
28th International Conference on
Automated Planning and Scheduling

June 24-29, 2018, Delft, the Netherlands

2018 - Delft

PlanRob 2018
Proceedings of the 6th Workshop on

Planning and Robotics

Edited by:

Alberto Finzi, Erez Karpas, Goldie Nejat,
AndreA Orlandini, Siddharth Srivastava

Organization

Alberto Finzi
Università di Napoli ”Federico II”, Italy

Erez Karpas
Technion - Israel Institute of Technology, Israel

Goldie Nejat
University of Toronto, Canada

AndreA Orlandini
ISTC-CNR, Italy

Siddharth Srivastava
Arizona State University, Arizona, USA.

Program Committee

Chris Beck (University of Toronto, Canada)
Arthur Bit-Monnot (LAAS, France)
Amedeo Cesta (ISTC-CNR, Italy)
Marcello Cirillo (Scania, Sweden)
Patrick Doherty (Linkoping University, Sweden)
Alberto Finzi (Universita’ di Napoli Federico II, Italy)
Robert Fitch (University of Sydney, Australia)
Nick Hawes (University of Oxford, UK)
Felix Ingrand (LAAS-CNRS, France)
Erez Karpas (Technion, Israel)
Sven Koenig (University of Southern California, USA)
Daniele Magazzeni (King’s College, UK)
Karen Myers (SRI, USA)
Daniele Nardi (Sapienza Universià di Roma, Italy)
Goldie Nejat (University of Toronto)
AndreA Orlandini (ISTC-CNR, Italy)
Frederic Py (University of Porto, Portugal)
Marco Roveri (FBK, Italy)
Enrico Scala (FBK, Italy)
Siddharth Srivastava (University of Arizona, USA)
Sebastian Stock (DFKI, Germany)
Alessandro Umbrico (ISTC-CNR, Italy)
Tiago Stegun Vaquero (JPL, USA)

ii

Additional Reviewers

Jiaoyang Li (University of Southern California, USA)
Hang Ma (University of Southern California, USA)

iii

Foreword

AI Planning & Scheduling (P&S) methods are crucial to enable intelligent robots to perform autonomous, flexible,
and interactive behaviors, but a deep integration into robotic architectures is needed for their effective deployment.
This requires a close collaboration between researchers from both the AI and the Robotics communities. In this
direction, the PlanRob workshop aims at constituting a stable, long-term forum where researchers from both the
P&S and the Robotics communities can openly discuss about relevant issues, research and development progress,
future directions and open challenges related to P&S when applied to Robotics.

Started during ICAPS 2013 in Rome (Italy), followed by several editions at ICAPS 2014 in Portsmouth (NH,
USA), ICAPS 2015 in Jerusalem (Israel), ICAPS 2016 in London (UK), and ICAPS 2017 in Pittsburgh, the PlanRob
WS series1 has gathered excellent feedback from the P&S community which is also confirmed by the organisation of a
specific Robotics Track starting (since ICAPS 2014) and a Dagstuhl seminar on Planning and Robotics in 2017. This
sixth edition of the PlanRob workshop has been proposed in synergy with the Robotics Track to further enforce its
original goals and to maintain an informal forum where more preliminary/visionary works can be discussed. PlanRob
2018 succeeded in achieving these objectives providing a rich and articulated program. Indeed, 19 papers have been
accepted for oral presentation covering many relevant topics in Planning and Robotics such as mission planning,
multi-robot collaboration, activity/goal recognition, task and motion planning, integrated planning and execution,
interactive plan execution, real applications and case studies. The workshop program is completed by an invited talk
and a discussion panel.

The varieties of research topics and results collected in these proceedings reflect a stimulating and intense research
activity along with a growing interest for a forum where the Planning and Robotics communities can find a common
ground. Among the numerous people that contribute to the success of PlanRob 2018, we would first of all like to
thank the authors of the submitted papers and all workshop attendees. Moreover, we sincerely thank the program
committee for their important work on the reviewing process.

Alberto Finzi, Erez Karpas, AndreA Orlandini, Goldie Nejat and Siddharth Srivastava
June 2018

1http://pst.istc.cnr.it/planrob/

iv

Contents

Self-Reliant Rover Design for Increasing Mission Productivity
Daniel Gaines, Joseph Russino, Gary Doran, Ryan Mackey, Michael Paton, Brandon Rothrock, Steve Schaf-
fer, Ali-Akbar Agha-Mohammadi, Chet Joswig, Heather Justice, Ksenia Kolcio, Jacek Sawoniewicz, Vincent
Wong, Kathryn Yu, Gregg Rabideau, Robert Anderson and Ashwin Vasavada 1

Dynamic Shared Computing Resources for Multi-Robot Mars Exploration
Joshua Vander Hook, Tiago Stegun Vaquero, Martina Troesch, Jean-Pierre de La Croix, Joshua Schoolcraft,
Saptarshi Bandyopadhyay and Steve Chien 11

An Approach for Autonomous Multi-rover Collaboration for Mars Cave Exploration: Preliminary
Results
Tiago Vaquero, Martina Troesch and Steve Chien 19

Using Squeaky Wheel Optimization to Derive Problem Specific Control Information for a One
Shot Scheduler for a Planetary Rover
Wayne Chi, Jagriti Agrawal and Steve Chien 27

Front Delineation and Tracking with Multiple Underwater Vehicles
Andrew Branch, Mar M. Flexas, Brian Claus, Andrew F. Thompson, Evan B. Clark, Yanwu Zhang, James
C. Kinsey, Steve Chien, David M. Fratantoni, Brett Hobson, Brian Kieft and Francisco P. Chavez 36

Autonomous Nested Search for Hydrothermal Venting
Andrew Branch, Guangyu Xu, Michael V. Jakuba, Christopher R. German, Steve Chien, James C. Kinsey,
Andrew D. Bowen, Kevin P. Hand and Jeffrey S. Seewald 46

Using a Hybrid AI-Planner to Plan Feasible Flight Paths for HAPS-Like UAVs
Jane Jean Kiam, Enrico Scala, Miquel Ramirez and Axel Schulte 55

A Dynamic Task Planning System for Advanced Manufacturing Scenarios
Amedeo Cesta, Andrea Orlandini and Alessandro Umbrico 65

Integrating Classical Planning and Real Robots in Industrial and Service Robotics Domains
Oscar Lima, Rodrigo Ventura and Iman Awaad 75

Interactive Plan Execution during Human-Robot Cooperative Manipulation
Jonathan Cacace, Riccardo Caccavale, Alberto Finzi and Vincenzo Lippiello 82

Action trees for scalable goal recognition in robotic applications
Helen Harman, Keshav Chintamani and Pieter Simoens 89

Robust Human Activity Monitoring Using Qualitative Spatial Representation and Reasoning
Sang Uk Lee, Ashkan Jasour, Andreas Hofmann and Brian Williams 94

Domain Reasoning for Robot Task Planning - A Position Paper
Uwe K öckemann, Ali Abdul Khaliq, Federico Pecora and Alessandro Saffiotti 102

Improving Trajectory Optimization using a Roadmap Framework
Siyu Dai, Matthew Orton, Shawn Schaffert, Andreas Hofmann and Brian Williams 106

An Anytime Algorithm for Task and Motion MDPs
Siddharth Srivastava, Nishant Desai, Richard Freedman and Shlomo Zilberstein 115

v

A Unified Framework for Planning in Adversarial and Cooperative Environments
Anagha Kulkarni, Siddharth Srivastava and Subbarao Kambhampati 123

What do you really want to do? Representing and Reasoning with Intentional Actions on a Robot
Rocio Gomez, Mohan Sridharan and Heather Riley 133

Sound and Complete Reactive UAV Behavior using Constraint Programming
Hoang Tung Dinh, Mario Henrique Cruz Torres and Tom Holvoet 143

Combining Planning and Model Checking to Get Guarantees on the Behavior of Safety-Critical
UAV Systems
Hoang Tung Dinh, Mario Henrique Cruz Torres and Tom Holvoet 152

vi

Self-Reliant Rover Design for Increasing Mission Productivity
Daniel Gaines, Joseph Russino, Gary Doran, Ryan Mackey, Michael Paton, Brandon Rothrock, Steve Schaffer,

Ali-akbar Agha-mohammadi, Chet Joswig, Heather Justice, Ksenia Kolcio, Jacek Sawoniewicz,
Vincent Wong, Kathryn Yu, Gregg Rabideau, Robert Anderson, Ashwin Vasavada

Jet Propulsion Laboratory Okean Solutions
California Institute of Technology 1463 E Republican St 32A

4800 Oak Grove Drive Seattle, Washington 98112
Pasadena, California 91109 ksenia@okeansolutions.com

{firstname.lastname}@jpl.nasa.gov
Abstract

Achieving consistently high levels of productivity has been a
challenge for Mars surface missions. While the rovers have
made major discoveries and dramatically increased our un-
derstanding of Mars, they often require a great deal of effort
from the operations teams, and achieving mission objectives
can take longer than anticipated. The objective of this work is
to identify changes to flight software and ground operations
that enable high levels of productivity with reduced reliance
on ground interactions. This will enable the development
of Self-Reliant Rovers: rovers that make use of high-level
guidance from operators to select their own situational activ-
ities and respond to unexpected conditions, all without de-
pendence on ground intervention. In this paper we describe
the system we are developing and illustrate how it enables
increased mission productivity.

Introduction
Maintaining high productivity for the Mars exploration rover
missions is very challenging. While the operations teams
have achieved impressive accomplishments with the rovers,
doing so often requires significant human effort in planning,
coordinating, sequencing, and validating command prod-
ucts for the robots. A primary reason for these productiv-
ity challenges is the heavy reliance on interaction between
the rovers and ground operators in order to accomplish mis-
sion objectives. For example, prior rovers depend on oper-
ators to provide a detailed schedule of activities, select sci-
ence targets, navigate around slip hazards, and recover from
anomalies. When combined with the limited communication
opportunities between the rovers and human operators, this
reliance on ground interaction results in under-utilization of
vehicle resources and increased days on Mars to accomplish
mission objectives.

The objective of our work is to identify changes to
flight software and mission operations that improve rover
efficiency and reduce dependency on ground interactions.
This will facilitate the development of Self-Reliant Rovers:
rovers that make use of high-level guidance from operators
to select their own situational activities and respond to un-
expected conditions, all with reduced reliance on human in-
tervention.

Copyright c© 2018. All rights reserved.

Although our objective is to reduce the reliance on ground
support in order to promote productivity, we are by no means
attempting to remove human operator involvement. To the
contrary, our objective is to increase the scope of operator
input so that operators can effectively guide rover activity
without requiring up to date knowledge of the rover and its
environment.

This paper will present the Self-Reliant Rover design and
illustrate how it enables rovers to maintain high levels of
productivity. In this paper, we will highlight four main com-
ponents of the design:

Campaign Intent: Allows operators to provide the rover
with high-level guidance over the rover’s activity plan-
ning and autonomous science

Slip-aware navigation: Enables the rover to assess the
amount of predicted slip in its environment and plan safe
paths to avoid both geometric and slip hazards.

Model-based health assessment: Improves the rover’s
ability to detect and isolate problems, and increases the
range of problems from which it can recover on its own

Global localization: Enables the rover to remove posi-
tional knowledge error that accumulates during naviga-
tion

Overview of the Self-Reliant Rover Design
We are designing the Self-Reliant Rover system within the
context of the Jet Propulsion Laboratory flight software ar-
chitecture (Weiss 2013). Figure 1 provides an overview of
this architecture and the changes we are introducing.

The Jet Propulsion Laboratory (JPL) architecture consists
of components organized into three layers: behaviors, ac-
tivities, and functions. Each successive layer has a reduced
degree of autonomy, fewer interactions with other compo-
nents, and a narrower scope of system knowledge.

Behavior: Collection of autonomously scheduled activities
in service of an over-arching mission goal. Contains
broad system knowledge.

Activity: Coordinates function invocations to achieve some
high-level spacecraft task. Encompasses knowledge local
to the activity being managed.

1

Functional Layer

Electrical Power System

Device Managers

Telecom

C&DH

Time

Behavior Layer

Activity Layer
Mechanisms

Mast

Locomotor

Uses

Uses

System Behaviors

Communication

Thermal

Wakeup / Shutdown

Planning and Execution

Goal Planner

Executive

Layer
Component

Node

Legend

New / Modified
Node

Science
Autonomous

Science

Panorama Manager

Mobility

Mobility
Manager

Mobility Health
Manager

Pose Estimation

Data
Management

Target
Database

EH&A

Figure 1: Self-Reliant Rover flight software architecture.

Function: Primitive action required to achieve a single
well-delineated spacecraft objective. Contemplates only
highly-localized function-specific knowledge.
Following is a summary of the changes we are introducing

for the Self-Reliant Rover approach. Subsequent sections
will provide more details on the most significant changes.
Goal Planner: Generates onboard activity plans to accom-

plish mission goals. Improves resource utilization by syn-
chronizing plans with in-situ vehicle resource knowledge.
Responds to new goals identified by onboard autonomous
science.

Executive: Executes plans generated by the Goal Planner
and provides updates to facilitate re-planning.

Autonomous Science: Identifies science targets when the
rover enters an unexplored area. Increases the scope of
guidance that scientists can provide and deepens the inte-
gration with onboard planning, as compared with previ-
ous autonomous science on MSL (Francis et al. 2017).

Mobility Manager: Improves navigation by reasoning
about terrain-dependent slip.

Mobility Health Manager: Increases the robustness of
mobility activities and the scope of faults from which
the rover can autonomously recover by leveraging model-
based fault detection and isolation.

Pose Estimation: Maintains high quality position knowl-
edge over long traverse distances via onboard global lo-
calization (a technique that previously required ground
operator support).

Target Database: Facilitates communication about targets
of interest among scientists, engineers, and onboard au-
tonomous components by leveraging previous ground op-
erations tools onboard.

Data Management: Provides queryable onboard data
product access to autonomous components such as
onboard science analysis.

EH&A: Provides onboard access to engineering, house-
keeping, and accountability telemetry for use by au-
tonomous reasoning components.

Campaign Intent for Operator Guidance
A significant challenge to maintaining high rover productiv-
ity under reduced operator interaction is conveying operator
guidance and objectives without requiring operators have up
to date knowledge of the rover and its environment. Our
approach is motivated by prior operations practice. In tra-
ditional operations, each planning cycle begins with a reca-
pitulation of the current long term objectives of the mission
presented in the context of the latest available rover state
data (Chattopadhyay et al. 2014). The human operators as-
similate all the various objectives, state data, and mission
knowledge in order to synthesize a high quality plan that
makes progress toward the goals while respecting limited
rover resources such as time, energy, and data volume.

The team will typically have several high-level objectives
to pursue. For example, during MSL’s Pahrump Hills Walk-
about campaign, the primary focus of the mission was to col-
lect observations of exposed outcrop forming the basal layer
of Mount Sharp (Gaines et al. 2016). This required driv-
ing the rover to several locations and acquiring high qual-
ity Mastcam and ChemCam observations selected locally at
each stop.

Concurrently, the team also pursued a variety of supple-
mentary objectives. During this campaign, Siding Spring
(Comet C/2013 A1) would pass Mars closer than any other
known comet flyby of Earth or Mars. The operations team
thus incorporated comet observations into the rover plans.
In addition, the team planned ongoing periodic observations
to study clouds, dust devils, and atmospheric opacity. A
wide range of recurring engineering activities also had to be
included: instrument calibrations, telemetry collection, and
system configuration management.

Importantly, the quality of the plan is not just a function
of what activities are scheduled; it depends on how well they
relate to the current objectives and to each other. Each indi-
vidual outcrop observation was valuable, but understanding
the geology of the region required accumulation of a vari-
ety of observations that were spatially distributed through-
out the area. Periodic tasks such as atmospheric measure-
ments and engineering activities had similar preferred tem-
poral patterns that the team must try to match.

We developed the concept of campaign intent to convey
such information to the rover so that it may generate its own
prudent in-situ plans when human guidance is prohibitively
delayed. Campaign intent specifies a set of goals for the
rover and the relationships among those goals. We gleaned
three initial types of campaign intent from MSL scenarios,
as summarized in Figure 2:

Class sampling: Choose observation targets that best ex-
emplify a particular feature (e.g. layering). Once iden-
tified, the targets form a goal set. Value typically accumu-

2

Poten&al)end+of+drive)imaging)stops)
Poten&al)mid+drive)imaging)stops)

Book_Cliffs)

Pink_Cliffs)

Chinle)

Zion_Canyon)
Whale_Rock)

Comb_Ridge)

Sol 1439 Navcam

Sol 1441 Mastcam

Sol 1441 RMI

State-Based Sampling
• Drilling at varying elevations
• Surveys over rover traverse

Temporally-Periodic Sampling
• Across diurnal cycle
• Over seasons
• Periodic vehicle maintenance

Sampling from a Set
• Formations, contacts
• Veins, light/dark

toned rocks
• Textures, layers

Figure 2: Summary of campaign intent types.

lates with additional samples from the set, but eventually
reaches a point of diminishing returns.

Temporally-Periodic sampling: Schedule goals to match
a repeating temporal pattern (e.g. hourly). The preferred
goal cadence typically allows at least some timing flexi-
bility.

State-based sampling: Trigger goals based on the evolu-
tion of the rover/terrain state (e.g. at every 50m traveled).
The state criteria is typically expressed as a preferred ca-
dence with some flexibility.

Using Campaign Intent to Guide Planning
Our approach to plan generation is based on branch-and-
bound search. Starting from the empty plan, each iteration
of search expands a chosen partial plan into many possible
successor plans (the branches). Each potential successor is
scored and must exceed a running threshold of plan quality
(the bound) in order to be retained for future expansion; oth-
erwise it is pruned (along with all its descendants). Specif-
ically, the optimistic maximum quality of any plan based
on the candidate partial plan must exceed the pessimistic
minimum quality prediction of all other candidates already
considered. Plan quality is evaluated as the degree of satis-
faction of the campaign intents, which may be both priority
tiered and utility weighted by the user. The frontier of un-
expanded partial plans is periodically sorted by estimated
final plan quality, yielding a hybrid of depth-first and best-
first expansion order.

Partial plans are always expanded forward in time by ap-
pending one of the possible subsequent actions to the grow-

Drive Survey
 Objective

Environmental Tau
Objecitve

Drive
Objective

H
ea

tin
g

Night

Figure 3: Example generated plan illustrating a long-range
drive objective that was split up to support two different
types of campaign objectives.

ing plan. The possible actions include mandatory goals
(such as communication passes), auxiliary actions (such as
sleep periods), as well as all the possible goals introduced
by campaign intents. For temporal and state-based cam-
paigns, this is just the next instance of the periodic goal,
timed within its allowed cadence. For unordered goal set
campaigns, each remaining un-attempted goal becomes a
possible addition. In the limit, the search will thus evaluate
(or justifiably prune) all possible combinations and order-
ings of campaign goals.

The complete search can be very time intensive, but is
guaranteed to return an optimal plan according to the ex-
pressed campaign preferences. Even without running to
completion, the search can return the best plan encountered
so far. This anytime algorithm feature allows the rover to
limit its planning time and proceed to be productive with
a reasonable (but not provably optimal) plan. Minor plan
perturbations during execution are accommodated by time-
efficient repair strategies (for example, to shift actions for-
ward after a small driving delay), while major disruptions
(such as an insurmountable obstacle in a drive, or the injec-
tion of an entirely new goal) invoke a full replanning cycle
so that all goals are reconsidered.

Figure 3 shows an example plan generated by the search
algorithm. The planning model derives from the operational
MSL activity model and features important mission aspects
such as science campaign activities, communication win-
dows, regenerative sleeping, and device heating.

The campaign objectives provided to the rover in this ex-
ample include: a goal set campaign with a distant MastCam
target (entailing a long-range traverse), a temporal campaign
with recurring atmospheric opacity (tau) measurements ev-
ery 3 hours, and state-based campaign with mid-drive sur-
vey actions after every 75 meters traveled. The resultant
plan demonstrates how the planner synthesizes the campaign
relationships to coordinate rover activity, including pausing
the ongoing drive action to interleave other objectives.

3

Using Campaign Intent to Guide Autonomous
Science
The system also leverages high-level campaign objectives
to introduce additional in-situ goals based on scientist guid-
ance. This improves rover productivity when the operations
team does receive data about the rover’s environment in time
to select their own local targets for that day.

For example, scientists may be interested in remote-
sensing composition measurements of a rock formation en-
countered previously and known to exist in a region the
rover is approaching. The scientists can train a Texture-
Cam (Thompson et al. 2012) model to detect that rock for-
mation by labeling examples in previous navigation camera
images (Figure 4, left). The rover then runs that TextureCam
model onboard to compute a probability map of locations in
the new region that likely contain the rock formation of in-
terest (Figure 4, center). The probability map can be used to
select the best targets for measurement, as well as the like-
lihood that each measurement satisfies the scientific intent
of characterizing the rock formation (Figure 4, right). Each
proposed target becomes a new goal in the campaign set for
the planner. The planner may also use the probability in-
formation to reason about the trade offs between the various
generated goals.

Slip-Aware Navigation
The Navigation systems equipped on the Mars rover mis-
sions, Mars Exploration Rover (MER) and Mars Science
Laboratory (MSL), rely on the Grid-based Estimation of
Surface Traversability Applied to Local Terrain (GESTALT)
algorithm (Goldberg, Maimone, & Matthies 2002) to detect
and avoid geometric hazards and the D∗ algorithm (Stentz
& Mellon 1993) to plan global paths to goals. These meth-
ods have enabled operators to provide high-level autonomy
goals to the rovers, increasing mission efficiency.

However, geometry alone is not sufficient to guarantee
safe traverses on the surface of Mars in every environment.
Both MER and MSL operators have experienced hazardous
conditions due to otherwise geometrically benign terrain
such as sand dunes, and small rocks. These hazards can cre-
ate adverse conditions such as wheel slip, sinkage, and dam-
age. When current rovers pass through these hazardous envi-
ronments, operators control the rovers manually with slow,
deliberate commands, resulting in a loss in efficiency. In
response, this paper proposes a navigation system that can
reason about geometry and terrain type to plan safe reliable
paths to science targets and enable a larger role in autonomy
for future Mars Rovers.

System Overview The slip-aware navigation system,
highlighted in Figure 5, is built upon the GESTALT system
(Goldberg, Maimone, & Matthies 2002) and contains the
following components: i) stereo vision, ii) visual odometry,
iii) traversability assessment, iv) terrain classification, and
v) path planning. The input to system is a synchronized pair
of stereo images from the rover’s navigation cameras. Image
data is sent to the OpenCV (Bradski 2000) block matching

algorithm to obtain dense 3D information about the environ-
ment. In parallel, the left stereo image is sent to a speeded-
up version of the Soil Property and Object Clasification
(SPOC) (Rothrock et al. 2016) terrain classifier more suited
for on-board computation requirements. This segments the
image into three classes: i) sand, ii) soil, iii) flagstone. Both
texture and depth information are then sent to the JPL Visual
Odometry (VO) method detailed in (Howard 2008) to com-
pute the relative motion between images. This information
is the incorporated into the 3D map and assessed for both
geometric and slip hazards in the traversability-assessment
module. Geometric Hazards are assessed and mapped using
the Morphin algorithm (Goldberg, Maimone, & Matthies
2002), a predecessor to the GESTALT method running on
the Mars rovers To plan safe paths around geometry- and
terrain-based hazards, we employ the RRT# sample-based
planner (Arslan & Tsiotras 2016) to make informed deci-
sions on adding new samples using the computed geometry,
terrain, and rover motion information.

Slip-Aware Planning Our navigation system plans paths
on a map that builds upon the data structure detailed in
(Goldberg, Maimone, & Matthies 2002)—an occupancy-
grid map fitted to a local ground plane with point-cloud
statistics. The slip-aware navigation system improves on this
map structure by adding terrain information information for
each point in the stereo point cloud. Point clouds are accu-
mulated to compute geometry and terrain statistics at each
cell in the map. To assess the traversability of the map at
each cell, a plane the size of the rover is centered and fitted
to the containing points. Each cell in the map contains the
following information: i) maximum step-size, ii) roughness,
iii) slope, and iv) terrain information. Terrain information
comes in the form of a discrete probability distribution for
the three terrain types of interest: soil, sand, and flagstone.

The slip-aware navigation system plans safe paths that
avoids geometric- and terrain-based hazards by employing
the sample-based planner, RRT# (Arslan & Tsiotras 2016)
and the traversability map to make informed decisions on
expected wheel slippage. The sample-based planner con-
structs a random graph where vertices contain robot poses
and edges link poses by vehicle-constrained motion primi-
tives (Pivtoraiko, Nesnas, & Kelly 2009). During planning,
new vertices are considered as viable if they do not intersect
with any geometric obstacles in the map (step-size or rough-
ness). The cost of edges in the graph is a function of the
motion primitive distance weighted by an expected slip pro-
file for each terrain type. Terrain slip profiles map slope to
expected rover slip for a given terrain type. This planner fur-
thermore takes into account direction of travel when adding
a new sample.

Model-Based Health Assessment
The autonomous science scenario discussed in previous sec-
tions is only practical under two strong assumptions: First,
that the rover protects itself from any problems during auto-
generated activities; and second, that the rover can reli-
ably detect and recover from problems that are routine but

4

Figure 4: An example showing how scientists can use TextureCam to express intent to autonomously generate new goals on
board. The left image shows hand-labeled regions of a geological formation of interest. The center image shows the estimated
probabilities that regions in a new image are of the same formation, given a model trained from labels. The right image shows
the top five software-selected locations for diverse observations of the rock formation, each corresponding to a new goal for the
planning system.

Stereo
Correspondence

Slip-Aware Navigation

Visual
Odometry

Traversability
Assessment

Path
Planning

Execution
Terrain

Classification

Images

Figure 5: Illustration of the slip-aware navigation pipeline.
This navigation system uses both geometry and texture from
stereo images to map and assess hazards to the rover and
plan safe paths in challenging environments with high slip
risks. This will allow rover operators to plan longer au-
tonomous traverses in difficult terrain.

currently require ground-in-the-loop resolution. Both chal-
lenges exceed the current state of practice for rover health
assessment. We must assume an autonomous rover will have
only limited knowledge of the terrain due to its more aggres-
sive exploration, and thus the autonomous rover will be un-
able to avoid some hazards that a traditional rover would by-
pass. Existing rover fault protection can be elaborate – Mars
Science Laboratory (MSL), for instance, has over 1,000 dis-
tinct fault monitors – but is defensive in nature, aimed at
maintaining rover safety and preserving capability rather
than ensuring efficiency of operations.

In current operations it is not unusual for even a routine
activity (such as a drive) to ”fault out,” i.e., halt prematurely
or exit with errors that requires ground analysis before re-
suming operations. These are typically benign, caused by
factors such as slower progress than expected or incorrect
assumptions about activity timing. Nonetheless, the Self-
Reliant Rover must be able to discriminate recoverable prob-
lems from more serious ones, it must solve the simpler prob-
lems without ground input, and it must do both reliably.

It is clear that we are unlikely to achieve this by simply
expanding the scope of fault protection. Instead, to compen-
sate for uncertainty in the environment, the plan, and in the
rover performance itself, we turn to model-based methods
and reasoning systems. The Self-Reliant Rover prototype
incorporates Model-based Off-Nominal State Identification

Figure 6: MONSID model of Athena mobility components

and Detection (MONSID) (Kolcio & Fesq 2016), which an-
alyzes command and sensor data in real-time to construct an
estimate of system health.

MONSID utilizes a simplified physics model comprised
of a network of numerical constraints, describing the phys-
ical laws and relationships between sensed and internally-
computed parameters. The model also relates these con-
straints to physical or logical components of the host sys-
tem, allowing inconsistencies found to be linked to their root
cause. MONSID was applied to an example rover electrical
power subsystem in a previous experiment (Kolcio, Fesq,
& Mackey 2017), illustrating the suitability and unique ad-
vantages of the approach while exposing model details and
algorithm behavior.

For integrated testing with Athena, MONSID concen-
trates on the mobility systems and associated sensors. A
summary of the MONSID model is shown below in 6.

In the diagram above, orange boxes represent rover com-
ponents or pseudocomponents that aggregate different state
variables. Blue ovals indicate command or sensor values,
used to enable or verify computation of system state vari-
ables. Connections between components as indicated by
ports (green boxes) represent constraints, evaluated sepa-

5

rately in each direction.
Each of the six wheels incorporates separate steering and

drive motors, while the wheel assembly interacts with the
controller via a pair of position encoders. Rover position
and orientation is provided by visual odometry, analyzing
images captured by Athena’s mast-mounted cameras, and
a notional Inertial Reference Unit (IMU). Additionally, the
model supports variation in rocker and bogie position, as re-
ported by four angle sensors. Note that in the current imple-
mentation both IMU and suspension sensors are not present.

During execution MONSID must detect faults and distin-
guish which are autonomously recoverable in a manner that
other autonomy components can interpret. To support our
evaluation, the Athena team has developed a fault injection
capability enabling us to simulate drive and steering motor
failure, failure of on-board controllers, and failure of mobil-
ity sensors. The most relevant cases to the autonomous rover
science scenario can be summarized as follows:
Detect and classify recoverable mobility faults: If a drive

is interrupted by an unexpected event, determine whether
this is terrain-induced or caused by mechanical failure,
and whether the rover should autonomously retreat and
avoid the problematic terrain.

Recognize errors in terrain knowledge: If drives com-
plete but leave the rover far from its expected position,
determine whether the problem is caused by mechanical
failure, sensor failure, or incorrect assessment of terrain.
In the latter case, attempt to recover terrain knowledge by
comparing to alternate models of terrain behavior.

Identify emergent, unknown, or surprise behavior: A
significant hurdle to adoption of autonomy technologies
in general is the persistent risk of unexpected behavior
in the system leading to an unpredictable response.
However, due to its reliance upon physical principles
instead of purpose- built monitors, model-based health
assessment is often capable of detecting and correctly
classifying even novel system behavior.
An example of the last class of behavior was observed by

the Athena team in early 2018, when driving up a steep slope
led unexpectedly to one of the front wheels rising off the sur-
face. We quickly replicated this behavior in our testing, find-
ing it was caused by unexpectedly high traction in Athena’s
center wheel coupled with slippage of the rear wheel. This
resulted in the center wheel driving forward relative to the
rover as a whole, rotating the bogie in the process. A brief
summary of this behavior is shown in 7.

This behavior is interesting because, while undesirable,
all individual rover components are operating in familiar
and acceptable ways. The root cause is instead a violation
of a more fundamental assumption about the rover, namely
the rover wheel geometry is changing while on flat terrain.
These assumptions are incorporated into the MONSID con-
straints, and as a result, the novelty of this situation is de-
tected without difficulty, despite the fact that this behavior
had gone unnoticed after years of testing and experience
with Athena.

Unlike the other types of faults, it is likely that we would
halt operations after observing this for the first time in flight

Figure 7: Athena drive position error during unusual
”wheelie” behavior

to permit thorough analysis of newly revealed design vul-
nerabilities. MONSID’s responsibility in this case ends with
detection and classification as a non-recoverable event, how-
ever MONSID also provides diagnostic information to assist
in event analysis. In this case the fault is correctly isolated
to the center and rear wheels instead of any control fault, or
any fault in the wheel that actually rises from the surface.

Global Localization
One of the key goals in improving autonomy for mobility
is extending the distance the rover can drive per sol. Local-
ization errors accumulate as a function of driving distance,
however, due to drift in visual odometry and the integration
of inertial measurements. The magnitude of this error de-
pends on the terrain, but can be on the order of 5% of the
drive distance. For MSL operations, the typical drive dis-
tance is on the order of 30m, resulting in fairly small drift in
position estimate that could be several meters.

For MSL, this drift is corrected manually by visual align-
ment of navcam imagery to orbital HiRISE imagery. To es-
timate the alignment, a mosaic of navcam stereo images are
taken to cover a full panoramic around the rover. These im-
ages are then orthographically projected and salient surface
features are manually tie-pointed to compute a correction
offset.

The self-reliant rover design utilizes both longer drives
as well as multi-sol operations without the involvement of
ground operators to perform these corrections. To achieve
this, a similar alignment method is used in an automated
manner onboard the rover. Instead of keypoint tie-pointing,
the images are aligned using a matching criteria on both the
image intensities and the elevation map. Both the surface
and orbital images are orthographic projections, created by
projecting the image onto the elevation map using HiRISE
DEMs (digital elevation models) for the orbital images, and
stereo disparity from the surface navcam images. The orbital
image products are georeferenced and stored on the rover.

The matching criteria for the imagery uses mutual-
information, or relative entropy, between the images (Ansar
& Matthies 2009). This measures the statistical dependence

6

HiRISE orbital image and elevation map aligned mapsOrtho-projected navcam
image and elevation

localization score map

Figure 8: Global localization utilizes automated alignment of navcam image and elevation maps to onboard orbital maps.

Imagery c©2018 Google, Map data c©2018 Google

Figure 9: Overview of simulated mission area. Operator
inputs include a specific target selection (orange) near start-
ing area A along with only high-level campaign guidance for
areas B, C, and D. Automated science analysis injects addi-
tional targets (cyan) during execution. The initial planned
route (blue) is dynamically adjusted (green) to avoid unan-
ticipated terrain hazards (red).

between corresponding pixels of a candidate alignment. Mu-
tual information is used instead of more conventional corre-
lators such as SAD or SSD for robustness to varying con-
ditions from when the orbital image was acquired such as
lighting or surface changes. The elevation map alignment
uses a conventional SSD correlator. The overall matching
score is simply a weighted sum between the image and ele-
vation scares. The maximum drift of the position estimate is
largely bounded, and the alignment search can be performed
using a conventional sliding window approach.

Illustrative Scenario
The Self-Reliant Rovers system was demonstrated on the
JPL Athena test rover within a mission scenario that ex-
plores the JPL mini-Mars Yard robotic testing facility. The
primary science objective was to characterize the rock out-
crop materials embedded in the sandy soil using the rover’s
mast-mounted cameras. The mission spans a period of lim-
ited communication with operators, so the rover must oper-
ate almost entirely autonomously in order to remain produc-
tive toward its high-level goals.

Figure 9 shows the overhead layout of the mission area,
as might be available to mission planners from orbital im-
agery. The operations team selects several regions of inter-

Figure 10: Initial generated plan and final as-executed plan
for the simulated mission scenario. Many new targeted sci-
ence goals are suggested at run-time by automated image
analysis and then integrated into the schedule in service of
science campaigns. Drive estimates are also updated during
execution, thus correcting initial approximations.

est (indicated by letters) from this coarse data, but is unable
to identify specific targets or terrain obstacles beyond a few
meters from the rover, for which the team has local imagery
obtained from the rover. Previous local imagery allows the
operators to set one precise outcrop target nearby the starting
location at A. In prior operations, the team would have to be
satisfied with filling the rest of the communication-limited
period with various in-place tasks and perhaps one drive at-
tempt toward the next area. Instead, using the Self-Reliant
Rover system, the team can entrust the rover with enough
campaign intent to continue conducting detailed science on
its own.

First, the operators create a goal for each area of interest

7

that entails driving to a specified vantage point in that area,
acquiring a contextual wide-angle image, and then running
the appropriate automated science algorithms. These sur-
vey goals become part of their own goal set campaign, and
the planner will stitch together an optimal drive ordering to
achieve as many as possible. In addition, the scientists cre-
ate initially empty goal set campaigns for each of the desired
outcrop observations (light flagstone, dark flagstone, and
multiple-contact) at each area. The campaign intents provide
guidance for the rover’s autonomous science behavior by in-
dicating the algorithms to perform and the types of follow-
up observations to suggested based on the results. During
subsequent automated analysis, the previously trained on-
board science classifiers will inject their newly identified
follow-up targets as goals into these campaign containers for
consideration during replanning.

Scalable campaign satisfaction criteria are described as a
utility scored range over the number of observations desired.
The planner and automated science cooperate to identify the
best candidate targets to include in the plan so as to max-
imize expected utility score. When a campaign cannot be
minimally satisfied with available targets, it may be skipped
over in order to include lower priority campaigns. Likewise,
only the best observation targets up to the desired maximum
for a campaign will be scheduled. In this demonstration sce-
nario, campaigns request follow-up mast camera imaging of
the 2-5 best outcrop specimens in each category at each lo-
cation.

Several additional relevant campaign types were demon-
strated in separate scenarios. The operators can specify on-
going temporal periodic campaigns; for example, visual at-
mospheric opacity (τ) measurements every 20±2 minutes.
Mandatory downlink relay communication passes can also
be enforced at specific times in the schedule, representing a
exogenous orbiter overflights.

All of the various goals are provided to the rover at its
morning communication pass at the start of the mission sce-
nario. Thereupon, the onboard planner generates a plan
to image the specifically requested target near A, and then
travel in turn to B, C, and D to conduct survey observations
(Figure 10, top, and Figure 9, blue path). The plan adheres to
all standing rover resource limits (such as battery energy and
data volume), as well as incorporating any required heating
(such as needed for instruments or mobility mechanisms).

The actual path driven by the rover undergoes refinement
by the onboard terrain classification and autonomous navi-
gation so as to best avoid geometric obstacles. Due to a lack
of terrain diversity and slopes in the testing environment, the
slip avoidance aspect of the planner was disabled.

Depending on terrain, drives may also perform better than
expected by the initial approximation. Diversion delays and
expeditious travel cause minor perturbations to the plan,
which are accommodated by an agile plan repair strategy
that shifts actions within some threshold as long as they still
meet their requirements.

On arriving at B, and later C, the rover acquires the re-
quested contextual images and analyzes them using the on-
board science detectors. In turn, the analysis software identi-
fies both light and dark flagstone outcrops, as well as contact

Figure 11: Automated detection of geologic formation con-
tact in a survey image (top, contacts highlighted in red) trig-
gers follow-up detailed imagery of the contact area (inset).

between the two (Figure 11, top, with contact areas high-
lighted in red.) These specific follow-up targets are then
automatically injected as new goals in their respective cam-
paigns, and a replanning cycle is initiated. The planner’s
updated solution includes each of the newly suggested ob-
servations, which are duly collected (Figure 11, inset) before
proceeding to the next area.

Upon driving toward D, the rover’s automated terrain
classification identifies a major obstacle, and the navigation
system must divert significantly. The planner assimilates up-
dated drive estimates from the navigation engine to ensure
that the plan can accommodate the delay without conflict.
After planning a safe path around the observed obstacles and
eventually reaching D, the system once again identifies flag-
stone features and conducts the requested follow-up obser-
vation. At this point the mission period ends.

As seen in the final plan (Figure 10, bottom), the produc-
tivity benefits of additional onboard rover autonomy are evi-
dent even within the limited scope of this demonstration sce-
nario. Traditional operations would have accomplished just
one initial outcrop observation and a first drive.The com-
bined autonomy of the Self-Reliant Rover system produced
three survey panorama images throughout the mission area,
toured several unexpectedly difficult terrain routes, and ac-
crued fifteen additional targeted outcrop observations. The
Self-Reliant Rover system also allows the rover to incor-
porate periodic objectives into its generated activity plans.
Overall, the scenario demonstrates the ability of the Self-
Reliant Rover approach to increase mission productivity.

Related Work
Shalin, Wales, & Bass, (2005) conducted a study of Mars
Exploration Rovers operations to design a framework for ex-
pressing the intent for observations requested by the science
teams. Their focus was the use of intent to coordinate plan-
ning among human operators and the resulting intent was not
captured in a manner that would be conducive for machine
interpretation. Our approach codifies some of the fields in
their framework in a way suitable for the rover. In partic-
ular, the authors defined a “Related Observations” field as
a way for scientists to identify relationships among differ-
ent observations, which need not be in the same plan. Our
work on campaign intent can be seen as a way of defining a
specific semantics to these types of relationships to facilitate
reasoning about these relationships by the rover.

Their framework also includes information that we agree
is essential for effective communication among operators

8

but that we do not currently express to the rover. For ex-
ample, the “Scientific Hypotheses” field is used to indicate
what high-level campaign objective is being accomplished
by the requested observation. We are not yet providing these
higher-level campaign objectives to the rover, though it is an
interesting area of future research.

Mali (2016) views intent as a means for a user to place
constraints on the types of plans a planner is allowed to pro-
duce such as only generating plans that have at most one
instance of a class of actions or that plans must limit the use
of a particular action. The primary role of our use of intent is
to allow the planner to assess the value of achieving a given
set of goals. However, some of our campaign intent does im-
ply constraints and preferences on how, or more specifically,
when goals are accomplished. For example, the periodic
campaign intent specifies a timing relationship among goals
and a preference on how close to comply with the desired
timing.

There are some similarities between our campaign defi-
nitions and those used for Rosetta science planning (Chien
et al. 2015). Both use campaigns to express requests for
variable-sized groups of observations with relationships and
priorities. Rosetta plans covered much longer time periods
(e.g. weeks) and required more complex temporal patterns,
such as repeating groups of observations. But observation
patterns were primarily driven by the predictable trajectory
of the spacecraft, allowing relationships to be expressed as
temporal constraints. This is not sufficient for rovers, where
many observations are dictated by the rover location and sur-
rounding terrain, and the duration of many activities cannot
be accurately predicted. State-based and goal set relation-
ships more accurately represent some of the science intent
found on surface missions.

There have been a variety of autonomous science systems
deployed or proposed for rovers including the AEGIS sys-
tem running on the Opportunity and Curiosity rovers (Fran-
cis et al. 2017), and the SARA component proposed for an
ExoMars rover (Woods et al. 2009). These systems allow
the rover to identify targets in its surroundings that match
scientist-provided criteria. The introduction of campaign re-
lationships broadens the scope of the type of guidance that
scientists can provide these systems, allowing scientists to
express the amount of observations they would like for their
different objectives along with the relative priorities of the
high-level objectives.

There have been several integrated rover systems with
similar objectives to our work including PRoViScout (Paar
et al. 2012), Zoe (Wettergreen et al. 2014) and OASIS (Cas-
tano et al. 2007). The PRoViScout project has similar ob-
jectives to our work (Paar et al. 2012). These systems It
include autonomous science capabilities to enable onboard
identification of science targets. Similar to our approach,
they select follow-up observations for identified targets and
submits these requests to an onboard planner to determine
if there are sufficient resources to accomplish these new ob-
jectives. The campaign intent concepts we have developed
would also be applicable to PRoViScout as a way to increase
the expressivity for providing scientist intent to the rover.

