

Choose:

Introduce an action & instantiate constraints
coalesce propositions

Propagate constraints

Based on slides by Dave Smith, NASA Ames

Past

eels

Initial Plan

Pointing(Earth)

Status(Cam1, Off)

Image(?target)

meels

Status(Camz2, On)

CalibrationTarget(T17)

Future

eets

Expansion

Pointing(Earth) before

Status(Cam1, Off)

Status(Camz2, On)

CalibrationTarget(T17)

l-.I
L

Pointing(A7)

lcontains

Takelmage(A7, ?Instr)

contains

Status(?instr, Calibrated)

meets

Image(A7)

meels

Future

Expansion

ing(Earth)

tus(Cam1, Off)

tus(Cam2, On)

yrationTarget(T17)

before

Status(?instr,
On)

Baszed on slides by Dave Smith, HASA Ames

meets meets
Pointing(?direction) Turn{A7)

Pointing(?caltarget)

contains

Calibrate(7instr)

contains

CalibrationTarget(?caltarget
)

FPointing(AT)

contains

Takelmage(A7, ?instr)

meets

A

3

contains

Status(?instr, Calibrated)

Imag

1g(Earth)

us{Cam1, Off)

Pointing(?direction)

before

Status(Cam2, On)

Coalescing

before

Pointing(T17)

contains

fTIBBtSh

Calibrate(Cam2)

Pointing(AT)

l contains

meetg

Takelmage(A7, Cam2)

F

contains

Image|

ﬂ’lBBtSh

F

3

contains

CalibrationTarget(T17)

Status(Camz2, Calibrated)

ting(Earth)

before

atus(Cam1, Off)

Status(Cam2, On)

Coalescing

Tum(AT)

meets

meefs

Pointing(AT)

Pointing(T17)

contains

meets

Calibrate(Cam2)

meefs

contains
L J

Takelmage(A7, Cam2)

contains

meets

[

contains

CalibrationTarget(T17)

Status(Cam2, Calibrated)

Imag

Expansion

Pointing(?direction)
ing(Earth) I

Turn(A7)

meets

meeis

Pointing(A7)

Pointing(T17)

itus(Cam1, Off)

meels

contains

Status(Camz2, On)

k.

Calibrate(Cam2)

meets

contains

¥

meets

Takelmage(A7, Cam2) —*

L]

contains

3

contains

CalibrationTarget{T17)

Status(Camz2, Calibrated)

Imag:

nting(Earth) {ets‘
Tum(T17)

Coalescing

Tum(AT)

meets

meels

Pointing(AT)

meets

tatus(Cam, Off)

Pointing(T17)

Status(Cam2, On)

meels

3

contains

W

Calibrate(Cam2)

meets

contains
¥

L

contains

meets[——
Takelmage(A7, Cam2) —*

1|.

contains

CalibrationTarget(T17)

Status(Camz2, Calibrated)

CBI-Algorithm

Expand(TQAs. constraints)

1. If the constraints are inconsistent. fail
2. If all TQAS have causal explanations, returni{ TQAS, constraints)

3. Select a g € TQAsS with no causal explanation
4. Choose:

Choose another p = TQAS such that g can be coalesced with p under constraints C
Expand(TQAs-g, constraints . C)
Choose an action that would provide a causal explanation for g

Let A be a new TQA for the action,
and let R be the set of new TQAs implied by the axioms for A

Let C be the constraints between A and R
Expand(TQAs v {A} = R, constraints . C)

CBI-Planners

Zeno (Penberthy)
Trains (Allen)
Descartes (Joslin)
IXTeT (Ghallab)

HSTS (Muscettola)

EUROPA (Jonsson)

intervals, no CSP

extreme least commitment

functional rep.

functional rep., activities

functional rep., activities

CBIl vs POP

CBl is similar to POP because least
commitment and partial order

But, temporal constraints in CBI ...

Contraints Temporal Network associated with
a plan

Constraint propagation

Temporal Constraints

y after X

sheforey |

Xmeetsy

X GVETI'I aps y _ y oV EI.I appe d_by X
X during y x[N * y contains X

X finishes y

y met-by X

y started-by x

y finished-by x

X equals y

y equals x

RAX Example: DS1

L
SEP &tguk contained_by N

contained_by

contained_ |
Accum | |
equals
! q) | 7 ,
SEP Actioh < |
. []
I 5[1[]1_”[] Shl"_nﬂ'ﬂ-ﬂ St _Ll] Dl‘"ltal Ed b}f S]lut_nﬂ“]l I
I |
Attitude | Tve) I
I |
. 1
Poke

Bazed on slides by Dave Smith, MASA Ames

Temporal Constraints as Inequalities

* X beforey X"<Y"

