
Task Planning

Architetture Robotiche

• Deliberativo:
pianificazione, ragionamento, decisione

• Esecutivo:
monitoraggio dell’esecuzione,
sequenziamento dei comandi

• Funzionale:
funzionalità di controllo attuative e percettive

Architetture a 3 Livelli

Architetture a 3 Livelli: ATLANTIS

Architettura di RHINO la guida robotica
del museo di Bonn (1995); simile
MINERVA (1998) ad Atlanta

Architettura a 3 Livelli per un robot
mobile:

1. Funzionale:
Mapping, Localizzazione,
Avoidance

2. Esecutivo:
Sequencer, monitor

3. Deliberativo:
Task Planner

Architetture di RIHINO

Esempio: RHINO Architettura

• LAAS architecture:

Tre Livelli:

1. Deliberativo
(temporal planner)

2. Esecutivo
(PRS)

3. Funzionale
(GENOME)

Architetture a 3 Livelli

Controllo di Rover

Architetture a 3 Livelli

7

Pianificazione Deliberativa

• Are often aligned with hierarchical control community
within robotics

• Hierarchical planning systems typically share a structured
and clearly identifiable subdivision of functionality regarding
to distinct program modules that communicate with each
other in a predictable and predetermined manner.

• At a hierarchical planner’s highest level, the most global and
least specific plan is formulated.

• At the lowest levels, rapid real-time response is required,
but the planner is concerned only with its immediate
surroundings and has lost the sight of the big picture.

8

Strategic
Global
Planning

Tactical
Intermediate
Planning

Short-Term
Local
Planning

Actuator
Control

Actions

Global
Knowledge

Local
World
Model

Intermediate
Sensor
Interpretations

Sensing Real - Time

Time
Horizon

Long - Term

Spatial
Scope

Global

Immediate
Vicinity

Planners
World Model

9

Planning as Search

• Planning is looking ahead, searching

• The goal is a state.

• The robot's entire state space is enumerated, and
searched, from the current state to the goal state.

• Different paths are tried until one is found that reaches
the goal.

• If the optimal path is desired, then all possible paths must
be considered in order to find the best one.

10

Plan-based vs. BB System

Plan-base control

• Rely heavily on world models,

• Can readily integrate world knowledge,

• Have a broad perspective and scope.

BB Control Systems

• afford modular development,

• Real-time robust performance within a changing world,

• Incremental growth

• are tightly coupled with arriving sensory data.

11

Hybrid Control

• The basic idea is simple: we want the best of both worlds
(if possible).

• The goal is to combine closed-loop and open-loop
execution.

• That means to combine reactive and deliberative control.

• This implies combining the different time-scales and
representations.

• This mix is called hybrid control.

Hybrid robotic architectures believe that a union of deliberative and
behavior-based approaches can potentially yield the best of both worlds.

12

Hybrid Systems

Planning and reaction can be tied:

A: hierarchical integration -
planning and reaction are involved
with different activities, time scales

Level N

Level 2

Level 1

Level 0

More Reactive

More Deliberative

A

Deliberation Projection

Planner

Reactor

B

Behavioral Advice
Configurations
Parameters

B: Planning to guide reaction -
configure and set parameters for
the reactive control system.

C: coupled - concurrent activities

Planner Reactor

C

13

Hybrid Systems

In summary, a modern hybrid system typically consists of three components:

a reactive layer

a planner

a layer that puts the two together.

=> Hybrid architectures are often called three-layer architectures.

It was observed that the emerging architectural design of choice is:
– multi-layered hybrid comprising of

* a top-down planning system and
* a lower-level reactive system.

– the interface (middle layer between the two components) design is
a central issue in differentiating different hybrid architectures.

14

The Magic Middle: Executive Control

• The middle layer has a hard job:

1) compensate for the limitations of both the planner and the reactive
system

2) reconcile their different time-scales.

3) deal with their different representations.

4) reconcile any contradictory commands between the two.

• This is the challenge of hybrid systems

=> achieving the right compromise between the two ends.