There is an active area of research in intent recogni-

tion (Sukthankar et al. 2014). The general goal of this area
is to identify the objectives of other agents (human or other-
wise) from observations of the agents’ actions. In contrast,
in our work, it is acceptable for users to explicitly identify
their intent, rather than require the system to attempt to in-
fer intent. Indeed, there is interest in the operations team
to clearly document their intent for the purpose of commu-
nication among teams and as a record of what activity was
planned for the rover and why. As such, rather than try to in-
fer user intent, our objective is to increase the expressivity of
the rover’s interface in order to more closely reflect mission
intent.

The Mars 2020 mission is planning to incorporate on-
board scheduling to improve resource utilization of the
rover (Rabideau & Benowitz 2017). Similar to the Self-
Reliant Rover approach, the use of onboard scheduling is
intended to allow the Mars 2020 rover to use current vehicle
knowledge when generating schedules to accomplish mis-
sion objectives. This will reduce the loss of productivity that
results from the difficulty in predicting how much resources
(e.g. time and energy) activities will consume. The Self-
Reliant Rover approach is addressing additional productiv-
ity challenges by improving the ability of rovers to identify
their own objectives, to incorporate a richer set of guidance
from operators and to reason about slip hazards as it navi-
gates.

The navigation system presented in this paper is most
similar to the system presented in (Helmick, Angelova, &
Matthies 2009). They propose a system with the same high-
level machinery: i) a GESTALT-based vision pipeline, ii)
a terrain classifier, and iii) a slip-aware planner. However,
their system is not capable of making decisions based on di-
rection of travel. When direction of travel is not considered,
then the system is forced to make more conservative plans.
An example is if the rover is planning a path on a steep slope
containing soil, it might be too dangerous to drive up the
slope due to expected slippage, but driving downhill would
be safe.

Conclusions
We have presented an approach for increasing the authority
of autonomous rovers to increase mission productivity. Our
approach includes the ability for ground operators to provide
guidance to the system without requiring up to date knowl-
edge of the rover’s state and its surroundings.

We have implemented a prototype of this approach on the
Athena test rover. Over the next year we will be conducting
mission-relevant, multi-sol scenarios with the rover at the
JPL Mars Yard to evaluate its ability to support productive
operations with limited ground-in-the-loop interactions.

Acknowledgments
This research was conducted at the Jet Propulsion Labo-
ratory, California Institute of Technology, under a contract
with the National Aeronautics and Space Administration.
This work was funded by the Jet Propulsion Laboratory Re-
search and Technology Development program.

9

References
[Ansar & Matthies 2009] Ansar, A., and Matthies, L. 2009.
Multi-modal image registration for localization in titan’s at-
mosphere. In Intelligent Robots and Systems, 2009. IROS
2009. IEEE/RSJ International Conference on, 3349–3354.
IEEE.

[Arslan & Tsiotras 2016] Arslan, O., and Tsiotras, P. 2016.
Incremental sampling-based motion planners using policy
iteration methods. CoRR abs/1609.05960.

[Bradski 2000] Bradski, G. 2000. The OpenCV Library. Dr.
Dobb’s Journal of Software Tools.

[Castano et al. 2007] Castano, R.; Estlin, T.; Anderson,
R. C.; Gaines, D. M.; Castano, A.; Bornstein, B.; Chouinard,
C.; and Judd, M. 2007. OASIS: Onboard Autonomous Sci-
ence Investigation System for opportunistic rover science.
Journal of Field Robotics 24(5):379–397.

[Chattopadhyay et al. 2014] Chattopadhyay, D.; Mishkin,
A.; Allbaugh, A.; Cox, Z. N.; Lee, S. W.; Tan-Wang, G.; and
Pyrzak, G. 2014. The Mars Science Laboratory supratactical
process. In Proceedings of the SpaceOps 2014 Conference.

[Chien et al. 2015] Chien, S.; Rabideau, G.; Tran, D.; Dou-
bleday, J.; Nespoli, F.; Ayucar, M.; Sitje, M.; Vallat, C.;
Geiger, B.; Altobelli, N.; Fernandez, M.; Vallejo, F.; An-
dres, R.; and Kueppers, M. 2015. Activity-based scheduling
of science campaigns for the rosetta orbiter. In Proceedings
of IJCAI 2015.

[Francis et al. 2017] Francis, R.; Estlin, T.; Doran, G.; John-
stone, S.; Gaines, D.; Verma, V.; Burl, M.; Frydenvang, J.;
Montano, S.; Wiens, R.; Schaffer, S.; Gasnault, O.; DeFlo-
res, L.; Blaney, D.; and Bornstein, B. 2017. AEGIS au-
tonomous targeting for ChemCam on Mars Science Labo-
ratory: Deployment and results of initial science team use.
Science Robotics 2(7).

[Gaines et al. 2016] Gaines, D.; Doran, G.; Justice, H.; Ra-
bideau, G.; Schaffer, S.; Verma, V.; Wagstaff, K.; Vasavada,
A.; Huffman, W.; Anderson, R.; Mackey, R.; and Estlin, T.
2016. Productivity challenges for Mars rover operations: A
case study of Mars Science Laboratory operations. Techni-
cal Report D-97908, Jet Propulsion Laboratory.

[Goldberg, Maimone, & Matthies 2002] Goldberg, S. B.;
Maimone, M. W.; and Matthies, L. 2002. Stereo vision
and rover navigation software for planetary exploration. In
Proc., IEEE Aerospace Conference, volume 5, 5–2025–5–
2036 vol.5.

[Helmick, Angelova, & Matthies 2009] Helmick, D.; An-
gelova, A.; and Matthies, L. 2009. Terrain adaptive nav-
igation for planetary rovers. Journal of Field Robotics
26(4):391–410.

[Howard 2008] Howard, A. 2008. Real-time stereo visual
odometry for autonomous ground vehicles. In Proc. of the
Int. Conf. on Intelligent Robots and Systems (IROS), 3946–
3952.

[Kolcio & Fesq 2016] Kolcio, K., and Fesq, L. 2016. Model-
based off-nominal state identification and detection for au-
tonomous fault management. In Proceedings of the 2016
IEEE Aerospace Conference. IEEE.

[Kolcio, Fesq, & Mackey 2017] Kolcio, K.; Fesq, L.; and
Mackey, R. 2017. Model-based approach to rover health
assessment for increased productivity. In Proceedings of the
2016 I7EE Aerospace Conference. IEEE.

[Mali 2016] Mali, A. D. 2016. Expressing user intent in
planning by instance rewriting. In Proceedings of the 2016
IEEE 28th International Conference on Tools with Artificial
Intelligence (ICTAI 2016).

[Paar et al. 2012] Paar, G.; Woods, M.; Gimkiewicz, C.;
Labrosse, F.; Medina, A.; Tyler, L.; Barnes, D. P.; Fritz, G.;
and Kapellos, K. 2012. PRoViScout: a planetary scouting
rover demonstrator. In Proceedings of SPIE Vol. 8301 ntel-
ligent Robots and Computer Vision XXIX: Algorithms and
Techniques.

[Pivtoraiko, Nesnas, & Kelly 2009] Pivtoraiko, M.; Nesnas,
I. A. D.; and Kelly, A. 2009. Autonomous robot navigation
using advanced motion primitives. In 2009 IEEE Aerospace
conference, 1–7.

[Rabideau & Benowitz 2017] Rabideau, G., and Benowitz,
E. 2017. Prototyping an onboard scheduler for the Mars
2020 rover. In Proceedings of the International Workshop
on Planning and Scheduling for Space.

[Rothrock et al. 2016] Rothrock, B.; Kennedy, R.; Cunning-
ham, C.; Papon, J.; Heverly, M.; and Ono, M. 2016. Spoc:
Deep learning-based terrain classification for mars rover
missions. In Proc. of the AIAA Space Forum and Exposi-
tion.

[Shalin, Wales, & Bass 2005] Shalin, V. L.; Wales, R. C.;
and Bass, D. S. 2005. Communicating intent for planning
and scheduling tasks. In Proceedings of HCI International.

[Stentz & Mellon 1993] Stentz, A., and Mellon, I. C. 1993.
Optimal and efficient path planning for unknown and dy-
namic environments. Int. Journal of Robotics and Automa-
tion 10:89–100.

[Sukthankar et al. 2014] Sukthankar, G.; Goldman, R. P.;
Geib, C.; Pynadath, D. V.; and Bui, H. H. 2014. An in-
troduction to plan, activity, and intent recognition. In Suk-
thankar, G.; Goldman, R.; Geib, C.; Pynadath, D.; and Bui,
H. H., eds., Plan, Activity, and Intent Recognition,. Elsevier.

[Thompson et al. 2012] Thompson, D. R.; Abbey, W.; All-
wood, A.; Bekker, D.; Bornstein, B.; Cabrol, N. A.; Castano,
R.; Estlin, T.; Fuchs, T.; and Wagstaff, K. L. 2012. Smart
cameras for remote science survey. In Proceedings of the In-
ternational Symposium on Artificial Intelligence, Robotics,
and Automation in Space.

[Weiss 2013] Weiss, K. 2013. An introduction to the jpl
flight software product line. In Proceedings of the 2013
Workshop on Spacecraft Flight Software (FSW-13).

[Wettergreen et al. 2014] Wettergreen, D.; Foil, G.; Furlong,
M.; and Thompson, D. 2014. Science autonomy for rover
subsurface exploration of the Atacama desert. AI Magazine
35(4).

[Woods et al. 2009] Woods, M.; Shaw, A.; Barnes, D.; Price,
D.; Long, D.; and Pullan, D. 2009. Autonomous science for
an ExoMars roverlike mission. Journal of Field Robotics
26(4):358–390.

10

Dynamic Shared Computing Resources for Multi-Robot Mars Exploration

Joshua Vander Hook, Tiago Vaquero, Martina Troesch,
Jean-Pierre de la Croix, Joshua Schoolcraft, Saptarshi Bandyopadhyay, Steve Chien

Jet Propulsion Laboratory, California Institute of Technology

Abstract

The NASA roadmap for 2020 and beyond includes several
key technologies which will have a game-changing impact on
planetary exploration. The first of these is High Performance
Spaceflight Computing (HPSC), which will provide orders of
magnitude increases in processing power for next-generation
rovers and orbiters (Doyle et al. 2013). The second is Delay
Tolerant Networking, which overlays the Deep Space Net-
work, providing internet-like abstractions and store-forward
to route data through intermittent delays in connectivity. The
third is a trend toward small, co-dependent robots included in
flagship missions (MarCO, PUFFER, and Mars Heli). Taken
together, these imply an increasing amount of communication
and computing heterogeneity on Mars in coming decades.
Motivated by these technological trends, we study the con-
cept of Mars on-site shared analysis, information, and com-
munication (MOSAIC) for Mars exploration. The key algo-
rithmic problem associated with MOSAIC networks is si-
multaneous scheduling of computation, communication, and
caching of data, which we illustrate using the three scenarios.
We present models, preliminary solutions, and simulation re-
sults for two scenarios, showing how mission efficiency re-
lates to communication bandwidth, processing power, geog-
raphy of the environment, and optimal scheduling of compu-
tation, communication, and data caching. The third scenario
illustrates future directions of this work.

1 Introduction and Related Work
Three trends are poised to significantly change mission con-
cepts for future NASA planetary exploration. While previ-
ous missions involved single robots with limited processing
capability, the combination of new networking technology,
advanced computation hardware, and small-bodied robot de-
signs is making multi-robot missions more attractive.

In an effort to modernize the flight computing hardware
available for NASA missions, the High Performance Space-
flight Computing (HPSC) initiative was announced in 2013
(Doyle et al. 2013; Powell et al. 2011; Mounce et al. 2016).
Unlike the current generation of computing, this program
aims to keep NASA computing technologies at most one
generation behind commercial technologies. HPSC is ex-
pected to become a mainstay in post-2020 deployments.

The second key emerging technology is Delay or Dis-
ruption Tolerant Networks (DTNs). DTNs span communi-

Copyright c© 2018, California Institute of Technology. Govern-
ment sponsorship acknowledged.

Figure 1: Illustrative MOSAIC scenario. A set of process-
ing and data-driven tasks (left as dependency graph) must
be mapped to multiple assets with heterogeneous comput-
ing, communication, and energy capacities. Each asset is
also available over a fixed time window due to terrain ef-
fects or orbital parameters. The goal is to compute all the
required tasks as quickly as possible.

cations links in an overlay architecture, enabling connectiv-
ity across network boundaries in a transparent manner, re-
gardless of multiple potentially disparate network link layer
protocols. A core principle of this overlay quality is the
ability of individual nodes to store network data for pos-
sibly long durations before forwarding it to another node.
This store-and-forward paradigm is central to DTNs. Many
features of Delay Tolerant Networking architectures are of
particular utility in the deep space interplanetary communi-
cations realm, where a multitude of link layers, bandwidth
constraints, and disruptions are expected during end-to-end
transfer of mission commands and data (Wyatt et al. 2017).

Finally, an interest in multi-robot systems re-emerged.
Currently planetary exploration is limited to benign oper-
ating areas due to the inability to land, traverse challenging
terrain, or generally too great a risk for the primary mission
asset. Unfortunately, the most compelling locations are often
in these extreme terrains. Small, low cost, expendable rovers
could transport key sensors and instruments to locations con-
sidered too risky for the primary lander, rover, or astronaut.
Also due to the high communications latencies of deep space
missions these expendable rovers must minimize their de-
pendence on ground control and be able to operate primarily
autonomously. These small craft can be released from par-

In Proceedings of the 14th International Symposium on Artificial Intelligence, Robotics and Automation in Space
(i-SAIRAS), Madrid, Spain, June 2018.

11

ent rovers and guided toward sampling targets which may
be out of reach of the main craft, either because of risk, or
simply to avoid delays from stopping. The “daughter-craft”
do not have advanced processing capabilities due to weight,
power, and cost constraints, but are attractive for a number of
science targets, such as being left behind to investigate tran-
sient detections, risky exploration areas such as Recurring
Slope Lineae, or wide-area sampling for In-Situ Resource
Utilization. Two examples of such potential future systems
now being considered for development are the Mars Heli-
copter, and the “PUFFER” rover (Pop-Up Flat-Folding Ex-
plorer Robots) (Karras et al. 2017).

Combining these three trends, we envision scenarios in
which a system containing two or more robotic agents with
large discrepancies in processing power, communication
bandwidths, data capacities, and energy storage must col-
laborate to achieve a variety of realistic remote science mis-
sions.

The concept of study in all three scenarios is that ad-
vanced, software-driven robotic capabilities can be realized
on small, resource-constrained, high-risk “edge” devices by
optimizing data flows and processing assignments among
all the devices. In this paper we formalize this problem and
present preliminary results in modelling and analyzing Mars
exploration missions. Because data and computation are
shared among many devices, we dub a local computation-
sharing network a MOSAIC (Multi-robot On-site Shared
Analytics Information and Computing) network.

Our paper is organized as follows. First, we derive our
problem statement in Section 2. We decompose objectives
into a set of computing tasks, each of which generates data
products which must be fed into subsequent tasks (possi-
bly by transmitting between agents). Each task may be con-
ducted by humans or robots. In Section 3 we discuss a search
routine which can identify how the computational load can
be distributed over the network.

We describe our study scenarios in Section 4. In the first
illustration, (Section 4.1) we consider a single, cpu-bereft
asset which can request computation from a nearby base
station or visible orbiter. We study both a single PUFFER
released from a base station (first scenario), and the Mars
2020 rover assisted by a hypothetical HPSC (second sce-
nario). Planning for a potential Mars Sample Return cam-
paign is dominated by the need for autonomous traversals of
increasingly fast speeds, and we show an analysis of impact
that computation sharing can have on mission success.

The third scenario (Section 4.3) is a mother / daughter
craft design consisting of a large centralized asset (a human
or flagship rover) controlling one or more agile, but less-
capable “scouts” for an area search task. In this regime we
discuss some emergent behavior like data relay and auto-
matic choice of a centralized computing agent.

2 Problem Description
In this section, we describe how we frame the problem of dy-
namic shared computation for Mars exploration. We define
a data communication and processing workflow that repre-
sents the mission objectives and intermediate goals at a high
level.

Our primary abstraction is that of a Server Graph. Let
there be N ∈ Z+ agents in the network, where Z+

denotes positive integers. The robot agents are denoted
by A1, A2, . . . , AN . Each agent has on-board processing,
memory, and communication links.

2.1 Computation

The agents perform M ∈ Z+ data-driven tasks. The set of
M tasks is denoted T. We consider heterogeneous process-
ing times, so the time cost of executing task T on agent i
is given by: Ct

i (T). The model represents, e.g., the worst-
case, expected, or bounded computation time, and so all the
times are deterministic. In addition, program outputs are the
same irrespective of the agent doing the computing (or are
just as useful). Task T performed by robotic agent i may
also include an energy cost, Ce

i (T). If an agent has access
to two or more different processing units, we model those as
two co-located agents. If an agent has access to two or more
similar processing units, we adjust the costs of each task
to reflect its level of parallelization, but otherwise consider
them the same processor.

Tasks produce data products. Data products for task T are
denoted d (T). If a task produces more than one data prod-
uct, we model it as multiple tasks, one per produced data
product. The size of the data products are known a-priori,
and labelled as s (T) for task T .

Let PT be a set of predecessor tasks for T . Then j ∈
PT means task T depends on the output of task j. A task
may have multiple prerequisite sets, one of which must be
satisfied entirely. That is, a task must have only one of its
prerequisite sets satisfied.

The static software network SN captures dependencies as
the flow of information through various individual programs
to solve the complex computing task.

Finally, we allow some of the tasks to be required and
some to be optional. Optional tasks have a reward score
(r(T)). The set of required tasks is denoted R ⊆ T.

Assumptions: The software network SN does not have
any cycles. The mission statement for each problem/scenario
can be stated as a software network SN .

A solution is a mapping of tasks to servers (agents) and
start-times denoted

S : i→ (Aj , t) (1)
where (2)

j ∈ [1, . . . , N] (3)
t ≥ 0 (4)

Each agent’s computing schedule in a solution is denoted

Si = j →i (t) (5)

and has cost equal to the time required to complete the last
task in the agent’s queue,

C(S) = max
i

C(Si) (6)

where (7)

C(Si) = max
j

Si(j) + Ct
i (j) (8)

To execute a specific task in the software network, an
agent must have all the data products from one of the tasks
predecessor sets, either by computing them directly, or by re-
ceiving them by communication from other agents. To com-
municate, we model each agent as having a Delay Tolerant
Networking (DTN) stack to enable communication, as de-
fined next.

12

Figure 2: Contact graph for 3 agents showing times and bandwidths available

2.2 Communication
A key feature of DTN-based networking is Contact Graph
Routing (CGR) (Wyatt et al. 2017). CGR takes into account
predictable link schedules and bandwidth limits to automate
data delivery and optimize the use of network resources. The
contact graph describing a network’s links over time is dis-
tributed to participating DTN nodes, allowing each node a
clear picture of how to route data in an optimal manner.
Each scenario is complicated by the relative geography of
the agents which may affect communication rates, their mo-
tion plans through the environment, and the nature of long-
distance communications such as light delays or degraded
signal strengths. The practical effect of incorporating DTN’s
store-forward mechanism into the scheduling problem is that
it is possible to use mobile agents as robotic routers to ferry
data packets past communication interference.

The time-varying contact graph CG captures the commu-
nication network topology between agents. For each agent,
the graph provides a list of all the time intervals during
which it can establish a directed communication link with
another agent. An example timeline representation of a con-
tact graph for 3 agents showing available bandwidths can be
seen in Figure 2.

Links have a time varying data rate from 0 (not connected)
to∞ (communicating to self), denoted by rij(t) for the rate
from Ai to Aj at time t. Thus, communication links are di-
rected.

At any time k, let Gk be the graph representing the set
of agents it can send to or receive from. Vertices V =
{1, . . . , N} and the directed edges Ek along which commu-
nication is possible. That is, if information can flow from
the ith agent to the jth agent at the kth time instant (where
i, j ∈ V), then the edge

−→
ij ∈ Ek.

Communication between agents is a task with cost de-
termined by the size of the data product and the current
data rate between agents. The task of communicating the
data product d (T) from Ai to Aj at time t requires time
Ct

ij (T) ∝ s (T) /rij(t) for both agents and energy equal to
Ce

ij (T) on the sending agent.
Assumptions: Agents take 0 time to communicate the so-

lution to themselves. Intervals with non-zero data rates are
sufficiently long to transmit any data product (or they would
be “effectively zero”).
Problem 1 (Distributed Computation). Given a set of tasks
modelled as a software network SN , a list of computational
agents Ai i ∈ [1 . . . N], a contact graph CG, and a maxi-
mum schedule length C?, find a solution which is a mapping
of tasks to servers (agents) and start times, S = f(i) :→
(Aj , t), such that:

• The maximum server cost, C(S) = maxj C(Sj) is no
more than C?;

• All required tasks are scheduled;

• At least one of the prerequisites for all required tasks are
scheduled.

3 Scheduler Implementation
To study the role of optimal distributed computing in our
mission concepts, we implemented a scheduler which uses a
simple state space search to satisfy Problem 1.

We use a simple solution-space search. Conceptually, a
priority queue of solutions is maintained, sorted by cost.
The set of acceptable end states are those which contain all
the required tasks. The starting state is an empty schedule.
At each iteration, a new, partial solution is constructed by
adding a new task to one of the servers. If the requisite data
products were not previously calculated on that server, then
the solution is first augmented with communication tasks to
gather the missing pre-requisites. The cost of the commu-
nication task depends on the transmission rate between the
agents, and the earliest time that the agents can communi-
cate. The agent which ensures earliest arrival time is cho-
sen for each prerequisite data product. Thus, at each itera-
tion either the solution is augmented by one task, or by a
set of transmissions to retrieve missing data followed by the
task itself. During search, a list of feasible solutions is kept
for each reward value. If the resulting solution contains all
required tasks, it is stored, indexed by reward. The search
continues until the priority queue contains only solutions
exceeding the maximum cost. Then, the maximum reward
solution is returned.

The performance of the implemented scheduler is suitable
for trade studies and ground-side assignment of computing
duties. However, since we can solve the optimal distribution
of tasks a-priori given a communications regime, it is simple
to provide an onboard scheduler as a lookup table of pre-
verified assignments.

In what follows we describe three scenarios where
scheduling shared computing resources is key and would
have impact. We use agent’s tasks taken from literature and
from future exploration missions to Mars.

4 Scenario Descriptions
Given the problem description and scheduler implementa-
tion from previous sections, we now describe the mission
scenarios we consider. The scenarios were chosen to be re-
alistic enough for meaningful analysis, and to stress different
aspects of the computation and communication scheduling.

The costs for transmissions vary by data product size
and transmission speeds (e.g., the contact graph data rates).
Thus, we vary the data rates and maximum time to explore
the trade space of solutions. The resulting set of solutions
could be pre-calculated for quick look-up in a real mission if
the device was too resource-constrained to run a full sched-
uler. However, we leave the onboard scheduler implementa-
tion to future work and instead explore the “tipping points”

13

between schedules and data rate thresholds at which inter-
esting transitions between scheduler regimes occur.

In what follows we describe three scenarios. For each sce-
nario we determine which set of agent capabilities is rele-
vant, and compose them into a software network. For two
of them we provide initial results of simulations, which illu-
minate the benefits of a MOSAIC-like architecture. The last
scenarios illustrate more complex missions in which the ar-
chitecture would provide a promising impact in future work.

Figure 3: The “assisted drive” scenario.

4.1 Mars Drives
The first conceptual mission (Figure 3) is based on a single
PUFFER combined with a parent platform (e.g., base sta-
tion or flagship rover) to accurately place a PUFFER’s in-
strument (microimager) on a terrain feature. This operation
occurs within the parent platform’s direct communication
and sensing line-of-sight (LoS). PUFFER must be capable
of autonomously navigating the environment homing in on
the feature. It may leverage the better computation capabil-
ities of the parent platform, as well as its sensors that offer
a more advantageous perspective of the drive to improve its
placement accuracy.

Each PUFFER is equipped with two STM32F4 micropro-
cessors clocked at 180MHz and 168MHz with 256KB and
192KB of SRAM (Static Random Access Memory). Current
versions of PUFFER utilize a Bluetooth radio with up to 2.1
Mbit/s data rates at approximately 1 W. Future versions of
PUFFER may use a mesh radio, such as ZigBee, with data
rates up to 250 kbits/s with approximately 100 mW power
draw.

The parent platform, representing either a lander or rover,
would include more significant computational resources,
such as the HPSC. It would also have more power (e.g.,
MSL’s radioisotope thermoelectric generator produces 2.5
kWh), and the communication equipment to communicate
with an orbiter or directly to Earth (e.g., MSL has X-band
for direct communication with Earth at 32kbit/s with 15 W,
and UHF for communication to the orbiter at 2Mbit/s with 9
W) (Edwards et al. 2014).

We assume the parent platform can image the surrounding
environment and locate the puffer to provide terrain-relative
localization. We also assume the PUFFER can estimate it’s
own position using visual odometery (VO) and inertial mea-
surements. We assume onboard state estimation using VO

requires an image from the PUFFER’s onboard camera sys-
tem.

Since the PUFFER is equipped with a small scientific in-
strument, we assume that the puffer can acquire measure-
ments from the instrument during its drive, but that this re-
quires time, such as focusing, deploying, and pre-processing
an image from a microscope. Thus, in process of navigating
to its destination, a PUFFER has to sense the environment,
plan its path and act (dispatch and execute low level tasks).
During that process, a PUFFER might choose to perform
science (microimager) and transmit the science data product
to the lander for further use.

Figure 4a shows a data flow diagram to represent the soft-
ware network associated with the aforementioned processes.
The diagrams model the options available to the PUFFER to
execute and share tasks in this scenario. Depending on the
bandwidth and contact graph, the vehicle might choose to
request the lander to take a long range image, localize the
vehicle, perform path planning and then send the plan back
to the PUFFER to execute the plan. That would potentially
allow the PUFFER to use the spare time to take a micro-
scope image and send it to the lander to archive it for further
data fusion. The PUFFER might choose, as an alternative, to
take an image from its camera system, use visual odometry
to localize, and perform path planning all onboard; however,
given that VO is less accurate than the terrain-relative local-
ization from the lander, the PUFFER would have a higher
uncertainty level about its position which would be carried
to path planning.

If both images (from lander and PUFFER) are taken and
both localization processed are performed, the resulting po-
sition estimate is more accurate and so is the resulting tra-
jectory from the path planning process. Figure 4a illustrates
the tasks that can be shared and executed either onboard the
lander or the PUFFER. Specifically, localization tasks and
path planning are example of computational capabilities that
can be scheduled and placed either onboard the lander or the
PUFFER itself. Colored tasks mark the required vehicle for
those capabilities.

We analyzed this software network for a variety of time
limits and bandwidths between parent and PUFFER. The
analysis is summarized in Table 4b. Figure 4c shows an ex-
ample activity timeline for the puffer and base station from
one of the resulting regimes. We find that high bandwidths
are required to show preference towards off-board comput-
ing, at least for this scenario.

As shown in Table 4b, the long delays of taking micro-
scopic images can be offset by requesting computational
aid from the base state for planning paths. Alternatively,
optimizations to program runtimes could have greater im-
pact than bandwidth increases. Analyzing the sensitivity of
these scheduler regimes with respect to runtimes, environ-
ment such as bandwidth distributions, and hardware choices
is a key future direction to enable quick hardware and mis-
sion trade studies for distributed systems.

4.2 Mars 2020 Assisted Drive
Note, the single-PUFFER scenario closely mimics the Mars
2020 mission with only minor changes. One defining fea-
ture of Mars Sample Return mission concepts is the likli-
hood of re-visiting the same area with subsequent launches
to fetch, retrieve, and launch the samples (Mattingly and
May 2011). If an on-site computing asset were available to
multiple rovers in the area, they could make use of it for

14

(a) Data flow diagram representing software network for the single PUFFER scenario.

b/w (Mbps) Base Cam Puffer Cam VO Locate Puffer GNC Drive Microscope Store Img
≤ 0.05 Base PUFFER PUFFER Base PUFFER PUFFER N/A N/A
(0.05, .5] Base PUFFER PUFFER Base Base PUFFER N/A N/A
(0.5, 2.5) Base N/A N/A Base Base PUFFER PUFFER Base
≥ 2.5 Base PUFFER Base Base Base PUFFER PUFFER Base

(b) Distributed processing regimes for a single PUFFER and base station.

(c) Example activity timeline for the base station and puffer for a resulting regime.

Figure 4: Single-PUFFER scenario. The software network (4a) was analyzed as a function of bandwidth between the base
station and rover to produce different processing regimes (4b. The rate of data transfer between the two uniquely determines
what processes are possible, and where they are executed. Each data point is a timeline as shown in (4c. The roll-up shows
aggregation of thousands of timelines produced by a solution-space search routine.

off-loading their required engineering tasks, in order to take
advantage of opportunistic science processing and sensing.
Thus, the assisting asset(s) could provide an “infrastructure
upgrade” and could remain on-site, providing communica-
tion, computation, and data analysis services for all sub-
sequent phases of the campaign. An interesting direction
for future research would be to identify the requirements
of such an asset. The asset could be embedded in a Cube-
Sat network, and “piggy back” on the 2020 launch, simi-
lar to the MarCO CubeSats (Hodges et al. 2016). Alterna-
tively, it could be embedded in the “skycrane” lander and
dropped during the “flyaway” phase (Korzun et al. 2010;
Sell et al. 2013). Finally, it could be a tethered balloon con-
figuration (Kerzhanovich et al. 2004).

To explore any potential benefit, we next consider a
strategic drive campaign by a Mars 2020 rover. In this
case, we used information about the intended Mars 2020
drive pipeline from a talk given by Richard Rieber (Rieber
2017). The Mars 2020 conceptual path-planning pipeline,
presented in (Rieber 2017) is simplified for our use in Fig-
ure 5a. The randomized time associated with Select Path is
understandable given the mission analysis from (Ono et al.
2015). This data used in simulation is adapted from (Ono et
al. 2016).

We created the model software network for Mars 2020
illustrated in Figure 5b. The required tasks are constructed
to model the timings given in Figure 5a. From (Ono et al.
2016), we also included the ability for the rover to use im-
agers to classify the terrain, but only as an optional algo-
rithm, since the current Mars 2020 pipeline does not include

it.
To model the terrain in our simulations, we use terrain

data classified from HiRISE imagery from (Ono et al. 2016).
Multiple terrain types are grouped into different classes or as
obstacles (terrain that cannot be traversed). We do not cur-
rently take slope into account, therefore we model the ve-
locity of a rover in a given terrain class based on the average
speed over multiple slopes for that classification.

In order to model the different fidelity of data obtained
in orbit and on the ground by the rover, we assume certain
terrain types as unknown. When a rover is in an unknown
terrain type, it will move at the velocity of the real terrain
class; however, it will plan a path assuming a terrain with
the fastest traverse velocity. Nevertheless, if a rover is able
to perform terrain classification, we assume it will be able to
correctly classify the terrain within a given radius.

Repeating the analysis of the software network produced
the data shown in Table 6a. From this analysis, we isolated
four operating regimes for the rover. In the first regime, the
rover has no access to the assisting resource (regime 0).
Regimes 1-4 represent increasing bandwidth, and therefore
increasing savings from assisted computation. To reveal the
strategic benefits of these computational regimes, we simu-
late the four rover regimes across a Mars-like strategic drive.

To test the different communication and computation
regimes, simulations for 4 different regimes were run on 3
different terrain subsections 10 times each (resulting in 30
total runs) using stochastic durations for the path planning
and terrain analysis activities. The assumed stochastic activ-
ity times are shown in Table 1. It is further assumed that the

15

(a) Simplified model of Mars 2020 path planning. (b) A corresponding software network.

Figure 5: A model for the timing of Mars 2020 as discussed. The Select-path task is modelled as a random process taking a
minimum of 2 seconds, but widely varying. The over-runs associated with any runtime longer than 30 seconds is the primary
contributor to lost drive distance. The secondary contributor was a lack of terrain awareness, caused by insufficient processing
power to run onboard terrain analysis.

duration to communicate the data to the balloon is approx-
imately 3 seconds, and that the duration to communicate a
response back to the rover is approximately 1 second. The
distance between the start and end points for each traversal
was approximately 93 meters.

Table 1: Duration of activities in seconds on-board the rover
and on the balloon.

On-Board Balloon
Path Planning N (8, 4) N (0.5, 0.0001)

Terrain Analysis N (4, 4) N (0.5, 0)

The baseline regime is Regime 1, where the rover per-
forms all path planning on-board and does not perform any
terrain analysis. In Regime 2, the rover sends data to a bal-
loon where the path planning algorithm is performed and
the results sent back to the rover. Regime 3 is the same as
Regime 2, except that with the extra time, the rover per-
forms terrain analysis on-board, which can be used for the
next planning cycle. In Regime 4, terrain analysis is also per-
formed on the balloon and the results communicated back to
the rover.

Figure 6b shows an example of the different paths that
are taken for the different regimes when some of the terrain
is unknown without terrain analysis. The yellow terrain re-
quires terrain analysis to be identified and is also slower to
traverse. From this example, it is shown that with the terrain
identification knowledge, Regime 3 and Regime 4 are able
to come up with more efficient paths.

Since it is assumed that the rover must operate on a fixed
30 second cycle, if the path planning and/or terrain analysis
are not completed within the allotted 8 seconds, an over-
run will occur, causing the rover to stop until computation
is completed. The distribution of percentage of overruns are
shown as box plots in Figure 6d. As expected, Regime 2
and Regime 4 result in no overruns, whereas Regime 1 and
Regime 3 have overruns around 50% of the time.

Another metric for the improvement of the rover perfor-
mance is in the time it takes to traverse a terrain. Figure 6c
shows the time to traverse a terrain for each regime com-
pared to the baseline (Regime 1). From these results, it is
shown that being able to perform terrain analysis, and there-
fore being able to plan a path with better terrain knowledge,

improves the time to travel between two points.
We note a measurable increase in strategic drive efficiency

using this limited study technique. Future work can focus on
a more realistic terrain model, including that of the intended
landing site. In addition, we can more realistically model
the communication network. Intermittent loss of connectiv-
ity and varying data rates are significant impediments to this
approach over long dries. Finally, modelling multiple assets
would involve not only competing for the computational re-
sources, but forwarding terrain classifications and drive rates
between rovers.

4.3 Cooperative Exploration
The next conceptual mission (Figure 7) is based on multiple
PUFFERs cooperatively (i.e., their autonomous operations
are coordinated by sharing information) expanding science
and exploration footprints into areas not within direct line-
of-sight of the parent platform. The team of PUFFERs will
maintain a communication network while exploring an en-
vironment with limited direct line of site (e.g., rubble fields,
caves, lava tubes).

We assume the PUFFERS are exploring a distributed, but
spatially-correlated phenomena, such as water moisture lev-
els. We model the sampling and estimation on a similar ter-
restrial process used in farms(Tokekar et al. 2016). The point
samples of moisture levels are gathered by spectroscopy or
dipole measurements, and are incorporated into a spatial-
estimation technique called Kriging (Brdossy and Lehmann
1998). Kriging is computationally expensive, and requires
storage of all measurements. Therefore, it is not suitable
for computationally-constrained devices like PUFFERS, but
can be performed on the base station, orbiter, or on Earth.

In this scenario, each PUFFER operates under the same
condition and software network as those used in the single
vehicle scenario (Figure 4a), except that herein the lander
becomes a shared resource for computation requests. More-
over, the team of PUFFERs provides a larger mesh-based
communication network, allowing data to be sent across ve-
hicles to reach the lander.

As before, a PUFFER can perform localization and path
planning onboard, request the lander for support on those
tasks, or even both while navigating the environment. In
those cases, the computation sharing has to be coordinated
among the vehicles since the lander has limited computa-
tional resource. In such coordination, PUFFERs can reason

16

b/w (Mbps) Time Image Mapping Extra Observations Plan Path Confirm / Drive SPOC-lite
(0− .1] 27 Rover Rover N/A Rover Rover N/A
(0.1− .3] 29.3 Rover Rover N/A Assist Rover Rover
(0.3− 1] (29.7− 28.2] Rover Rover Rover Assist Rover Rover
(1, 100] (27.3− 15.3] Rover Assist Assist Assist Rover Rover

(a) A Mars 2020 rover adaptation of assisted drive. The adaptation was made using the pipeline information given in Figure 5a.

10 m

Regime 1
Regime 2
Regime 3
Regime 4

42.7 m/hr

29.7 m/hr

25.9 m/hr

10.9 m/hr

10.9 m/hr

Obstacle

(b) Example paths

1 2 3 4

Rover Regime

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

F
ra
ct
io
n
o
f
R
eg
im

e
1
T
im

e

(c) Time to traverse waypoints per regime

1 2 3 4

Rover Regime

0

10

20

30

40

50

60

70

%
O
v
er
ru
n
s

(d) Overruns per traverse for each regime

Figure 6: Effect of computing regimes on a Mars 2020-like mission. 6b shows the path choices. The main effects of addition
computation assistance is reduced planner overrun and better terrain classification, resulting in more efficient paths, as shown in
6c and 6d. Terrain types are designated as different colors and the darker terrain (darkest except for black) can only be identified
using terrain analysis.

Figure 7: Multi-Robot Scenario 2

about routing their data products to the lander. For exam-
ple, it might detect that a direct communication link to the
lander is poor due to the current terrain features, but routing
data through one of the other PUFFERS would work better.
That would allow the scheduler to potentially add both mi-
croscope image and archive tasks to the regime, along with
transferring the data through the vehicles network.

This scenario presents significant challenges to dis-
tributed computation because of the combination of roles
a PUFFER may take. First, it may be purely sensory, tak-
ing images and then moving while sending those images
to the base station. Second, it may be able to position it-
self as a relay node, spending all its time ferrying data be-
tween other assets. Alternatively, it could be a combination
of the two, depending on its location, the plans of assets
around it, and the motion around intervening terrain which
may affect bandwidth. Finally, the motion planning problem
in this context is critical. How are sample locations chosen
for the PUFFERs? How does the motion and location of the
PUFFERs affect data rate, and can paths be chosen to maxi-
mize information flow? These questions are good directions
for future work.

5 Conclusion
In this paper we described the MOSAIC concept for Mars
exploration in which simultaneous scheduling of computa-
tion, communication, and caching of data across different
networked assets becomes increasingly essential. We pre-
sented a series of scenarios to illustrate how MOSAIC net-
works can impact science utility, vehicle performance and
would enable an optimal distribution of computational loads,
specially in multi-asset scenarios - a natural progression of
future missions to Mars and other planets.

The cooperative exploration scenario in Section 4.3 rep-
resents our major next hurdle. A comprehensive solution
would include role assignment (relays versus sensors), posi-
tion and path assignments to maintain connectivity, and re-
sponse to changing communication networks, including mo-
mentary breakage of links to gain greater sensing data. We
will proceed first with role assignments for data routing.

The preliminary study of optimal processing distribution
is useful as feedback into hardware design. The methods
of this paper can be used to optimize the hardware of the
PUFFER design, or design communication networks for
future Mars exploration missions. In this direction, deter-
mining the “tipping points” between different processing
regimes is most important. The differences in efficiency be-
tween regimes can be very large. A schedule sensitivity anal-
ysis is required to determine the optimal schedule’s response
to perturbations to e.g., bandwidth. We have conducted this
analysis by using a “brute-force” search routine, but produc-
ing analytical and algorithmic results which are quick are
more capable are a primary next step for research. We ex-
pect this analysis will fold nicely into a framework similar
to (Herzig et al. 2017) which provides a hardware-space ex-
pansion for designing multi-asset missions.

The initial results and envisioned scenarios described in
this paper brings interesting next steps and promising re-

17

search efforts in the MOSAIC project. We will study in more
depth the multi-vehicle scenarios presented in this paper and
identify the key algorithmic requirements for those cases. In
these cases we will investigate on different scheduling tech-
niques and formalisms that could be utilized onboard the as-
sets to allocate computation load, considering vehicle with
both low and high CPU capabilities, and manage connec-
tivity fluctuations. Our framework is designed to be respon-
sive to loss of connectivity by re-scheduling tasks based on
a new communications graph using a set of pre-verified dis-
tribution of tasks. In particular, we have studied the change
in optimal computing distribution due to bandwidth fluctu-
ations, but more research is necessary to fully evaluate risk
of connectivity variations and provide an onboard scheduler
which can accommodate unlikely but impactful changes.
Moreover, we will also incorporate the multi-agent coordi-
nation aspect to the target scenarios, in which agents have
to negotiate the distribution of computation, data flow and
utilization of resources. Agents might have different utility
functions and goals that will add an interesting element to
our network problem.

Finally, uncertainty and risk management is a key as-
pect of realistic assets networks for planetary exploration.
Several aspects of exploration mission have uncertainty and
can potentially be represented with stochastic models, such
as task outcome and duration, vehicle failure, connectivity,
bandwidth variations, and others. One promising research
avenue is to incorporate probabilistic planning and schedul-
ing approaches (Santana et al. 2016) to the computation
sharing problem, as well risk-bounded techniques to provide
guarantees that the network and the vehicles are able to op-
erate within user specified bounds.

Acknowledgements
The research was carried out at the Jet Propulsion Labo-
ratory, California Institute of Technology, under a contract
with the National Aeronautics and Space Administration.

References
[Brdossy and Lehmann 1998] Brdossy, A., and Lehmann, W.
1998. Spatial distribution of soil moisture in a small catch-
ment. part 1: geostatistical analysis. Journal of Hydrology
206(1):1 – 15.

[Doyle et al. 2013] Doyle, R.; Some, R.; Powell, W.;
Mounce, G.; Goforth, M.; Horan, S.; and Lowry, M.
2013. High performance spaceflight computing (hpsc) next-
generation space processor (ngsp): a joint investment of nasa
and afrl. In Proceedings of the Workshop on Spacecraft
Flight Software.

[Edwards et al. 2014] Edwards, C. D.; Barela, P. R.; Glad-
den, R. E.; Lee, C. H.; and Paula, R. D. 2014. Replenishing
the mars relay network. In 2014 IEEE Aerospace Confer-
ence, 1–13.