* Xmeetsy X =Y

* xoverlapsy (Y <X)&(X <Y
+ xduringy (Y <X)&(X"<Y")
+ Xstartsy (X=Y)& (X <Y
« X finishesy X <Y)&X=Y)
« xequalsy X =Y)& (X =Y

Inequalities may be expressed as binary interval relations:
X -Y" < [-nf, 0]

Metric Constraints

* Going to the store takes at least 10 minutes and at most 30 minutes.
— 10 < [T (store) — T-(store)] < 30

* Bread should be eaten within a day of baking.
— 0 < [T*(baking) — T-(eating)] < 1 day

* Inequalities. X™ < Y. may be expressed as binary interval relations:
— -mf<[XF-Y]<0

Temporal Constraint Networks

* A set of time pomts X, at which events occur.

« Unary constraints

(a,<X.<by)or(a, <X.<b,)or..

* Binary constraints

(ap = X;-X;=by)or(a; =X;-X;<b;)or

Temporal Constraint Satisfaction

Problem
[30:4[]}
[10.20] _ [60.inf]

Simple Temporal Networks

Simple Temporal Networks:

» A set of time pomts X. at which events occur.

¢ LTHEII'V CGIIStf‘]ill[S
(3, < X;<b,)

* Biary constraints
(8, = X -X;=by)

Sufficient to represent:
» most Allen relations

* simple metric constraints

Can’t represent:
* Disjoint activities

Simple Temporal Networks

[30,40]

[10,20]

STN example

430,340

A Complete CBI-Plan is a STN
o [IIN] Detta_V(@irection=, magnitude=200)
Goals
Power _J—

Point(a) [NRENN) Pointh)

Attitude

A Complete CBI-Plan is a STN

[1035, 1035]

<0, 0>

DS1: Remote Agent
Remote Agent on Deep Space 1

16.4121/6.834], Fall 03

Remote Agent Experiment: RAX

Remote Agent Experiment

See rax.arc.nasa.gov
May 17-18th experiment

Generate plan for course correction and thrust
Diagnose camera as stuck on
— Power constraints violated, abort current plan and replan
Perform optical navigation
Perform ion propulsion thrust

May 21th experiment.
Diagnose faulty device and
— Repair by issuing reset.
Diagnose switch sensor failure.
— Determine harmless, and continue plan.
Diagnose thruster stuck closed and
— Repair by switching to alternate method of thrusting.
Back to back planning

Copyright B. Williams 16.4127/6 834J. Fall 03

Remote Agent

Remote Agent

Mission
Maﬂ

Planner/

Scheduler Dlagnos_l 3
& Repair

Planning Experts
incl. Navigation

Copynght B. Williams 16.412]/6.8347, Fall 03

Remote Agent

Thrust
Goals

Attitude

16.412)/6.834], Fall 03

Remote Agent

* Mission Manager

Thrust
Goals Delta V(direction=b, magnitude=200)

Attitude

Copyright B. Williams 16.4121/6.834, Fall 03

Remote Agent

e Constraints:

Delta V(direction=b, magnitude=200)

Engine

Copyright B. Williams 16.4121/6.8347, Fall 03

Remote Agent

 Planner starts

Thrust
Goals Delta V(direction=b, magnitude=200)

Attitude

Copyright B. Williams 16.4121/6.8347, Fall 03

Remote Agent

* Planning

Thrust
Goals Delta V(direction=b, magnitude=200)

Aftitude

Copyright B. Williams 16.4121/6.8347, Fall 03

Remote Agent

 Final Plan

Thrust
Goals Delta V(direction=b, magnitude=200)

Afttitude

Copyright B. Williams 16.4121/6 8341, Fall 03

Remote Agent

e Constraints

Thrust
Goals Delta V(direction=b, magnitude=200)

Attitude

Engine

Copyright B. Williams 16.4121/6.8347, Fall 03

Remote Agent

* Flexible Temporal Plan through least
commitment

Remote Agent

e Executive system dispatch tasks

Remote Agent

Mission
Maﬂ
Planner/ , .
Scheduler D1ag1105_1 3
& Repair

Planning Experts
incl. Navigation

Copyright B. Williams 16.4121/6.8347, Fall 03

Remote Agent
* Executing Flexible Plans

 Propagate temporal constraints
* Select enabled events

« Terminate preceding activities
* Run next activities

16.412)/6.834J, Fall 03

Remote Agent

* Constraint propagation can be costly

CONTROLLED SYSTEM

16.412)/6.834J, Fall 03

Remote Agent

* Constraint Propagation can be costly

CONTROLLED SYSTEM

Copyright B. Williams 16.412/6.8341, Fall 03

Remote Agent

e Solution: compile temporal constraints to an
efficient network

CONTROLLED SYSTEM

Copyright B. Williams 16.4121/6.834], Fall 03