Planning & Execution

Planning Problem

Classical Planning

Esempio: Blocks World

STRIPS Model

Init: On(a,Table), On(b,table), On(c,table) Goal: On(a,table),On(b,a), On(c,b)

Spacecraft Domain

Planning Problem

• Planning Domain: Descrizione degli operatori
in termini di precondizioni ed effetti

• Planning Problem: Stato iniziale, Dominio,
Goals

Tipi di Planning

• Classical Planning

• Temporal Planning

• Conditional Planning

• Decision Theoretic Planning

• …

• Least-Commitment Planning

• HTN planning

• …

Paradigms

State Space vs. Plan Space

• Planning in the state space:

– sequence of actions, from the initial state to the
goal state

• Planning in the plan space:

– Sequence of plan transformations, from an initial
plan to the final one

Plan-State Search

State-Space vs Plan-Space

Search in the Plan-Space

Plan-State Search

Partially-Ordered Plans

Partial-Order Plans

Partial-Order Plans

General Approach

Blocks World

Blocks World

Blocks World

Blocks World

Blocks World

Blocks World

Blocks World

Least Commitment

Terminology

POP-Algorithm

POP-Algorithm

POP-Algorithm

POP-Algorithm

POP-Algorithm

Plan Monitoring

Preconditions for the rest of the plan

Replanning

Replanning

Motivation
• We may already have an idea how to go about solving

problems in a planning domain

• Example: travel to a destination that’s far away:

– Domain-independent planner:

• many combinations of vehicles and routes

– Experienced human: small number of “recipes”

e.g., flying:

1. buy ticket from local airport to remote airport

2. travel to local airport

3. fly to remote airport

4. travel to final destination

• How to enable planning systems to make use of such recipes?

HTN Planning

travel(UMD, LAAS)

get-ticket(IAD, TLS)

travel(UMD, IAD)

fly(BWI, Toulouse)

travel(TLS, LAAS)

get-taxi

ride(TLS,Toulouse)

pay-driver

go-to-travel-web-site

find-flights(IAD,TLS)

buy-ticket(IAD,TLS)

get-taxi

ride(UMD, IAD)

pay-driver

Task:

• Problem reduction

– Tasks (activities) rather than goals

– Methods to decompose tasks into
subtasks

– Enforce constraints

• E.g., taxi not good for long distances

– Backtrack if necessary

Method: taxi-travel(x,y)

get-taxi ride(x,y) pay-driver

get-ticket(BWI, TLS)

go-to-travel-web-site

find-flights(BWI,TLS)

BACKTRACK

travel(x,y)

Method: air-travel(x,y)

travel(a(y),y)
get-ticket(a(x),a(y))

travel(x,a(x))

fly(a(x),a(y))

HTN Planning
• HTN planners may be domain-specific

• Or they may be domain-configurable

– Domain-independent planning engine

– Domain description that defines not only the operators,
but also the methods

– Problem description
• domain description, initial state, initial task network

Task:

Method: taxi-travel(x,y)

get-taxi ride(x,y) pay-driver

travel(x,y)

Method: air-travel(x,y)

travel(a(y),y)
get-ticket(a(x),a(y))

travel(x,a(x))

fly(a(x),a(y))

Simple Task Network (STN) Planning

• A special case of HTN planning

• States and operators

– The same as in classical planning

• Task: an expression of the form t(u1,…,un)

– t is a task symbol, and each ui is a term

– Two kinds of task symbols (and tasks):

• primitive: tasks that we know how to execute directly
– task symbol is an operator name

• nonprimitive: tasks that must be decomposed into
subtasks
– use methods

Methods
• Totally ordered method: a 4-tuple

m = (name(m), task(m), precond(m), subtasks(m))

– name(m): an expression of the form n(x1,…,xn)

• x1,…,xn are parameters - variable symbols

– task(m): a nonprimitive task

– precond(m): preconditions (literals)

– subtasks(m): a sequence
of tasks t1, …, tk

air-travel(x,y)

task: travel(x,y)

precond: long-distance(x,y)

subtasks: buy-ticket(a(x), a(y)), travel(x,a(x)), fly(a(x), a(y)),

travel(a(y),y)

travel(x,y)

buy-ticket (a(x), a(y)) travel (x, a(x)) fly (a(x), a(y)) travel (a(y), y)

long-distance(x,y)

air-travel(x,y)

• Partially ordered method: a 4-tuple
m = (name(m), task(m), precond(m), subtasks(m))

– name(m): an expression of the form n(x1,…,xn)

• x1,…,xn are parameters - variable symbols

– task(m): a nonprimitive task

– precond(m): preconditions (literals)

– subtasks(m): a partially ordered
set of tasks {t1, …, tk}

air-travel(x,y)

task: travel(x,y)

precond: long-distance(x,y)

network: u1=buy-ticket(a(x),a(y)), u2= travel(x,a(x)), u3= fly(a(x), a(y))

u4= travel(a(y),y), {(u1,u3), (u2,u3), (u3 ,u4)}

travel(x,y)

buy-ticket (a(x), a(y)) travel (x, a(x)) fly (a(x), a(y)) travel (a(y), y)

long-distance(x,y)

air-travel(x,y)