[Herzig et al. 2017] Herzig, S. J. I.; Mandutianu, S.; Kim, H.;
Hernandez, S.; and Imken, T. 2017. Model-transformation-
based computational design synthesis for mission architec-
ture optimization. In 2017 IEEE Aerospace Conference, 1–
15.

[Hodges et al. 2016] Hodges, R. E.; Chahat, N. E.; Hoppe,
D. J.; and Vacchione, J. D. 2016. The mars cube one deploy-
able high gain antenna. In 2016 IEEE International Sympo-
sium on Antennas and Propagation (APSURSI), 1533–1534.

[Karras et al. 2017] Karras, J. T.; Fuller, C. L.; Carpen-
ter, K. C.; Buscicchio, A.; McKeeby, D.; Norman, C. J.;
Parcheta, C. E.; Davydychev, I.; and Fearing, R. S. 2017.
Pop-up mars rover with textile-enhanced rigid-flex pcb
body. In Robotics and Automation (ICRA), 2017 IEEE In-
ternational Conference on, 5459–5466. IEEE.

[Kerzhanovich et al. 2004] Kerzhanovich, V.; Cutts, J.;
Cooper, H.; Hall, J.; McDonald, B.; Pauken, M.; White,
C.; Yavrouian, A.; Castano, A.; Cathey, H.; Fairbrother, D.;
Smith, I.; Shreves, C.; Lachenmeier, T.; Rainwater, E.; and
Smith, M. 2004. Breakthrough in mars balloon technology.
Advances in Space Research 33(10):1836 – 1841. The Next
Generation in Scientific Ballooning.

[Korzun et al. 2010] Korzun, A. M.; Dubos, G. F.; Iwata,
C. K.; Stahl, B. A.; and Quicksall, J. J. 2010. A concept
for the entry, descent, and landing of high-mass payloads at
mars. Acta Astronautica 66(7):1146 – 1159.

[Mattingly and May 2011] Mattingly, R., and May, L. 2011.
Mars sample return as a campaign. In 2011 Aerospace Con-
ference, 1–13.

[Mounce et al. 2016] Mounce, G.; Lyke, J.; Horan, S.; Pow-
ell, W.; Doyle, R.; and Some, R. 2016. Chiplet based ap-
proach for heterogeneous processing and packaging archi-
tectures. In 2016 IEEE Aerospace Conference, 1–12.

[Ono et al. 2015] Ono, M.; Fuchs, T. J.; Steffy, A.; Maimone,
M.; and Yen, J. 2015. Risk-aware planetary rover opera-
tion: Autonomous terrain classification and path planning.
In Aerospace Conference, 2015 IEEE, 1–10. IEEE.

[Ono et al. 2016] Ono, M.; Rothrock, B.; Almeida, E.;
Ansar, A.; Otero, R.; Huertas, A.; and Heverly, M. 2016.
Data-driven surface traversability analysis for mars 2020
landing site selection. In Aerospace Conference, 2016 IEEE,
1–12. IEEE.

[Powell et al. 2011] Powell, W.; Johnson, M.; Some, R.;
Wilmot, J.; Gostelow, K.; Reeves, G.; and Doyle, R. 2011.
Enabling future robotic missions with multicore processors.
In Infotech@ Aerospace 2011. 1447.

[Rieber 2017] Rieber, R. R. 2017. Designing for a martian
road trip: The mobility system for mars-2020. Keynote Talk:
Mars Forum (URS: URS270204, CL17-5707).

[Santana et al. 2016] Santana, P.; Vaquero, T.; Toledo, C.;
Wang, A.; Fang, C.; and Williams, B. 2016. Paris:
A polynomial-time, risk-sensitive scheduling algorithm for
probabilistic simple temporal networks with uncertainty.
In International Conference on Automated Planning and
Scheduling (ICAPS).

[Sell et al. 2013] Sell, S.; Chen, A.; Davis, J.; San Martin,
M.; Serricchio, F.; and Singh, G. 2013. Powered flight de-
sign and reconstructed performance summary for the mars
science laboratory mission. Technical report, Jet Propul-
sion Laboratory, National Aeronautics and Space Adminis-
tration.

[Tokekar et al. 2016] Tokekar, P.; Hook, J. V.; Mulla, D.; and
Isler, V. 2016. Sensor planning for a symbiotic uav and
ugv system for precision agriculture. IEEE Transactions on
Robotics 32(6):1498–1511.

[Wyatt et al. 2017] Wyatt, E. J.; Belov, K.; Burleigh, S.;
Castillo-Rogez, J.; Chien, S.; Clare, L.; and Lazio, J. 2017.
New capabilities for deep space robotic exploration enabled
by disruption tolerant networking. In 2017 6th International
Conference on Space Mission Challenges for Information
Technology (SMC-IT), 1–6.

18

An Approach for Autonomous Multi-rover Collaboration for Mars Cave
Exploration: Preliminary Results

Tiago Vaquero and Martina Troesch and Steve Chien
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91109

Abstract

Mars caves are promising targets for planetary science and
human shelter. Exploring these environments would pose sev-
eral challenges, including limited communication, lack of
sunlight, limited vehicles lifetime that would not allow hu-
mans in the loop, and a totally unknown environment. Mis-
sion to these underground environments would required lev-
els of autonomy, coordination and collaboration never been
deployed before in rovers. In this paper we propose a multi-
rover coordination algorithm and experimental framework for
cave exploration missions. We describe preliminary experi-
mental results with this coordination algorithm in a realistic
simulated cave. We analyze rover coordination performance
in different environmental settings and provide insights on
potential opportunities for enhanced autonomy with AI plan-
ning and scheduling.

1. Introduction
Exploration of planetary caves is becoming an active re-
search topic in the planetary science community and a
promising scientific target for autonomous robotic explor-
ers. Mars in particular offers exciting opportunities for (1)
human settlements, (2) understanding the planet’s evolu-
tion, and (3) the search of extraterrestrial life. Caves present
the most mission effective habitat alternative for future hu-
man exploration, offering a stable, UV-shielding, meteoric-
shielding environment (Boston et al. 2003), as well as access
to minerals, gases and ice. Equally important, caves may
preserve valuable information about the planet’s history and
evolution. Specifically, they offer stable physio-chemical en-
vironments, trapped volatiles, secondary mineral precipita-
tion and microbial growth, which are expected to preserve
bio-signatures and provide a record of past climate (Boston
et al. 2005; 2004). Moreover, caves can potentially host wa-
ter deposits which, through interaction with volcanic heat
and minerals, could have created a favorable environment
to microbial life preservation. What makes planetary caves
even more attractive is that they are quite abundant. Mars for
example has more than 2000 cave-related features identified,
commonly associated with lava tubes, which provides a va-
riety of promising targets for future exploration missions.

Robotic exploration missions on Mars would provide
unique science opportunities for the cognitive and robotics
communities, however, they present several challenges.

c© 2018, California Institute of Technology. U.S. Government
sponsorship acknowledged.

Communicating with a rover into any of these caves and
transmitting science data out is in itself a hard technical
problem. Without a link to the surface, a rover would not
be able to go far into the cave without losing contact with a
base station. Moreover, because sunlight is not available in
the cave, a mission is likely to last only a few days since the
rovers will rely exclusively on battery power. Given limited
communication, power and mission duration (just days), it
is impractical to wait for humans’ commands and feedback
like in current Mars operations. For example, current MSL
operations requires humans in the loop to plan sequences of
actions for each sol based on downlinked data (Gaines et al.
2016). Those challenges alone require rovers far more au-
tonomous than the existing surface rovers, for their environ-
ment is quite unknown and their communication with Earth
is extremely limited, if at all.

Autonomy in multi-rover coordination is a key mission
enabler that would help rovers to map and explore as much
of the cave as efficiently as possible. With their very lim-
ited lifetime, rovers cannot wait for large parts of each day
to receive directions from ground/Earth. The need for such
multi-asset coordination was identified in recent studies in
Mars cave exploration (Dubowsky et al. 2005; Kesner et
al. 2007; Husain et al. 2013; Thangavelautham et al. 2014)
and in Mars surface exploration (Clement and Barrett 2003;
Yliniemi, Agogino, and Tumer 2014). The AI community
has recently started to look into coordination techniques to
map and explore Mars cave environments (Husain et al.
2013). One traditional approach would be to use a central-
ized task allocation and communication architecture to co-
ordinate the rovers during exploration (Chien et al. 2000;
Clement, Durfee, and Barrett 2007). However, this approach
becomes unfeasible in a realistic cave environment due to
intermittent, unreliable communication, as well as the high
cost of communication power associated with the central-
ized scheme. Some existing work explores distributed tech-
niques to coordinate vehicles to maintain connectivity be-
tween a base robot and a mobile explorer at all times in more
controlled environments (auf der Heide and Schneider 2008;
Stump, Jadbabaie, and Kumar 2008). These approaches can
be leveraged to address subsurface missions, but they would
need to be contextualized to environments with high likeli-
hood of connectivity loss between rovers (sometimes done
proactively by rovers to increase science utility) and un-
known density and geometry of obstacles. Research on
multi-rover coordination under these challenging constraints
is in its infancy.

In this work, we propose a multi-rover coordination strat-

In Proceedings of the 14th International Symposium on Artificial Intelligence, Robotics and Automation in Space
(i-SAIRAS), Madrid, Spain, June 2018.

19

egy for cave exploration that aims to send rovers as deep
into the cave as possible while also maximizing science data
sent out to a surface base station. The proposed Dynamic
Zonal Relay with Sneakernet Relay Algorithm is a two step
algorithm. The first phase of the algorithm (Dynamic Zonal)
drives each rover to a designated zone along the length of the
cave, while maintaining communication distance between
neighboring rovers. Each rover only takes science data in
its designated zone and transmits it to the neighboring rover
in the direction of the base station. Once at the end of its
zone, the rover stops and becomes a relay point. The dy-
namic part of this algorithm is that if a rover is no longer
operable, the other rovers would re-distribute the zones to
maintain communication and characterization of the envi-
ronment. The next step of the algorithm (Sneakernet Relay)
would allow the rovers to acquire science data further in the
cave by driving beyond the communication distance (inten-
tional communication lost) and driving between neighbor-
ing rovers to relay the data out of the cave. We implement
a simulation framework that (1) allows different multi-rover
mission configurations, as well as (2) supports the measure-
ment, evaluation, visualization and analysis of rover perfor-
mance. We present preliminary results on the rovers and al-
gorithm performance in a realistic simulated cave environ-
ment and rover configuration, including power and com-
munication constraints, and science instruments and navi-
gation system specification. The results provide initial in-
sights to future mission design space, direction for algorithm
improvements, as well as interesting opportunities for task
planning and scheduling that would improve rover coordi-
nation, operation, communication and science return.

This paper is organized as follows. We first describe the
multi-rover coordination problem for Mars cave exploration
we address in this work and the particular elements of the
mission. We then present the Dynamic Zonal Relay with
Sneakernet Relay Algorithm in more detail. Next, we pro-
vide experimental results from a set of simulated Mars Cave
exploration scenarios, in which a team of four rovers explore
a realistic-size cave with varying obstacle densities. We an-
alyze the performance of the coordination algorithms with
respect to a score based on cave coverage transmitted out of
the cave, mission life span, distribution of energy and time
spent in different rover activities. Finally, we discuss the re-
sults, potential roles for AI planners and schedulers, as well
as future directions.

2. Example Problem Definition
Among the several mission challenges related to deploying
and controlling a set of rovers in a Mars cave, in this work we
focus on the hypothetical problem of autonomously coordi-
nating multiple rovers to (1) map and characterize a Martian
cave as far into the cave as possible from the entrance, and
(2) to transmit as much science data collected by the rovers’
instruments as possible out of the cave to a lander (base sta-
tion), which will then take care of transmitting it to scientists
on Earth. Figure 1 illustrate a Martian lave tube structure,
with the lander positioned at the entrance and a set of sci-
ence rovers exploring the cave interiors. We provide more
details and constraints on the cave environment and rover
platform in what follows.

2.1 Cave Environment
In this paper we focus on Martian caves associated with lava
tubes. Due to Mars’ lower gravity, Martian lava tubes are

Figure 1: Illustration of a hypothetical multi-rover coordina-
tion problem in Mars cave exploration. Rovers not to scale.
Credit: Figure adapted from the Wikimedia Commons, Lon-
gitudinal cross-section of a martian lava tube with skylight.

much larger than Earth lava tubes. Herein we target caves
that are approximately 100 meters wide and potentially hun-
dreds of meters deep, with a skylight entrance formed from a
collapsed cave ceiling as illustrated in Figure 1. We assume
that the terrain in the interior of the cave is unknown a priori.

Cave walls are a quite interesting science target for
NASA/JPL scientists. They can provide critical constraints
on lava temperature and cooling history, leading to insights
into Martian magmatic processes and differentiation. Thus,
in our coordination problem the rovers should try to safely
remain as close to the walls as possible to characterize wall
properties and facets.

2.2 Conceptual Autonomous Rovers
We consider a set of homogenous rovers that are assumed to
be successfully deployed at the bottom of the cave through
the skylight entrance. The problem of deploying the rovers
into the cave, although interesting, is not in the scope of this
work. The focus is in the exploration and coordination prob-
lem while in the cave where communication is limited.

The rovers are equipped with a battery module, mobility
components, a communication component (antennas), and
a science component with a set of key science instruments.
Those components allow each rover to perform the follow-
ing actions:
• Ping (communication component): a rover can send a

ping to all rovers within communication range to detect
the vehicles around it. Rovers (including the base rover) in
the communication range respond with their position and
status update. A ping process has a specific duration (e.g.,
2 seconds) and also a power consumption rate known a
priori. Communication range and ping duration are pro-
vided in the antenna specs.

• Drive (mobility components): to navigate the environ-
ment safely, each rover is able to detect obstacles within a
radius (e.g. 5 meters) in 360 degrees. The cave map is
stored during exploration - given that the focus of this
work is not on mapping and localization per se, we as-
sume that the knowledge about the map and coverage be-
comes available to all the rovers as they explore the cave.
The velocity of the vehicle and power consumption during
driving is known and given by the mobility specification.

• Science (science component): each rover has the same set
of science instruments partitioned in three categories: pri-
mary instruments, secondary instruments, and periodic

20

instruments. Each one of these instruments has its own
specs for power consumption, data volume generated by
each reading and the sensing duration.

• Transfer (communication component): transfer is a col-
laboration task in which the sender first sends a transfer
request to a target/receiver rover. The receiver then in-
forms the sender when it is available to receive data. Once
that confirmation is received, the sender transfers the data
to the target rover. When the data is successfully trans-
ferred, the receiving rover sends a confirmation and the
task is completed. The duration of the actual data transfer
between two rovers (lander and/or science rover) is deter-
mined by the antenna specs, the data volume and the dis-
tance from each other (bandwidth). The bandwidth can
be modeled with an arbitrary function (see Discussion).
For the simulations presented in this paper, we model
bandwidth as a step-wise function of distance between
communicating vehicles. For example between 0-5 me-
ters rovers can transfer data at 11.0 Mbps, between 5-10
meters at 5.5 Mbps, between 10-15 meters at 2.0 Mbps,
and between 15-25 meters at 1.0 Mbps. Power consum-
mation rates are also known and are constant during com-
munication, regardless of distance.
In additional to the above action specification, we list be-

low some of the key assumptions on the exploration prob-
lem:

1. All actions consume energy from the battery component,
which is a limited resource. If the battery drains out, the
rover becomes non-operational.

2. We consider a constant hotel load that represents the en-
ergy consumption to keep the rover operational. We frame
any cognitive process (e.g., decision making, path plan-
ning computation) as part of this constant consumption.

3. Each rover can only execute one action at a time, except
sending and responding to pings. In the science case, only
one instrument can be used at a time.

4. Communication model does not consider the shape, tex-
ture, material of the cave or proximity to walls. (This is ac-
tually already being incorporated in our models, but will
be left for future publications.)

5. Communication is possible only up to a fixed distance be-
tween rovers, where the lander has a longer fixed range.

6. Rover can fail during exploration, which means that the
coordination has to account for reconfiguration.

7. In this work we are not modeling acceleration or slippage
in the motion model.

8. Finally, each rover does have a memory component for
data science storage, but the memory capacity is large
enough to handle days or weeks worth of data.

3. Approach
We propose a multi-rover coordination strategy for cave ex-
ploration that aims to send rovers as deep into the cave as
possible while also maximizing data sent out to a surface
base station.

The rovers explore the cave using the Dynamic Zonal Re-
lay with Sneakernet Relay Algorithm, which is a two phase
algorithm, starting with (1) Dynamic Zonal Relay and ex-
panding with (2) Sneakernet Relay. One of the main aspects
of this algorithm is the use of spatial zones to determine the

state of the rover. Each zone is a distinct section of the cave
based on distance from the lander, as shown in Figure 2.

Figure 2: Zones based on the distance from the conceptual
lander or base station (left). Nominal state transitions for the
Dynamic Zonal Relay phase (right).

3.1 Dynamic Zonal Relay
The first phase, Dynamic Zonal Relay, assigns the rovers to
designated, adjacent zones that keep the rovers within com-
munication range of their immediate neighbors. The algo-
rithm is dynamic in that if any rover becomes inactive (i.e.,
no longer communicating due to some kind of failure or run-
ning out of battery), the other rovers dynamically readjusts
the zone assignments.

While driving to its assigned zone, the rover maintains
a safe communication distance with its neighboring rovers
and relays any science data that has been transferred to it to
its neighbor in the direction of the lander. When in its zone,
the rover moves along the length of the cave, continuing to
maintain communication distance, while characterizing the
cave. The rover sends acquired science data to the neighbor-
ing rover closest to the lander. Once at the end of its zone, the
rover becomes a relay point. In this state, the rover transfers
any remaining science data that it has collected, as well as
any science data that has been transferred to it, to its neigh-
bor closest to the lander.

A diagram of the nominal state transitions for the Dy-
namic Zonal Relay phase is shown in Figure 2. The diagram
also shows that the rovers perform periodic pings to the other
rovers to share status information, such as position, and to
keep track of which rovers are still active.

In the case that a rover becomes inactive, the surrounding
rovers readjust depending on their position relative to the
inactive rover. Rovers closer to the lander would not need
to adjust their zones; however, they need to be made aware
of the new configuration. Rovers deeper into the cave need
to adjust their zone closer to the other rovers to re-establish
a continuous line of communication across all rovers. Since
the rovers do not know how much science data the inactive
rover was able to acquire and transfer out of its zone (if it
was already characterizing its zone), all rovers that moves
into a new zone re-characterize the entire zone.

3.2 Sneakernet Relay
Once all of the data that was collected during the Dynamic
Zonal phase has been passed to the lander, the rovers tran-
sition to the Sneakernet Relay phase. During this phase, the
rover furthest into the cave is designated as the lead rover
(e.g., Rover4 in a team of four rovers) and the others are des-
ignated as relayers (e.g., Rover1, Rover2 and Rover3 in the

21

team of four rovers). The lead rover is now tasked with char-
acterizing the next zone, which means that one of the relay-
ers is no longer in communication range of one of its neigh-
bors, meaning that it must sneakernet. Increased sneakernet
distance is assigned in order, starting with the rover closest
to the lander (e.g., Rover1 in our example), as the lead rover
characterizes more zones.

The sneakernetting process is composed of cycles, where
a sneakernet cycle consists of each rover incrementally in-
creasing its sneakernetting distance. A cycle is further bro-
ken down into stages that are repeated with each assignment
of increased distance: (1) extension/replacement and charac-
terization, (2) relay, and (3) confirmation. Except at the be-
ginning of the Sneakernet Relay phase, stage (1) and stage
(3) occur simultaneously. Figure 3 helps to illustrate the evo-
lution of the Sneakernet Relay phase, with line 1 showing
the positions of the rovers for a three rover mission configu-
ration at the end of the Dynamic Zonal Relay phase.

The beginning of a cycle is triggered by the rover closest
to the lander (Rover1) beginning the extension/replacement
and characterization stage, as shown in Figure 3 line 2. The
initiator of this stage (in this case, the rover closest to the
lander) moves forward to the relay position of its neighbor.
This triggers the neighbor rover to move forward to the relay
position of the rover in front of it, and so on, until the lead
rover. When the lead rover is triggered, it moves forward
and characterizes the next section of the cave, which is the
same distance as that of the relay distance of the previous
rover (the distance between the leader’s neighbor and the
neighbor’s neighbor).

When the lead rover has finished collecting new data (line
3), the relay stage is initiated. The lead rover begins by mov-
ing within communication range of the rover following it
and transferring all of its data. After the transfer, the trans-
ferring rover remains where it is while the receiving rover
moves to communication range of its neighbor in the direc-
tion of the lander and transfers all of the data, and so on, until
the rover closest to the lander transfers all of the data out of
the cave. In Figure 3, line 4 shows the first rover requiring to
move in order to transfer the data to the lander.

The transfer of all of the data to the lander triggers the
next stage, confirmation. The rover closest to the lander now
moves back to its neighbor inside the cave, confirms that the
transfer was successful, and returns to its previous relay po-
sition (line 5). The next rover then moves deeper into the
cave to its neighbor and reports the confirmation and returns
to its relay position, and so on for all of the rovers until the
confirmation reaches the lead rover. During this stage, the
next rover to initiate extension moves to its next relay posi-
tion during the confirmation process, triggering all rovers to
move deeper into the cave as a cascading sequence of exten-
sion and confirmation, such as on line 6. In line 7, we see the
lead rover moving ahead and characterizing a zone the same
distance as that of the relay distance of the previous rover
(distance between Rover2 and Rover1, as described previ-
ously, requiring the lead rover to sneakernet on line 8.

The remainder of Figure 3 shows the repetition of these
stages, until line 13, which shows the positions of the rovers
after the second cycle is initiated by the first rover (Rover1).

To remain robust to rover failures during the Sneakernet
Relay phase when the rovers are no longer in communica-
tion range, the rovers rely on timeouts to estimate how long
they should wait for a neighbor to initiate the next phase.
If a timeout is reached, they will try to find its neighbor in
the direction of the lander to re-establish the relay chain. If

a relayer reaches a timeout waiting for its peer deeper in the
cave, it will then act as the leader.

Figure 3: The movement of the rovers during the Sneakernet
Relay phase of the algorithm for the first cycle.

4. Experiments in Simulation
The Dynamic Zonal Relay with Sneakernet Relay Algorithm
was tested in a simulation framework using the Robot Op-
erating System (ROS) to model the communication between
the rovers as well as to model the different rover compo-
nents (e.g. the science instruments, driving and navigation,
etc.) and the cave.

A configuration with four rovers (Rover1 through Rover4)
and a base station was used, as illustrated in Figure 1, for
the experiments. This configuration is based on preliminary
cost and payload analysis of similar classes of missions. The
cave model used is a model of the Cassone Cave (Santa-
gata), scaled approximately twelve times so that the width is
around 70 m, which is shown in Figure 4. The cave model
is made up of approximately 350,000 triangular facets, with
an average size 1.16 m2.

Each rover is assumed to have an identical suite of instru-
ments, partitioned in the three aforementioned categories:
primary, consisting of a LiDAR to characterize the walls,
facets and structure of the cave; secondary, including a color

22

camera and a spectrometer; and periodic instruments, in-
cluding a thermometer, radiation detector, and hygrometer.
Primary and secondary instruments are used based on move-
ment of the rover, whereas the periodic instruments are used
based on a regular, timed cadence (in this case, every 60
minutes). A summary of the assumed instrument parameters
is shown in Table 1.

Table 1: Assumed Instrument parameters
Power Data Sensing
(Watts) Volume Duration

(Mb) (s)
LiDAR 10.0 1344 5.0

Color Camera 5.0 150.0 1.0
Spectrometer 10.0 14.4 660.0
Thermometer 1.0 0.0008 5.0

Radiation Detector 1.0 0.0008 5.0
Hygrometer 2.0 0.0008 5.0

The communication range was limited to 25 meters be-
tween rovers and 75 meters to the lander. Pings to commu-
nicate position and status were performed once per minute.
The assumed power for communication was 4.0 Watts.

In this work we incorporate a simple approach for rover
navigation and selection of the region to be explored in the
cave. Each rover computes its path through the cave map us-
ing the A* algorithm, where Rover1 through Rover3 move
toward the rovers ahead of them, while the leader, Rover4,
uses a frontier detection algorithm (Yamauchi 1997) to move
towards unexplored regions of the map into the cave. In this
experiment, rovers traverse the environment at 0.005 m/s
and a 5-meter range is used for obstacle detection and map-
ping. It is assumed that driving requires 14.0 Watts of power.

We also model a hotel load (the amount of power required
for a rover to remain operational, such as basic heating and
health monitoring) of 5.0 Watts.

Figure 4: Simulated cave front and top views. Model of
the Cassone Cave (Santagata), scaled approximately twelve
times.

To test a perfect scenario where the cave has no obsta-
cles and the rovers are able to function until they run out
of energy, one experiment was performed with zero obsta-
cles in the cave and no random dying of the rovers. Two
further experiments were performed, again with rovers able
to function until they run out of energy, with random obsta-
cle densities of 10% and 20% to show how the simulation
can evaluate the success of a mission where there are rocks
and debris throughout the cave. In order to show the robust-
ness of the algorithm to loss of rovers, another experiment
was run with zero obstacles and a random chance of rovers
dying during the run.

As a comparison, an experiment was performed with a
single rover using the Dynamic Zonal Relay with Sneakernet
Relay algorithm, where the rover extends by a single zone
(in this case 20 m) at each step. No obstacles were used for
this experiment.

To evaluate the different runs, a scoring function based on
the cave characterization data transferred out of the cave was
used. For remote instruments (such as cameras), the score,
sremote, is the area of the triangular facets covered in the
cave model based on the position of the rover, the field of
view of the instrument, and any restrictions on far and near
clip planes or normal angle of the facet, which is summa-
rized in Eq. 1 for a data acquisition instance datai.

sremote(datai) =
∑

cave facets, f

area(f), if f visible (1)

For in-situ instruments (e.g. temperature sensors), the
score, sin−situ, depends on both position and time of the
data. For these types of measurements, the value of the data
decreases if it is taken at almost the same position and time,
therefore the score is a function that decays based on the
position and time of any previously taken data of that type.
Given a max time of T before a facet can receive a full score
again, sin−situ is determined by Eq. 2 for a data acquisition
instance datai.

sin−situ(datai) =
∑

cave facets, f

area(f) ∗ d, if f visible, (2)

where,

d =

{
1 if f last measured > T seconds ago
e−(T−∆t)/T otherwise

and visibility is based on a sphere with a fixed radius instead
of a field of view and clip planes.

This results in a total score, score, defined by Eq. 3, where
only data that is transferred out of the cave is scored.

score =
∑

remote data acquisitions, i

sremote(datai)

+
∑

in-situ data acquisitions, j

sin−situ(dataj)
(3)

5. Simulation Results
In what follows we present the results from the single rover
and the multi-rover experiments using the simulator. A com-
parison of the results are shown in Table 2.

5.1 Single Rover
The single rover was able to explore up to 100 meters into
the cave; however it was only able to transfer data from up
to 80 meters. This can be seen from Figure 5, which shows
the depth into the cave that the rover travelled with respect
to time; the rover was not able to make it back close enough
to the lander after characterizing up to 100 meters to transfer
its most recently collected data (i.e., data collected between
80-100 meters).

The percentage of time that the rover spent performing
different activities is show in Figure 6, which demonstrates
that the amount of time required to drive and transfer the data
is quite significant, especially with respect to the amount of

23

Table 2: Comparison of simulated experiments

Max Lifetime Max Transferred Score Data Volume Data Volume Rover Death Death Time (days)
(days) Data Distance (m) Transferred (GB) Un-Transferred (GB)

Single Rover 1.59 80 1122.76 4.70 1.39
0% Obstacles 2.99 100 3828.27 6.44 1.02

10% Obstacles 3.00 100 4285.45 6.76 1.39
20% Obstacles 3.41 45 3347.68 4.34 0.0000077
Random Death 2.69 75 2452.43 5.20 2.41 Rover4, Rover1 0.19, 1.94

time spent acquiring the data (labeled “Science”). However,
when looking at the percentage of energy required, Figure
7, the transfers make less of an impact, whereas driving con-
tinues to have the greatest impact.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·105

0

20

40

60

80

100

t (sec)

y
(m

)

Lander
Rover1

Figure 5: Simulated depth of the rover into the cave (y posi-
tion) with respect to time.

0 20 40 60 80 100

Rover1

Lander
Science
Drive

Transfer
Wait to Transfer

Other

Figure 6: Percentage of time spent on different activities.

0 20 40 60 80 100

Rover1

Lander
Science
Drive

Transfer
Wait to Transfer

Ping
Hotel

Figure 7: Percentage of energy required to perform different
activities.

5.2 Four Rovers
Figure 8 shows an example of the motion of the rovers ex-
panding and sneakernetting in the four rover configuration
with zero obstacles and no random death.

The percent breakdown of activities in terms of time is
displayed in Figure 9, where it is shown that transferring
data (either receiving or sending) takes a large portion of a
rover’s time, increasing for the rovers closer to the lander.
In fact, comparing Figure 6 and Figure 9, Rover1 spends ap-
proximately as much time transferring as the single rover.
However, the largest amount of time is spent performing
“other” activities, which includes pings and idle time. Un-
like in the single rover scenario, with multiple rovers there
are times that the state transition of a rover depends on the
actions and states of the surrounding rovers, meaning that
the rover must wait idly, which is why the Other time is so
high in Figure 9 compared to Figure 6.

Figure 10 shows the energy distribution for the four
rovers. Like the single rover scenario, in terms of specific
activities, driving takes the most amount of energy. How-
ever, in the multi-rover scenario, each rover spends much
less energy performing science activities, with Rover4 using
the most energy on science, as expected since it character-
ized more zones. Although a small percentage of the overall
energy required by the rovers, in Figure 10, it can be seen
that it is not an insignificant source of energy usage.

0 0.5 1 1.5 2 2.5

·105

0

50

100

t (sec)

y
(m

)

Lander
Rover1
Rover2
Rover3
Rover4

Figure 8: Simulated depth of the rovers into the cave (y posi-
tion) with respect to time for a four rover sneakernet config-
uration with zero obstacles and no chance of random death.

0 20 40 60 80 100

Rover4

Rover3

Rover2

Rover1

Lander
Science

Navigation
Transfer

Wait to Transfer
Other

Figure 9: Percentage of time spent on different activities for
the four rovers and the lander in the simulation.

0 20 40 60 80 100

Rover4

Rover3

Rover2

Rover1

Lander
Science

Navigation
Transfer

Wait to Transfer
Ping
Hotel

Figure 10: Percentage of energy required to perform differ-
ent activities for the four rovers and the lander in the simu-
lation.

24

0 20 40

0

20

40

60

80

100

120

x (m)

y
(m

)

0 20 40

0

20

40

60

80

100

120

x (m)

y
(m

)

0 20 40

0

20

40

60

80

100

120

x (m)

y
(m

)

Lander
Rover1
Rover2
Rover3
Rover4

Figure 11: Paths of the rovers with 0% obstacle density
(left), 10% obstacle density (center) and 20% obstacle den-
sity (right) with no random rover death.

Figure 12: a) Simulated depth of the rover into the cave (y
position) with respect to time. The arrows point out times
and locations of rover deaths. b) Paths of the rovers in the
random dying rovers experiment.

With more obstacles, the paths of the rovers, shown in
Figure 11 for 0%, 10%, and 20% obstacle densities and no
random death, become less straight and aligned with the
cave wall. In fact, with 20% obstacle density, the rovers are
not able to find a path that stretches beyond 45 meters into
the cave, and the rovers begin exploring farther from the
cave wall. This means that Rover4 (the leader) never reaches
its zone and does not take any primary or secondary data.

The experiment with random rover death shows a scenario
where Rover4 dies just before Rover3, its immediate fol-
lower, finishes characterizing its zone, and Rover1 dies after
the first transfer of the first sneakernet expansion data. From
Figure 12 (a), we see that Rover3 seemlessly becomes the
new leader and leads the way during the algorithm’s Sneak-
ernet Relay phase. As shown in Figure 3, Rover3 expands
by its neighbors relay distance.

We also see a timeout begin in Figure 12 with Rover2.
When Rover2 sneakernets back toward Rover1 to relay the
data, it is not able to locate Rover1, therefore Rover2 waits at
the location it last saw Rover1 for a timeout duration (which
in this scenario, Rover2 does not live long enough to finish).
Although there are only three rovers, they are able to col-
lect data beyond 100 meters, but are only able to live long
enough to transfer out data up to 75 meters into the cave.

Figure 12 (b) shows the paths of the rovers for the experi-
ment with random rover deaths, which looks very much like
the 0% obstacle paths in Figure 11, as expected.

6. Discussion
The simulation shows that a single rover can successfully
characterize up to 80 meters along a cave wall (given no ob-
stacles) if it does not encounter any problems before running
out of battery; however, this is a large assumption given the
unknown environment of the cave. The sneakernet results
with randomly dying rovers shows the robustness of the Dy-
namic Zonal Relay with Sneakernet Relay algorithm to rover
loss. Furthermore, with the survival of all rovers for the du-
ration of the battery charge, science data from deeper into
the cave can be transferred out to the lander than in the sin-
gle rover case.

Although the experiment with 20% obstacle density
showed the rovers unable to reach as deep into the cave
as other scenarios, it is interesting to note the large score.
This is due to the fact that as the rovers move farther away
from the cave wall, the field of view of the remote instru-
ments is able to capture a larger section of the cave model
facets. This shows an interesting trade-off that can be made
between remaining close to the wall, and therefore charac-
terizing smaller features of the cave and reaching deeper dis-
tances, versus moving away from the wall and characterizing
larger sections.

In our exploration approach, the sequencing of science
actions is predefined based on scientist team inputs. Nev-
ertheless, an automated and opportunistic sequencing of sci-
ence actions could provide a higher science utility. Onboard
data analysis and science goals and instrument prioritization
techniques are described in (Chien et al. 2016). Castano et
al. (2007) describes the Onboard Autonomous Science In-
vestigation System (OASIS), an autonomous system that is
capable of analyzing imagery to generate new science tasks
for execution both in simulation and on a test rover. Wet-
tergreen et al. (2014) shows the capability of autonomous
sample location selection and adaptive path planning on a
rover in a deployment to the Atacama Desert. Woods et
al. (2009) demonstrates the feasability of autonomous op-
portunistic science with autonomous instrument placement
for contact science. All of these algorithms and techniques
would support desirable autonomous behavior. Moreover,
our proposed approach has room for improvement with re-
spect to the rovers responsible for relaying data. More op-
portunistic decision making approaches would allow relay-
ers to potentially perform additional science tasks while also
managing the task of relaying data out of the cave.

Coordination of data transfer is also an opportunity for
cognitive systems. As opposed to waiting for a target rover
to be available to receive data, a scheduling system could
support a more efficient data transfer coordination between
rovers (Clement and Barrett 2003) - assuming they can share
their status and activities. The communication model and re-
spective ranges have a great impact on this coordination.
We are working on incorporating a stochastic communica-
tion model in which bandwidth degrades as a function of
distance and does not have a hard constraint on the max-
imum distance (e.g., 25-meter max range). That provides
opportunities for rovers to establish a comm link in greater
distance and provides options to route data science out of
the cave through different rovers. A more realistic package
management during communication would make the rout-
ing problem even more interesting, in which science data
could be partitioned into smaller pieces and sent to different
rovers over time depending on bandwidth variations. Here
we assume that data packages would be able to be prop-

25

erly combined at the target asset (e.g., lander or an orbiter).
Such stochastic models would also create scenarios in which
rovers are physically close but with a poor or unexisting
communication link.

7. Conclusion
In this paper we proposed a multi-rover coordination algo-
rithm for Mars Cave exploration. A simulation framework
was created to evaluate the performance of the algorithm
and to study mission configurations to explore design op-
tions for future missions to underground cavities in other
planets and moons. We utilized realistic cave settings and ve-
hicle specs to generate an initial evaluation of the feasibility
of the multi-rover approach for science data collection. We
also discussed opportunities for AI planning and scheduling
techniques to augment rover autonomy and efficiency with
respect to science utility.

This is an ongoing research project with several promising
immediate next steps and future directions. In the short-term
we will investigate the impact on rover performance when
increasing action concurrency. More specifically, in the sim-
ulation we will allow rovers to transfer data while navigating
the environment and doing science. We will also incorporate
data routing techniques with the aforementioned stochastic
communication model we are integrating. We are also inter-
ested in augmenting the proposed algorithm to help rovers
to better coordinate data transfer and to balance data relay
and science tasks.

8. Acknowledgments
Portions of this work were performed by the Jet Propul-
sion Laboratory, California Institute of Technology, under
contract with the National Aeronautics and Space Adminis-
tration. We thank the valuable inputs from other JPL team
members, including Jay Wyatt, Joseph Lazio, Jay Gao, Abi-
gail Fraeman, Julie Castillo-Rogez, Sebastian Herzig, Kon-
stantin Belov, and Amos Byon.

References
auf der Heide, F. M., and Schneider, B. 2008. Local strate-
gies for connecting stations by small robotic networks. In
Hinchey, M.; Pagnoni, A.; Rammig, F. J.; and Schmeck, H.,
eds., Biologically-Inspired Collaborative Computing, 95–
104. Boston, MA: Springer US.
Boston, P.; Frederick, R.; Welch, S.; Werker, J.; Meyer, T.;
Sprungman, B.; Hildreth-Werker, V.; Thompson, L.; and
Murphy, D. 2003. Human utilization of subsurface extrater-
restrial environments. Gravitational and Space Biology Bul-
letin 26(2).
Boston, P.; Frederick, G.; Welch, S.; Werker, J.; Meyer,
T.; Sprungman, B.; Hildreth-Werker, V.; Murphy, D.; and
Thompson, S. 2004. System Feasibility Demonstrations
of Caves and Subsurface Constructed for Mars Habitation
and Scientific Exploration. Technical report, USRA Reports,
NASA Institute for Advanced Concepts.
Boston, P.; Spilde, M.; Northup, D.; Melim, L.; Soroka, D.;
Kleina, L.; Lavoie, K.; Hose, L.; Mallory, L.; Dahm, C.;
Crossey, L.; and Schelble, R. 2005. Cave biosignature
suites: microbes, minerals, and mars. Astrobiology 1(1):25–
55.
Castano, R.; Estlin, T.; Anderson, R. C.; Gaines, D. M.; Cas-
tano, A.; Bornstein, B.; Chouinard, C.; and Judd, M. 2007.

Oasis: Onboard autonomous science investigation system
for opportunistic rover science. Journal of Field Robotics
24(5):379–397.
Chien, S.; Barrett, A.; Estlin, T.; and Rabideau, G. 2000.
A comparison of coordinated planning methods for cooper-
ating rovers. In International Conference on Autonomous
Agents (Agents 2000).
Chien, S.; Thompson, D. R.; Castillo-Rogez, J.; Rabideau,
G.; Bue, B.; Knight, R.; Schaffer, S.; Huffman, W.; and
Wagstaff, K. L. 2016. Agile science - a new paradigm for
missions and flight software.
Clement, B. J., and Barrett, A. C. 2003. Continual coordina-
tion through shared activities. In Proceedings of the Second
International Joint Conference on Autonomous Agents and
Multiagent Systems, AAMAS ’03, 57–64. New York, NY,
USA: ACM.
Clement, B.; Durfee, E.; and Barrett, A. 2007. Abstract rea-
soning for planning and coordination. Journal of Artificial
Intelligence Research 28:453–515.
Dubowsky, S.; Iagnemma, K.; Liberatore, S.; Lambeth,
D. M.; Plante, J. S.; and Boston, P. J. 2005. A con-
cept mission: Microbots for largescale planetary surface
and subsurface exploration. AIP Conference Proceedings
746(1):1449–1458.
Gaines, D.; Anderson, R.; Doran, G.; Huffman, W.; Justice,
H.; Mackey, R.; Rabideau, G.; Vasavada, A.; Verma, V.; Es-
tlin, T.; et al. 2016. Productivity challenges for mars rover
operations. In Proceedings of 4th Workshop on Planning
and Robotics (PlanRob), 115–125. London, UK.
Husain, A.; Jones, H.; Kannan, B.; Wong, U.; Pimentel, T.;
Tang, S.; Daftry, S.; Huber, S.; and Whittaker, W. L. 2013.
Mapping planetary caves with an autonomous, heteroge-
neous robot team. In IEEE Aerospace Conference, 1–13.
Kesner, S. B.; Plante, J. S.; Boston, P. J.; Fabian, T.; and
Dubowsky, S. 2007. Mobility and power feasibility of a
microbot team system for extraterrestrial cave exploration.
In Proceedings 2007 IEEE International Conference on
Robotics and Automation, 4893–4898.
Santagata, T. Università degli Studi di Modena e Reggio
Emilia. Inside the Glacier Project.
Stump, E.; Jadbabaie, A.; and Kumar, V. 2008. Connectivity
management in mobile robot teams. In ICRA, 1525–1530.
IEEE.
Thangavelautham, J.; Robinson, M. S.; Taits, A.; McKinney,
T.; Amidan, S.; and Polak, A. 2014. Flying, hopping pit-bots
for cave and lava tube exploration on the moon and mars.
In The 2nd International Workshop on Instrumentation for
Planetary Missions.
Wettergreen, D.; Foil, G.; Furlong, M.; and Thompson, D. R.
2014. Science autonomy for rover subsurface exploration of
the atacama desert. AI Magazine 35(4):47–60.
Woods, M.; Shaw, A.; Barnes, D.; Price, D.; Long, D.; and
Pullan, D. 2009. Autonomous science for an exomars rover–
like mission. Journal of Field Robotics 26(4):358–390.
Yamauchi, B. 1997. A frontier-based approach for au-
tonomous exploration. In IEEE International Symposium
on Computational Intelligence in Robotics and Automation,
CIRA’97, 146–151.
Yliniemi, L.; Agogino, A.; and Tumer, K. 2014. Multi-robot
coordination for space exploration. AI Magazine 35(4):61–
74.

26

Using Squeaky Wheel Optimization to Derive Problem Specific Control
Information for a One Shot Scheduler for a Planetary Rover

Wayne Chi, Steve Chien, Jagriti Agrawal
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91109

{firstname.lastname}@jpl.nasa.gov

Abstract
We describe the application of using Monte Carlo simula-
tion to optimize a schedule for execution and rescheduling
robustness and activity score in the face of execution uncer-
tainties. We apply these techniques to the problem of op-
timizing a schedule for a planetary rover with very limited
onboard computation. We search in the schedule activity pri-
ority space - where the onboard scheduler is (a) a one shot
non-backtracking scheduler in which (b) the activity prior-
ity determines the order in which activities are considered
for placement in the schedule and (c) once an activity is
placed it is never moved or deleted. We show that simulation
driven search outperforms a number of alternative proposed
heuristic static priority assignment schemes. Our approach
can be viewed using simulation feedback to determine prob-
lem specific heuristics much like squeaky wheel optimiza-
tion.

Introduction
Embedded schedulers must often perform within very lim-
ited computational resources. We describe an approach to
automatically deriving problem specific control knowledge
for a one-shot (non-backtracking) scheduler intended for a
planetary rover with very limited computing. In this appli-
cation, the onboard scheduler is intended to make the rover
more robust to run-time variations (e.g., execution dura-
tions) by rescheduling. Because the general structure of the
schedule is known a priori on the ground before uplink, we
use both analysis of the schedule dependencies and simula-
tion feedback to derive problem specific control knowledge
to improve the onboard scheduler performance.

The target onboard scheduler is a one-shot limited search
scheduler. Because the scheduler does not backtrack across
activity placements, the order in which it considers activi-
ties heavily influences generated schedule quality. In our ap-
proach, we search the space of activity priorities which de-
termine the order in which the scheduler considers activity
placement. At each step in the priority search, a Monte Carlo
simulation is conducted to assess the likelihood of an activ-
ity being executed. Using an approach analogous to squeaky
wheel optimization, these runs are automatically analyzed

Copyright c© 2018, California Institute of Technology. Govern-
ment sponsorship acknowledged.

and used to feed back into adjustments to the activity prior-
ities (and hence the order in which they are considered for
inclusion in the schedule for both initial schedule genera-
tion and rescheduling). This search in the activity priority
space continues until all requested activities are included or
a resource bound is exceeded. We call this method Priority
Search and we present empirical results that show that Pri-
ority Search outperforms several static priority assignment
methods (those that do not use Monte Carlo feedback) in-
cluding manual expert derived priority setting.

We study this problem in the context of setting activity
priorities as part of the ground operations process for a one-
shot, non-backtracking scheduler (Rabideau and Benowitz
2017) designed to run onboard NASA’s next planetary rover,
the Mars 2020 (M2020) rover (Jet Propulsion Laboratory
2017a). For our problem, the onboard scheduler is treated
as a predetermined ”black box”.

The remainder of the paper is organized as follows. First
we describe our formulation of the scheduling problem, met-
rics for schedule goodness, and the onboard scheduling al-
gorithm. Second, we describe several static approaches to
priority assignment as well as our priority search approach
that leverages Monte Carlo simulation feedback. Third, we
describe empirical results demonstrating the efficacy of pri-
ority search over static methods, evaluating on sol types, the
best available anticipated operations plans for the M2020
planetary rover mission. Finally, we describe related and fu-
ture work and conclusions.

Problem Definition
For our defined scheduling problem (Rabideau and
Benowitz 2017), the scheduler is given

• a list of activities
Ai〈p,R, e, dv,Γ, T,D〉 . . . An〈p,R, e, dv,Γ, T,D〉

• where p is the scheduling priority of the activity, and

• R is the set of unit resources R1 . . . Rm that the activity
will use (up to project limitations - 128 for M2020), and

• e and dv are the rate at which the consumable resources
energy and data volume respectively are consumed by the
activity, and

• Γ are non-depletable resources used such as sequence en-
gines available or peak power, and

127

• T is a set of the activity’s optional a) start time win-
dows Ti start . . . Ti end and b) preferred schedule time
Ti preferred, and

• D is a set of the activity’s dependency constraints from
Aj → Ak

1

All activities are Mandatory Activities. These are activi-
ties, m1 . . .mj ⊆ A, that must be scheduled as long as the
given set of inputs are valid. In order for a set of inputs to
be considered valid, there must exist a valid (e.g. constraint
satisfying) schedule - in the context of the scheduler - that
includes all of the mandatory activities. Note that the M2020
Onboard Scheduler is an incomplete algorithm. As a result,
there could be a set of inputs where valid schedule exists
and a complete scheduler would place all mandatory activi-
ties, but the Onboard scheduler would not. Since not all in-
put sets will be valid, it is important for us to modify the
input sets (e.g. changing priorities) to allow all mandatory
activities to be scheduled.

In addition, activities can be grouped into Switch Groups.
A Switch Group is a set of activities where exactly one of the
activities in the set must be scheduled. The activities within
a switch group are called switch cases and vary only by how
many resources (time, energy, and data volume) they con-
sume. Switch groups allow us to schedule a more resource-
consuming activity if it will fit in the schedule. For example,
one of the M2020 instruments takes images to fill mosaics
which can vary in size; for instance we might consider 1x5,
3x5, or 5x5 mosaics. Taking larger mosaics might be prefer-
able, but taking a larger mosaic takes more time, takes more
energy, and produces more data volume. These alternatives
would be modeled by a switch group that might be as fol-
lows:

SwitchGroup =

Mosaic1x5 Duration=100 sec
Mosaic3x5 Duration=200 sec
Mosaic5x5 Duration=400 sec

(1)

In the above example, the scheduling priority order would
be Mosaic1x5 the lowest of the three, then Mosaic3x5, and
Mosaic5x5 the highest. The desire is for the scheduler to
schedule the activity Mosaic5x5 but if it does not fit then try
scheduling Mosaic3x5, and eventually try Mosaic1x5 if the
other two fail to schedule. The challenge for the scheduler
is that getting a preferred switch case is not deemed worth
forcing out another mandatory activity from the schedule.
Because the normal approach to handling such interactions
is to search, this introduces complications into the schedul-
ing algorithms but these are the subject of a different paper.

The charter of the scheduler is to produce a grounded time
schedule that satisfies all of the above constraints.

We also make the following assumptions:
1. There exists a set of activity scheduling priorities that

would allow all mandatory activities to be scheduled by
the scheduler 2.
1Aj → Ak means the scheduled end time of Ak must be before

the scheduled start time of Aj .
2Since our algorithm includes an incomplete scheduler, our as-

sumption of a valid set of inputs can only hold true for our particu-
lar scheduler

2. The prior schedule is executed while the scheduler is run-
ning (Chi et al. 2018).

3. Activities do not fail.
4. No preemption (activities are only preempted as a major

failure case for M2020).
5. The onboard scheduler is a ”black box” - the onboard

scheduler algorithm (Algorithm 1) is fixed.
The goal of the scheduler is to schedule all mandatory ac-

tivities and better switch cases 3 while respecting individual
and plan-wide constraints.

The goal of the priority setting algorithm is to derive a set
of priorities that will best allow the scheduler to achieve that
goal. Not only that, but we must derive that set of priorities
in the shortest amount of time possible in order to satisfy
daily mission time constraints.

Scheduler Design

Algorithm 1 Onboard Scheduler
Input:

A〈p,R, e, dv,Γ, T,D〉: List of activities with their individual
constraints
C: Constraints for the whole plan (e.g. available cumulative
resources)
S: Current state of the spacecraft (state of charge, data volume,
activity status)

Output:
U : Resulting schedule

1: Sort(A) . Sorted by highest to lowest priority.
2: for each a ∈ A do
3: P ← ∅ . Some activities may require automatically

generated preheats
4: M ← ∅ . Some activities may require automatically

generated maintenances

5: I ←
[a.earliest start time, a.latest start time]⋂

find valid intervals(a.unit resources)⋂
find valid intervals(a.activity status)⋂
find valid intervals(a.data volume)

6: if requires preheat(a) then
7: P ← generate preheat activities(a)
8: M ← generate maintenance activities(a)
9: end if

10: I ← I
⋂

find valid intervals(a.energy, P,M)⋂
find valid intervals(a.peak power, P,M)

11: awake← generate awake activity(a, I)
12: if I 6= ∅ then
13: schedule activity(a, I)
14: schedule activity(awake, I)
15: for each p ∈ P do
16: schedule activity(p, I)
17: end for
18: for each m ∈M do
19: schedule activity(m, I)
20: end for
21: end if
22: end for

The Mars 2020 onboard scheduler (Algorithm 1) is a sin-
gle shot, non-backtracking scheduler that schedules (consid-

3See Evaluating a Schedule for more information

228

ers activities) priority first order and never removes or moves
an activity after it is placed during a single scheduler run. It
does not search except when considering valid intervals for
a single activity placement and when scheduling sleep and
preheats 4 (Rabideau and Benowitz 2017).

Due to the greedy, non-backtracking nature of the onboard
scheduler, the order in which activities are scheduled can
greatly impact the quality of the schedule.

Evaluating a Schedule
In order to evaluate the goodness of a particular priority as-
signment, we have developed a scoring method based on
how many and what type of mandatory and switch group
activities are able to be scheduled successfully by the sched-
uler. The score is such that the value of any single manda-
tory activity being scheduled is much greater than that of any
combination of switch cases (at most one activity from each
switch group can be scheduled). This ensures the following
strict ordering:

V (m ∈M)�
nS∑

i=1

V (s ∈ Si) (2)

where V (x) is the value of activity x being scheduled, M
is the set of all mandatory activities, nS is the number of
switch groups, Si is switch group i, and s is a switch case in
switch group Si.

Static Algorithms for Activity Priority
Assignment

We have developed several static algorithms which set the
priorities of activities based on various activity ordering cri-
teria. These algorithms do not consider Monte Carlo simu-
lations of plan execution where activities may end early or
late while determining priorities, unlike our Priority Search
approach. We will later compare these to our Priority Search
approach to gain a better understanding of how well it per-
forms. Activities which must begin at a particular time (e.g.
data downlink) are always given the highest priority and thus
are not affected by the static algorithms described.

The following four methods are used to initialize activity
priorities:
• Equal Priorities. All activities have equal priorities.
• Random Assignment. Each activity is given a random pri-

ority.
• Latest Start Time. The activity priorities are ordered by

the latest time they are allowed to start. The activity with
the earliest such time has the highest priority.

• Human Expert. Each activity is assigned a priority based
on the start time of the activity in a schedule constructed
by a human expert. The activity with the earliest start time
in this schedule has the highest priority.
The following two methods are applied to the priorities

after they have been initialized in one of the four ways de-
scribed above:

4Sleep and preheats are activities automatically generated and
scheduled by the scheduler.

• Dependencies. A → B means that B must execute suc-
cessfully before A can start. To generate a schedule that
respects this,

A→ B ⇒ priorityA < priorityB (3)

where higher priority means an activity is considered for
scheduling earlier.

• Tie Breaker. If activities have the same priority assign-
ment the activity with earliest latest allowed start time is
of higher priority. If they also have the same latest allowed
start time then the longer activity has the higher priority. If
all of these attributes are equal then the higher priority ac-
tivity is chosen lexicographically based on each activity’s
unique identifier.

Priority Search
In order to determine a set of priorities which will allow the
scheduler to generate a schedule better than our static heuris-
tics, we attempt to search the priority space in an approach
similar to Squeaky Wheel Optimization (SWO) as described
in Joslin and Clements 1999 (Joslin and Clements 1999).
Squeaky Wheel Optimization usually involves a construc-
tor, an analyzer, and a prioritizer. The constructor generates
a schedule, the analyzer determines problem areas and as-
signs ”blame” to certain elements in the schedule, and the
prioritizer modifies the order in which the elements are con-
sidered. This process repeats until a satisfactory result is
reached or allotted time runs out. However, our scheduling
problem is intrinsically tied to execution and analyzing the
initial schedule generated by itself is not satisfactory. Our
approach (Figure 1) builds upon the usual SWO approach
by incorporating a simulation of execution and Monte Carlo
to build an execution sensitive result. We call our approach
Priority Search as it searches the priority space using Monte
Carlo simulation feedback to find a good set of priorities,
unlike the static algorithms.

Figure 1: Squeaky Wheel accounting for Execution

Constructor
Typically, the constructor generates a schedule as the so-
lution, which is then fed into the analyzer. However, our
scheduling problem must be taken in context with execu-
tion. Activities may finish early or late which affect how
many and which activities can be scheduled. In order to
take this into account, we generate the final schedule of a

329

(lightweight) simulation of the entire plan execution. This
is simulated by letting activities finish early or late by a
variable amount based on a probabilistic model of plan ex-
ecution 5. However, the probabilistic model may promote
misleading results if only sampled once. As a result, our
constructor (Algorithm 2) runs a Monte Carlo and simu-
lates multiple plan executions, passing on all of the executed
plans as the solution to the analyzer.

Algorithm 2 Monte Carlo Constructor
Input:

A〈p,R, e, dv,Γ, T,D〉: List of activities with their individual
constraints
C: Constraints for the whole plan (e.g. available cumulative
resources)
N : Number of runs in the Monte Carlo

Output:
S: List of all final schedules after simulating execution

1: i← 0
2: while i < N do
3: schedule← simulation(A, C)6

4: Si ← schedule
5: i← i + 1
6: end while

Priority Analyzer
The analyzer (Algorithm 3) takes the solution and assigns
blame to problem areas. Since our objective is to schedule
all mandatory activities and better switch cases, we blame
all activities that are not scheduled. Since the solution is
multiple schedules, there may be some Monte Carlo runs
where the activities do not succeed or fail to be scheduled.
For simplicity, we chose to blame any activity that was un-
scheduled in any of the schedules, but other approaches may
assign blame according to how many times an activity was
not scheduled.

Algorithm 3 Monte Carlo Analyzer
Input:

A〈p〉: List of activities with priorities
S: List of all final schedules after simulating execution

Output:
U : List of all unscheduled activities
score: Score (objective function)

1: for each Si ∈ S do
2: U ← U

⋃ {∀a ∈ A|a /∈ Si}
3: score← score + get score(Si)
4: end for

Constant Step Prioritizer
A simple way to re-prioritize is to increase the blamed (un-
scheduled) activities’ priorities by a constant step size s.

Typically, activities have varying degrees of flexibility
due to their constraints (resources, dependencies, time, etc.).

5See Empirical Results for how that probabilistic model was
generated.

6The final schedule after simulating execution.

Algorithm 4 Constant Step Reprioritization
Input:

A〈p〉: List of activities with priorities
U : List of all unscheduled activities (from analyzer)
step: Constant step size

Output:
A: Best relative ordering of activities found

1: for each a ∈ U do
2: incrementRelativePriority(a, step, A)
3: for each d ∈ a.dependents do
4: incrementRelativePriority(d, step, A)
5: end for
6: for each sg ∈ a.switchGroup do
7: incrementRelativePriority(sg, step, A)
8: end for
9: end for

Higher priority activities can consume resources (unit re-
sources, energy, and data volume) or change state in a way
that prevents lower priority activities from scheduling such
that their constraints are satisfied. Increasing the blamed ac-
tivities’ priorities allows them to schedule earlier (schedul-
ing order) which means they have more ”slack” to satisfy
their constraints. The goal is that the algorithm will slowly
promote less flexible activities to the top so that their con-
straints can be satisfied, and demoted activities are flexible
enough to be scheduled in a more constrained plan.

When increasing the relative priorities of blamed activi-
ties, the existing relative priorities between certain groups
of activities must remain enforced.

First, each switch group must maintain the relative prior-
ities between each activity in the grouping. For each switch
group, the activities (s1, . . . , sn) must be ordered such that
those with higher resource consumption (time, energy, and
data volume) have higher priorities as well.

Second, dependency relationships must be enforced such
that (3) is held true.

Figure 2: Cycle in the Constant Step approach. Red activities
were unable to be scheduled and assigned blamed.

There is one main issue with the Constant Step approach

430

- it is extremely susceptible to cycles. One common cause
for cycles is that a set of activities needs to be promoted be-
yond a particular activity together, but the constant step size
prevents this from ever occurring. For example, in Figure 2
activity F is unschedulable and assigned blame. Its priority
is increased, but this causes activity E to fail to schedule.
Activity E is then promoted in the next iteration, causing F
to fail to schedule and the process repeats. In reality, both
E and F have to be promoted above D, but because the step
size is constant, they will never achieve that and form a cy-
cle. The situation where activities are unable to be promoted
above an activity blocking it can be extended to any constant
step size less than the maximum step size 7.

Stochastic Step Reprioritization

Algorithm 5 Stochastic Step Reprioritization

Input:
A〈p〉: List of activities with priorities
U : List of all unscheduled activities (from analyzer)

Output:
A: Best relative ordering of activities found

1: step← random(1, A.length)
2: for each a ∈ U do
3: incrementRelativePriority(a, step, A)
4: for each d ∈ a.dependents do
5: incrementRelativePriority(d, step, A)
6: end for
7: for each sg ∈ a.switchGroup do
8: incrementRelativePriority(sg, step, A)
9: end for

10: end for

Injecting randomness to the step size allows the algorithm
to become robust to cycles. In each iteration of the priority
setting algorithm, a random step distance between 1 and N ,
where N is the number of activities in the plan, is assigned
to all of the blamed activities. This lets the scheduler always
have the possibility of being promoted above a resource con-
straining activity, while still allowing smaller step size pri-
ority permutations.

The main issue that lies with a random approach is that
empirically 8 it finds the global maximum score slower than
desired. This is further exacerbated by the fact that each it-
eration of our SWO cycle takes a non-negligible amount of
time (a few seconds) due to the need to run a lightweight
simulation and Monte Carlo.

Max Step Reprioritization
Stochastic Step Reprioritization (empirically) produced re-
sults slower than desired. Max Step Reprioritization seeks to
solve both of those issues by always promoting blamed ac-
tivities to have the highest scheduling priorities. The earlier
an activity is considered for scheduling, the more flexibil-
ity that activity has to be scheduled. Therefore, if an activity

7See section Max Step Reprioritization
8More information can be found in Empirical Evaluation.

Algorithm 6 Max Step Reprioritization

Input:
A〈p〉: List of activities with priorities
U : List of all unscheduled activities (from analyzer)

Output:
A: Best relative ordering of activities found

1: for each a ∈ U do
2: step← A.length
3: incrementRelativePriority(a, step, A)
4: for each d ∈ a.dependents do
5: incrementRelativePriority(d, step, A)
6: end for
7: for each sg ∈ a.switchGroup do
8: incrementRelativePriority(sg, step, A)
9: end for

10: end for

is first to be considered for scheduling, but still cannot be
successfully scheduled, there is no other scheduling priority
that would allow the activity to be scheduled. Knowing this,
by promoting blamed activities to have the highest schedul-
ing priorities we can attempt to avoid iterations that fail to
schedule the same blamed activities, thereby speeding up the
overall algorithm.

Since the blamed activities will have the highest schedul-
ing priorities, cycles such as those seen in Figure 2 can be
avoided. However, Max Step Reprioritization doesn’t pre-
vent cycles entirely and they still pose an issue when en-
countered.

Empirical Evaluation
In order to evaluate how well our Priority Search algorithm
is able to generate a priority assignment which results in
an optimal schedule, we have applied the algorithm to var-
ious sets of inputs comprised of activities with their con-
straints and priorities and compared against various static
algorithms. The inputs are derived from sol types. Sol types
are currently the best available data on expected Mars 2020
rover operations (Jet Propulsion Laboratory 2017a). In order
to construct a schedule and simulate plan execution, we use
the M2020 surrogate scheduler - an implementation of the
same algorithm as the M2020 onboard scheduler (Rabideau
and Benowitz 2017), but implemented for a Linux work-
station environment. As such, it is expected to produce the
same schedules as the operational scheduler but runs much
faster in a workstation environment. The surrogate scheduler
is expected to assist in validating the flight scheduler imple-
mentation and also in ground operations for the mission (Chi
et al. 2018).

Each input file contains approximately 40 activities. We
use a probabilistic execution model based on operations data
from the Mars Science Laboratory Mission (Jet Propulsion
Laboratory 2017b; Gaines et al. 2016a; 2016b) in order to
simulate activities completing early by a reasonable amount.
In our model to determine activity execution durations, each
of the actual execution durations provided in MSL data is
first divided by the corresponding predicted execution dura-

531

tion. Then, we use a linear regression on the scaled values to
obtain a mean and standard deviation presuming the ratio of
predicted to actual execution times is normally distributed.
The value representing the actual execution duration on the
regression line for the given conservative duration is used as
the mean. A scaled prediction of the actual duration is gen-
erated from a a normal distribution using the derived mean
and standard deviation. Finally, this value is scaled back by
multiplying by the given conservative duration. Note that we
do not explicitly change other activity resources such as en-
ergy and data volume since they are generally modeled as
rates and changing activity durations implicitly changes en-
ergy and data volume as well.

Using each of the sol types, we create variants by adding
two switch groups to a set of inputs. Each switch group con-
tains three switch cases where the switch cases differ in du-
ration in a manner similar to the one described in (1). Each
of the two switch groups are as follows:

SwitchGroup =

Activityoriginal Duration=x sec
Activity2x Duration=2x sec
Activity4x Duration=4x sec

(4)
Due to the inequality in (2), a successfully scheduled

mandatory activity is of much higher value than a success-
fully scheduled longer switch case. Therefore, the manda-
tory activity score is weighted at a much larger value then
the switch group score. Each mandatory activity that is suc-
cessfully scheduled is given one point which contributes to
the mandatory score. If a switch case with a duration that is
2 times that of the original activity is able to be scheduled,
then it contributes 1/5 to the switch group score. If a switch
case that is 4 times the original duration is able to be sched-
uled, then it contributes 2/5 to the switch group. Since there
are two switch groups in each variant, the maximum switch
group score for a variant is 2 ∗ (2/5) = 4/5. In the follow-
ing empirical results, we average the mandatory and switch
groups scores over all Monte Carlo runs of execution.

Also, in each of our variants we set the preferred sched-
ule time of each activity to the earliest time the activity is
allowed to start.

We first compare the different approaches to implement-
ing Priority Search to understand which performs better.

The highest score so far is a combination of the manda-
tory score and the switch group score where the mandatory
score is weighted at a much higher value than the switch
group score. In Figure 3 we plot how the mandatory and
switch case components of the highest score achieved up to
the current time change over time using both the Stochas-
tic method and the Max Step method. We do not consider
the Constant Step method since it is so highly susceptible to
cycles. For both methods, as the score for mandatory activi-
ties increases, the score for switch groups largely decreases
until the highest mandatory score is reached. This is a rea-
sonable outcome because as more mandatory activities are
scheduled, the schedule likely becomes more constricted,
thus making it more difficult to schedule longer switch cases.
Since the mandatory score contributes much more to the to-
tal score than the switch group score and the mandatory sore

(a) Mandatory score component of highest score so far vs Time av-
eraged across sol type variants using both priority search methods.

(b) Switch group score component of highest score so far vs Time
averaged across sol type variants using both priority search meth-
ods.
.

Figure 3: Plot of the highest score so far separated by manda-
tory score (3a) and switch group score (3b) over time using
the Stochastic Step method and the Max Step method aver-
aged over 9 sol types, each with 10 variants each containing
2 switch groups. Each iteration of Priority Search was run
with 10 Monte Carlo runs and with 30 iterations of Priority
Search alloted for each run of the algorithm.

is increasing in both figures, the total highest score so far is
always increasing over time, as it should be.

Figure 3a shows that Stochastic Step reaches its highest
mandatory score that is ever achieved over the time span
of approximately 920 seconds (30 iterations of the priority
search algorithm) in 207.58 seconds. The highest mandatory
score achieved at this time and onwards is 38.047. The high-

632

est mandatory score using the Max Step method is reached at
120.59 seconds and has a value of 38.044. Figure 3b shows
that the highest switch group score after the point at which
the highest mandatory score is reached is 1.67 at 568.16 sec-
onds using the Stochastic method and 1.48 at 150.87 seconds
using the Max Step method. Therefore, we conclude that us-
ing the stochastic method results in a marginally higher total
highest score but it takes less time to reach the highest score
using the Max Step method.

(a) Difference from perfect mandatory score averaged across
sol type variants for various scheduling methods.

(b) Difference from perfect switch group score averaged
across sol type variants for various scheduling methods.

Figure 4: The difference from a perfect mandatory score of
38.11 and perfect switch group score of 1.0 using various
scheduling methods is averaged over 9 sol types where 15
variants are derived from each sol type and each variant con-
tains 2 switch cases. Each iteration of the Priority Search
algorithm is run with 50 Monte Carlo runs of execution

Figure 4 shows the results of comparisons between Prior-
ity Search and other static priority setting algorithms. Since
the scheduling of mandatory activities and switch groups
are not weighted equally, we have constructed two separate
plots to show the results for each. Both methods of Priority
Search, in red, result in fewer unscheduled mandatory activ-
ities and consequently a lower difference from the perfect
mandatory score. This implies they set the priorities such
that more mandatory activities are able to be scheduled over
multiple Monte Carlo runs compared to how the static al-
gorithms set the activity priorities. As shown in 4b, they re-
sult in a higher number of unscheduled switch cases, likely
because if more mandatory activities were scheduled it be-
comes more difficult to schedule longer switch cases. Due
to the strict inequality described in (2), even though fewer
longer switch cases are scheduled, the total scheduling score
is still higher when using Priority Search. Thus, we conclude
that both Priority Search methods outperform the static algo-
rithms. Among the static algorithms, running the Dependen-
cies algorithm with Tie Breaker on equal priorities performs
the best as it results in the highest mandatory score while
running Tie Breaker after setting the priorities based on the
latest start time performs the worst.

Related Work

Our Priority Search approach is inspired by Squeaky Wheel
Optimization (SWO). Typically, SWO uses a constructor
and analyzer, and prioritizer for the next iteration of sched-
ule generation (Joslin and Clements 1999). Priority Search
differs in that the intent is not to generate a good schedule
but rather to set priorities that perform well in execution and
rescheduling. Therefore the Priority Search constructor must
use the scheduler through multiple runs of execution (where
each run of execution incurs multiple scheduler invocations)
to assess priority assignment performance.

Generating schedules that are robust to execution run time
variations (Leon, Wu, and Storer 1994) is a mature area of
work. However, the topic usually revolves around develop-
ing a scheduler that can generate robust schedules. In our
case, the scheduler is a) a fixed ”black box” that we have no
control over and b) robust to execution run time variations
mainly through rescheduling (Chi et al. 2018). As a result,
rather than developing a scheduler itself, we’re developing
a methodology that is able to generate a set of priorities for
a fixed scheduler that enables it to be robust to rescheduling
due to runtime variations.

Other approaches (Drummond, Bresina, and Swanson
1994; Washington, Golden, and Bresina 2000) use branch-
ing to increase robustness - these differ from our work that
adjusts priorities and allows rescheduling.

A number of other spacecraft (Muscettola et al. 1998;
Pell et al. 1997; Chien et al. 2005; 2016) and rover (Woods
et al. 2009; Gregory et al. 2002) autonomy systems have in-
cluded planning, but these differ in that we are deriving con-
trol information specific to scheduling for a limited context
- e.g. one rover sol. temporal schedule.

733

Discussion and Future Work
While we have focused on the impact of activity priority
on the scheduler (and hence rescheduling during execution),
there is often an execution system that may also have some
flexibility to add robustness to the overall system (Chi et al.
2018). For the empirical evaluation described above, we ran
without such an execution system. In the future, we could
consider the execution system in the schedule and Monte
Carlo analysis and potentially derive information usable by
the execution system (e.g. allow an activity to run late but
only until time T). This paper describes initial work to de-
termine priorities for scheduler activity consideration order-
ing to optimize scheduler execution results for an embedded
scheduler. However, this work is still preliminary with many
other ideas to be explored as described below.

First, more sophisticated critique/blame assignment meth-
ods should be explored. Currently, priorities of activities
that are not executed are modified, but more sophisticated
analysis of scheduler runs could provide greater insight into
how the priorities should be modified. Prior work in Process
Chronologies (Biefeld and Cooper 1991) has been used to
focus scheduling tactics by finding regions where time con-
straints or high demand for some resource results in conflict.
By evaluating which periods of time or what resources are
over-subscribed using Capacity/Over-Subscription Analy-
sis, we can pinpoint which activities are more tightly con-
strained and increase their priorities. Prior work in Over-
subscribed Scheduling Problems (Kramer and Smith 2006)
show that scheduling according to maximum-availability
(least subscribed) allows a suitable schedule to be generated.
Similar analysis could be used to determine which activities
to assign blame to and by how much to promote the blamed
activities. We can also consider precedence constraints when
deciding by how much to promote activity priorities. For ev-
ery blamed activity, there is likely a scheduled activity that
is using resources needed by the blamed activity. Precedence
constraints could help discern which activity is using those
resources. The blamed activity could then be promoted only
as much as is necessary in order to be scheduled before the
offending activity.

We can also implement several methods to help us explore
different search spaces. Priority Search only adjusts priori-
ties to improve execution and rescheduling performance. We
could also add new activity precedence constraints (e.g. A
must end before B starts) or enforce partitions in the sched-
ule (e.g. all of these activities must be scheduled to end prior
to 11 am). These types of constraints could drive the sched-
uler towards subsets of the schedule search space. Random-
ized restart can allow our priority search algorithm to better
explore the global space rather than searching locally. An-
other alternative would be to keep a list of promising sched-
ule priority assignments and backtrack to those randomly,
allowing us to better explore the search space.

We can also make improvements to our Monte Carlo
method and use the resulting simulations for further analysis
of the scheduler. In order to build a model of run time vari-
ations that is not overly skewed, we use Monte Carlo to re-
peatedly sample a variety of execution run time results. Stan-
dard Monte Carlo simulations tend to focus most runs on

the nominal cases, but a more effective methodology sam-
ples edge cases but weighs the cases by their likelihood to
increase coverage of the variability in the space (in this case
variable activity execution times). The Monte Carlo of exe-
cution run time variations can provide valuable information
for why activities fail to schedule, what input plans are best
suited for the current scheduler design, and how the current
input could end up executing. We are working on visualiz-
ing this information to better inform those working with the
scheduler.

Currently, we only test with mandatory activities. In the
future, we will extend our approach to include optional ac-
tivities, which will add further complexity to the algorithm
and analysis. Optional activities are lower priority activities
what are nice to have scheduled, but not necessary. They
are generally only able to be scheduled if mandatory activi-
ties end early or consume less resources than expected. We
also plan to use an activity’s actual scheduled preferred time
while testing.

Cycles pose an issue to both Constant Step Reprioritiza-
tion and Max Step Reprioritization. Better cycle detection
would allow us to not only overcome the issues presented,
but also provide additional information on how to permute
the priority set for the next iteration. For example, cycle de-
tection could allow us to not only detect the cycle in Figure
2, but know that both E and F should be incremented to-
gether.

While we have established a few methods to improve the
prioritizer and decide on the next permutation of activity
priorities, we have utilized the same objective function to
determine the success of our algorithm. However, our ob-
jective function is simple and coarse; oftentimes, the same
score will appear repeatedly in multiple consecutive. As a
result, the algorithm often travels swaths of plateaus be-
fore sharply improving. This choppiness is suboptimal for
Squeaky Wheel Optimization and gradient descent problems
in general. Some potential additions to the objective function
could be how much energy is leftover in the plan or how
close an activity is to their preferred scheduling time. Eval-
uating a more precise objective function can reduce choppi-
ness and better steer the algorithm towards a more optimal
solution.

Conclusion
We have presented a study of methods to assign activity pri-
orities to control a limited, embedded scheduler to optimize
rescheduling for a specific problem. We first define a set of
static methods that assign activity priorities based on heuris-
tics and schedule dependencies. We then describe how these
priorities can be further adjusted based on feedback from
simulated execution and rescheduling using Monte Carlo
methods to perform Priority Search. We present an empirical
evaluation of several static and priority search methods using
best available planetary rover operations data. This empiri-
cal evaluation shows that Priority Search outperforms static
methods including human expert derived priorities. Finally
we describe a number of promising areas for future improve-
ments to our algorithms.

834

Acknowledgments
This work was performed at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the
National Aeronautics and Space Administration.

References
Biefeld, E., and Cooper, L. 1991. Bottleneck identification
using process chronologies. In IJCAI, 218–224.
Chi, W.; Chien, S.; Agrawal, J.; Rabideau, G.; Benowitz, E.;
Gaines, D.; Fosse, E.; Kuhn, S.; and Biehl, J. 2018. Em-
bedding a scheduler in execution for a planetary rover. In
ICAPS.
Chien, S. A.; Sherwood, R.; Tran, D.; Cichy, B.; Rabideau,
G.; Castano, R.; Davies, A.; Mandl, D.; Trout, B.; Shulman,
S.; et al. 2005. Using autonomy flight software to improve
science return on earth observing one. Journal of Aerospace
Computing Information and Communication 2(4):196–216.
Chien, S.; Doubleday, J.; Thompson, D. R.; Wagstaff, K. L.;
Bellardo, J.; Francis, C.; Baumgarten, E.; Williams, A.; Yee,
E.; Stanton, E.; et al. 2016. Onboard autonomy on the in-
telligent payload experiment cubesat mission. Journal of
Aerospace Information Systems.
Drummond, M.; Bresina, J.; and Swanson, K. 1994. Just-
in-case scheduling. In AAAI, volume 94, 1098–1104.
Gaines, D.; Anderson, R.; Doran, G.; Huffman, W.; Justice,
H.; Mackey, R.; Rabideau, G.; Vasavada, A.; Verma, V.; Es-
tlin, T.; et al. 2016a. Productivity challenges for mars rover
operations. In Proceedings of 4th Workshop on Planning
and Robotics (PlanRob), 115–125. London, UK.
Gaines, D.; Doran, G.; Justice, H.; Rabideau, G.; Schaffer,
S.; Verma, V.; Wagstaff, K.; Vasavada, A.; Huffman, W.; An-
derson, R.; et al. 2016b. Productivity challenges for mars
rover operations: A case study of mars science laboratory
operations. Technical report, Technical Report D-97908, Jet
Propulsion Laboratory.
Gregory, N. M.; Dorais, G. A.; Fry, C.; Levinson, R.; and
Plaunt, C. 2002. Idea: Planning at the core of autonomous
reactive agents. In Proceedings of the 3rd International
Workshop on Planning and Scheduling for Space. Citeseer.
Jet Propulsion Laboratory. 2017a. Mars 2020 rover mission
https://mars.nasa.gov/mars2020/ retrieved 2017-11-13.
Jet Propulsion Laboratory. 2017b. Mars science laboratory
mission https://mars.nasa.gov/msl/ 2017-11-13.
Joslin, D. E., and Clements, D. P. 1999. Squeaky wheel
optimization. Journal of Artificial Intelligence Research
10:353–373.
Kramer, L. A., and Smith, S. F. 2006. Resource contention
metrics for oversubscribed scheduling problems. In ICAPS,
406–409.
Leon, V. J.; Wu, S. D.; and Storer, R. H. 1994. Robustness
measures and robust scheduling for job shops. IIE transac-
tions 26(5):32–43.
Muscettola, N.; Nayak, P. P.; Pell, B.; and Williams, B. C.
1998. Remote agent: To boldly go where no ai system has
gone before. Artificial Intelligence 103(1-2):5–47.

Pell, B.; Gat, E.; Keesing, R.; Muscettola, N.; and Smith,
B. 1997. Robust periodic planning and execution for au-
tonomous spacecraft. In International Joint Conference on
Artificial Intelligence, 1234–1239.
Rabideau, G., and Benowitz, E. 2017. Prototyping an on-
board scheduler for the mars 2020 rover. In International
Workshop on Planning and Scheduling for Space.
Washington, R.; Golden, K.; and Bresina, J. 2000. Plan
execution, monitoring, and adaptation for planetary rovers.
Electron. Trans. Artif. Intell.
Woods, M.; Shaw, A.; Barnes, D.; Price, D.; Long, D.; and
Pullan, D. 2009. Autonomous science for an exomars rover–
like mission. Journal of Field Robotics 26(4):358–390.

935

Front Delineation and Tracking with Multiple Underwater Vehicles

Andrew Branch1, Mar M. Flexas2, Brian Claus3, Andrew F. Thompson2, Evan B. Clark1,
Yanwu Zhang4, James C. Kinsey3, Steve Chien1, David M. Fratantoni5,

Brett Hobson4, Brian Kieft4, Francisco P. Chavez4
1Jet Propulsion Laboratory, California Institute of Technology

2California Institute of Technology
3Woods Hole Oceanographic Institution

4Monterey Bay Aquarium Research Institute
5Remote Sensing Solutions

Correspondence Author: andrew.branch@jpl.nasa.gov

Abstract

This work describes a method for detecting and track-
ing ocean fronts using multiple autonomous underwa-
ter vehicles. Multiple vehicles — equally-spaced along
the expected frontal boundary — complete near paral-
lel transects orthogonal to the front. Lateral gradients
are used to determine the location of the front cross-
ing from each individual vehicle transect by detecting
a change in the observed water property. Adaptive
control of the vehicles ensure they remain perpendicu-
lar to the estimated front boundary as it evolves over
time. This method was demonstrated in and around
Monterey Bay, California in May of 2017. We compare
the front detection method to previously used meth-
ods. We introduce a metric in order to evaluate the
adaptive control techniques presented. We show the ca-
pability of this method for repeated sampling across a
dynamic two-dimensional ocean front using short-range
Iver AUVs. This method extends to tracking gradients
of different properties using a variety of vehicles.

Introduction
Space-based remote sensing can provide extensive infor-
mation about ocean dynamics. However, remote sens-
ing information is generally limited to measuring the
ocean surface. To probe the ocean interior efficiently
requires marine vehicles such as autonomous underwa-
ter vehicles (AUVs), gliders, profiling buoys, surface
vehicles, and ships sampling in situ. Unfortunately,
building, deploying and operating these in situ ma-
rine robotic explorers is expensive. As a result, any
actual study involves a limited number of marine ve-
hicles, especially when compared to the vast expanse
of the ocean. Determining where to deploy and operate
marine assets is a challenging problem given the 4D spa-
tiotemporal variations in oceanographic phenomena.

The use of autonomous marine vehicles will increase
as the size of ocean observing systems expand in or-
der to study the impact of the oceans on Earth’s
climate and ecosystems. The day-to-day operations
of these systems will become increasingly difficult if
human intervention is required. In order to enable
large observing systems to operate, techniques for au-
tonomous control of assets based on science goals and

data sources such as in situ measurements, remote-
sensing, and model-derived data need to be developed.
The Keck Institute for Space Studies (KISS) Satellites
to Seafloor project works towards this goal of fully au-
tonomous sampling [Thompson et al., 2017]. Previ-
ous ocean observing systems have relied on substantial
human intervention or non-adaptive sampling strate-
gies, including the Autonomous Ocean Sampling Net-
works (AOSN) [Curtin and Bellingham, 2009; Curtin
et al., 1993; Haley et al., 2009; Leonard et al., 2007;
Ramp et al., 2009] and the Adaptive Sampling and Pre-
diction (ASAP) [Leonard et al., 2010] projects.

One approach is to deploy in situ assets to study
coherent scientific features such as fronts, eddies, up-
welling events, and harmful algal blooms. A typical
strategy would be to deploy marine assets to measure
transects across the feature of interest at a scale that
covers the feature, as well as a baseline signal around
the feature. However, asset capabilities (e.g. mobility,
endurance) and prevailing ocean currents may render
these science goals unachievable. Our project targets
automatic generation of coordinated mission plans for
teams of assets to follow these science derived observa-
tion policies (e.g. the use of multiple vehicles to perform
transects orthogonal to a front). This paper specifically
describes an approach using multiple vehicles to make
a linear estimation of an ocean front’s geometry and to
continuously direct a team of marine robotic vehicles
to perform orthogonal transects with the midpoint of
the transect roughly centered on the target front. We
describe both the general approach for front-crossing
detection, front-geometry estimation, and multi-asset
control as well as results from deployment and testing of
this approach using short-range Iver Autonomous Un-
derwater Vehicles in Monterey Bay in late spring 2017.
The full results from the deployment, including the use
of underwater gliders and Long-Range AUVs, are pre-
sented in Branch et al. [2018]. This paper focuses on
the results using the Iver AUVs. This deployment was
the result of a team effort between the KISS project
members and the MBARI Spring 2017 CANON par-
ticipants [Monterey Bay Aquarium Research Institute,
2017]. The method presented here represents significant

36

steps towards the fully-autonomous adaptive sampling
framework as envisioned in Thompson et al. [2017].

The remainder of this paper is organized as follows.
First, we provide science context to the target prob-
lem of front tracking. Second, we describe the front-
crossing detection method. Third we describe the front-
geometry estimation and tracking algorithm used to es-
timate a linear front across multiple vehicles and pro-
duce resultant vehicle transects. Fourth, we describe
the experimental setup with the Iver AUVs. Fifth, we
describe the results from the field deployments. Finally,
we discuss related and future work and summarize the
results of the experiment.

Science Context
Coherent fronts are ubiquitous features of the ocean
circulation. Fronts, defined as regions of enhanced gra-
dients in water mass or tracer properties, can occur
across different scales spanning many hundreds of kilo-
meters, such as the strong western boundary currents
(e.g. the Gulf Stream), to smaller-scale filamentary fea-
tures which are often associated with the fringes of co-
herent mesoscale eddies, but may cascade down to the
meter scale [D’Asaro et al., 2017]. Due to the earth’s
rotation, lateral gradients in density at ocean fronts can
generate strong (and strongly-sheared) along-front ve-
locities. These velocities can, in various scenarios, act
to both enhance the front by suppressing mixing or en-
hance mixing due to the generation of flow instabili-
ties [Bower, Rossby, and Lillibridge, 1985]. Fronts may
also be regions of intense vertical velocities and vertical
fluxes. This may occur either because density surfaces
tilt across strong fronts, leading to strong vertical, but
still largely along-isopycnal advection. Alternatively, at
sharp fronts, relative vorticity may be enhanced such
that the Rossby number, defined as the ratio of the
vertical relative vorticity ζ = ∂v/∂x − ∂u/∂y to the
Coriolis frequency f , becomes comparable to or greater
than 1. In this regime, the effects of rotation that con-
strain the velocity field to be largely horizontal begin
to break down and vertical velocities can become en-
hanced. This dynamical regime is known as the subme-
socale [McWilliams, 2016; Thomas, Tandon, and Ma-
hadevan, 2008] and can generate vertical velocities on
the order of hundreds of meters per day over most of
the ocean [Su et al., 2018].