Methods (Continued)

Domains, Problems, Solutions

• STN planning domain: methods, operators

• STN planning problem: methods, operators, initial state, task
list

• Total-order STN planning domain and planning problem:

• Solution: any executable plan
that can be generated by
recursively applying
– methods to

nonprimitive tasks

– operators to
primitive tasks

nonprimitive task

precond

method instance

s0 precond effects precond effectss1 s2

primitive taskprimitive task

operator instance operator instance

Example
• Suppose we want to move three stacks of containers in a way that

preserves the order of the containers

Example (continued)
• A way to move each stack:

– first move the
containers
from p to an
intermediate
pile r

– then move
them from
r to q

Total-Order
Formulation

Partial-Order
Formulation

Solving Total-Order STN Planning Problems

state s; task list T=(t1 ,t2,…)

action a

state (s,a) ; task list T=(t2, …)

task list T=(u1,…,uk ,t2,…)

task list T=(t1 ,t2,…)

method instance m

Total-order Forward Dec

Comparison to
Forward and Backward Search

• In state-space planning, must choose whether to search
forward or backward

• In HTN planning, there are two choices to make about direction:

– forward or backward

– up or down

• TFD goes
down and
forward

s0 s1 s2 … …op1 op2 opiSi–1

s0 s1 s2 …

task tm …

…

task tn

op1 op2 opiSi–1

task t0

Comparison to
Forward and Backward Search

• Like a backward search,
TFD is goal-directed

– Goals
correspond
to tasks

• Like a forward search, it generates actions
in the same order in which they’ll be executed

• Whenever we want to plan the next task

– we’ve already planned everything that comes before it

– we know the current state of the world

s0 s1 s2 …

task tm …

…

task tn

op1 op2 opiSi–1

task t0

• TFD requires totally ordered
methods

• Can’t interleave subtasks of
different tasks

• Sometimes this makes
things awkward

– Need to write methods that
reason globally instead of locally

get(p) get(q)

get-both(p,q)

goto(b)

pickup(p) pickup(q)

get-both(p,q)

Limitation of Ordered-Task Planning

pickup-both(p,q)

walk(a,b)

goto(a)

walk(b,a)

pickup(p)walk(a,b) walk(b,a) pickup(p)walk(a,b) walk(b,a)

Partially Ordered Methods

• With partially ordered methods, the subtasks can
be interleaved

• Fits many planning domains better

• Requires a more complicated planning algorithm

walk(a,b) pickup(p)

get(p)

stay-at(b) pickup(q)

get(q)

get-both(p,q)

walk(b,a) stay-at(a)

π={a1 …, ak, a }; w' ={t2, t3, …}

w={ t1 ,t2,…}

method instance m

w' ={ t11,…,t1k ,t2,…}

π={a1,…, ak}; w={ t1 ,t2, t3…}

operator instance a

Algorithm for Partial-Order STNs
Partial-order Forward Dec

Classical Planning: Limits

Spacecraft Domain

Spacecraft Domain

Extensions

• Time

• Resources

• Constraints

• Uncertainty

• Utility

• …

Model

Temporal Interval Relations

Temporal Operators

Temporal Operators

Temporal Operators

Temporal Operators

Temporal Operators

Temporal Planning Problem

Consistent Complete Plan

CBI-Planning

Initial Plan

Expansion

Expansion

Coalescing

Coalescing

Expansion

Coalescing

CBI-Algorithm

CBI-Planners

CBI vs POP

• CBI is similar to POP because least
commitment and partial order

• But, temporal constraints in CBI …

• Contraints Temporal Network associated with
a plan

• Constraint propagation

Temporal Constraints

RAX Example: DS1

Temporal Constraints as Inequalities

Metric Constraints

Temporal Constraint Networks

Temporal Constraint Satisfaction
Problem

Simple Temporal Networks

Simple Temporal Networks

STN example

Start End

A Complete CBI-Plan is a STN

A Complete CBI-Plan is a STN

DS1: Remote Agent

Remote Agent Experiment: RAX

Remote Agent

Remote Agent

Remote Agent

• Mission Manager

Remote Agent

• Constraints:

Remote Agent

• Planner starts

Remote Agent

• Planning

Remote Agent

• Final Plan

Remote Agent

• Constraints

Remote Agent

• Flexible Temporal Plan through least
commitment

Remote Agent

• Executive system dispatch tasks

Remote Agent
• Executing Flexible Plans

Remote Agent

• Constraint propagation can be costly

Remote Agent

• Constraint Propagation can be costly

Remote Agent

• Solution: compile temporal constraints to an
efficient network