This enhancement of vertical velocities at the sub-
mesoscale has important implications for the coupling
between the physical circulation and ocean biogeochem-
istry. Primary production in the ocean is characterized
by a “patchiness” implying a large degree of spatial and
temporal intermittency [Martin et al., 2002]. Ocean
fronts have been identified as locations where primary
production may be transiently enhanced, especially in
oligotrophic waters due to the injection of nutrient-rich
waters to the surface ocean [Brannigan, 2016; Lévy,
Klein, and Treguier, 2001; Mahadevan, 2016]. More
recent work has shown that frontal instabilities can
rapidly shoal the mixed layer and lead to phytoplankton

blooms due to a relaxation of light limitations [Mahade-
van et al., 2012; Taylor and Ferrari, 2011]. These latter
studies imply that ocean fronts can also regulate car-
bon cycling in subpolar latitudes. Ocean fronts have
also been shown to have a large impact on large marine
ecosystem [Belkin, Cornillon, and Sherman, 2009].

Therefore, for both physical and biogeochemical rea-
sons, ocean fronts tend to be hotspots of turbulent mix-
ing, ventilation (the transfer of near-surface water prop-
erties into the ocean interior) and subduction. Further-
more, the implication is that a significant portion of
the exchange between the near-surface ocean and the
ocean interior occurs over a relatively small fraction
of the surface ocean. Thus there is a need to dedi-
cate greater resources to the study of these frontal fea-
tures, both to improve our mechanistic understanding
of how these fronts develop, evolve and impact trans-
port properties, but also so that they can be effectively
represented in data-assimilating numerical simulations
of the ocean circulation.

Front-Crossing Detection

Lateral Gradient Front-Crossing Detection

The KISS team developed an algorithm to identify a
subsurface oceanic fronts based on lateral gradients of
a given hydrographic property. This could be tempera-
ture, buoyancy or density (if salinity data is available),
or any available biogeochemical property such as dis-
solved oxygen or chlorophyll.

When in situ data is received in near real time, the al-
gorithm grids the field, smooths it by applying a simple
linear weighted average of immediate neighboring mea-
sured data points, and calculates the lateral gradients
(Figure 1). Smoothing parameters must be selected be-
fore using this algorithm in a near real time application.
The algorithm uses temporal gradients, and assumes
that time can be linearly related to distance. The al-
gorithm then calculates the lateral gradients along the
transect within the layer of interest (defined beforehand
by the user) as well as the mean value, and the standard
deviation. The user also defines beforehand the number
of standard deviations used to declare a front-crossing
detection. All points above this threshold are consid-
ered potential front crossings (Figure 2). To qualify for
a frontal crossing, it is required that the threshold is
crossed twice (once entering and once leaving the high
gradient region). Half-crossings do not qualify. The
width of the front is used to choose the front crossing
of interest if more than one is present. The front lo-
cation, width, and time of crossing is then output for
later use in vehicle tasking. An example is shown in
Figure 1 and Figure 2. Time, as apposed to distance, is
plotted on the x-axis as that is what the algorithm uses.
Using real time data from May 4, 2017 (Figure 1d) the
algorithm detects five narrow subsurface fronts from 10
to 15 m deep (Figure 2a), and selects the widest front
(Figure 2d).

The front-crossing detector can be customized, for ex-

Copyright c© 2018, all rights reserved

37

Comparison to previous methods

ample, to select only positive or negative frontal cross-
ings. This could be useful in the event of targeting a
cold or warm eddy. It can also be modified to select, in-
stead of the widest front, the front corresponding to the
maximum lateral gradient, if desired. The capability of
selecting the depths over which the lateral gradients
were to be evaluated allows the user to target surface
fronts, or instead, focus only on deeper fronts.

Figure 1: Lateral gradient front-crossing detector. For
this example we use data obtained on May 4, 2017 from
Iver 136 (segment 000). Real-time in situ temperature
data (shown in scatter plot in panel a) is gridded (panel
b) and smoothed (panel c). Then, lateral gradients are
calculated (panel d). When used in real time, the algo-
rithm uses temporal gradients, and assumes that time
can be linearly related to distance.

Comparison to previous methods

Next we briefly compare the front-crossing detection
technique presented above to a previous upwelling front
detection technique developed by Monterey Bay Aquar-
ium Research Institute (MBARI) [Zhang et al., 2012a,b,
2013]. This previous method is based on the vertical
temperature structure measured on the AUV’s saw-
tooth (i.e., yo-yo) trajectory. In stratified water, the
vertical temperature difference is large: warm at surface
and cold at depth. The upwelling process breaks down
stratification and makes water properties more verti-
cally homogeneous. Consequently, the vertical tem-
perature difference between shallow and deep depths is
smaller in upwelling regions. To enable an AUV to au-
tonomously differentiate between upwelling and strati-
fied water columns, Zhang et al. used a classification
metric — the vertical temperature homogeneity index
(VTHI) [Zhang et al., 2012b]

For this comparison, we use data obtained on May 1,
2017. Vertical sections in Figure 3 show the presence
of a front at longitude ∼122.25◦W. The front separates
warm, fresh water to the west, from cold, salty water
to the east (Figure3a-d). The maximum lateral gradi-
ents of these properties are clearly observed at longitude

Figure 2: (Continues from Figure 1) The algorithm cal-
culates the mean value of the lateral gradients over the
layer of interest. In this example, we use data from
10m to 15m. The algorithm calculates the mean value
(bold red line in panel a) and the n-standard deviation
(in this case, n=1.2; red broken lines in panel a). All
points above the n-value standard deviation are consid-
ered potential fronts (red circles in panel b). A boolean
is used to isolate the front crossings (panel c). The
width of the front is used to choose the front crossing
when more than one front is present. The crossing cho-
sen by the algorithm is marked with a red arrow.

∼122.25◦W (Figure3e-i). We apply the two methods
described above to the upper 30 m of the water col-
umn.

The VTHI method detects a decrease of VTHI value
(note that a lower VTHI value means the observed wa-
ter column is more homogeneous vertically) between
∼122.25-122.28◦W, which corresponds to the maximum
lateral gradient of buoyancy (Figure 3h). If we calcu-
late the lateral gradient of VTHI we find agreement
with the maximum lateral gradient of buoyancy (Fig-
ure 3i). Small differences are attributed to the role of
salinity in the buoyancy values, which is not accounted
for in VTHI.

Although both techniques give basically the same
result, VTHI only captures upwelling fronts and so
is specifically designed with Monterey Bay hydrogra-
phy/circulation in mind. Our algorithm would be more
general for detecting fronts throughout the ocean. We
acknowledge that the need for interpolation in the lat-
eral gradient method presented in this paper may pose
difficulties for the implementation of this method on-
board underwater vehicles. In the future, an onboard
method of calculating lateral gradients without inter-
polation would be required.

Autonomous Control of Underwater
Vehicles for Front Tracking

A technique was developed to control a group of ve-
hicle to repeatedly sample across a dynamic ocean as
it evolves over time. Vehicles must be able to mod-
ify their transects in order to adapt to the changing
ocean conditions. The control algorithm (Algorithm

Copyright c© 2018, all rights reserved 38

(d) (e) (f)

(g) (h)

(a) (b) (c)

Figure 3: Comparison between lateral gradient detec-
tion method and vertical temperature homogeneity in-
dex (VTHI). (a-c) Vertical sections of (a) Temperature,
θ, (b) Salinity, S, and (c) Buoyancy, b. (d-f) Lateral
gradients of θ, S and b. (g) Front detection using ab-
solute values of VTHI (blue) and lateral gradient of
b (red). (h) Front detection using lateral gradients of
VTHI (blue) and lateral gradient of b (red).

1) operates as follows. When first deployed, an ini-
tial estimated front location and orientation is manu-
ally provided based on available data from other assets.
The vehicles are equally spaced along this estimated
front. Each vehicle is commanded on an initial tran-
sect orthogonal to the provided estimated front. When
the vehicle surfaces to plan, Algorithm 1 is executed.
The vehicle location and the scientific data from the
current transect are provided as vehicle location and
transect data respectively. The vehicles location along
the transect is calculated as locationp by projecting the
vehicles current location onto the commanded transect.
If the vehicle has traveled a minimum distance along
the commanded transect, specified by transect distmin,
then the front-crossing detection algorithm is run on the
data from this transect. The resulting front-crossing is
defined as new front crossing. If the vehicle is a spec-
ified distance past this new front detection, then the
front is re-estimated using linear regression on front
detections from all vehicles, otherwise the transect is
continued. When re-estimating, only certain front de-
tections from each vehicle are considered, specified by
valid front detections. We used two methods when
selecting the subset of detections used in the linear re-
gression: a time based approach where detections from
the last N hours were considered and a latest detec-
tion approach where only the last detection from each
vehicle was considered. These two approaches are de-
fined in the procedure get estimation crossings. The
new transectp is calculated such that it is orthogonal
to estimated front. The vehicle is then commanded

on this new transect. In order to prevent the vehicle
from leaving the study area, transect distmax is de-
fined. If a transect has reached this length the front is
re-estimated, a transect orthogonal to this is defined,
and the vehicle is commanded on this new transect.

−122.06 −122.04 −122.02 −122.00
Longitude

36.84

36.86

36.88

36.90

36.92

La
tit
ud

e

i106, May 11 i136, May 11

Iver May 11 Average Temperature from 10m to 15m
 with Front Crossings and Estimations

Front Crossing
Front-Geometry Estimation

10.0

10.2

10.4

10.6

10.8

Te
m
pe
ra
tu
re
 (°

C)

Figure 4: Iver transects on May 11 with temperature
averaged from 10 meters to 15 meters plotted. Front
crossings are shown as blue dots and estimated fronts
are shown as blue lines. Each vehicle starting location is
labeled with the vehicle name and the date. The second
transect for each vehicle is orthogonal to the estimated
front from the front crossings on the first transect.

Pilot Experiment
Experiment Site

The pilot experiment took place in Monterey Bay, Cal-
ifornia (36.80◦N, 121.90◦W) from May to June 2017.

The circulation in Monterey Bay is characterized by
a persistent coastal upwelling, in response to preva-
lent northerly winds, which generates highly-productive
cold coastal regions [Hickey, 1979; Lynn and Simp-
son, 1987]. Physical–biological coupling at the edges of
mesoscale eddies, and turbidity plumes resulting from
the interaction of the flow with topography, influence
the phytoplankton ecology [Ryan, Chavez, and Belling-
ham, 2005]. Offshore (>150 km), the California Cur-
rent (CC) flows southward with surface speeds of ∼0.25
m s−1 [Hickey, 1979; Lynn and Simpson, 1987]. Near
the coast (<150 km), the surface flow varies seasonally,
flowing northward in fall and winter [Reid and Schwart-
zlose, 1962], and receiving the name of the Inshore

Copyright c© 2018, all rights reserved 39

Iver AUVs

Algorithm 1 Linear Front Delineation and Tracking
procedure vehicle retasking(vehicle location, transect data) . Run
this procedure when a vehicle surfaces to plan

locationp ← project (transect, vehicle location)

if dist
(
transect start, locationp

)
>= transect distmin then

new crossing ← detect crossings (transect data)
if new crossing was detected then

crossings← crossings
⋃
{new crossing}

valid crossings← get estimation crossings(crossings)
estimated front← linear regression (valid crossings)
locationf ← project (transect, new front crossing)

if dist
(
locationp, locationf

)
> εpast front km then

Calculate transectp s.t. transectp ⊥ estimated front
Command vehicle on transectp

else
Continue on current transect

else if dist
(
transect start, locationp

)
<= transect distmax then

valid crossings← get estimation crossings(crossings)
estimated front← linear regression (valid crossings)
Calculate transectp s.t. transectp ⊥ estimated front
Command vehicle on transectp

procedure get estimation crossings(crossings) . First of two options
for this procedure

return Latest front crossing for each vehicle.

procedure get estimation crossings(crossings) . Second of two options
for this procedure

return {crossing ∈ crossings | crossing.time > current time −
εtime}

Countercurrent (IC) [Lynn and Simpson, 1987]. The IC
is intermittent in space and time. Below, the subsurface
California Undercurrent (CU) flows northward. South
of Monterey Bay, at Point Sur (36.31◦N, 121.90◦W), the
CU separates from the coast due to topographic cur-
vature and flow inertia [Molemaker, McWilliams, and
Dewar, 2015] and forms mesoscale anticyclonic eddies
whose inner edge reaches the shelf break off Monterey
Bay.

In May 2017, an intensive upwelling plume spread
southeastward across the mouth of Monterey Bay. A
fleet of AUVs were deployed to detect and track the
fronts between the upwelling plume and the stratified
inner bay water. Over the shelf, KISS IVERs were set
to detect lateral gradients of temperature from 10m to
15m. Over the slope, temperature in the upwelling wa-
ter column was remarkably homogeneous in the vertical
dimension. The operations region of the Iver AUVs are
shown in Figure 5.

Iver AUVs

This work was demonstrated on two OceanServer Iver2
AUVs, shown in Figure 6. The method is extensible
to other platforms and indeed other domains where
the vehicles are able to at least intermittently trans-
mit collected data and receive new instructions mid-
deployment. Both of the vehicles were equipped with
a hull-mounted Neil Brown conductivity/temperature
sensor (Ocean Sensors Inc.) which served as the pri-
mary scientific payload for this work. Additionally, one
of these vehicles, Iver-106, was an Ecomapper variant
equipped with a SonTek Doppler velocity log (DVL), an
Ocean-Server compass for attitude estimation, a WHOI
micro-modem 2 and a depth sensor. The other Iver2 ve-
hicle, Iver-136, was similarly equipped with the WHOI

− 122.5 − 122.4 − 122.3 − 122.2 − 122.1 − 122.0 − 121.9 − 121.8 − 121.7

Longitude

36.5

36.6

36.7

36.8

36.9

37.0

L
a

ti
tu

d
e

-1
000.0

00 -500.000

-1
0

0
.0

0
0

Monterey Bay 2017 Experim ent Map

Iver AUVs

Figure 5: Map of the 2017 pilot experiment region near
Monterey Bay, California. The operation region of the
Iver AUVs are shown.

micro-modem 2, compass and depth sensor as well as
a dual upward, downward facing 600 kHz RDI phased
array DVL, a Microstrain 3DM-GX3-25 and an APS-
1540 fluxgate magnetometer. The Iver2 AUVs have an
approximate maximum horizontal velocity of 2 m s−1

and were operated at a speed of 1.5 m s−1 for these tri-
als. These vehicles, are shown on board the R/V Shana
Rae in Figure 6 during operations in August 2016.

Figure 6: OceanServer Technology, Inc. Iver2 AUVs on-
board the R/V Shana Rae

Prior to shipping the vehicles were cross-calibrated
against a Seabird SBE49 in a tank to get the relative
sensor offsets. These offsets seemed to drift during ship-
ping and the collocated measurements taken in the har-
bour and during deployment. In post-processing, Iver-
106 was corrected for a salinity offset of 0.5180 practical
salinity units.

Vehicle control

The Iver AUVs required some modifications to enable
the transmission of data and receiving of new instruc-
tions during operations. Four communication modali-
ties are available to the Iver, Iridium short burst data
(SBD), Wi-Fi, 900 MHz RF, and acoustic modem. Sci-

Copyright c© 2018, all rights reserved 40

entific data such as position, conductivity, temperature,
and timestamps can be received and new commands can
be sent over any of these four available communication
links. Possible commands include stopping a mission,
starting a mission already loaded on the vehicle, parking
the vehicle and inserting segments of waypoints into the
already running mission. Initially, it was planned to use
the segment insertion to facilitate the retasking of the
vehicles. While these commands were successfully re-
ceived and interpreted by the vehicle, some unexplained
behaviors while using this command precluded its ongo-
ing use. As a temporary work around for the 2017 field
trials in Monterey we used the outputs of the planning
software to manually program a new mission which was
then loaded onto the AUV over the RF link.

Results
We introduce a metric in order to quantify the perfor-
mance of the front tracking control techniques presented
here. For a given transect N , the front location, as pre-
dicted by transectN−1, and the front location observed
on transect N are compared. As a baseline, the ob-
served front location for transect N is also compared to
the initial front-geometry estimation provided manually
at the beginning of each experiment. More specifically,
the metric is defined as follows. For a given transect
N , define the initial front-geometry estimation man-
ually provided at the beginning of the experiment as
initial estimation, the front-geometry estimation used
to create transect N as predicted estimation and the
front-geometry estimation after transect N as observed
estimation. Calculate the intersection point of transect
N and the predicted estimation as well as the the inter-
section point of transect N and the observed estimation.
The front tracking metric is defined as the distance be-
tween these two intersection points. The intersection
point of transect N and initial estimation is also cal-
culated. The baseline metric is defined as the distance
between this intersection point and the intersection of
transect N and the observed estimation. These two
metrics are calculated for each transect. An example of
the calculation for this metric can be seen in Figure 7.

The time between front crossings has an important
role in the performance of this metric. Longer time be-
tween front crossings allows for a larger change in the
ocean conditions. This time is a function of the speed of
the vehicle and the length of a transect. The dynamism
of the experiment region also affects this metric as this
determines how much one might expect the front to
evolve between two crossings. Due to this, direct com-
parisons of this metric between vehicles and operations
areas are questionable, however, it can be used to as-
sess the performance of the front tracking algorithm as
well as indicate the suitability of a vehicle to a specific
operating environment.

Iver AUV Results
Two Iver AUVs were operated on three days, 4 May,
9 May, and 11 May 2017. They are limited to single

− 122.06 − 122.04 − 122.02 − 122.00

Longitude

36.84

36.86

36.88

36.90

36.92

L
a

ti
tu

d
e

i106, May 11
i136, May 11

Iver May 11 Transect 2 Front Tracking Met ric Calculat ion

Inital Est im at ion

Predicted Est im at ion

Observed Est im at ion

10.0

10.2

10.4

10.6

10.8

T
e

m
p

e
ra

tu
re

 (
°
C

)

Baseline Metric

Distance

Front Tracking

Metric Distance

Figure 7: An example calculation of the front tracking
metric. We use the May 11 i136 transect 2 for the exam-
ple. The initial manually provided transect (i.e. initial
estimation) is plotted a black line. The front-geometry
estimation from the previous transect (i.e. predicted es-
timation) is plotted as a green line. The front-geometry
estimation after transect 2 (i.e. observed estimation) is
plotted as a blue line. The intersection of these three
lines and the transect in question are plotted as dots
of their respective colors. The distances used for the
baseline and front tracking metric are shown in red.

day deployments due to the short range of the vehicles.
Some operational constraints required modifications to
the outlined front tracking control method. The range
limitation associated with acoustic communication and
the desire to have the ability for quick vehicle recovery
required the two Iver AUVs to remain in close prox-
imity to each other. The front tracking algorithm as
presented does not guarantee any vehicle synchroniza-
tion with regards to position. In order to solve this
issue the vehicles pause at any point in which a new
transect could start and waits for every other vehicle to
reach their respective decision points. Once all vehicles
have paused, the front-crossing detection algorithms are
executed for each vehicle. If at least one vehicle has de-
tected a front crossing, a new linear front estimation
well be generated and all vehicles will be commanded
orthogonal to it. If no front crossings are detected then
all vehicles will continue on the current transect.

In this experiment the minimum transect distance
was set at 3 km past the current estimated front. The
minimum distance required for a vehicle to go past the

Copyright c© 2018, all rights reserved 41

Baseline Metric (m) Front Tracking Metric (m)
Average 1619.598 839.393
Std Dev 943.674 523.301

Table 1: Baseline and Front Tracking metric for the
Iver Experiment on 9 and 11 May 2017

front-crossing detection on a given transect was set to
0 km, this results in the vehicle turning around at the
first decision point after a front crossing is detected.
The first decision point can be significantly past the de-
tected front crossing due the minimum transect length.
Ideally this would be set to a longer distance to insure
that the vehicle has crossed the entire front before cal-
culating a new transect, however due to software con-
straints during this deployment this was not possible.
Front-geometry estimation was performed with the lat-
est front crossing from each vehicle. The lateral gra-
dient front-crossing detection algorithm was used with
the Iver AUVs. Figure 8 shows the results of the Iver
experiment on 9 and 11 May, 2017. Two transects were
completed per vehicle per day. The starting locations
for each vehicle on each day are labeled. Temperature
averaged from 10 meters to 15 meters is plotted. All
front crossing and front-geometry estimations used dur-
ing the deployment are shown as blue dots and blue
lines respectively. A number of different depth inter-
vals for front-crossing detection were used during the
deployment in order to examine the sensitivity of the
algorithm. For reference, the front crossings and front-
geometry estimations for 10 meter to 15 meter depth
range are also plotted in green.

The baseline and front tracking metric for the Iver
experiment is presented in Table 1. These values are
calculated with the transects from both vehicles on 09
May and 11 May. We see a lower average distance with
the front tracking metric compared to the baseline met-
ric, indicating an improvement in the ability to tracking
a front when using the method presented here. This re-
sult is also indicative of the suitability of the Iver plat-
form for this specific region. Iver AUVs are fast moving
vehicles with relatively short transects operating in a
region where the front is mainly bathymetry driven, re-
sulting in smaller changes in ocean conditions between
front crossings. The dataset presented here is limited.
It is an an initial step towards understanding the perfor-
mance of the front estimation and tracking algorithm,
however more data is necessary to make conclusions.

Discussion
Related Work

Adaptive sampling and control of autonomous under-
water vehicles has been extensively studied, including
foundational work with the Autonomous Ocean Sam-
pling Network [Curtin and Bellingham, 2009; Curtin
et al., 1993; Haley et al., 2009; Leonard et al., 2007;
Ramp et al., 2009]. Much of this work focuses on spa-
tially adapting the control strategy in order to opti-

−122.10 −122.08 −122.06 −122.04 −122.02 −122.00
Longitude

36.84

36.86

36.88

36.90

36.92

La
tit
ud

e

i106, May 09

i106, May 11

i136, May 09
i136, May 11

Iver May 09, May 11 Average Temperature from 10m to 15m
 with Front Crossings and Estimations

10m to 15m Front Crossings
In Situ Front Crossings
10m to 15m Front-Geometry Estimations
In Situ Front-Geometry Estimations

9.6

9.8

10.0

10.2

10.4

10.6

10.8

Te
m
pe
ra
tu
re
 (°

C)

Figure 8: Map view of the temperature averaged from
10 to 15 meters for the Iver transects on 09 and 11
May, 2017. Front crossings and front-geometry estima-
tions used during the experiment are indicated with a
blue dot and blue line respectively. Front crossings and
front-geometry estimations using data from 10 meters
to 15 meters during the experiment are indicated with a
green dot and green line respectively. The start location
for each vehicle for each day is labeled.

mally sample a fixed region. Our method instead per-
forms repeated focused sampling across a single front
as it evolves over time.

Other work focused on control strategies that adapt
to the current conditions. the Adaptive Sampling and
Prediction project [Leonard et al., 2010] used adaptive
control in order to coordinate 6 gliders to fly in loops
at fixed spacing. Troesch et al. [2016] uses an ocean
model in order to improve the station keeping ability of
vertically profiling floats. Eriksen et al. [2001] describes
the capabilities of a Seaglider to compensate for drift
from currents using depth averaged currents over mul-
tiple dives. Those important works focus on adaptive
control of vehicles based on the current conditions they
are in, in order to improve sampling. We instead look
at other hydrographic properties in order to optimize
sampling of a specific feature.

A number of different near real-time feature track-
ing methods exist for applications such as thermo-
clines [Cruz and Matos, 2010; Sun et al., 2016; Zhang
et al., 2010], and oil spills [Zhang et al., 2011]. These
approaches focus on tracking a one-dimensional feature
using a single vehicle, while we utilize multiple vehi-
cles to track a two-dimensional feature. Flexas et al.
[2018] uses an ocean model and autonomous planning
to optimize sampling of submesoscale structures. Our
approach focuses on frontal tracking using trailing in-
situ vehicle data as apposed to an ocean model.

Other work has investigated two-dimensional feature
tracking. Zhang et al. [2013, 2016] utilize the VTHI

Copyright c© 2018, all rights reserved 42

Issues and Future Work

front detection method on a single vehicle to detect
and track an upwelling front on a zig-zag track with
a fixed turn angle. Cruz and Matos [2014] tracks any
gradient boundary using a single vehicle following a dy-
namic zig-zag pattern and a lateral gradient detection
algorithm to estimate the gradient boundary using an
arc whose curvature is defined by the last three front-
crossing locations. Kularatne, Smith, and Hsieh [2015]
tests a method in a tank to perform a zig-zag across a
front using an autonomous surface vehicle. A similar
method can also be applied to tracking the center of a
phytoplankton bloom patch [Godin et al., 2011]. Ma-
chine learning, in the form of policy learning, has also
been applied to the problem of tracking the edge of a
harmful algal bloom [Magazzeni et al., 2014]. Other
work focuses on tracking algal blooms by flying forma-
tions relative to the bloom as tracked by a drifter [Das
et al., 2012]. Petillo, Schmidt, and Balasuriya [2012]
uses a simulated network of AUVs in order to estimate
the boundary of a simulated plume. These all differ
from our approach in that we are using multiple vehi-
cles in order to estimate the position and orientation of
an ocean front using a method of gridded front detec-
tions as well as a linear front model.

Issues and Future Work

The front-crossing detection method is key in order for
the front-geometry estimation and autonomous control
portions of this method to work correctly. Throughout
this experiment multiple points of improvement were
identified in regards to the lateral gradient front detec-
tion. Front detection could be improved by gridding
data based on distance traveled as apposed to time.
This is particularly important for slower moving vehi-
cles. The gridding process itself could also be improved
by using objective mapping. In this experiment temper-
ature was used, other ocean properties such as, buoy-
ancy could also be used. The lateral gradient front de-
tection method consists of many parameters, a more in-
depth analysis of the effects of these parameters would
be beneficial.

One of the issues encountered in the experiments was
determining that the sampled front was the same as pre-
viously sampled fronts. Crossing multiple fronts would
result in erroneous front-geometry estimations. In or-
der to handle this situation our front-crossing detection
technique would need to be extended in order to se-
lect a crossing based on a set of criteria such as front
direction (i.e. cold-to-warm versus warm-to-cold), gra-
dient strength, and front size. By using these different
properties a specific front can be targeted.

The communication paradigms of the vehicles used is
important as our technique was implemented off-board.
Data decimation is an issue with vehicles that are un-
able to send all the available data to the planner. A
data decimation scheme must be selected that allows for
the front detection algorithms to perform well. These
issues could be avoided by bringing the front tracking
algorithm onboard the vehicles, however this introduces

a number of different issues such as limited computing
capabilities and inter-vehicle communication.

Conclusion

This work presents a method of adaptive control of mul-
tiple autonomous underwater vehicles in order to track
an ocean front evolving over time. This method uti-
lizes a near real-time front detection method, and an
off-board planner doing front estimation using a linear
model and vehicle retasking. This method builds upon
the prior efforts of the AOSN deployments and takes a
further step towards a fully-autonomous adaptive sam-
pling framework [Thompson et al., 2017].

The experiment was conducted in May, 2017 in Mon-
terey Bay, California using two short-range Iver AUVs.
A front detection technique based on lateral gradients
with gridded and interpolated data was used. During
this experiment we demonstrated the performance of
the front detection method on data from the vehicles.
We also demonstrated the capability of the autonomous
control method for front tracking. In doing this we in-
troduced a metric which allows for a quantitative com-
parison of the front tracking algorithms performance as
well as an indication of the suitability of a platform in a
specific operating environment. The multi-vehicle front
tracking approach allows for improved synopticity over
a zig-zag method when sampling a front. While the use
of off-board front detection, estimation, and retasking
algorithms provided more processing power and allowed
for flexible implementation for different platforms.

Acknowledgments The following work was done
under the framework of the Keck Institute for Space
Studies (KISS)-funded project “Science-driven Au-
tonomous and Heterogeneous Robotic Networks: A Vi-
sion for Future Ocean Observations”[Thompson et al.,
2017]. Portions of this work were funded by the Keck
Institute and Woods Hole Oceanographic Institution.
Portions of this work were performed by the Jet Propul-
sion Laboratory, California Institute of Technology, un-
der contract with the National Aeronautics and Space
Administration.

References

Belkin, I.; Cornillon, P.; and Sherman, K. 2009. Fronts
in large marine ecosystems. Prog. Oceanogr. 81:223–
236.

Bower, A.; Rossby, H. T.; and Lillibridge, J. L.
1985. The Gulf Stream–barrier or blender. J. Phys.
Oceangr. 15:24–32.

Branch, A.; Flexas, M. M.; Claus, B.; Clark, E. B.;
Thompson, A. F.; Chien, S.; Kinsey, J. C.; Fratan-
toni, D. M.; Zhang, Y.; Kieft, B.; Hobson, B.; and
Chavez, F. P. 2018. Front delineation and tracking
with multiple underwater vehicles. J. Field Robotics
in review.

Brannigan, L. 2016. Intense submesoscale upwelling

Copyright c© 2018, all rights reserved 43

REFERENCES

in anticyclonic eddies. Geophys. Res. Lett. 43:3360–
3369.

Cruz, N. A., and Matos, A. C. 2010. Adaptive sam-
pling of thermoclines with autonomous underwater
vehicles. In OCEANS 2010, 1–6. IEEE.

Cruz, N. A., and Matos, A. C. 2014. Autonomous track-
ing of a horizontal boundary. In Oceans-St. John’s,
2014, 1–6. IEEE.

Curtin, T. B., and Bellingham, J. G. 2009. Progress
toward autonomous ocean sampling networks. Deep
Sea Research Part II: Topical Studies in Oceanogra-
phy 56(3):62 – 67. AOSN II: The Science and Tech-
nology of an Autonomous Ocean Sampling Network.

Curtin, T. B.; Bellingham, J. G.; Catipovic, J.; and
Webb, D. 1993. Autonomous oceanographic sampling
networks. Oceanography 6(3):86–94.

Das, J.; Py, F.; Maughan, T.; OReilly, T.; Messié, M.;
Ryan, J.; Sukhatme, G. S.; and Rajan, K. 2012.
Coordinated sampling of dynamic oceanographic fea-
tures with underwater vehicles and drifters. The In-
ternational Journal of Robotics Research 31(5):626–
646.

D’Asaro, E.; Shcherbina, A.; Klymak, J.; Molemaker,
J.; Novelli, G.; Guigand, C.; Haza, A.; Haus, B.;
Ryan, E.; Jacobs, G.; Huntley, H.; Laxague, N.;
Chen, S.; F. Judt, J. W.; Barkan, R.; Kirwan, A.;
Poje, A.; and Özgökmen, T. 2017. Ocean conver-
gence an dispersion of flotsam. Proc. Nat. Ac. Sci. in
press.

Eriksen, C. C.; Osse, T. J.; Light, R. D.; Wen, T.;
Lehman, T. W.; Sabin, P. L.; Ballard, J. W.; and
Chiodi, A. M. 2001. Seaglider: A long-range au-
tonomous underwater vehicle for oceanographic re-
search. IEEE J. Oceanic Eng. 26:424436.

Flexas, M. M.; Troesch, M. I.; Chien, S.; Thompson,
A. F.; Chu, S.; Branch, A.; Farrara, J. D.; and
Chao, Y. 2018. Autonomous sampling of ocean
submesoscale fronts with ocean gliders and numer-
ical model forecasting. Journal of Atmospheric and
Oceanic Technology 35(3):503–521.

Godin, M. A.; Zhang, Y.; Ryan, J. P.; Hoover, T. T.;
and Bellingham, J. G. 2011. Phytoplankton bloom
patch center localization by the tethys autonomous
underwater vehicle. In OCEANS’11 MTS/IEEE
KONA, 1–6.

Haley, P.; Lermusiaux, P.; Robinson, A.; Leslie, W.;
Logoutov, O.; Cossarini, G.; Liang, X.; Moreno, P.;
Ramp, S.; Doyle, J.; Bellingham, J.; Chavez, F.;
and Johnston, S. 2009. Forecasting and reanaly-
sis in the monterey bay/california current region for
the autonomous ocean sampling network-ii experi-
ment. Deep Sea Research Part II: Topical Studies in
Oceanography 56(3):127 – 148. AOSN II: The Science
and Technology of an Autonomous Ocean Sampling
Network.

Hickey, B. M. 1979. The california current system-
hypotheses and facts. Prog. Oceanogr. 8:191–279.

Kularatne, D.; Smith, R. N.; and Hsieh, M. A. 2015.
Zig-zag wanderer: Towards adaptive tracking of time-
varying coherent structures in the ocean. In 2015
IEEE International Conference on Robotics and Au-
tomation (ICRA), 3253–3258.

Leonard, N. E.; Paley, D. A.; Lekien, F.; Sepulchre,
R.; Fratantoni, D. M.; and Davis, R. E. 2007. Col-
lective motion, sensor networks, and ocean sampling.
Proceedings of the IEEE 95(1):48–74.

Leonard, N. E.; Paley, D. A.; Davis, R. E.; Fratantoni,
D. M.; Lekien, F.; and Zhang, F. 2010. Coordi-
nated control of an underwater glider fleet in an adap-
tive ocean sampling field experiment in monterey bay.
Journal of Field Robotics 27(6):718–740.

Lévy, M.; Klein, P.; and Treguier, A.-M. 2001. Impact
of sub-mesoscale physics on production and subduc-
tion of phytoplankton in an oligotrophic regime. J.
Mar. Res. 59(4):535–565.

Lynn, R. J., and Simpson, J. J. 1987. The california
current system: The seasonal variability of its physi-
cal characteristics. J. Geophys. Res. 92:12947–12966.

Magazzeni, D.; Py, F.; Fox, M.; Long, D.; and Ra-
jan, K. 2014. Policy learning for autonomous feature
tracking. Autonomous Robots 37(1):47–69.

Mahadevan, A.; D’Asaro, E.; Lee, C.; and Perry,
M. J. 2012. Eddy-driven stratification initiates
North Atlantic spring phytoplankton blooms. Sci-
ence 337(6090):54–58.

Mahadevan, A. 2016. The impact of submesoscale
physics on primary productivity of plankton. Ann.
Rev. Mar. Sci. 8(17.1–17.24).

Martin, A. P.; Richards, K. J.; Bracco, A.; and Proven-
zale, A. 2002. Patchy productivity in the open ocean.
Global Biogeochemical Cycles 16:1025.

McWilliams, J. C. 2016. Submesoscale currents
in the ocean. Proceedings of the Royal Society A
472:20160117.

Molemaker, M. J.; McWilliams, J. C.; and Dewar,
W. K. 2015. Submesoscale instability and gener-
ation of mesoscale anticyclones near a separation of
the california undercurrent. J. Phys. Oc. 45:613–629.

Monterey Bay Aquarium Research Institute. 2017.
Canon spring 2017 expedition.

Petillo, S.; Schmidt, H.; and Balasuriya, A. 2012. Con-
structing a distributed auv network for underwater
plume-tracking operations. International Journal of
Distributed Sensor Networks 2012:Article ID 191235,
12pp.

Ramp, S.; Davis, R.; Leonard, N.; Shulman, I.; Chao,
Y.; Robinson, A.; Marsden, J.; Lermusiaux, P.;
Fratantoni, D.; Paduan, J.; Chavez, F.; Bahr, F.;
Liang, S.; Leslie, W.; and Li, Z. 2009. Preparing to

Copyright c© 2018, all rights reserved 44

REFERENCES

predict: The second autonomous ocean sampling net-
work (aosn-ii) experiment in the monterey bay. Deep
Sea Research Part II: Topical Studies in Oceanogra-
phy 56(3):68 – 86. AOSN II: The Science and Tech-
nology of an Autonomous Ocean Sampling Network.

Reid, J. L., and Schwartzlose, R. A. 1962. Direct mea-
surements of the davidson current off central califor-
nia. J. Geophys. Res. 67:2491–2497.

Ryan, J. P.; Chavez, F. P.; and Bellingham, J. G. 2005.
Physicalbiological coupling in monterey bay, califor-
nia: topographic influences on phytoplankton ecol-
ogy. Mar. Ecol. Prog. Ser. 287:23–32.

Su, Z.; Wang, J.; Klein, P.; Thompson, A. F.; and Men-
emenlis, D. 2018. Ocean submesoscales as a key
component of the global heat budget. Nat. Comm.
accepted.

Sun, L.; Li, Y.; Yan, S.; Wang, J.; and Chen, Z. 2016.
Thermocline tracking using a portable autonomous
underwater vehicle based on adaptive threshold. In
OCEANS 2016-Shanghai, 1–4. IEEE.

Taylor, J. R., and Ferrari, R. 2011. Ocean fronts trigger
high latitude phytoplankton blooms. Geophys. Res.
Lett. 38:L23601.

Thomas, L. N.; Tandon, A.; and Mahadevan, A. 2008.
Sub-mesoscale processes and dynamics. In Hecht,
M. W., and Hasumi, H., eds., Ocean Modeling in an
Eddying Regime, volume 177 of Geophysical Mono-
graph Series. Washington DC: American Geophysical
Union. 17–38.

Thompson, A. F.; Chao, Y.; Chien, S.; Kinsey, J.;
Flexas, M. M.; Erickson, Z. K.; Farrara, J.; Fratan-
toni, D.; Branch, A.; Chu, S.; Troesch, M.; Claus,
B.; and Kepper, J. 2017. Satellites to seafloor: To-
ward fully autonomous ocean sampling. Oceanogra-
phy 30(2):160–168.

Troesch, M.; Chien, S. A.; Chao, Y.; and Farrara,
J. D. 2016. Planning and control of marine floats in
the presence of dynamic, uncertain currents. In In-
ternational Conference on Automated Planning and
Scheduling, 431–440.

Zhang, Y.; Bellingham, J. G.; Godin, M.; Ryan, J. P.;
McEwen, R. S.; Kieft, B.; Hobson, B.; and Hoover, T.
2010. Thermocline tracking based on peak-gradient
detection by an autonomous underwater vehicle. In
OCEANS 2010, 1–4. IEEE.

Zhang, Y.; McEwen, R. S.; Ryan, J. P.; Bellingham,
J. G.; Thomas, H.; Thompson, C. H.; and Rienecker,
E. 2011. A peak-capture algorithm used on an au-
tonomous underwater vehicle in the 2010 gulf of mex-
ico oil spill response scientific survey. Journal of Field
Robotics 28(4):484–496.

Zhang, Y.; Godin, M. A.; Bellingham, J. G.; and Ryan,
J. P. 2012a. Using an autonomous underwater vehicle
to track a coastal upwelling front. IEEE Journal of
Oceanic Engineering 37(3):338–347.

Zhang, Y.; Ryan, J. P.; Bellingham, J. G.; Harvey, J.
B. J.; and McEwen, R. S. 2012b. Autonomous de-
tection and sampling of water types and fronts in a
coastal upwelling system by an autonomous underwa-
ter vehicle. Limnology and Oceanography: Methods
10:934–951.

Zhang, Y.; Bellingham, J. G.; Ryan, J. P.; Kieft, B.;
and Stanway, M. J. 2013. Two-dimensional map-
ping and tracking of a coastal upwelling front by an
autonomous underwater vehicle. Proc. MTS/IEEE
Oceans’13 1–4.

Zhang, Y.; Bellingham, J. G.; Ryan, J. P.; Kieft,
B.; and Stanway, M. J. 2016. Autonomous four-
dimensional mapping and tracking of a coastal up-
welling front by an autonomous underwater vehicle.
Journal of Field Robotics 33(1):67–81.

Copyright c© 2018, all rights reserved 45

Autonomous Nested Search for Hydrothermal Venting

Andrew Branch1, Guangyu Xu2, Michael V. Jakuba2, Christopher R. German2, Steve Chien1,
James C. Kinsey2, Andrew D. Bowen2, Kevin P. Hand1, Jeffrey S. Seewald2

1Jet Propulsion Laboratory, California Institute of Technology
2Woods Hole Oceanographic Institution

Correspondence Author: andrew.branch@jpl.nasa.gov

Abstract
Ocean Worlds represent one of the best chances for the dis-
covery of extra-terrestrial life within our own solar system.
Liquid oceans are thought to exist on these celestial bodies,
often encased in a thick icy shell. In order to investigate these
oceans, a new mission concept utilizing a submersible craft
must be developed. This vehicle would be required to tra-
verse the icy shell and travel hundreds or even thousands of
kilometers to survey the ocean below. In doing this, the ve-
hicle might be out of contact for weeks or months at a time,
requiring it to autonomously detect, locate, and study features
of interest. Hydrothermal venting is one potential target, due
to the unique ecosystems it supports on Earth. We have devel-
oped an autonomous, nested search strategy to locate sources
of hydrothermal venting based on currently used methods. To
test this search technique a simulation environment was de-
veloped using a hydrothermal plume dispersion simulation
and a vehicle model. We show the effectiveness of the search
method in this environment.

Introduction
At least eight bodies in our solar system are thought to har-
bor liquid oceans. In some cases, such as Europa and Ence-
ladus, this ocean is perhaps habitable and encased in an icy
shell kilometers thick [National Aeronautics and Space Ad-
ministration 2018]. To explore these worlds new mission
concepts must be developed using penetrating, submersible
vehicles. A notional mission concept for such a submersible,
outlined in Figure 1, contains four main components, an or-
biting communications relay, a surface antenna, an under-ice
base station, and a submersible vehicle. In order to facilitate
ice shell transit, the vehicle needs to be small (particularly
in cross sectional area). The long mission duration — po-
tentially over a year to melt through the icy shell and a one
year exploration mission — requires a low power vehicle,
limiting the types of instruments on board. While the vehi-
cle would ideally travel hundreds to thousands of kilometers
distant from the base station, the submersible would need to
return close to the base station to transfer data – with data
subsequently relayed from the base station, through the sur-
face antenna to the orbiter for eventual return to Earth. The
radiation environment near the target body could preclude
the use of an orbiting communication relay, instead relying
on a relay in an eccentric Jovian orbit, in the case of Europa,
increasing the time between communication windows from

daily to monthly. When the submersible is away from the
base station it would be unable to communicate with Earth.
Therefore, while making journeys further and further away
from the base station, the submersible might be operating
days or weeks without contact. During this time the sub-
mersible would be required to autonomously detect, locate,
and study a specific feature of interest.

Hydrothermal venting is one potential target for a sub-
mersible mission. Evidence for hydrothermal activity has
been found on one Ocean World, Enceladus [Hsu et al. 2015;
Waite et al. 2017]. On Earth, these geological phenomena
harbor unique ecosystems and are potentially critical to the
origin of life. Similar vents on Ocean Worlds could be the
best chance at extra-terrestrial life in our Solar System. We
have developed a fully autonomous nested search strategy
for the localization of hydrothermal vents based on a man-
ual three-phase nested search commonly used in the field
[German et al. 2008]. In order to test this approach we have
developed a simulation environment using FVCOM [Chen,
Liu, and Beardsley 2003] — an existing ocean circulation
model — and a vehicle model. Due to the resolution of
the simulation environment, we focus on search in the non-
buoyant plume. This corresponds to the ship based CTD
casts and the phase 1 survey of the method presented in [Ger-
man et al. 2008].

The rest of the paper is organized as follows. First we
discuss the structure of hydrothermal venting. Then we dis-
cuss the simulation environment used to test our approach.
We outline the approach itself and the experimental setup.
Finally we discuss the results and future work.

Related Work
Adaptive sampling and control of autonomous underwa-
ter vehicles has been extensively studied, including foun-
dational work with the Autonomous Ocean Sampling Net-
work [Curtin et al. 1993; Curtin and Bellingham 2009;
Ramp et al. 2009; Haley et al. 2009; Leonard et al. 2007].

Hydrothermal vent localization on Earth is often done
with a non-autonomous three-phase nested search [German
et al. 2008]. [Yoerger et al. 2007a] demonstrates this method
in a number of cruises. [Yoerger et al. 2007b] presents a
method to autonomously revisit areas of interest after the
primary mission is completed, however this requires humans
to develop the primary mission. This method was used in the

46

Communication Relay

Surface Antenna

Submersible

Base Station

To Earth

Ice Shell

Subsurface Ocean

20 - 30 km

80 - 100 km

Figure 1: Notional Europa submersible mission showing
the communication pathway from the submersible vehicle
to Earth. Approximate ice thickness and ocean depth are
labeled.

field multiple times. [Farrell, Pang, and Li 2005] field tests a
strategy inspired by moths in order to trace chemical plumes.

Many approaches have been tested in idealized simula-
tion environments or with deployment data, which does not
allow for testing of fully autonomous planning algorithms.
[Pang 2010] and [Tian et al. 2014] use moth based strate-
gies in order to localize hydrothermal venting. [Jakuba and
Yoerger 2008] uses occupancy grid mapping in order to lo-
calize vents. [Saigol et al. 2010] uses a belief-maximization
algorithm to find a target of interest in simulation. [Ferri,
Jakuba, and Yoerger 2010] uses a trigger based approach in
order to gather higher resolution data in areas of strong sen-
sor readings.

Hydrothermal venting is not the only target of inter-
est. While not all ocean processes on Earth are expected
to recur on other ocean worlds distant from the sun, we
have a wealth of experience studying thermoclines, ocean
fronts, and other structures in Earth’s oceans. A number
of different near real-time feature tracking methods exist
for thermoclines [Cruz and Matos 2010; Zhang et al. 2010;
Sun et al. 2016]. [Zhang et al. 2013; 2016] tracks upwelling
fronts using a zig-zag pattern. [Cruz and Matos 2014] tracks
any gradient boundary using a single vehicle following a dy-
namic zig-zag pattern and a lateral gradient detection algo-
rithm to estimate the gradient boundary using an arc. A sim-
ilar method can also be applied to tracking the center of a
phytoplankton bloom patch [Godin et al. 2011]. [Branch
et al. 2018] uses near real-time data to autonomously re-
task a set of vehicles to repeatedly sample an ocean front.
Machine learning, in the form of policy learning, has been
applied to the problem of tracking the edge of a harmful al-
gal bloom [Magazzeni et al. 2014]. Other work focuses on
tracking algal blooms by flying formations relative to the
bloom as tracked by a drifter [Das et al. 2012]. [Petillo,
Schmidt, and Balasuriya 2012] uses a simulated network
of AUVs in order to estimate the boundary of a simulated

plume. [Flexas et al. 2018] uses an ocean model and au-
tonomous planning to optimize sampling of submesoscale
structures.

Onboard autonomy has also been used to coordinate mul-
tiple vehicles and correct for ocean currents. The Adaptive
Sampling and Prediction project [Leonard et al. 2010] used
adaptive control to coordinate 6 gliders flying in loops at
fixed spacing. [Troesch et al. 2016] uses an ocean model in
order to improve the station keeping ability of vertically pro-
filing floats. [Eriksen et al. 2001] describes the capabilities
of a Seaglider to compensate for drift from currents using
depth averaged currents over multiple dives.

Hydrothermal Venting
Hydrothermal venting produces a plume which can be traced
back to the source. The structure of the plume is shown
in Figure 2. Hydrothermal fluid exiting the vent is less
dense than the surrounding water, resulting in the forma-
tion of a buoyant plume. Due to entrainment, the plume is
continuously diluted by the ambient water column and ex-
pands from ~10 cm at the vent source to ~100 m at equilib-
rium. Upon reaching equilibrium, the plume expands hor-
izontally — ten to hundreds of kilometers — to form the
non-buoyant plume [German and Seyfried 2014]. The non-
buoyant plume height is a function of the properties of the
hydrothermal vent fluid as well as the surrounding water col-
umn [Turner 1979]. In the Pacific the non-buoyant plume is
normally observed at 100-150 m above the seafloor, while
in the Atlantic it is normally closer to 200-400 m [Speer and
Rona 1989].

Hydrothermal plumes are the main source of information
when localizing venting. However, tidal flows lead to local
maxima [Veirs 2003], turbulent flow disrupting smooth gra-
dients, differing vent types and strengths, and an unknown
number of sources increase the difficulty of determining the
plume source. [German et al. 2008] uses three primary sen-
sors in the detection of hydrothermal plumes: temperature,
optical backscatter [Baker, German, and Elderfield 1995;
Baker and German 2004], and a chemical sensor such as
oxidation-reduction potential [Nakamura et al. 2000]. These
sensors may be good candidates for inclusion on a sub-
mersible mission to an Ocean World due to their compact
form factor (100s of grams) and low power consumption
(10s of milliwatts).

Simulation
A simulation environment was developed, using a hy-
drothermal plume dispersion simulation and a vehicle
model. A numerical simulation of hydrothermal plume dis-
persion is performed using FVCOM, an ocean-circulation
model, at Axial Seamount on the Juan de Fuca Ridge. The
abundant lava supply to Axial supports vigorous hydrother-
mal systems and frequent volcanic activity, which have
drawn extensive on-going scientific research that makes Ax-
ial one of the best-studied seamounts on this planet. A snap-
shot of this simulation is shown in Figures 3 and 4.

FVCOM is a finite-volume, time and density-dependent,
three-dimensional, ocean circulation model [Chen, Liu, and

Copyright © 2018, all rights reserved 47

Overshoot

Non-Buoyant Plume

Entrainment

Buoyant Plume

~10 km

~100 m

Pacific Atlantic

~
1

5
0

 m

~
3

0
0

 m

Figure 2: Demonstration of a hydrothermal plume per-
formed in an aquarium tank. The buoyant and non-buoyant
components of the hydrothermal vent plume are labeled with
approximate scales. Image courtesy of C. German, WHOI

Beardsley 2003]. The unstructured grid employed in FV-
COM supports grid size variation, therefore, proves efficient
for the simulation of motion over a broad range of length
scales. In addition, FVCOM supports the use of large-scale
ocean circulation and tidal model outputs as open boundary
forcing to drive flow across a broad range of frequencies in-
side the model domain [Zheng and Weisberg 2012].

Our model domain covers 300 by 300 km, centered on
the Axial Seamount caldera and is open to flow across all
four sides of that region. Horizontal resolution varies from
200 m within a 10 by 10km region enclosing Axial’s caldera
to 10km at the domain’s boundary. The vertical dimension
utilizes a uniform sigma-coordinate system with 127 layers,
covering the full water column. This results in a ~12 m
layer thickness above Axial’s summit. The duration of the
simulation is 58 days with model outputs sampled hourly.
The 3-hourly sampled, 1/12.5◦ horizontal resolution, global
reanalysis outputs of the HYbrid Coordinate Ocean Model
(HYCOM) are used to construct the initial stratification pro-
files and open boundary forcing. Because HYCOM does not
include ocean tides, we superimpose the tidal elevation and
velocity predicted by the OSU Tidal Inversion onto the HY-
COM outputs when constructing the open boundary forc-
ing. We also add surface wind forcing and heat flux from 1-
hourly sampled National Centers for Environmental Predic-
tion (NCEP) Climate Forecast System Reanalysis (CFSR)
outputs. We apply a linear ramp to bring open boundary and
surface forcing from zero to full value over an initial four
simulation days. Lastly, we add a seafloor heat source of 1
GW at the center (0,0) of the model domain inside Axial’s
caldera, which is turned on after the initial four simulation
days. The model output consists of current, temperature,
salinity, and a passive tracer, dye, which is released at the
vent source. This tracer has a value range of [0, 100]. After
30 days the tracer content in a 20 by 20 km region surround-
ing the vent source reaches a quasi-steady state. In a 50 by
50 km region surrounding the vent source no quasi-steady
state is reached before the end of the simulation.

The simulated vehicle uses a kinematic model and has

three degrees-of-freedom: surge, heave, and yaw. A pro-
portional controller allows the vehicle to navigate to a spec-
ified location. The nominal vehicle speed is set to 1 m/s.
Simulated sensors are used to measure temperature, salinity,
the passive tracer, vehicle depth, and distance to seafloor at
a fixed interval. The position of the vehicle is assumed to
be known at all times. Currently a chemical sensor, such as
oxidation-reduction potential, and vehicle resources, such as
energy and data capacity, are not modeled.

Figure 3: Snapshot taken at 1400 m depth on Mar 1, 2011
00:00 UTC of the simulated concentration (normalized by
the source value) of a neutrally buoyant tracer originating
from a hydrothermal vent source of 1 GW heat flux located
inside the caldera of Axial Seamount at coordinate center.
The global-simulation results of HYCOM and OSU Tidal
Inversion for the period of Feb-Mar 2011 were used to drive
flow inside the domain from its four boundaries.

Spatial Nested Search Strategy
Given a vehicle’s starting location, the goal is to produce a
control strategy that results in locating the vent source. The
vent source is considered found when the region around the
vent has been surveyed at a specified resolution. A resolu-
tion of 200 m was selected to match the resolution of the
hydrothermal plume dispersion model at the vent source.

The strategy developed here addresses a number of issues.
It mimics the field-proven methods of [German et al. 2008].

Copyright © 2018, all rights reserved 48

Figure 4: Snapshot taken along a W-E transect across the
center of the model domain on Mar 1, 2011 00:00 UTC
of the simulated concentration (normalized by the source
value) of a neutrally buoyant tracer originating from a hy-
drothermal vent source of 1000 MW heat flux located in-
side the caldera of Axial Seamount at coordinate center. The
global-simulation results of HYCOM and OSU Tidal Inver-
sion for the period of Feb-Mar 2011 were used to drive flow
inside the domain from its four boundaries.

Due to the limited resolution of the simulation environment,
we focus specifically on search in the non-buoyant plume.
(The buoyant plume is approximately 100 m, placing it be-
low our 200 m resolution at the vent source.) This corre-
sponds to the ship based CTD casts and — to some extent
— phase 1 of the [German et al. 2008] method. Our strategy
also allows for the localization of plume sources with differ-
ing strengths and maintains a robustness to local maxima in
vent fluid concentrations and to small scale turbulence.

Before we can search for hydrothermal venting, we must
have some method for detecting plumes. Ideally this would
involve modeled sensors for temperature, optical backscat-
ter, and oxidation reduction potential. However, currently
we only use the passive tracer in the model as a direct mea-
sure of the hydrothermal plume. This is an area of future
improvement.

The search algorithm is outlined in Algorithm 1 and op-
erates as follows. A spiral is initiated at the start location.
The horizontal spacing of the spiral is manually selected to

be the expected size of the feature in question. This insures
features of the expected size are seen during this initial sur-
vey. During this spiral the vehicle completes vertical pro-
files through the extent of the water column. When the max
plume strength value of a single profile exceeds the speci-
fied threshold, plumet in Algorithm 1, the second phase of
surveys begins. The height of the detected feature, ph, is de-
termined by binning the data from the vertical profile, pd, at
a 10 m resolution and selecting the bin with the largest aver-
age value. The subsequent surveys are performed at a depth
of ph. This is in contrast to the 3-phase strategy outlined in
[German et al. 2008] because of our focus on search in the
non-buoyant plume.

During the second phase of surveys, the search space is
partitioned into bins, survey bins, of size spacing0. These
bins are separated into four quadrants centered on the cor-
ner of the bin closest to the location of the plume detec-
tion. A dynamic ”lawnmower” survey is executed in each
of the four quadrants. The dynamic lawnmower algorithm
is outlined in Algorithm 2. The spacing of the lawnmower
pattern, track spacing, is specified beforehand. The direc-
tion of the lawnmower pattern is defined by along track
and across track. Each track line of the lawnmower pat-
tern consists of sections with length equal to the spacing. At
least min sections sections are be completed per track line.
If sections limit sections have average plume strengths be-
low plumet and the sections have monotonically decreasing
average plume strengths, then the track line is completed
and the next track line is commenced. min sections and
sections limit are manually specified search parameters.
If the maximum value of an entire track line is less than
plumet then the current lawnmower survey is ended and
the next begins. The data from each dynamic lawnmower
is binned into survey bins.

An example dynamic lawnmower is shown in Figure 5.
The plot is subdivided into track line sections. The average
plume strength is listed in each section; a green background
indicates that the average plume strength is greater than the
specified threshold, plumet. Two boundaries to the survey
are shown. Upon reaching the right-most boundary, the ve-
hicle completes the current trackline. The boundaries cor-
respond to the shared edges of the four quadrants defined
during the search process.

Upon the completion of each dynamic lawnmower, local
maxima of survey bins are found. A maximum is declared
when the 8 neighboring bins of the same resolution have a
max plume detection value less than that of the center bin.
Some a maximum has been found a nested ”lawnmower”
survey begins. An example of this process is shown in Fig-
ure 6. The local maximum — shown in green — and its
neighbors are subdivided into smaller bins with one-third
the side length of their parents. A lawnmower with spac-
ing equal to one-third that of the previous lawnmower sur-
vey and with track lines centered on each row of nested
bins is initiated. The new nested lawnmower survey cov-
ers the local maximum and all surrounding neighbors. If
multiple local maxima have been found, they are prioritized
on plume strength. This process repeats recursively until a
survey spacing of final spacing, is reached. If no local

Copyright © 2018, all rights reserved 49

maxima are found during a dynamic lawnmower, or all lo-
cal maxima have been exhausted before the survey spacing
offinal spacing is reached, then the dynamic lawnmow-
ers resume. After all dynamic lawnmower surveys are com-
pleted the spiral is resumed. Another set of dynamic lawn-
mowers is started if a plume is detected outside of the previ-
ously searched area.

Algorithm 1 Autonomous Nested Search
procedure NESTED SEARCH

plans← empty stack
visited← empty set
plans.push(spiral)
survey bins← bins of size spacing0
while plans.size > 0 and not timed out do

Execute or Continue plans.top()
if executing spiral then

Wait until end of vertical profile
pd ← Get data from profile
d← max(pd)
if d >= plumet and d.location not explored then

bins← profile data binned at 10 meters and averaged
ph ← max(bins).height
(x, y)← bin corner closest to d.position
plans.push(dynamic lawnmower(x, y, ph, 90◦, 0◦, spacing0))
plans.push(dynamic lawnmower(x, y, ph,−90◦, 0◦, spacing0))
plans.push(dynamic lawnmower(x, y, ph,−90◦, 180◦, spacing0))
plans.push(dynamic lawnmower(x, y, ph, 90◦, 180◦, spacing0))
Execute plans.top()

else
while plans.top() is not completed do

Wait
survey data← Get data from latest survey
survey bins.add data(survey data)
maxima← get bin maxima(survey bins)
sort maxima
for bin in maxima do

if bin not in visited then
Partition bin and bin.neighbors()
visited.add(bin)
plans.push(nested lawnmower(bin))
break

while plans.size > 0 and plans.top() is complete do
f ← plans.pop()
if f.spacing < final spacing and f contains vent source then

return Success
return Failure

Algorithm 2 Execute Dynamic Lawnmower
procedure EXECUTE DYNAMIC LAWNMOWER(x, y, h , along track, across track, track spacing)

start x← x + cos(along track) ∗ track spacing/2
start y ← y + sin(across track) ∗ track spacing/2
Go to (start x, start y, h)
curr track ← 0
curr section← 0
completed← False
section data← empty list
Start current track line on heading along track
while not completed do

Do next section on current track
section data[curr section]← Get data from last section
curr section← curr section + 1
if curr section >= min sections or survey boundary reached then

if avg(section data[i]) < plume t for last sections limit sections and
monotonically decreasing then

curr track ← curr track + 1
if max(section data) < plume thresh then

completed← True
section data← empty list
Travel track spacing on heading across track
if curr track is even then

Start next track line on heading along track
else

Start next track line on heading−along track

Experiment
121 scenarios were completed with the vehicle starting lo-
cation uniformly varied between x = [−30000, 30000] and

Figure 5: Plot showing an example dynamic lawnmower
survey. The survey area is partitioned into regions repre-
senting sections of each track line. Regions shaded green
have an average plume strength over the specified threshold.
The average value is labeled in the upper left corner of each
region. The two survey boundaries are shown as thick black
lines on the right and bottom of the plot. The starting loca-
tion is marked with a black star.

y = [−30000, 30000] at intervals of 6000m. Due to the na-
ture of the algorithm and the location of the vent at (0, 0) it is
likely that the vehicle will pass directly over the vent source
if the start location x and y are multiples of 1000. To miti-
gate this, a uniformly random value between [−1500, 1500]
was added to the x and y values of the starting location. The
simulated vehicle has a horizontal and vertical velocity of 1
m/s. The vehicle samples the model at 0.2 hz. The plume
detection threshold was set to 0.5. The initial spiral spac-
ing was set to 5000 m and the initial dynamic lawnmower
spacing was set to 4000 m. The dynamic lawnmower pa-
rameters min sections and sections limit are set to 4 and
2, respectively. The search parameters were selected based
on preliminary results. More work investigating search pa-
rameters is necessary.

Results
87% of the simulation scenarios successfully found the vent
location within 28 days. Figure 7 shows the time each run
took to successfully find the vent in black. The runs that
failed to find the vent are shown in red. Plot (a) shows the
total time while plots (b), (c), and (d) show the time spent on
the spiral survey, dynamic lawnmower surveys, and nested
lawnmower surveys respectively. Figures 8, 9, and 10 show
an example run plotting a top down view and a 3d view of the
passive tracer (dye) value from the model, and a top down
view of the survey types during the run, respectively.

We see a slight correlation between the distance and to-
tal time on successful runs. When this is decomposed into
the different stages of the algorithm we see this correlation
stronger within the spiral surveys while not at all in the lawn-

Copyright © 2018, all rights reserved 50

Figure 6: Plot showing an example of the planning process
for a single nested lawnmower in one of the four quadrants.
The search space is divided into square bins with sides equal
to the lawnmower spacing. Upon finding a local maximum
bin, the bin and all its neighbors are subdivided into nested
bins of one-third the side length. A lawnmower pattern is
then executed such that each track line is centered on a row
of bins. The vehicle path and observed tracer is plotted. The
planned nested lawnmower is show in dark red. The starting
location is marked with a black star.
. Note that the measured passive tracer does not remain the
same on subsequent measurements of the same location due

to the temporal variation in fluid concentrations.

mower surveys. No correlation is seen between the failed
surveys and the distance from the vent, indicating that the
cause of the failure is not related to distance. This method
does not have a set distance in which it is feasible, start-
ing further from the vent location would only require longer
search times. Search times can be minimized by selecting
appropriate values for the survey spacing parameters.

Upon initial investigation into the failed scenarios we see
that the spiral surveys always detect the plume and initiate
lawnmower surveys. Two failure modes are then observed
in the lawnmower surveys. First, plume strength contours
are not closed by the dynamic lawnmower survey. As such,
they are not investigated by the nested lawnmower survey.
Second, local maxima are not seen at the vent location. This
could be caused by the temporal variation of the plume or
from using constant depth, as apposed to constant density,
lawnmower surveys.

Future Work
The planning method has many areas which could use fur-
ther investigation. The lawnmower surveys could be im-
proved by guaranteeing that contours will be closed, result-
ing in less failed searches. The non-buoyant plume is po-
sitioned at a constant density, not depth. As such, a fixed
depth search is not ideal. In addition, the plume height can
vary temporally on the order of 100 m over a tidal cycle on
Earth [Rudnicki and German 2002]. A long duration search
strategy, with respect to the tidal cycle, should be able to ad-
dress this temporal variation. Improved search in the verti-
cal direction would insure that the vehicle maintains contact
with the strongest part of the plume. Temporal variations in
the lateral direction should also be accounted for. This may
be particularly important for slower vehicles, perhaps less so
if they only move relative to the water, rather than relative

Figure 7: Plots showing the time to find the vent source com-
pared to the distance from the vent source. The runs that
successfully find the vent within 28 days are show in black.
The failed runs are shown in red. Panel (a) plots the total
time spent during the search. Panel (b), (c), and (d) decom-
pose the time into the spiral survey, dynamic lawnmower
surveys, and nested surveys respectively

to the ground or icy shell. Other geometric search patterns
and other search strategies such as gradient search or biolog-
ically inspired approaches can be implemented and tested.
Automated tuning of search parameters could improve re-
sults. Vehicle resource considerations can be incorporated
into the planner. More intelligent path planning can be im-
plemented to reduce resource consumption while perform-
ing multiple surveys. Hydrothermal activity is one potential
target for a submersible; investigation into other targets and
the development of a search approach capable of prioritizing
multiple target types would be beneficial.

Currently, the vehicle simulation is rudimentary. Realistic
models for sensors such as temperature, optical backscatter,
and chemical sensors can be developed. Vehicle resources
such as power and data capacity can be implemented. Fi-
nally, the vehicles motion model can be improved by ad-
vecting the vehicle according to the currents in the model.

The data volume collected by the vehicle far exceeds
the communication throughput capabilities. Therefore, a
method of summarizing the data collected needs to be de-
veloped. A number of spacecraft have implemented systems
for this purpose. The Autonomous Sciencecraft Experiment
used onboard science algorithms to summarize, delete, and
prioritize data for downlink [Chien et al. 2005]. The on-
board product generation for the Earth Observing-1 mission
serves as a predecessor to the proposed HyspIRI Intelligent
Payload Module [Chien et al. 2013]. The Mars Exploration
Rover’s (MER) WATCH system processes imagery to de-
tect dust devils and send summarized data products to Earth
[Castano et al. 2008]. The AEGIS system processes onboard
imagery to autonomously retarget science instruments on the
Mars Science Laboratory [Estlin et al. 2014] and MER [Es-
tlin et al. 2012].

More simulation runs varying search parameters such
as starting location, plume detection threshold, and survey

Copyright © 2018, all rights reserved 51

Figure 8: Top down plot showing the passive tracer (dye) as
seen by the vehicle from a scenario starting at x=710, y=-
29337. The vent source location is shown as a black triangle
at (0,0).

Figure 9: 3d view plot showing the passive tracer (dye) as
seen by the vehicle from a scenario starting at x=710, y=-
29337.

spacing would allow for a better understanding of the pre-
sented search strategy. Another plume dispersal model, ei-
ther of a different region or with different plume parameters
could be developed. Real world tests in well studied areas
such as Axial Seamount would further validate the approach.

Conclusion
We developed an autonomous nested search based on the
current manual three-phase search method [German et al.
2008], as well as a realistic simulation environment in which
to test search strategies for the localization of hydrothermal
venting. This simulation environment allows for testing at
much larger spatial scales than has been investigated for
other autonomous approaches. Search parameters, such as
survey resolution and search location, allow for manual fine
tuning of the search process based on the observed data, al-
lowing for a human-in-the-loop model when possible. We

Figure 10: Plots showing the types of surveys performed on
a scenario starting at x=710, y=-29337. The spiral survey
is shown is black, the dynamic lawnmower surveys are red,
and the nested lawnmower surveys are differing shades of
blue with darker shades as surveys with larger spacing. The
vent source location is shown as a black triangle at (0,0).

performed 121 scenarios with varying start locations, of
which 87% were able to successfully find the hydrothermal
vent within 28 days.

Acknowledgments
Portions of this work were performed at the Jet Propulsion
Laboratory, California Institute of Technology, under con-
tract with the National Aeronautics and Space Administra-
tion.

References
Baker, E. T., and German, C. R. 2004. On the global distri-
bution of hydrothermal vent fields. Mid-ocean ridges 245–
266.
Baker, E. T.; German, C. R.; and Elderfield, H. 1995. Hy-
drothermal plumes over spreading-center axes: Global dis-
tributions and geological inferences. Seafloor hydrothermal
systems: Physical, chemical, biological, and geological in-
teractions 47–71.
Branch, A.; Flexas, M. M.; Claus, B.; Clark, E. B.; Thomp-
son, A. F.; Chien, S.; Kinsey, J. C.; Fratantoni, D. M.;
Zhang, Y.; Kieft, B.; Hobson, B.; and Chavez, F. P. 2018.
Front delineation and tracking with multiple underwater ve-
hicles. J. Field Robotics submitted.
Castano, A.; Fukunaga, A.; Biesiadecki, J.; Neakrase, L.;
Whelley, P.; Greeley, R.; Lemmon, M.; Castano, R.; and
Chien, S. 2008. Automatic detection of dust devils and
clouds on mars. Machine Vision and Applications 19(5-
6):467–482.
Chen, C.; Liu, H.; and Beardsley, R. C. 2003. An un-
structured grid, finite-volume, three-dimensional, primitive
equations ocean model: Application to coastal ocean and
estuaries. Journal of Atmospheric and Oceanic Technology
20(1):159–186.

Copyright © 2018, all rights reserved 52

Chien, S.; Sherwood, R.; Tran, D.; Cichy, B.; Rabideau,
G.; Castano, R.; Davis, A.; Mandl, D.; Trout, B.; Shul-
man, S.; et al. 2005. Using autonomy flight software to
improve science return on earth observing one. Journal
of Aerospace Computing, Information, and Communication
2(4):196–216.
Chien, S.; Mclaren, D.; Tran, D.; Davies, A. G.; Double-
day, J.; and Mandl, D. 2013. Onboard product genera-
tion on earth observing one: a pathfinder for the proposed
hyspiri mission intelligent payload module. IEEE Journal
of Selected Topics in Applied Earth Observations and Re-
mote Sensing 6(2):257–264.
Cruz, N. A., and Matos, A. C. 2010. Adaptive sampling
of thermoclines with autonomous underwater vehicles. In
OCEANS 2010, 1–6. IEEE.
Cruz, N. A., and Matos, A. C. 2014. Autonomous tracking
of a horizontal boundary. In Oceans-St. John’s, 2014, 1–6.
IEEE.
Curtin, T. B., and Bellingham, J. G. 2009. Progress to-
ward autonomous ocean sampling networks. Deep Sea Re-
search Part II: Topical Studies in Oceanography 56(3):62
– 67. AOSN II: The Science and Technology of an Au-
tonomous Ocean Sampling Network.
Curtin, T. B.; Bellingham, J. G.; Catipovic, J.; and Webb,
D. 1993. Autonomous oceanographic sampling networks.
Oceanography 6(3):86–94.
Das, J.; Py, F.; Maughan, T.; OReilly, T.; Messié, M.; Ryan,
J.; Sukhatme, G. S.; and Rajan, K. 2012. Coordinated sam-
pling of dynamic oceanographic features with underwater
vehicles and drifters. The International Journal of Robotics
Research 31(5):626–646.
Eriksen, C. C.; Osse, T. J.; Light, R. D.; Wen, T.; Lehman,
T. W.; Sabin, P. L.; Ballard, J. W.; and Chiodi, A. M. 2001.
Seaglider: A long-range autonomous underwater vehicle for
oceanographic research. IEEE J. Oceanic Eng. 26:424436.
Estlin, T. A.; Bornstein, B. J.; Gaines, D. M.; Anderson,
R. C.; Thompson, D. R.; Burl, M.; Castano, R.; and Judd,
M. 2012. Aegis automated science targeting for the mer
opportunity rover. ACM Transactions on Intelligent Systems
and Technology (TIST) 3(3):50.
Estlin, T.; Gaines, D.; Bornstein, B.; Schaffer, S.; Tomp-
kins, V.; Thompson, D. R.; Altinok, A.; Anderson, R. C.;
Burl, M.; Castaño, R.; et al. 2014. Automated targeting
for the msl rover chemcam spectrometer. In 12th Interna-
tional Symposium on Artificial Intelligence, Robotics, and
Automation in Space (i-SAIRAS), 17–19.
Farrell, J. A.; Pang, S.; and Li, W. 2005. Chemical plume
tracing via an autonomous underwater vehicle. IEEE Jour-
nal of Oceanic Engineering 30(2):428–442.
Ferri, G.; Jakuba, M. V.; and Yoerger, D. R. 2010. A novel
trigger-based method for hydrothermal vents prospecting us-
ing an autonomous underwater robot. Autonomous Robots
29(1):67–83.
Flexas, M. M.; Troesch, M. I.; Chien, S.; Thompson, A. F.;
Chu, S.; Branch, A.; Farrara, J. D.; and Chao, Y. 2018.
Autonomous sampling of ocean submesoscale fronts with

ocean gliders and numerical model forecasting. Journal of
Atmospheric and Oceanic Technology 35(3):503–521.
German, C., and Seyfried, W. 2014. Hydrothermal pro-
cesses. Treatise on geochemistry 8:191–233.
German, C. R.; Yoerger, D. R.; Jakuba, M.; Shank, T. M.;
Langmuir, C. H.; and Nakamura, K.-i. 2008. Hy-
drothermal exploration with the autonomous benthic ex-
plorer. Deep Sea Research Part I: Oceanographic Research
Papers 55(2):203–219.
Godin, M. A.; Zhang, Y.; Ryan, J. P.; Hoover, T. T.; and
Bellingham, J. G. 2011. Phytoplankton bloom patch center
localization by the tethys autonomous underwater vehicle.
In OCEANS’11 MTS/IEEE KONA, 1–6.
Haley, P.; Lermusiaux, P.; Robinson, A.; Leslie, W.; Lo-
goutov, O.; Cossarini, G.; Liang, X.; Moreno, P.; Ramp, S.;
Doyle, J.; Bellingham, J.; Chavez, F.; and Johnston, S. 2009.
Forecasting and reanalysis in the monterey bay/california
current region for the autonomous ocean sampling network-
ii experiment. Deep Sea Research Part II: Topical Studies in
Oceanography 56(3):127 – 148. AOSN II: The Science and
Technology of an Autonomous Ocean Sampling Network.
Hsu, H.-W.; Postberg, F.; Sekine, Y.; Shibuya, T.; Kempf, S.;
Horányi, M.; Juhász, A.; Altobelli, N.; Suzuki, K.; Masaki,
Y.; et al. 2015. Ongoing hydrothermal activities within ence-
ladus. Nature 519(7542):207.
Jakuba, M., and Yoerger, D. R. 2008. Autonomous search
for hydrothermal vent fields with occupancy grid maps. In
Proc. of ACRA, volume 8, 2008.
Leonard, N. E.; Paley, D. A.; Lekien, F.; Sepulchre, R.;
Fratantoni, D. M.; and Davis, R. E. 2007. Collective mo-
tion, sensor networks, and ocean sampling. Proceedings of
the IEEE 95(1):48–74.
Leonard, N. E.; Paley, D. A.; Davis, R. E.; Fratantoni, D. M.;
Lekien, F.; and Zhang, F. 2010. Coordinated control of
an underwater glider fleet in an adaptive ocean sampling
field experiment in monterey bay. Journal of Field Robotics
27(6):718–740.
Magazzeni, D.; Py, F.; Fox, M.; Long, D.; and Rajan, K.
2014. Policy learning for autonomous feature tracking. Au-
tonomous Robots 37(1):47–69.
Nakamura, K.; Veirs, S.; Sarason, C. P.; McDuff, R. E.;
Stahr, F.; Yoerger, D. R.; and Bradley, A. M. 2000. Elec-
trochemical signals in rising buoyant plumes and tidally os-
cillating plumes at the main endeavour vent field, juan de
fuca ridge. EOS, Transactions of the American Geophysical
Union 81(48).
National Aeronautics and Space Administration. 2018.
Ocean worlds.
Pang, S. 2010. Plume source localization for auv based au-
tonomous hydrothermal vent discovery. In OCEANS 2010,
1–8. IEEE.
Petillo, S.; Schmidt, H.; and Balasuriya, A. 2012. Construct-
ing a distributed auv network for underwater plume-tracking
operations. International Journal of Distributed Sensor Net-
works 2012:Article ID 191235, 12pp.

Copyright © 2018, all rights reserved 53

Ramp, S.; Davis, R.; Leonard, N.; Shulman, I.; Chao, Y.;
Robinson, A.; Marsden, J.; Lermusiaux, P.; Fratantoni, D.;
Paduan, J.; Chavez, F.; Bahr, F.; Liang, S.; Leslie, W.; and
Li, Z. 2009. Preparing to predict: The second autonomous
ocean sampling network (aosn-ii) experiment in the mon-
terey bay. Deep Sea Research Part II: Topical Studies in
Oceanography 56(3):68 – 86. AOSN II: The Science and
Technology of an Autonomous Ocean Sampling Network.
Rudnicki, M. D., and German, C. R. 2002. Temporal
variability of the hydrothermal plume above the kairei vent
field, 25 s, central indian ridge. Geochemistry, Geophysics,
Geosystems 3(2).
Saigol, Z.; Dearden, R.; Wyatt, J.; and Murton, B. 2010.
Belief change maximisation for hydrothermal vent hunting
using occupancy grids. In Proceedings of the Eleventh Con-
ference Towards Autonomous Robotic Systems (TAROS-10),
247–254.
Speer, K. G., and Rona, P. A. 1989. A model of an atlantic
and pacific hydrothermal plume. Journal of Geophysical
Research: Oceans 94(C5):6213–6220.
Sun, L.; Li, Y.; Yan, S.; Wang, J.; and Chen, Z. 2016. Ther-
mocline tracking using a portable autonomous underwater
vehicle based on adaptive threshold. In OCEANS 2016-
Shanghai, 1–4. IEEE.
Tian, Y.; Zhang, A.; Li, W.; Yu, J.; Li, Y.; and Zeng, J. 2014.
A behavior-based planning strategy for deep-sea hydrother-
mal plume tracing with autonomous underwater vehicles. In
OCEANS 2014-TAIPEI, 1–10. IEEE.
Troesch, M.; Chien, S. A.; Chao, Y.; and Farrara, J. D. 2016.
Planning and control of marine floats in the presence of dy-
namic, uncertain currents. In International Conference on
Automated Planning and Scheduling, 431–440.
Turner, J. S. 1979. Buoyancy effects in fluids. Cambridge
University Press.
Veirs, S. R. 2003. Heat flux and hydrography at a submarine
volcano: Observations and models of the Main Endeavour
vent field in the northeast Pacific. Ph.D. Dissertation, Uni-
versity of Washington.
Waite, J. H.; Glein, C. R.; Perryman, R. S.; Teolis, B. D.;
Magee, B. A.; Miller, G.; Grimes, J.; Perry, M. E.; Miller,
K. E.; Bouquet, A.; Lunine, J. I.; Brockwell, T.; and Bolton,
S. J. 2017. Cassini finds molecular hydrogen in the ence-
ladus plume: Evidence for hydrothermal processes. Science
356(6334):155–159.
Yoerger, D. R.; Bradley, A. M.; Jakuba, M. V.; Tivey, M. A.;
German, C. R.; Shank, T. M.; and Embley, R. W. 2007a.
Mid-ocean ridge exploration with an autonomous underwa-
ter vehicle.
Yoerger, D. R.; Jakuba, M.; Bradley, A. M.; and Bingham,
B. 2007b. Techniques for deep sea near bottom survey us-
ing an autonomous underwater vehicle. The International
Journal of Robotics Research 26(1):41–54.
Zhang, Y.; Bellingham, J. G.; Godin, M.; Ryan, J. P.;
McEwen, R. S.; Kieft, B.; Hobson, B.; and Hoover, T. 2010.
Thermocline tracking based on peak-gradient detection by

an autonomous underwater vehicle. In OCEANS 2010, 1–4.
IEEE.
Zhang, Y.; Bellingham, J. G.; Ryan, J. P.; Kieft, B.; and
Stanway, M. J. 2013. Two-dimensional mapping and track-
ing of a coastal upwelling front by an autonomous underwa-
ter vehicle. Proc. MTS/IEEE Oceans’13 1–4.
Zhang, Y.; Bellingham, J. G.; Ryan, J. P.; Kieft, B.; and
Stanway, M. J. 2016. Autonomous four-dimensional map-
ping and tracking of a coastal upwelling front by an au-
tonomous underwater vehicle. Journal of Field Robotics
33(1):67–81.
Zheng, L., and Weisberg, R. H. 2012. Modeling the west
florida coastal ocean by downscaling from the deep ocean,
across the continental shelf and into the estuaries. Ocean
Modelling 48:10 – 29.

Copyright © 2018, all rights reserved 54

Using a Hybrid AI-Planner to Plan Feasible Flight Paths for HAPS-Like UAVs

Jane Jean Kiam 1, Enrico Scala2, Miquel Ramirez3, Axel Schulte1
1 University of the Bundeswehr, Munich, Institute of Flight Systems

2 Fondazione Bruno Kessler
3 The University of Melbourne, School of Computing and Information Systems

Abstract

Solar-powered, High-Altitude Long-Endurance (HALE) Un-
manned Aerial Vehicles (UAVs) are a low cost alternative to
fixed-orbit satellites providing surveillance and communica-
tions relay services. Such platforms are also often referred
to as High-Altitude Pseudo-Satellite (HAPS). Flight planning
for HAPS is challenging due to the inherent fragility of the
light-weight materials used to construct their airframes. Ad-
verse weather conditions pose a structural risk for the aircraft,
and in the best case, can severely impair its performance.
This paper discusses how HAPS flight path planning can be
modeled with PDDL+, a declarative language that allows to
specify the dynamics and constraints characterising complex
hybrid control systems with ease. Flight plans, derived from
PDDL+ descriptions of non–linear, non–homogeneous dy-
namical constraints that allow mobile obstacles, can be calcu-
lated efficiently with off-the-shelf, domain–independent hy-
brid planners. Albeit plans are generated on a more abstract
model of the world, we show that these plans result exe-
cutable when tested on a high fidelity simulator.

Remotely operated UAVs are nowadays regularly used
to pursue tasks in which the presence of humans on board
would result uneconomical, uncomfortable or hazardous. In-
creasing the degree of autonomy of UAVs is desirable not
only for safety purposes, but also to improve economical vi-
ability (Johnson et al. 2017). Some types of UAVs present
unique challenges when it comes to achieving higher levels
of autonomy, this paper studies one.

Solar-powered, High-Altitude Low-Endurance (HALE)
UAVs (Robert 1984) are a class of UAVs that can provide a
viable alternative to fixed-orbit satellites in a number of ap-
plications (Klöckner 2016) due to their extreme endurance.
These UAVs are also often referred to as High-Altitude
Pseudo-Satellite (HAPS). Figure 1a depicts Zephyr 7, a
HAPS that holds the world record for a continuous flight
of 14 days at altitudes of 18 kms. On the other hand, HAPS
pose a number of unique challenges in their operation. Their
light-weight build (∼100 kg), low airspeed (∼30 m/s) and
large wingspan (∼30 m) result in platforms which are very
sensitive to adverse atmospheric phenomena, which cannot
be assumed to be static over the long periods of time that
typical missions span. Their limited maneuverability, due

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

mainly to the limited battery capacity (∼15 kWh) and en-
gine power (1.7 kW), further composes the challenges posed
by weather conditions, and complicates navigation in strong
wind fields. As recent tests (Araripe d’Oliveira et al. 2016;
Morton et al. 2013) show that the technology readiness level
(TRL) of similar platforms increases steadily, it is realistic
to expect that frequent use in surveillance and mapping ap-
plications will be seen, since they are more flexible alter-
natives to low Earth orbit satellites and aircraft that require
frequent refueling. However, the typical mission duration re-
quires a substantial number of human operators to be read-
ily available on a 24/7 basis. In order to improve econom-
ical viability of HAPS, increasing autonomy is essential to
reduce manpower required in continuous operation. This pa-
per proposes a flight-path planning approach using a hybrid
AI-planner which is helpful to increase autonomy for offline
mission planning, the context of which will be briefly de-
scribed in the following paragraphs.

Exemplary Mission Scenario
A typical realistic continuous surveillance and mapping mis-
sion is shown in Figure 1b, in which several Locations Of
Interest (LOIs) marked with green polygons are landmarks
to be continuously monitored. A well defined airspace is
important so that the scenario is applicable also for more
congested high-altitude airspace in the future (Johnson et
al. 2017). The Mission Areas (MAs) in blue encompass-
ing LOIs of the same client, denote the allocated airspace
for carrying out the tasks at the operating altitude (∼18 km).
The Waiting Areas (WAs) represented in yellow are airspace
in which the HAPS can loiter freely while not in mission ex-
ecution, e.g. at night. A HAPS is allowed to move between
MAs only through the designated Corridors (C).

Each mission element is available only within certain
time windows as required by the mission or as according
to airspace availability. Therefore, time of arrival at a mis-
sion element is closely relevant to the success of a mission
plan.

HAPS Mission Management System
The HAPS operates in a controlled airspace (Everaerts and
Lewyckyj 2011); therefore the upcoming flight routes must
be preplanned and communicated.

55

(a) Zephyr 7 c©Airbus Defence and
Space GmbH

(b) A typical airspace structure defined
for repetitive monitoring tasks (c) HAPS mission management system

Figure 1: Zephyr 7: a solar-powered HALE, or rather HAPS as a satellite substitute for very long-term missions

Due to the aforementioned physical properties of a HAPS,
their operation and planning is more challenging. To be
taken into account in the mission planning are
• mission requirements (e.g. tasks, execution time)
• the allocated airspace for operation
• weather condition and the avoidance of dynamic critical

weather zones, and
• flight dynamics (e.g. speed, turn rate etc.) in the time-

varying wind field.
As illustrated in Fig. 1c, a Mission Management Sys-

tem (MMS) for HAPS consists of three major compo-
nents (Müller et al. 2018): a mission planner to plan off-line
for long-term tasks, a flight control system to guide the ve-
hicle according to plans and a reactive guidance to steer the
vehicle to safety in urgency.

Given the limited payload of the platform (5-20 kg), it is
essential to limit the on-board equipments to only safety-
critical real-time applications. Modules of MMS such as
flight control and reactive guidance must be on-board, while
long-term operational mission planning that works at fix in-
tervals to plan or re-plan off-line for the tasks to execute in
the next hours can be performed in the Ground Control Sta-
tion (GCS). With this architecture, the ground-based mission
planner will not be limited hardware-wise, as computation
power is critical to process the weather data (Müller et al.
2018; Köhler et al. 2016) and plan accordingly.

Hierarchical Scheduling and Planning for Offline
Mission Planning
Time of arrival is an important factor as the HAPS is bound
to fulfill the tasks within the execution time windows as re-

quested and while avoiding dynamic weather critical zones.
Intuitive waypoint-planning or a geometric flight path plan-
ner is insufficient, since HAPS have rather limited airspeed
range, therefore exerting the motor to compensate for the
wind and reach a planned waypoint on time is not always an
option.

LTL-based schedulers are efficient but the linearity as-
sumption could affect the punctuality of the plan (i.e. the
precision of the estimated time of arrival). A control-based/
action-based planner can better take into account the effect
of wind on the flight dynamics but is computationally too
expensive to solve the complete mission planning problem
at once. A hierarchical planning architecture as illustrated in

Path Planner

LOI11LOI12 LOI21 LOI22

POI14
POI13 POI11

POI15
POI17

POI18
POI24

POI21POI23
POI27 POI28

POI29

Flight dynamic constraints
Weather forecast data

Mission requirements
Airspace map

MA1 MA2

Scheduler

Figure 2: A hierarchical architecture for scheduling and
planning

Figure 2 is adopted in our work in order to allow finer de-
tails to be successively considered down the hierarchy in a
smaller and more isolated abstraction space (i.e. first the se-

56

quence of MAs which will be decomposed into sequences of
LOIs and subsequently into sequences of Points-of-Interests
(POIs), as represented by the red dots in Figure 13). The
long-term mission planning is carried out strategically by the
scheduler to decide for the sequence of points to visit, which
is referred to as a “schedule” to be distinguished from the fi-
nal “plan”. The scheduler considers the airspace structure
and the constant cruising airspeed of the HAPS (∼28 m/s).
More than one schedule can be found and they are ranked
according to the expected probabilistic rewards, which de-
creases inversely proportional to the cloud coverage between
the operation altitude (∼18 km) and the landmarks, if an
electro-optical mission camera is used. The LOI-scheduler
in Figure 2 can be developed with a probabilistic approach
as reported in (Kiam and Schulte 2017).

Tactically, the flight path planner refines the schedules by
computing the point-to-point flight trajectories while con-
sidering the wind effect on the flight dynamics and while
avoiding the static/dynamic no-go areas. The cascaded flight
trajectories for a sequence of POIs is referred to as a “plan”,
which improves the time estimations of a schedule and
hence the reward/cost estimations, thanks to the relief of lin-
earity assumption.

Offline Flight Path Planning Problem
In this paper, we concentrate only on the offline flight path
planning problem, i.e. the isolated planning problem be-
tween two POIs, as shown in Figure 2. Details on other parts
of the MMS in Figure 1c can be found in (Müller et al. 2018;
Kiam and Schulte 2017; Köhler et al. 2016; Klöckner 2016).
We intend especially to demonstrate for the first time in
this work the formulation in PDDL+ (Fox and Long 2006)
for this class of planning problem, as well as the use of a
domain-independent automated hybrid AI-planner ENHSP
(Expressive Numeric Search Planner) (Scala et al. 2016a) as
an off-the-shelf planner to solve our problem.

We first provide an insight of a domain-independent hy-
brid AI-planner and explain why it has considerable po-
tential to solve the class of path planning problems in
question. A typical kinematic model and the dynamic con-
straints of the HAPS is provided followed by its formu-
lation in PDDL+. Subsequently, the various sophisticated
platform-specific weather data are described and represented
in PDDL+ so that the weather constraints can also be consid-
ered. Systematic tests were carried out to study the perfor-
mance of the planner (and its heuristics). The results of the
tests helps to fine-tune the implementation of the flight path
planner using a planner. The planned flight paths are tested
with a 6-DoF HAPS simulator built on realistic parameters
of a HAPS (Müller et al. 2018). The results are shown and
analyzed.

The PDDL+ formulation of the planning domain and
problems will be made publicly available.

Domain-Independent Planners
Over the past 15 years, numerous domain-independent
planners, that operate over descriptions of problems given
in the standardised Problem Domain Definition Language

(PDDL) (McDermott 2000), have been reported to scale
up on huge discrete planning tasks (Richter and Westphal
2010), by exploiting the fact that logical dependencies be-
tween the cause and effects of an action can be encoded nat-
urally in PDDL. Since the release of PDDL 2.1 (Fox and
Long 2003) and subsequently of PDDL+ (Fox and Long
2006), it has become possible to represent compactly nu-
meric effects and autonomous processes.

Definition 1 (Hybrid Planning Problem) A planning prob-
lem H is given by the tuple < Xp, Xn, A, P , X0, G, C >,
where:
• Xp and Xn are the propositional and numeric state vari-

ables respectively,
• A is the set of instantaneous actions,
• P is the set of autonomous processes,
• X0 is the initial state,
• G is the set of goal conditions, and
• C is the set of global constraints.

Actions a ∈ A are pairs 〈pre(a), eff(a)〉, where pre(a)
is a set (conjunction) of propositional and numeric pre-
conditions, and eff(a) is a set of effects boolean or nu-
meric expressions indicating instantaneous changes of val-
ues in Xp and Xn. A more complete discussion of ac-
tion preconditions and effects can be found in (Fox and
Long 2006). An autonomous process p ∈ P has a contin-
uous effect on variables Xn over time. Like actions, they
are a pair 〈pre(p), eff(p)〉 where preconditions pre(p) are
like those of actions, but effects eff(p) are ordinary dif-
ferential equations (ODE) ẋ := exp(e), where x ∈ Xn

and exp(e) is a well-formed arithmetic expression featuring
standard mathematical operators, variables y ∈ Xn, con-
stants and transcendental functions. While being syntacti-
cally equivalent to action precondition, a process precondi-
tion expresses an invariant condition along the execution of
the process itself. Their violation causes the process to stop,
so switching in what the hybrid automaton literature calls,
another mode of execution. More details on the semantics
aspects of PDDL+ can be found in Fox et al. (2006). Global
constraints are arbitrary quantified-free formula over vari-
ables in Xn ∪ Xp. They have to be satisfied by any state
throughout the plan timeline. Solutions to H are plans, se-
quences of time-stamped actions a (Fox and Long 2006;
Scala et al. 2016a).

While quite a number of domain-independent planners
have been developed for some fragment of it (Hoffmann
2003; Gerevini et al. 2003; DellaPenna et al. 2009; Coles et
al. 2012; Cashmore et al. 2016), only until recently domains
with non-linear dynamics have been supported more effec-
tively (Piotrowski et al. 2016; Scala et al. 2016a). In partic-
ular, ENHSP (Scala et al. 2016a) offers support to trigono-
metric functions and global constraints, which are of critical
importance to our application.

Usability of a Domain-Independent Planner as a
Flight Path Planner
Planning flight paths requires the consideration of three
important factors: mission environment (wind and critical

57

zones), aircraft kinematics and mission requirements (goal,
short travel time, etc.) (De Filippis and Guglieri 2012).

In the offline path planning problem for HAPS, since the
mission environment varies with time and moving obsta-
cles are to be avoided while considering flight dynamics,
a control-based planner is most commonly used (LaValle
2006; Chakrabarty and Langelaan 2013; Doshi et al. 2013).
Amongst the many available planning algorithms specifi-
cally relevant is Kinematic A* as presented in (De Filip-
pis and Guglieri 2012), that relies on a simplified model
of the aircraft in the planner: control inputs such as turn
and climb rate are discretized, restricting the search space
to those states reachable modulo discretization. Control-
based planners publicly available on the Open Motion Plan-
ning Library (OMPL) (Sucan et al. 2012) are based for ex-
ample on Rapidly exploring Random Tree (RRT) (LaValle
and Kuffner 2001) and Kinodynamic Planning by Interior-
Exterior Cell Exploration (KPIECE) (Sucan and Kavraki
2008).

Starting from the observation that in PDDL+, it is possi-
ble to separate the decisions of the actions to take from the
dynamics of the system (by using actions and processes),
whilst making sure that a set of global constraints remain
satisfied along the resulting trajectory, next section explores
for the first time a PDDL+ encoding of the HAPS flight path
planning problem.

Defining the HAPS Movement Model
Similar to the kinematic model of a fixed-wing airplane in a
wind field as described in (De Filippis and Guglieri 2012),
used here are the equations of motion defined but with a
spherical Earth assumption. The kinematics of the HAPS
considered by the flight path planner are given by,

λ̇ = (vwind,E + vTAS cos γ sinχ)/(R+ h) cosφ,

φ̇ = (vwind,N + vTAS cos γ cosχ)/(R+ h), (1)

ḣ = vwind,U + vTAS sin γ.

where λ, φ and hj denote respectively the longi-
tude, latitude and altitude, χ and γ denote the yaw
and pitch angle, R denotes the radius of the Earth,
vwind = (vwind,E, vwind,N, vwind,U)T being the wind velocity
in the East-North-Up coordinates, and vTAS being the True
Air Speed (TAS).

An action-based discrete path planner considers a set
of actions while searching for a (sub-)optimal path. In
our case, we use a set of feasible discrete turn rate
Aχ̇ = {−|χ̇max|,−|χ̇max| + ∆χ̇, ..., |χ̇max| − ∆χ̇, |χ̇max|}
and climb anglesAγ = {−|γmax|,−|γmax|+∆γ, ..., |γmax|−
∆γ, |γmax|} to allow for the dynamic constraints.

According to (McDermott 2003; Fox and Long 2006), ac-
tions in PDDL+ have instantaneous effects and are selected
by the planner executive in the development of a plan while
events are a control of the world. Processes, which run over
time as long as the conditions are met, are independent of the
planner’s choice, and can be initiated by actions or events.

The range of turn rate and climb angle can be formulated
as actions in PDDL+. Figure 3 shows the action to increase

the turn rate chi rate ?uav, while being subject to its
limits, as described mathematically by Eq. 2.

χ̇ := χ̇+ ∆χ̇, if χ̇ < |χ̇max| −∆χ̇. (2)

Similar formulations are application to the actions of de-
creasing the turn rate and selecting a climb angle.

(:action increase_turn_rate

:parameters (?uav -uav)

:precondition (and

(< (chi_rate ?uav) (- (max_chi_rate ?uav)

(delta_chi_rate ?uav)))))

:effect (and

(increase (chi_rate ?uav) (delta_chi_rate ?uav)

)))

Figure 3: PDDL+ snippet to show the action of increasing
the turn rate chi rate ?uav.

Subsequently, the position of the HAPS has to be updated
using Equations 1 with processes formulated as shown in
Figure 4. Similarly the attitude of the airplane can be up-

(:process update_latitude

:parameters (?uav -uav)

:precondition ()

:effect (and

(increase (phi ?uav)

(* #t (/ (+ (* (v ?uav)

(* (cos (gamma ?uav))

(cos (chi ?uav))))

(north_wind ?uav))(+ R (h ?uav))

)))))

(:process update_longitude

:parameters (?uav -uav)

:precondition ()

:effect (and

(increase (lambda ?uav)

(* #t (/ (+ (* (v ?uav)

(* (cos (gamma ?uav))

(sin (chi ?uav))))

(east_wind ?uav))

(* (cos (phi ?uav)) (+ R (h ?uav)))

))))

(:process update_altitude

:parameters (?uav -uav)

:precondition ()

:effect (and

(increase (h ?uav)

(* #t (+ (* (v ?uav) (sin (gamma ?uav)))

(up_wind ?uav))

))

Figure 4: Formulation in PDDL+ to update the WGS84 po-
sition of the HAPS

dated using a process.
The v ?uav refers to the TAS of the HAPS. As a fixed-

wing aircraft, it flies at an optimal equivalent airspeed (EAS)
of ∼9 m/s (Müller et al. 2018), which can then be scaled

58

using the following equation to obtain the TAS at different
altitude levels:

vTAS = vEAS
√
ρ(h)/ρ0, (3)

where ρ(h) and ρ0 are respectively the ambient and sea-
level air densities given by the International Standard Atmo-
sphere. Figure 5 shows the determination of TAS v ?uav
as a continuous process. The used formulations in PDDL+,

(:process determine_airspeed

:parameters (?uav -uav ?h_level -h_level)

:precondition (and

(< (h ?uav) (h_max ?h_level))

(> (h ?uav) (h_min ?h_level)))

:effect (and

(assign (v ?uav)

(* (v_eas ?uav) (ˆ (/ (rho ?h_level)

(rho_0)) 0.5)))))

Figure 5: PDDL+ formulation of the process to determine
the true airspeed

involve more sophisticated algebraic operations like the ex-
ponential and trigonometric functions.

Figure 3 to 5 account respectively for the increase of the
turn rate as described by Eq. 2 (similarly for the decrease of
turn rate), the update of the position of the HAPS in WGS84
coordinates (latitude, longitude and altitude), which consists
of integrating Equations 1 over time, and the determination
of the altitude-dependent true airspeed of the platform as
given by Equation 3.

Modeling Weather in PDDL+
More sophisticated weather data are becoming available for
airborne vehicles as the conventional wide area weather
data soon becomes insufficient, since the sensibility towards
weather differs from aircraft to aircraft. HAPS are extremely
fragile; furthermore, while planning for HAPS, long-term
forecast is especially important since the vehicle cannot fly
around hazardous zones so swiftly as most aircrafts. Several
types of weather forecast suitable for a long-term planning
for HAPS are used in our work:
• Cb-like thunderstorm forecast from the German

Aerospace Center (DLR) (Köhler et al. 2016;
2017): it computes the likelihood of thunderstorms
for the upcoming hours using fuzzy logic. The critical
zones are summarized as ordered two-dimensional con-
vex polygons. Due to the aggressiveness of thunderstorm
clouds, these polygonal hazardous zones are identical for
all flight altitudes.

• Polygonal NoGo-areas due to turbulences, strong wind,
clouds etc. are also provided by the DLR (Köhler et al.
2017) as two-dimensional convex polygons which differ
for each altitude level.

• COSMO-DE four dimensional wind data from the Ger-
man Meteorological Office (DWD) (Baldauf et al. 2011)
are delivered in GRIdded Binary (GRIB) 1.
1Daily weather data in GRIB-format can be downloaded from

https://www.dwd.de/DE/leistungen/opendata/opendata.html

Formulating Convex Polygonal Obstacles in
PDDL+
The aforementioned pieces of weather information constrain
the validity of a flight plan in a number of ways. To cap-
ture such requirements in a concise way, we make use of
global constraints, an extension of PDDL+ definition by Fox
& Long (2006), which is considered for example by ENHSP.
The representation expresses constraints that are applicable
at any time (Scala et al. 2016b). Compared to the inclusion
of the constraints individually as preconditions of each ac-
tion or process, the formulation using global constraints ap-
pears to be more concise.

Algorithm 1 Determine the inclusion of a point p = (λ, φ)
in a convex polygon

Require: V , an ordered set of vertices of a convex polygon
1: for each edge vivi+1, where vi, vi+1 ∈ V do
2: % ∗ indicates circular indexing
3: determine ai, bi, ci such that
4: aiλi + biφi == ci and
5: aiλi+1 + biφi+1 == ci and
6: aiλi+2 + biφi+2 ≤ ci
7: end for
8: if ∧i(aiλ+ biφ ≤ ci) then
9: p is in the convex polygon described by V

10: else
11: p is NOT in the convex polygon V
12: end if

For a given flight level, critical weather zones can be for-
mulated as 2D convex polygons. We can check, using linear
inequalities, if a point p lies in a convex polygon. For each
edge vivi+1 of the polygon, where vi, vi+1 ∈ V , a set of or-
dered vertices, if p lies on the same side of the edge vivi+1 as
an arbitrary interior point of the polygon, then p in included
in the polygon. The verification method is recapitulated in
Algorithm 1.

Determining the parameters of the inequalities (Line 6
to 7) can be preprocessed in a weather data parser and pro-
vided as inputs to our PDDL+ planning problem definition.
Checking on which side p lies (Line 9 to 12) can be for-
mulated as a global constraint as shown in Figure 6. The
exist quantificator checks if there is one edge of the ob-
stacle ?obs where the condition in Line 8 is false (negation
of the inequality). With the universal quantification, the con-
vex polygon can have an arbitrary number of edges without
complicating the PDDL+ representation.

(:constraint convex_Cb_like_obstacle

:parameters (?obs -obstacle ?uav -uav)

:condition (exists (?edge -edge)

(< (c ?edge ?obs)

(+ (* (a ?edge ?obs) (lambda ?uav))

(* (b ?edge ?obs) (phi ?uav))))))

Figure 6: PDDL formulation to check if a HAPS lies within
a convex polygonal hazardous zone

Figure 7 depicts a planned trajectory while avoiding two

59

static convex polygonal obstacles in a homogeneous wind
field.

10.8 10.9 11 11.1 11.2
47.7

47.8

47.9

48

48.1

longitude [◦]

la
tit

ud
e

[◦
]

obstacle 1
obstacle 2
start position
goal position

Figure 7: Avoiding convex polygonal obstacles in the pres-
ence of northwest wind

Some NoGo-areas, clouds for example, move along with
the wind. In our work, this movement is assumed linear, with
each vertex moving at the speed of the wind evaluated at
the barycenter of the polygon. The variation over time of
the inequality parameters determined with Algorithm 1 are
given by

a(t+ δt) = a(t) , b(t+ δt) = b(t) (4)
c(t+ δt) = c(t) +vφ,wind(t) · b(t) ·∆t (5)

+vλ,wind(t) · a(t) ·∆t (6)

where vλ,wind and vφ,wind are the zonal and meridional wind
components in rad/s at the barycenter of the polygon. Al-
though this assumption is simplified, it is practical, and nec-
essary given the low airspeed of the HAPS and the wide
mission areas. A safety margin can be added to the poly-
gons to allow for deformation of the clouds and the non-
linear movements. The formulation of the above equations
can be represented by processes in PDDL+ with basic alge-
braic functions.

Similarly, mission area (i.e. allocated airspace for a spe-
cific task as depicted in Figure 1b) can also be formulated
using global constraints.

Formulating Discrete Wind Grid Data in PDDL+
The COSMO-DE wind data provides independently zonal
wind u, meridional wind v, vertical wind w for a discrete
4D-grid (longitude-latitude-altitude-time). Although the al-
titude and time dimensions have regular discretization, the
longitude-latitude 2D-grid has inhomogeneous spacing, i.e.
four neighboring vertices form an arbitrary quadrilateral in-
stead of a rectilinear shape (see Figure 8). The mean value of
the wind components of each 4D-grid can be precomputed
and parsed into the problem file in PDDL+.

Systematic Tests for Planning Performance
The main intention of this paper is to demonstrate, by us-
ing HAPS as an application example, that a hybrid heuris-
tic AI-planner can be used as a full-fledged numeric plan-

(λ2,φ1)

(λ2,φ2)(λ1,φ2)

(λ1,φ1)

Figure 8: Visualisation in 3D (longitude-latitude-altitude) of
the polytope

(:process determine_wind

:parameters (?uav -uav ?grid -grid ?h_level -h_level

?time_interval -time_interval)

:precondition (and

(not (exists (?edge -edge)

(< (c ?edge ?grid)

(+ (* (a ?edge ?grid) (lambda ?uav))

(* (b ?edge ?grid) (phi ?uav))))))

(< (h ?uav) (h_max ?h_level))

(>= (h ?uav) (h_min ?h_level))

(< (t ?uav) (t_max ?time_interval))

(>= (t ?uav) (t_min ?time_interval)))

:effect (and

(assign (north_wind ?uav)

(north_wind ?grid ?h_level ?time_interval))

(assign (east_wind ?uav)

(east_wind ?grid ?h_level ?time_interval))

(assign (up_wind ?uav)

(up_wind ?grid ?h_level ?time_interval))))

Figure 9: PDDL+ formulation to determine the wind com-
ponents for a given grid in which the ?uav is situated

ner to compute flight trajectories analytically by consider-
ing the dynamic behaviors of the vehicle in a vector field.
Using the AI-planner comes with several advantages. First
of all, the physical problem can be formally represented in
a comprehensive way in PDDL+, as described in the pre-
vious sections. Secondly, the planner can be used off-the-
shelf ; in other words, the heuristic algorithms can be ex-
ploited blindly. Thirdly, the planner is less prone to error
than a self-developed planner.

We know that a point-to-point (sub-)optimal trajectory
planning problem can be expressed using PDDL+ as shown
in the previous sections. ENHSP2 (Scala et al. 2016a) is ca-
pable of solving this problem class. ENHSP is a heuristic
search forward state (Ghallab et al. 2004; Geffner and Bonet
2013) planner. It provides a front-end interface that is used
to describe the planning problem H in a textual form. At the
back-end, a search engine systematically and incrementally
extends a search tree, rooted at X0 with edges correspond-
ing to spontaneous state transitions or instantaneous actions
until a goal state or a fixed-point is reached. The planner in-
cludes a heuristic component, a general algorithm that com-
putes automatically and efficiently a relaxation of H , H+

for each state in the search tree. H+ is then readily solved
2https://bitbucket.org/enricode/the-enhsp-planner

60

30 50 80 110 140

0

0.5

1

distance to goal [km]

su
cc

es
s

ra
te

20◦ 100◦ 180◦

(a) ∆t = 30s

30 50 80 110 140

0

0.5

1

distance to goal [km]

su
cc

es
s

ra
te

20◦ 100◦ 180◦

(b) ∆t = 100s

30 50 80 110 140

0

0.5

1

distance to goal [km]

su
cc

es
s

ra
te

20◦ 100◦ 180◦

(c) ∆t = 150s

Figure 10: Success rate to plan in a wide operation area from start to goal within 5s

by whatever methods deemed suitable to produce a heuristic
estimate of the sequence of transitions required to reach goal
states. ENHSP heuristic component, the AIBR heuristic, has
been shown experimentally to provide effective guidance,
thus limiting the size of the search tree considered over a
very diverse set of domains (Scala et al. 2016a).

To evaluate the robustness of ENHSP in handling the
problem, as suggested by (Hooker 1995), we generate a va-
riety of instances differing among each other for the wind
magnitude, number of obstacles, obstacle occlusion ratio,
distance from the goal, initial heading with respect to the
goal etc.

Figure 10 shows the performance of the planner for a two-
dimensional trajectory planning from a start to a goal posi-
tion in a wide area polygon similar to the mission areas illus-
trated in Figure 1b with mild wind magnitude between 0 m/s
and 5 m/s (which is usual at altitudes of ∼18 km). The var-
ied parameters are the search step of the planner (∆t) and
the distance between the start and goal positions. The dis-
tances selected are reasonable for our use case as shown in
Figure 1b. The different colors indicate the initial angle dif-
ference between the initial course heading of the HAPS and
the start-goal vector. The planning time out was set to 5 sec-
onds. We notice that a bigger search step improves tremen-
dously the planning efficiency, especially when the distance
to goal is substantial.

However, if the authorized airspace is reduced to a narrow
corridor, the planning performance is even more impaired
with increasing search step if the initial angle difference be-
tween the course heading of the HAPS and the start-goal
vector is substantial, as seen in Figure 11.

Another interesting test result with respect to the perfor-
mance in the presence of obstacles can be viewed in Fig-
ure 12. The test was performed by varying the obstacle oc-
clusion ratio in the search space with a fix number of obsta-
cles (i.e. two or five obstacles) in each set of test. The plan-
ning success rate within one minute reduces with increasing
obstacle occlusion. However, in the case of only two obsta-
cles, the success rate decreases more than in the case of five

30 50 80 110 140

0

0.5

1

distance to goal [km]

su
cc

es
s

ra
te

20◦ 100◦ 180◦

(a) ∆t = 100s

30 50 80 110 140

0

0.5

1

distance to goal [km]

su
cc

es
s

ra
te

20◦ 100◦ 180◦

(b) ∆t = 150s

Figure 11: Success rate to plan in a corridor-like narrow
space from start to goal within 5s

obstacles, mainly due to the the size of each obstacle. The
heuristics of the planner guides the search toward the goal.
However, if a huge obstacle happens to be in the way, it is
harder for the planner to get round it.

Fine Tuning in the Implementation of Flight Path
Planning using ENHSP

Due to the observations on the performance of the plan-
ner, the search step for ENHSP is set to 150 s if the distance
to goal is larger than 80 km and 100 s otherwise. An advan-
tage of using ENHSP is that the search step and the valida-
tion step can be set separately. Therefore even if explored

61

0 10 20 30 40 50

0

0.5

1

occlusion ratio

su
cc

es
s

ra
te

< 1 min < 3 min

(a) 2 obstacles

0 10 20 30 40 50

0

0.5

1

occlusion ratio

su
cc

es
s

ra
te

< 1 min < 3 min

(b) 5 obstacles

Figure 12: Performance of the planner with respect to ob-
stacle occlusion ratio in the case of two and five obstacles
respectively

Algorithm 2 Iterative Search with Relaxed Subgoals

Require: HAPS start position vector pstart, goal position
vector pgoal

1: % assign initial position vector
2: pinit = pstart
3: % determine distance to goal
4: d = |pgoal − pinit|
5: determine bearing b, the angle difference between initial

course heading and the heading between initial and goal
positions

6: while k = bb/20◦c > 1 do
7: set subgoal conditions to:

1) |pHAPS − pgoal| < (d− d/k)
2) b < b− 20◦

8: parse plan instance and call ENHSP
9: pinit = pHAPS

10: d = |pgoal − pinit|
11: determine bearing b
12: end while

nodes are spaced quite far apart, the smaller obstacles be-
tween nodes will not be missed since the plan validation is
performed with a smaller step.

In the case where the search is to be performed within a
narrow search space (e.g. a corridor), if the initial heading
of the vehicle is too much deviated from the start-goal vec-
tor, the planner will be called iteratively by imposing sub-
goals placed between the start and goal positions, so that
the course heading of the HAPS approaches the heading of
the HAPS-goal vector. Algorithm 2 explains how ENHSP is

called iteratively.

Plan Executability Validation
The development of HAPS is still at a Technology Readiness
Level (TRL) of 2 to 3; not only that a real hardware test is
financially costly, but is also rare due to difficulties to obtain
a permission to fly (Everaerts and Lewyckyj 2011). In this
work, to validate the generated paths, we use a six degrees of
freedom (6-DoF) aircraft simulator provided by an external
entity constructed based on a realistic HAPS model (Müller
et al. 2018) coupled with a four dimensional flight controller
(Müller and Looye 2013) to control the aircraft in the verti-
cal and lateral directions so that the reference flight path as
well as the airspeed are followed to keep track of the time of
arrival at each point of the path. The mission scenario cho-

11.5 12 12.5 13 13.5

48.5

49

longitude [◦]

la
tit

ud
e

[◦
]

MA3

MA6

Figure 13: A typical mission plan of a HAPS performing
surveillance tasks

sen is as described earlier: the HAPS is contracted to moni-
tor the locations of interest at flight level (FL) 600 (∼ 18 km)
in the daytime. The weather forecast data used for planning
as well as the nowcast data for simulation are historical data
from the 27th June 2015. The weather forecast data is pro-
vided to the planner before the offline planning begins and
a plan for the next hours is to be calculated and communi-
cated so that the whereabouts and actions of the HAPS along
the timeline can be predicted. Figure 13 shows partially the
planned reference path from 06:30am local Bavarian time
until noon. The six hours plan was computed offline within
five minutes planning time with an Intel i7-6700K, 4GHz
processor. In fact, flight paths that were successfully com-
puted are feasible, except for when the forecasted weather
is too different from the real weather, for instance if a huge
Cumulonimbus cloud was not predicted in the weather fore-
cast used for offline planning. In this case, a replanning or
reactive avoidance is necessary, which is not the focus of this
work. How the handover is achieved between different mod-
ules for flight guidance of HAPS in the event of urgency is
reported in (Müller et al. 2018). We consider only scenarios
in which the weather forecast is not too erroneous.

The HAPS simulator can keep track with the planned path

62

while obeying its dynamic constraints. A couple of flight
performances are however worth mentioning. Although the
flight controller manages to follow the planned path, there
is a slight deviation but acceptable between the planned and
the flown paths, as seen in Figure 14.

1.5 2 2.5 3 3.5 4 4.5 5
0

200

400

number of hours after 06:30am

∆
p
o
s

[m
]

Figure 14: Deviation in position between the planned path
and the simulated flight path

The deviation in position is maintained less than 420 m,
which is acceptable for a HAPS (Müller et al. 2018). This
experimental result is interesting as it provides a lower
bound of the safety margin to critical zones that the planner
should take into consideration while formulating the global
constraints for the avoidance of critical weather zones. The
deviation is due to several obvious reasons:

• the time discretization for plan validation (∼10 s) is larger
than that of the controller (∼1 ms). Therefore, a flight
management system (FMS) is integrated to parse and in-
terpolate the planned path to force the reference trajectory
to have the same time discretization step as the flight con-
troller;

• the forecasted wind used by the planner differs from the
nowcast wind data considered in the simulator.

However, due to the fact that the planner takes into con-
sideration as much as possible the wind effect as well as
the flight dynamics, the flight controller can follow the paths
by maintaining an equivalent airspeed of around 9 - 10 m/s
(see Figure 15), which is the optimal airspeed. It is hence
more energy efficient and operationally safer since it is un-
likely that the electro-motors are pushed to their power limit.
Another cause that could lead to a deviation between the

1.5 2 2.5 3 3.5 4 4.5 5

9

10

11

number of hours after 06:30am

v e
as

[m
/s

]

Figure 15: Equivalent airspeed during the test

planned and simulated paths is identified in Figure 16, the
greater the turn rate is, the harder it is to follow the planned

path. The planning model should be adapted so that turns
can be penalized and avoided.

0-0.3 0.3-0.6 0.6-0.9 0.9-1.2
0

200

400

χ̇ [◦/s]

∆
p
o
s
[m

]

[∆pos,min; ∆pos,max]

Figure 16: The relation between the error in position and the
turn rate. The yellow bars indicate the range of the deviation
while the black error bars indicate the standard deviations
with the cross marking the mean error.

Conclusion
Automated motion planning for airborne vehicles has been
a popular research topic. Many motion planning libraries
can be used to solve the planning problem after some
low-level adaptation. Automated planners from the domain-
independent planning community (Fox and Long 2006) are
often used for high-level logical planning. In this paper, we
have provided the first proof that it is also possible to model
in PDDL+ the notorious path planning problem of a HAPS-
like light-weight UAV traveling in a time-varying wind field
while avoiding dynamic critical weather zones. We have also
identified a suitable domain-independent automated plan-
ner (ENHSP) to be used off-the-shelf to generate flight path
plans. We used ENHSP because it is one of the few that re-
move several of the limitations of classical planners. Yet, it is
wishful that more domain-independent planners can take in-
terest in the class of planning problem we tackle in this work
so that more planners can be chosen from. Some parameter
testing was performed to help to fine-tune the implementa-
tion. A complex 6-DoF HAPS simulator and an exemplary
mission scenario with real historical weather data were used
to validate the feasibility of the generated paths.

Left for future works are the inclusion of more high-level
logical actions in the planning problem definition, such as
“turn on surveillance camera”, “communicate with ground-
control station” etc. It is also interesting to adapt and use
a planner from the existing motion planning libraries such
as OMPL to solve our problem and compare the planning
runtime as well as the plan quality (e.g. trajectory feasibil-
ity, execution time, cost optimization etc.) with the domain-
independent planners.

References
F. Araripe d’Oliveira, F. C. Lourenco de Melo, and T. C. De-
vezas. High-altitude platforms - present situation and tech-
nology trends. Journal of Aerospace Technology and Man-
agement, 8:249–262, July-September 2016.

63

M. Baldauf, A. Seifert, J. Förstner, D. Majewski,
M. Raschendorfer, and T. Reinhardt. Operational
convective-scale numerical weather prediction with the
cosmo model: description and sensitivities. Monthhly
Weather Review, 139:3887–3905, 2011.
M. Cashmore, M. Fox, D. Long, and D. Magazzeni. A com-
pilation of the full PDDL+ language into SMT. In Proc.
ICAPS, pages 79–87, 2016.
A. Chakrabarty and J. Langelaan. UAV flight path planning
in time varying complex wind-fields. In Proc. of ACC, June
2013.
A. Coles, A. Coles, M. Fox, and D. Long. Colin: Plan-
ning with continuous linear numeric change. JAIR, 44:1–96,
2012.
L. De Filippis and G. Guglieri. Advanced Graph Search
Algorithms for Path Planning of Flight Vehicles, Recent Ad-
vances in Aircraft Technology, Dr. Ramesh Agarwal (Ed.).
InTech, 2012.
G. DellaPenna, D. Magazzeni, F. Mercorio, and B. Intrigila.
UPMurphi: a tool for universal planning on PDDL+ prob-
lems. In Proc. ICAPS, 2009.
A. A. Doshi, S. P. N. Singh, and A. J. Postula. An online
motion planning and control strategy for UAVs in wind us-
ing reduced order forward models. In Proceedings of Aus-
tralasian Conference on Robotics and Automation, Decem-
ber 2013.
J. Everaerts and N. Lewyckyj. Obtaining a permit-to-fly for
a hale-uav in belgium. In International Archives of the Pho-
togrammetry, Remote Sensing and Spatial Information Sci-
ence, ISPRS Zurich 2011 Workshop,, September 2011.
M. Fox and D. Long. PDDL2.1: An extension to PDDL for
expressing temporal planning domains. JAIR, 20:61–124,
2003.
M. Fox and D. Long. Modelling mixed discrete-continuous
domains for planning. JAIR, 27:235–297, 2006.
H. Geffner and B. Bonet. A Concise Introduction to Models
and Methods for Automated Planning. Synthesis Lectures
on Artificial Intelligence and Machine Learning. Morgan &
Claypool Publishers, 2013.
A. Gerevini, A. Saetti, and I Serina. Planning through
stochastic local search and temporal action graphs in lpg.
JAIR, 20:239–290, 2003.
M. Ghallab, D. S. Nau, and P. Traverso. Automated planning
- theory and practice. Elsevier, 2004.
J. Hoffmann. The metric-ff planning system: Translat-
ing ’ignoring delete list’ to numeric stats variables. JAIR,
20:291–341, 2003.
J.N. Hooker. Testing heuristics: We have it all wrong. Jour-
nal of Heuristics, 1:33–42, May 1995.
M. Johnson, J. Jung, J. Rios, J. Mercer, J. Homola, T. Prevot,
D. Mulfinger, and P. Kopardekar. Flight test evaluation of
an unmanned aircraft system traffic management (utm) con-
cept for multiple beyond-visual-line-of-sight operations. In
Twelfth USA/Europe Air Traffic Management Research and
Development Seminar (ATM 2017), October 2017.

J. J. Kiam and A. Schulte. Multilateral quality mission
planning for solar-powered long-endurance uav. In IEEE
Aerospace Conference, March 2017.
A. Klöckner. Behavior Trees for Missions Management of
High-Altitude Pseudo-Satellites. Verlag Dr. Hut, Munich,
2016.
M. Köhler, T. Gerz, and A. Tafferner. Cb-like-
cumulonimbus likelihood: Thunderstorm forecasting with
fuzzy logic. Meteorologische Zeitschrift, 25:1–19, 2016.
M. Köhler, F. Funk, T. Gerz, F. Mothes, and E. Stenzel.
Comprehensive weather situation map based on xml-format
as decision support for uavs. Journal of Unmanned System
Technology, 5:13–23, 2017.
S. M. LaValle and J. J. Kuffner. Randomized kinody-
namic planning. International Journal of Robotics Research,
20:378–400, May 2001.
S. M. LaValle. Planning algorithms. Cambridge university
press, 2006.
D. McDermott. The 1998 ai planning systems competition.
AI Magazine, 21(2), 2000.
D. McDermott. The formal semantics of processes in pddl.
In Proceedings of ICAPS’03 Workshop on PDDL, Trento,
Italy, June 2003.
S. Morton, L. Scharber, and N. Papanikolopoulos. So-
lar powered unmanned aerial vehicle for continuous flight:
Conceptual overview and optimization. In 2013 IEEE Inter-
national Conference on Robotics and Automation (ICRA),
May 2013.
R. Müller and G. Looye. A constrained inverse modeling ap-
proach for trajectory optimization. In AIAA Guidance Navi-
gation and Control Conference, 2013.
R. Müller, J. J. Kiam, and F. Mothes. Multiphysical sim-
ulation of a semi-autonomous solar powered high altitude
pseudo-satellite. In IEEE Aerospace Conference, March
2018.
W. M. Piotrowski, M. Fox, D. Long, D. Magazzeni, and
F. Mercorio. Heuristic planning for PDDL+ domains. In
Proc. of IJCAI, 2016.
S. Richter and M. Westphal. The lama planner: Guid-
ing cost-based anytime planning with landmarks. JAIR,
39(1):127–177, 2010.
J. B. Robert. History of solar flight. In 20th Joint Propulsion
Conference, June 1984.
E. Scala, P. Haslum, S. Thiebaux, and M. Ramirez. Interval-
based relaxation for general numeric planning. In European
Conference on Artificial Intelligence, August 2016.
E. Scala, M. Ramirez, P. Haslum, and S. Thiebaux. Numeric
planning with disjunctive gobal constraints via smt. In Proc.
ICAPS, June 2016.
I. A. Sucan and L. E. Kavraki. Kinodynamic motion plan-
ning by interior-exterior cell exploration. In in Workshop on
the Algorithmic Foundations of Robotics, December 2008.
I. A. Sucan, M. Moll, and L. E. Kavraki. The open motion
planning library. In IEEE Robotics and Automation Maga-
zine, December 2012.

64

A Dynamic Task Planning System for Advanced Manufacturing Scenarios

Amedeo Cesta, Andrea Orlandini, and Alessandro Umbrico
Istituto di Scienze e Tecnologie della Cognizione,

Consiglio Nazionale delle Ricerche, Italy
Email: name.surname@istc.cnr.it

Abstract

Recent advances in Artificial Intelligence (AI) are facilitating
the deployment of intelligent systems in manufacturing. In
Human-Robot Collaboration (HRC), industrial robots offer
accuracy and efficiency while humans guarantee both expe-
rience and specialized, not replaceable skills. The seamless
coordination of such different abilities constitutes one of the
current challenges. This paper presents a dynamic task plan-
ning system for robust HRC developed within an EU-funded
project. The proposed solution uses Planning and Schedul-
ing (P&S) techniques to deal with the temporal variance en-
tailed by the active presence of humans as well as to dynami-
cally adapt task plans according to actual behavior of the pair
human-worker/robot. The tool has been deployed in a real
pilot plant.

Introduction
During the last decade, industrial robotic systems have en-
tered assembly cells supporting human workers in repeti-
tive and physical demanding operations. The co-presence of
robots and humans in a shared environment entails many is-
sues to be properly addressed requiring robust controllers
capable of preserving productivity and enforcing human
safety (Freitag and Hildebrandt 2016). Human-Robot Col-
laboration (HRC) challenges concern both the physical in-
teractions, guaranteeing safety of humans, and activities co-
ordination, improving the productivity of the cell. From
a physical perspective, an HRC task can be accomplished
through many robot trajectories each of which could be ex-
ecuted concurrently to different human tasks. Motion con-
trollers can modify the speed of robot motions for safety rea-
sons and the time needed to perform robot tasks can vary
significantly. From a functional perspective, HRC scenarios
should exploit collaboration to enhance the efficiency of pro-
duction processes (i.e., maximize the throughput) by means
of proper assignment and coordination of human and robot
tasks. Such HRC scenarios identify a task planning prob-
lem where coordination, the management of temporal un-
certainty and robustness play an important role. It is worth
noting that robustness here includes not only the safety of
the worker but also flexibility and reliability of tasks coor-
dination so as to actually take advantage of the capability of
each of the interacting entities (human and robot).

Robustness indeed is a key enabling feature of controllers
in HRC scenarios where robot motions must be continu-
ously adapted for the presence of the human, which acts as
an uncontrollable agent in the environment. This presence
entails the ability of evaluating robot execution time vari-
ability a task where standard methods are not fully effective.
In fact, current techniques are not able to foresee the actual
time needed by robots to perform collaborative tasks (i.e.,
tasks that involve humans). Robot trajectories are computed
online by taking into account the current position of the hu-
man and therefore it is not possible to know in advance the
time needed by the robot to complete a task. Thus, it is not
possible to plan robot and human tasks within a long pro-
duction process and take into account performance issues at
the same time.

Moreover, current solutions are not capable of dealing
with task and motion planning in a uniform way with-
out relying on limiting hypothesis (Michalos et al. 2014;
Pellegrinelli et al. 2014). Some authors e.g., (Wolfe, Marthi,
and Russell 2010; Srivastava et al. 2014; de Silva, Lalle-
ment, and Alami 2015), pursue a hierarchical integrated ap-
proach that rely on a clear distinction between task and mo-
tion planning features. In such cases, the task plan is built
at an abstract and discrete level and is evaluated just before
execution in order to verify the feasibility of the tasks. Ad-
ditionally, these works do not consider temporal informa-
tion and concurrent execution of human and robot tasks at
planning time. Some plan-based controllers rely on tem-
poral planning mechanisms capable of dealing with coordi-
nated task actions and temporal flexibility (e.g., (Py, Rajan,
and McGann 2010; Lemai and Ingrand 2004)) that rely re-
spectively on temporal planners (e.g., (Barreiro et al. 2012;
Ghallab and Laruelle 1994)). Unfortunately, these systems
do not allow an explicit representation of uncontrollability
features. Consequently, the resulting controllers are not en-
dowed with the robustness needed to deal with the temporal
uncertainty of HRC scenarios. These system usually rely on
replanning mechanisms that may however strongly penalize
the production performance. One additional aspect worth to
be considered is the ability of planning software to support
non specialist users for an easy integration of such solutions
in different industrial settings.

Our long-term research goal is to realize a robust task
planning system enabling flexible, safe and efficient HRC.

65

In (Cesta et al. 2016), the general pursued approach is pre-
sented aiming at realizing controllers capable to dynamically
coordinate tasks according to the behaviors of human work-
ers. This paper presents more recent results concerning the
development of a task planning and execution technology
deployed in realistic manufacturing scenarios. Specifically,
the paper presents the FOURBYTHREE Engineering & Con-
trol Environment which integrates a task planning system
with an engineering environment taylored to support robust
human-robot collaboration.

The FOURBYTHREE Project
This work has been developed within FOURBYTHREE (FbT
for short) project (Maurtua et al. 2016) that aims at realiz-
ing new robotic solutions to allow human operators to safely
and efficiently collaborate with robots in manufacturing con-
texts. The project aims at addressing HRC challenges by
creating a new generation of robotic solutions based on in-
novative hardware and software. The envisaged solutions
present four main characteristics (modularity, safety, usabil-
ity and efficiency) and take into account the co-presence of
three different actors (the human, the robot and the envi-
ronment). The resulting robotic solution of the project is
tested in four pilot implementations representing two possi-
ble robot-human relationships in a given workplace without
physical fences: (i) coexistence (the human and the robot
conduct independent activities); (ii) collaboration (the hu-
man and the robot work collaboratively to achieve a given
goal). FOURBYTHREE combines hardware and software
advanced solutions for HRC scenarios: a brand new collab-
orative robotic arm has been designed and has been vali-
dated within the project; a set of software modules spanning
from very high level features, such as, e.g., voice and ges-
ture commands interaction, to low-level robot control have
been developed. A complex integrated system has been pro-
duced to cope with a combination of HRC issues (Maurtua
et al. 2016). The FOURBYTHREE Engineering & Control
Environment is part of the software environment and is pre-
sented here. Its objective is to support the design of plan-
based control for HRC scenarios as well as to facilitate the
access of manufacturing experts to AI planning technolo-
gies for the synthesis of coordination and control strategies.
The FOURBYTHREE Engineering & Control Environment
integrates (i) planning and execution functionalities for co-
ordination of robot control with the human activities, and
(ii) representation features for the specification of produc-
tion requirements.

The rest of the paper presents the general design of a dy-
namic task planning environment for facilitating both the
specification of a subdivision of roles between robot and hu-
man in performing a task. Then, an example of the temporal
planning of a flow of actions that guarantee safe coordina-
tion and an initial description of a run time support for the
symbiotic execution of such a multi-agent plan is reported.

For the purpose of this paper, a human-robot collabora-
tion workcell is a bounded connected space in which two
agents (i.e., a human and a robotic system) collaborate (Mar-
vel, Falco, and Marstio 2015). The robotic system consists
of a robotic arm with a set of tools that can be either mounted

on the arm or available within the workcell space as well as
the workpieces and any other tool associated with the tar-
geted task and dedicated safeguards (e.g., monitoring video
cameras). In such workcell, different degrees of HRC in-
teraction can be defined (Helms, Schraft, and Hagele 2002).
In general, the robot and the human may need to occupy
the same spatial location and interact according to differ-
ent modalities. Independent, the human and the robot oper-
ate on separate workpieces without collaboration, i.e., inde-
pendently from each other; Synchronous, the human and the
robot operate on sequential components of the same work-
piece, i.e., one can start a task only after the other has com-
pleted a preceding task; Simultaneous, the human and the
robot operate on separate tasks on the same workpieces at
the same time; Supportive, the human and the robot work
cooperatively to complete the processing of a single work-
piece, i.e., they work simultaneously on the same task. It is
worth underscoring how different interaction modalities en-
tails the robot to be endowed with different safety (hardware
and control) settings while executing tasks.

In FOURBYTHREE, four pilot plants covering different
types of production process have been considered for vali-
dation, i.e., assembly/disassembly of parts, welding opera-
tions, large parts management and machine tending. A gen-
eral design approach has been pursued in order to elicit the
relevant information concerning the following aspects: (i)
working procedure describing production processes in terms
of tasks to be performed and operational constraints; (ii) hu-
man operator describing the capabilities of the operator in
terms of task that can perform and the related temporal fea-
tures; (iii) robot configuration describing the available con-
figurations of the robots and its capabilities; (iv) human-
robot collaboration describing the envisaged interactions
between humans and robots needed to successfully achieve
production tasks. The reader may find a detailed pilots de-
scription in (Maurtua et al. 2016). Here, the ALFA Preci-
sion Casting pilot is briefly introduced. ALFA produces alu-
minum parts by means of ”investment casting”. This process
is well suited for producing parts that require tight tolerances
and dimensional precision but are produced in small size
production batches. The considered process concerns col-
laborative assembly/disassembly operations. Specifically,
the process consists in working a metal die which is used
to produce a wax pattern and, then, after several processes,
to obtain a mould for metallic components.

The considered process concerns collaborative assem-
bly/disassembly operations. Specifically, the process con-
sists in working a metal die which is used to produce a wax
pattern in a injection machine. Once injected, the pattern is
taken out the die. Several patterns are assembled to create a
cluster. The wax assembly is covered with a refractory ele-
ment, creating a shell (this process is called investing). The
wax pattern material is removed by the thermal or chemical
means. The mould is heated to a high temperature to elim-
inate any residual wax and to induce chemical and physical
changes in the refractory cover. The metal is poured into the
refractory mould. Once the mould has cooled down suffi-
ciently, the refractory material is removed by impact, vibra-
tion, and high pressure water-blasting or chemical dissolu-

66

tion. The casting are then cut and separated from the runner
system. Other post-casting operations (e.g. heat treatment,
surface treatment or coating, hipping) can be carried out, ac-
cording to customer demands. Due to the small size of the
dies and the type of operations done by the worker to re-
move the metallic parts of the die, it is very complex for
the robot and the worker to operate on the die simultane-
ously. However, both of them can cooperate in the assem-
bly/disassembly operation. Specifically, once the injection
process has finished, the die is taken to the workbench by
the worker. Then, the robot and the worker can simultane-
ously screw/unscrew bolts on the different covers composing
the die in order to disassembly/assembly the workpiece.

The FOURBYTHREE Engineering & Control
Architecture

Given the HRC scenarios described above, there are many
features and constraints that the envisaged control architec-
ture must deal with in order to realize an effective, robust
and safe collaboration. The architecture must capture and
find a suited tradeoff among the requirements of the differ-
ent stakeholders involved into the production process, i.e., a
Production Engineer, a Knowledge Engineer and a Human
Worker in addition to the specific Robot requirements. The
Production Engineer is the expert of the production needs
and specifies operational requirements of the different pro-
cesses that can be performed. The Knowledge Engineer
knows the features of the robot and of the specific work-
ing environment and, therefore, is responsible to model the
production processes according to specified operational re-
quirements. The Human Worker and the Robot are the main
actors that actually carry out the production tasks to achieve
the production process.

In general, several production processes can be performed
within a factory. Each process consists of a set of tasks that
must be executed according to some operational require-
ments. The perspective pursued here is the following: a
Worker and a Robot represent two autonomous agents ca-
pable of executing different types of task. Some tasks can
be executed only by the human, some tasks can be executed
only by the robot and some tasks can be executed by both
the human and the robot. Thus, given a particular process,
the control system is responsible for synthesizing the set
of needed tasks to complete the working process, assign-
ing tasks to the human and to the robot and guaranteeing to
robustly and safely executing them.

Figure 1 shows the FOURBYTHREE Engineering & Con-
trol Architecture developed for flexible human-robot collab-
oration. The architecture shows the elements and the ac-
tors involved within the control loop as well as their rela-
tionships. Specifically, the labeled arrows describe all the
phases of the control process starting from domain mod-
eling up to physical task execution. The FbT Engineering
Environment relies on KEEN (Knowledge Engineering EN-
vironment) (Orlandini et al. 2014) to support domain experts
in the design of the control model exploited by the FbT Con-
troller to coordinate the human and the robot tasks. Specifi-
cally, the FbT Engineering Environment allows the Produc-

FbT Engineering	
Environment

Production	
Model

FbT Controller

FbT
Task	Planner

FbT Plan	Executive

Dispatcher

Monitor

Failure
Manager

Ro
bo

t	O
pe

ra
tin

g	
Sy
st
em

M
ot
io
n	
Pl
an

ne
r

2. plan

3. execute

3.1b. failure

3.1b.1
replan

3.1a.*
send

command

3.1a.*
receive

feedback

feedback

(s
af

e)
 H

-R
 C

ol
la

bo
ra

tio
n

Production Eng./
Knowledge Eng.

1. model
requirements

Figure 1: The FOURBYTHREE Engineering & Control ar-
chitecture

tion Engineer and/or the FbT Knowledge Engineer to model
the working environment and the production processes with-
out knowing in details the specific planning and execution
technology utilized. Once the model is defined, the FbT Task
Planner synthesizes a temporal flexible plan assigning tasks
to the human and to the robot and the FbT Plan Executive
executes such plans in order to achieve the production goals.
Both the FbT Task Planner and the FbT Plan Executive rely
on PLATINUm (PLanning and Acting with TimelINes un-
der Uncertainty) (Umbrico et al. 2018; 2017), a timeline-
based planning and execution framework which complies
with the formalization proposed in (Cialdea Mayer, Orlan-
dini, and Umbrico 2016). Specifically, the developed task
planner is capable of generating temporally robust plan by
dealing with temporal uncertainty at solving time. This
is crucial in the considered scenarios where a human must
tightly cooperate with a robot. Indeed, a human is uncon-
trollable and his/her behavior may affect also the behavior
of the robot from the control perspective. Thus, the Human
is modeled as an autonomous and completely uncontrollable
agent whose behavior may affect the behavior of the Robot
which is modeled as a partially controllable agent.

A plan is executed by dispatching commands to the robot
and to the human and by receiving feedbacks through dedi-
cated communication channels implemented on ROS1. The
FbT Plan Executive realizes a closed-loop control process
which puts the human-in-the-loop. Broadly speaking, the
executive is capable of dynamically adapting a task plan
(i.e., robot task execution) according to the detected behav-
ior of the human. Thus, the executive can temporally adapt
a task plan by absorbing execution delays and generate a
new plan through replanning only if strictly needed. Re-
planning allows the executive to manage exogenous events
the plan cannot capture like e.g., a failure of a robot actua-
tor or a human task whose duration is longer than expected
and synthesize a new (adapted) plan which tries to complete
the execution of the process. It is worth pointing out that
the integration of temporal uncertainty at both planning and
execution time makes the control process more robust than

1http://www.ros.org/

67

classical approaches in the literature e.g., T-REX (Py, Rajan,
and McGann 2010) or IXTET-EXEC (Lemai and Ingrand
2004), limiting the need for replanning.

Planning and Execution with Uncertainty
The FbT Controller has been developed by following the
timeline-based planning approach. This approach is a par-
ticular A.I. planning paradigm which has been introduced in
early 90s (see for instance (Muscettola 1994)) and success-
fully applied in several real-world scenarios (mainly in space
applications such as, e.g., (Cesta et al. 2007; Jonsson et al.
2000; Muscettola 1994)). This approach takes inspiration
from the classical control theory and models a complex sys-
tem by identifying a set of relevant features that must be con-
trolled over time. Thus, a timeline-based application aims at
controlling a system by synthesizing temporal behaviors of
its features (i.e. timelines). Several timeline-based systems
have been introduced in the literature (Barreiro et al. 2012;
Chien et al. 2010; Ghallab and Laruelle 1994), each of which
applies its own interpretation of this paradigm. The devel-
oped FbT Controller relies on the characterization of the
timeline-based approach given in (Cialdea Mayer, Orlan-
dini, and Umbrico 2016) which takes into account also tem-
poral uncertainty and controllability features of the domains
and plans (see the controllability problem (Vidal and Fargier
1999)). Indeed, temporal uncertainty and temporal flexibil-
ity play a key role in real-world applications, especially in
HRC where a robot must cooperate at different interaction
levels with a human which represents an autonomous and
uncontrollable agent of the working environment. Thus, it
is important to properly handle temporal uncertainty and un-
controllable events in order to synthesize robust and effec-
tive control strategies.

The Timeline-based planning formalism
According to (Cialdea Mayer, Orlandini, and Umbrico
2016), a timeline-based planning model is composed by
multi-valued state variables, representing the set of features
to be controlled over time and specifying causal and tem-
poral constraints characterizing their allowed temporal be-
haviors. A state variable describes the set of values v ∈ V
the related feature may assume over time with flexible tem-
poral duration. For each value v ∈ V , a transition function
T : V → 2V describes the set of values v ∈ V that may fol-
low v. A controllability function γ (v) = {c, u} character-
izes the controllability property. Namely, if a value v ∈ V
is tagged as controllable, i.e. γ (v) = c then the system can
decide the actual duration of the value. If a value v ∈ V is
tagged as uncontrollable, i.e. γ (v) = u, the system cannot
decide the duration of the value. The state variables behav-
ior may be further restricted by means of synchronization
rules specifying temporal constraints (i.e., Allen’s temporal
constraints) among different values. Planning with timelines
usually entails considering sequence of valued intervals and
time flexibility is taken into account by requiring that the du-
rations of valued intervals, called tokens, range within given
bounds. In this regard, a plan represents a whole set of time-
lines each of which represents an envelop of possible be-
haviors that respect the duration constraints. However, a set

of flexible timelines do not convey enough information to
represent a flexible plan. Thus, plan representation must in-
clude also information about the relations that must hold be-
tween tokens in order to satisfy the synchronization rules of
the planning domain.

According to (Cialdea Mayer, Orlandini, and Umbrico
2016), a timeline-based planning model is composed by
multi-valued state variables representing the set of features
to be controlled over time and specifying causal and tempo-
ral constraints that characterized the allowed temporal be-
haviors. A state variable describes the set of values v ∈ V
the related feature may assume over time together with the
related temporal duration bounds. A For each value v ∈ V ,
a transition function T : V → 2V describes the set of
values v ∈ V that may follow v. A controllability func-
tion γ (v) = {c, u} specifies the controllability property.
Namely, if a value v ∈ V is tagged as controllable i.e.,
γ (v) = c, then the system can decide the actual duration
of the value. If a value v ∈ V is tagged as uncontrollable
i.e., γ (v) = u, the system cannot decide the duration of
the value. The allowed behaviors of state variables may be
further restricted by means of synchronization rules specify-
ing temporal constraints between different values of differ-
ent variables.

Thus, while state variables specify local rules for the
single features of the domain, synchronizations represent
global rules specifying how different features of the domain
must behave together. A formal definition of a synchroniza-
tion rule is the following:

a0[x0 = v0]→ ∃ a1[x1 = v1]...an[xn = vn]. C

where (i) a0, ..., an, called token variables, denote valued
temporal intervals of state variables; (ii) for all i = 0, ..., n,
xi is a state variable and vi is a value of xi; and (iii) C
is a positive boolean formulae (PBF) specifying temporal
constraints among token variables and where only the token
variables a0, ..., an occur. The left-hand part of the synchro-
nization a0[x0 = v0], is called the trigger of the rule.

Planning with timelines usually entails considering se-
quence of valued intervals and time flexibility is taken into
account by requiring that the durations of valued intervals,
called tokens, range within given bounds. In this regard, a
plan represents a whole set of timelines each of which repre-
sents an envelop of possible behaviors that respect the dura-
tion constraints. Specifically, a timeline for a state variable
x in the temporal horizon H is finite sequence of tokens for
x:

FTLx = x1 = (v1, [e1, e
′
1], [d1, d

′
1]),

...,
xk = (vn, [en, e

′
n], [dn, d

′
n])

where the sequence of values v1, ..., vn of the tokens satisfy
the transition constraints of the state variable.

However, a set of flexible timelines do not convey enough
information to represent a flexible plan. The representation
of a plan must include also information about the relations
that have to hold between tokens in order to satisfy the syn-
chronization rules of the planning domain.

68

The Knowledge Engineering Environment
The Knowledge Engineering ENvironment (called KEEN)
(Orlandini et al. 2014) is one of the software assets de-
veloped at ISTC-CNR to support the design and develop-
ment of timeline-based Planning and Scheduling applica-
tions. The KEEN system is built around APSI-TRF (Cesta
et al. 2009), a state of the art framework for P&S with time-
lines, and exploits the UPPAAL-TIGA verification tool2
to perform Validation and Verification of plans (Bensalem,
Havelund, and Orlandini 2014).

To support the knowledge engineering (KE) phase, KEEN
is composed by a Domain/Problem Editing and Visualiza-
tion module, providing user interaction functionality for cre-
ating planning domain models through textual and graph-
ical (diagram) editors, and a set of V&V services taking
advantage of the results presented in (Cesta et al. 2010;
Orlandini et al. 2013). Additionally, plans can be generated
by means of a planner in a continuous loop of usage. It also
supports plan execution feature to send actual commands to
a controlled system and allowing to receive the telemetry
from the actual plan execution environment. The idea pur-
sued is that KEEN can be connected to an accurate simulator
of the real environment, to a real physical system (e.g., the
FOURBYTHREE robotic arm) and be able to monitor the ex-
ecution phase with visual tools.

The KEEN editing and visualization capabilities have
been developed as an Eclipse plugin (see Figure 2), thus
providing a graphical interface to model, visualize and an-
alyze the P&S domains. The V&V functionality is based
on Timed Game Automata (TGA) model checking and rely
on UPPAAL-TIGA as verification engine. As a result,
UPPAAL-TIGA constitutes an additional core engine for
KEEN. In FOURBYTHREE, the KEEN system has been fur-
ther developed in order to integrate also the EPSL system
as well as support the specific operational requests related to
the HRC context.

While KEEN was already capable of supporting the mod-
eling of planning problems such as the one connected to the
ALFA Pilot case, additional work was needed to integrate
it with the FOURBYTHREE executor. The integration was
needed to enable the engineer to see the results of his work in
real time: just seconds after making a change to the domain
or problem definition he could see the robotic arm move, or,
for testing purposes, he could choose to run a version of the
FOURBYTHREE executor implementing a simulator of the
real robotic arm.

Figure 3 shows the KEEN environment during an edit-
ing session of the textual representation of the ALFA do-
main. At the same time, the FOURBYTHREE executor is
being run and its output is visible in the Console window at
the bottom. KEEN supports the installation of a number of
different executors, or different configurations of the same
executor. For instance, one might want to have a FOUR-
BYTHREE executor installation targeted to “release mode”
whose configuration instructs the executor to connect to the
main robotic arm via ROS. Another instance could instead
drive a different, test arm in the developer’s room. And a

2http://www.uppaal.org

third installation could instead use a simulator through the
FOURBYTHREE executor. The developer could then choose
different run configurations tied to different installations of
the executor according to its needs: probably, while devel-
oping he will continuously perform simulation runs of the
FOURBYTHREE executor, just to be quickly sure that ev-
erything works as expected. Then, every now and then, he
could instead test his domain on a real robotic arm located in
his room. Finally, before releasing his domain in the produc-
tion environment, he might test everything in the laboratory
where an environment similar to the real production site is
set up.

The FOURBYTHREE Controller
The FbT Controller is the element responsible to actually
carry out production processes and to coordinate the robot
and the human. The synthesized tasks and the coordina-
tion of the human and the robot must follow the operational
requirements specified by the Production Engineer and en-
coded into the domain model through KEEN. As Figure 1
shows, the controller is composed by the FbT Task Planner
and the FbT Plan Executive both relying on the timeline-
based formalisms. The FbT Task Planner is responsible for
generating the set of tasks needed to perform the production
processes according to the desired requirements. In HRC
scenarios, it is necessary to guarantee the safety of the hu-
man without penalizing the productivity of the factory. The
task planner is in charge of finding a tradeoff between per-
formance and safety and therefore there are several features
to take into account when synthesizing plans.

The planning model can be characterized according to
three different levels of abstraction: (i) the supervision level;
(ii) the coordination level; (iii) the implementation level. In
the supervision level, the task planner has to decide the set
of tasks needed to execute the production process by model-
ing the operational requirements specified by the Production
Engineer. In the coordination level, the task planner has to
decide who, between the human and the robot, must perform
each task harmonizing the activities of both. In this context,
the human and the robot are modeled as two autonomous
agents capable of executing some types of task. Given a
production process, some tasks can be performed only by
the human, some tasks can be performed only by the robot
and some tasks are free to be performed either by the hu-
man or by the robot. This choice-point represents the main
branching factor of the task planning process. It can affect
the quality of the collaboration and the efficiency of pro-
cesses. Finally, in the implementation level, the task planner
has to decide the operations the robot must perform in order
to execute the assigned tasks. According to the particular
type of collaboration decided at coordination level, the task
planner decides the most appropriate execution modality of
the tasks of the robot in order to preserve the safety of the
human.

Figure 4 (automatically generated by KEEN) shows an
example of a timeline-based planning model for the collab-
orative assembly scenario in the ALFA Pilot. The model
is hierarchically organized according to the three levels of

69

Figure 2: Visual modeling for FOURBYTHREE KEEN environment

abstraction identified (i.e., supervision, coordination, im-
plementation). The ALFA and AssemblyProcess state vari-
ables compose the supervision level of the model. These
variables characterize the considered production context in
terms of tasks that can be executed. The AssemblyProcess
specifies the set of high-level tasks needed to complete the
process and the related operational requirements. For exam-
ple, the RemoveTopCover and RemoveBottomCover values
in AssemblyProcess represent high-level tasks modeling part
of the assembly/disassembly procedure. Notice that no task
assignment is performed at this level of abstraction.

The Human, RobotController and CollaborationType
state variables compose the coordination level of the model.
Specifically, the Human and RobotController state variables
model the low-level tasks the human and the robot agents
can perform over time. For example, the Screw or Unscrew
values of Human and RobotController state variables model
the capability of both agents of performing screwing opera-
tions. Instead, RemovePart or Rotate values of the Human
state variables model critical operations that only the hu-
man is allowed to perform. The CollaborationType state
variable models the possible types of human-robot collab-
oration within the execution of the tasks of the desired pro-
cess. The supervision and coordination layers are connected
by a set of synchronization rules that specify decomposition
constraints of high-level tasks in terms of low-level tasks.
These rules specify how the tasks composing the process can
be performed in collaboration by the human and the robot.
Namely, these rules describe the possible task assignments
between the human and the robot and specify the collabora-
tion modalities suited for human-robot interactions.

The RobotArmController, ScrewDriverController and Ex-
ecutionModality state variables constitute the implementa-
tion level of the model. These variables represent the physi-
cal and/or logical elements composing the production envi-

ronment the system must directly interact with. The Robo-
tArmController together with the ExecutionModality model
the robotic arm. They represent the functional control inter-
face of the robot provided by the integrated motion planner
(see Figure 1). Specifically, the RobotArmController mod-
els the motion tasks the robot can perform while, the Exe-
cutionModality models the type of trajectory that must be
used to perform the motion (see section for further details).
The coordination and implementation layers are connected
by another set of synchronization rules that specify how the
robot must execute the assigned tasks. A particular execu-
tion modality of robot motions is selected according to the
expected collaboration modality in the coordination layer.

Planning with Temporal Uncertainty
The FbT Task Planner leverages PLATINUm and the re-
lated plan-refinement procedure which iteratively refines an
initial partial plan (i.e., a given set of partially constrained
timelines) until a complete and valid plan is found. Plan re-
finement consists in detecting and solving flaws of the plan
that represent particular condtions affecting the complete-
ness (e.g., a planning goal) or the validity (e.g., temporal
overlaps of tokens of a same timeline) of the plan. In ad-
dition, the solving process iteratively checks the controlla-
bility features of the plan by taking into account temporal
uncertainty. Specifically, the procedure verifies the pseudo-
controllability property (Vidal and Fargier 1999) by analyz-
ing the flexible durations of uncontrollable tokens. Pseudo-
controllability is a necessary but not sufficient condition for
dynamic controllability which is a desirable property to ro-
bustly cope with the uncontrollable dynamics in the real-
world. Pseudo-controllability guarantees that a plan does
not restrict the flexible duration of uncontrollable tasks. In
this way, generated plans are more flexible and can better
deal with the uncontrollable events.

70

Figure 3: Executing plans through KEEN

The execution process consists of control cycles that iter-
atively execute a flexible (timeline-based) plan by sending
commands to the robot and receiving feedbacks from the
environment until all the tasks of the plan have been exe-
cuted. A ROS-based middleware provides communication
channels that allow the control system to exchange com-
mands and feedbacks with the robotic platform and the hu-
man operator. Specifically, human feedbacks are received by
several sensor devices like MyO3 or video cameras that pro-
duce signals concerning the activities/operators of a human
within the working cell

Control cycles are managed through a clock which de-
termines the frequency and therefore the responsiveness of
the executive. The clock ”discretizes” the temporal axis by
identifying temporal units called ticks. At each tick corre-
sponds the execution of a control cycle which is composed
by two distinct phases, (i) the synchronization phase and (ii)
the dispatching phase. The synchronization phase manages
the received execution feedbacks in order to verify the con-
sistency of the ongoing plan with respect to the actual state
of the working environment. If the plan is valid then the
dispatching phase selects the next activities to be executed.
Algorithm 1 describes the general control procedure of the
executive and its related sub-procedures.

The procedure takes a plan Π to be executed and a clock C
as input. The plan Π is analyzed to identify start and end ex-
ecution dependencies between tokens of the timelines. This
information is encapsulated by a dedicated structure πexec
(row 3), called Execution Dependency Graph. Then, the
procedure iteratively executes the plan until all tokens have
complete their execution (rows 5-12). The timing of the iter-
ations of the procedure is determined by the clock C which
continuously updates and signals the current execution time

3https://www.myo.com/

Algorithm 1 The executive control procedure
1: function EXECUTE(Π, C)
2: // initialize executive plan database
3: πexec ← Setup (Π)
4: // check if execution is complete
5: while ¬CanEndExecution (πexec) do
6: // wait a clock’s signal
7: τ ← WaitT ick (C)
8: // handle synchronization phase
9: Synchronize (τ, πexec)

10: // handle dispatching phase
11: Dispatch (τ, πexec)
12: end while
13: end function

τ (row 7). The Synchronize sub-procedure is in charge of
handling the synchronization phase by managing execution
feedbacks (row 9). It checks the validity of the expected
status of the world (i.e. the task plan) with respect to the
observed status of the world (i.e. the feedbacks). Similarly,
the Dispatch sub-procedure is in charge of handling the dis-
patching phase by deciding the tokens of the plan that must
start their execution (row 11).

The tokens of the plan may have different controllability
properties that entail different managements of the related
execution dependencies within the control loop. Specifi-
cally, it is possible to identify three types of token according
to the different controllability properties in HRC scenarios.
A token can be (i) controllable, (ii) partially-controllable
or (iii) uncontrollable. Controllable tokens are completely
under the control of the executive. The executive can de-
cide the actual start and end times of the token and therefore
its actual duration. Partially-controllable tokens represent
tokens the executive cannot completely control. The exec-
utive can only observe the actual execution of this type of

71

Supervision	Level

Coordination	Level

Implementation	Level

Figure 4: Hierarchical model for collaborative assembly in the ALFA pilot

tokens. Namely, the executive controls only the start of the
execution and can assume that execution is ended only if a
signal has been received. When the signal is received, the
executive verifies the consistency of the plan with respect
to the observation (i.e., the system verify whether the end
conditions and the schedule of the token in the plan com-
ply with the observed behavior). Uncontrollable tokens are
completely outside the control of the executive. The execu-
tive may suppose when the token is about to start according
to its schedule, but cannot decide its actual start time. It can
only observe the start of the execution and check whether
the received signal complies with the plan (i.e., whether the
start execution dependencies and the schedule of the token
are satisfied). Then, similarly to partially-controllable to-
kens, the executive waits a second signal concerning the end
of the execution of the token. When the signal is received,
again the executive checks the consistency with respect to
the plan and the related (end) execution dependencies.

In such a context, it is not always possible to complete
the execution without changing the plan. Indeed, tempo-
ral uncertainty and uncontrollability features of the envi-
ronment may lead to uncontrollable behaviors the timeline-
based plan cannot capture. The control system is forced to
generate a new plan in such cases. For example, the execu-
tion of a human task may last longer than expected from the
model, or it can start later than expected from the plan. If
such an event is detected, the controller interrupts the plan
execution and enters the replanning phase. The executed
tokens and the last received observations determine the ini-
tial situation the task planner starts from to synthesize a new
plan. If some uncontrollable tokens were in execution when
the failure occurred (e.g., the robot arm was moving between
two positions), then the controller, through the Failure Man-
ager in Figure 1, waits the related feedbacks in order to ”re-
set” a stable state. When the problem specification is com-

plete, a new plan is generated and plan execution can be
resumed.

Task and Motion Planning Integration &
Deployment

Final goal of the FOURBYTHREE project is the full integra-
tion of technologies. In particular, the task planning tech-
nology has been integrated with a motion planning subsys-
tem. The capability of selecting different execution modal-
ities of robot tasks according to the expected collaboration
with the human is the result also of a tight integration of the
task planning and executive system with the motion plan-
ning approach described in (Pellegrinelli et al. 2016). The
motion planning module is also part of the FOURBYTHREE
general architecture and it is implemented as an extension of
the ROS MoveIT library. Such approach realizes an offline
analysis of the production scenarios in order to synthesize,
for each collaborative task, a number of robot motion trajec-
tories (three in the considered scenarios) with different level
of safety. Each trajectory is associated with an expected
temporal execution bound and represents a tradeoff between
”speed” of the motion and ”safety” of the human. Slow tra-
jectories are considered the safest because they tend to move
the arm far from the expected position of the human (low
probability of collisions). Conversely, fast trajectories are
considered the less safe because they tend to move the arm
close to the expected position of the human (high probability
of collisions). The task planner leverages this set of informa-
tion to characterize the temporal behavior of the robot and
coordinate tasks accordingly. During plan execution, the ex-
ecutive online communicates to the motion planner the par-
ticular trajectory selected to perform the collaborative tasks.
The motion planner is in charge of safely executing the se-
lected trajectories by avoiding collisions with the human.

72

Figure 5: Executive ROS-based integration with the robot motion layer

Figure 5 shows the integration of the Fbt Plan Execu-
tive with a motion planning module through a ROS-based
communication channel. Specifically, the MoveItConnec-
tor element in Figure 5 shows the control interface the ex-
ecutive needs to actually send commands to the robot and
the human. The executeTask(taskId, trajectoryId) function
makes the arm execute the task identified by taskId using
the trajectory identified by trajectoryId. The switchOnAc-
tuator(actuatorId) and switchOffActuator(actuatorId) acti-
vates and deactivates respectively the tool (i.e., the screw-
driver in the ALFA case study) identified by actuatorId. Fi-
nally, the startHumanTask(taskId) function asks the human
to start the task specified by taskId. Everytime a task is
completed, the executive asynchronously receives feedbacks
through the MoveItListener, communicating the successful
or unsuccessful execution of tasks. In the case of startHu-
manTask, two notifications are expected. A first notifica-
tion is sent when the operator starts the assigned task. A
second notification is sent when the operator completes the
task. The rationale behind this decision is that the human
is uncontrollable and therefore the system cannot expect a
human being to immediately begin to execute an order, as it
is the case with the robotic arm.

The integrated control architecture has been deployed
and tested in laboratory on a realistic manufacturing sce-
nario (Pellegrinelli et al. 2017) very similar to the assem-
bly/disassembly case study of the ALFA pilot. The experi-
mental evaluation has shown the capability of the proposed
approach in realizing a productive and safe collaboration be-
tween humans and robots. Experimental results show how
the system is able to find a well suited distribution of tasks
capable of increasing the productivity of the production pro-
cess without affecting the safety of the human operator.

Conclusions and Future Works
This paper presented the FOURBYTHREE Engineering &
Control Environment, a novel software framework for dy-
namic task planning and execution for Human-Robot Col-
laboration aiming at being a robust facilitator in the share
of work between humans and robots. The environment pro-
vides both knowledge engineering features, to support the
development of task planning models, and task planning
and execution capabilities, also able to deal with temporal
uncertainty in the presence of human operators. Relevant
is the ability to to model collaborative tasks considering a
temporal variance of tasks duration, possibly entailed by the
presence of a human operator, as well as dynamically adapt-
ing task plans according to the actual behavior of the human
worker. The system has been validated in laboratory on a
realistic industrial case study.

Acknowledgement
Authors have been supported by the European Commis-
sion within the H2020 FOURBYTHREE project (GA No.
637095).

References
Barreiro, J.; Boyce, M.; Do, M.; Frank, J.; Iatauro, M.;
Kichkaylo, T.; Morris, P.; Ong, J.; Remolina, E.; Smith, T.;
and Smith, D. 2012. EUROPA: A Platform for AI Planning,
Scheduling, Constraint Programming, and Optimization. In
ICKEPS 2012: the 4th Int. Competition on Knowledge En-
gineering for Planning and Scheduling.
Bensalem, S.; Havelund, K.; and Orlandini, A. 2014. Veri-
fication and validation meet planning and scheduling. Soft-
ware Tools for Technology Transfer 16(1):1–12.
Cesta, A.; Cortellessa, G.; Fratini, S.; Oddi, A.; and Poli-

73

cella, N. 2007. An Innovative Product for Space Mission
Planning: An A Posteriori Evaluation. In ICAPS, 57–64.
Cesta, A.; Cortellessa, G.; Fratini, S.; and Oddi, A. 2009.
Developing an End-to-End Planning Application from a
Timeline Representation Framework. In IAAI-09. Proc.
of the 21st Innovative Application of Artificial Intelligence
Conference, Pasadena, CA, USA.
Cesta, A.; Finzi, A.; Fratini, S.; Orlandini, A.; and Tronci,
E. 2010. Analyzing Flexible Timeline Plan. In ECAI 2010.
Proceedings of the 19th European Conference on Artificial
Intelligence, volume 215. IOS Press.
Cesta, A.; Orlandini, A.; Bernardi, G.; and Umbrico, A.
2016. Towards a planning-based framework for symbiotic
human-robot collaboration. In 21th IEEE International Con-
ference on Emerging Technologies and Factory Automation
(ETFA). IEEE.
Chien, S.; Tran, D.; Rabideau, G.; Schaffer, S.; Mandl,
D.; and Frye, S. 2010. Timeline-Based Space Operations
Scheduling with External Constraints. In ICAPS-10. Proc.
of the 20th Int. Conf. on Automated Planning and Schedul-
ing.
Cialdea Mayer, M.; Orlandini, A.; and Umbrico, A. 2016.
Planning and execution with flexible timelines: a formal ac-
count. Acta Inf. 53(6-8):649–680.
de Silva, L.; Lallement, R.; and Alami, R. 2015. The hatp
hierarchical planner: Formalisation and an initial study of
its usability and practicality. In 2015 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS),
6465–6472.
Freitag, M., and Hildebrandt, T. 2016. Automatic design
of scheduling rules for complex manufacturing systems by
multi-objective simulation-based optimization. CIRP An-
nals - Manufacturing Technology 65(1):433 – 436.
Ghallab, M., and Laruelle, H. 1994. Representation and
control in ixtet, a temporal planner. In 2nd Int. Conf. on
Artificial Intelligence Planning and Scheduling (AIPS), 61–
67.
Helms, E.; Schraft, R. D.; and Hagele, M. 2002. rob@work:
Robot assistant in industrial environments. In Proceedings.
11th IEEE International Workshop on Robot and Human In-
teractive Communication, 399–404.
Jonsson, A.; Morris, P.; Muscettola, N.; Rajan, K.; and
Smith, B. 2000. Planning in Interplanetary Space: The-
ory and Practice. In AIPS-00. Proceedings of the Fifth Int.
Conf. on AI Planning and Scheduling.
Lemai, S., and Ingrand, F. 2004. Interleaving Temporal
Planning and Execution in Robotics Domains. In AAAI-04,
617–622.
Marvel, J. A.; Falco, J.; and Marstio, I. 2015. Characteriz-
ing task-based human #x2013;robot collaboration safety in
manufacturing. IEEE Transactions on Systems, Man, and
Cybernetics: Systems 45(2):260–275.
Maurtua, I.; Pedrocchi, N.; Orlandini, A.; d. G. Fernndez,
J.; Vogel, C.; Geenen, A.; Althoefer, K.; and Shafti, A.
2016. Fourbythree: Imagine humans and robots working
hand in hand. In 2016 IEEE 21st International Conference

on Emerging Technologies and Factory Automation (ETFA),
1–8.
Michalos, G.; Kaltsoukalas, K.; Aivaliotis, P.; Sipsas, P.;
Sardelis, A.; and Chryssolouris, G. 2014. Design and sim-
ulation of assembly systems with mobile robots. {CIRP}
Annals - Manufacturing Technology 63(1):181 – 184.
Muscettola, N. 1994. HSTS: Integrating Planning and
Scheduling. In Intelligent Scheduling. Morgan Kauffmann.
Orlandini, A.; Suriano, M.; Cesta, A.; and Finzi, A. 2013.
Controller synthesis for safety critical planning. In IEEE
25th International Conference on Tools with Artificial Intel-
ligence (ICTAI 2013), 306–313. IEEE.
Orlandini, A.; Bernardi, G.; Cesta, A.; and Finzi, A. 2014.
Planning meets verification and validation in a knowledge
engineering environment. Intelligenza Artificiale 8(1):87–
100.
Pellegrinelli, S.; Pedrocchi, N.; Tosatti, L. M.; Fischer, A.;
and Tolio, T. 2014. Multi-robot spot-welding cells: An inte-
grated approach to cell design and motion planning. {CIRP}
Annals - Manufacturing Technology 63(1):17 – 20.
Pellegrinelli, S.; Moro, F. L.; Pedrocchi, N.; Tosatti, L. M.;
and Tolio, T. 2016. A probabilistic approach to workspace
sharing for human-robot cooperation in assembly tasks.
{CIRP} Annals - Manufacturing Technology 65(1):57 – 60.
Pellegrinelli, S.; Orlandini, A.; Pedrocchi, N.; Umbrico, A.;
and Tollio, T. 2017. Motion planning nad scheduling for
human and industrial-robot collaboration. CIRP Annals -
Manufacturing Technology. 66(1):1–4.
Py, F.; Rajan, K.; and McGann, C. 2010. A systematic agent
framework for situated autonomous systems. In AAMAS,
583–590.
Srivastava, S.; Fang, E.; Riano, L.; Chitnis, R.; Russell, S.;
and Abbeel, P. 2014. Combined task and motion planning
through an extensible planner-independent interface layer.
In 2014 IEEE International Conference on Robotics and Au-
tomation, 639–646.
Umbrico, A.; Cesta, A.; Cialdea Mayer, M.; and Orlandini,
A. 2017. Platinum: A new framework for planning and
acting. In Esposito, F.; Basili, R.; Ferilli, S.; and Lisi, F. A.,
eds., AI*IA 2017 Advances in Artificial Intelligence, 498–
512. Springer.
Umbrico, A.; Cesta, A.; Cialdea Mayer, M.; and Orlandini,
A. 2018. Integrating resource management and timeline-
based planning. In The 28th International Conference on
Automated Planning and Scheduling (ICAPS).
Vidal, T., and Fargier, H. 1999. Handling Contingency in
Temporal Constraint Networks: From Consistency To Con-
trollabilities. JETAI 11(1).
Wolfe, J.; Marthi, B.; and Russell, S. J. 2010. Combined
task and motion planning for mobile manipulation. In Pro-
ceedings of the 20th International Conference on Automated
Planning and Scheduling, ICAPS 2010, Toronto, Ontario,
Canada, May 12-16, 2010, 254–258.

74

Integrating Classical Planning and Real Robots
in Industrial and Service Robotics Domains

Oscar Lima, Rodrigo Ventura
Institute for Systems and Robotics

Instituto Superior Tecnico
Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal

Email: {olima, rodrigo.ventura}@isr.tecnico.ulisboa.pt

Iman Awaad
Bonn-Rhein-Sieg University
Grantham-Allee 20, 53575
Sankt Augustin, Germany

Email: iman.awaad@h-brs.de

Abstract

In this paper we propose a case study where we integrate
classical planning and real autonomous mobile robots. We
start by describing all necessary components to automati-
cally set required facts, generate plans, execute them on real
robots to finally monitor their outcome. At the core of our
method and to deal with the required complex execution in
dynamic environments, we propose to encapsulate the agent
high level actions with automatas. We prove the flexibility
of the system by testing on two different domains: industrial
(Basic Transportation Test) and domestic (General Purpose
Service Robot) in the context of the international RoboCup
competition. Additionally we benchmark the scalability of
the selected planner in two domains on a set of problems
with increasing complexity. The proposed framework is open
source1 and can be easily extended.

1 Introduction
Bridging robotics and classical AI planning poses several
challenges to both areas. In robotics one faces continu-
ous time, temporal actions, concurrency, in the presence of
partial observability, time constraints, stochastic events, to
name a few. Classical planning is often formulated as dis-
crete time with instantaneous actions, plans are sequential,
and the world is assumed to be both fully observable and
deterministic. However, classical planning research is now
a mature field, providing a broad range planning methods
that the community can benefit from. This paper addresses
the problem of integrating such planners into real robots, in
particular when such domains are highly unstructured and
stochastic. In this paper we present an approach to use a clas-
sical planner by integrating it with an execution layer based
on finite automata. We have tested the approach in two ex-
ample realistic scenarios: industrial and service robotics do-
mains.

1.1 Motivation
Artificial intelligence and robotics are two research areas
that have benefited significantly from cross-fertilization,
however, each of them tend to have their own research
agenda with few researchers working on the intersection be-

1www.github.com/oscar-lima/isr_planning

tween them2. The International Planning Competition (IPC)
and RoboCup (Kitano et al. 1997) are major tournaments
for AI planning and robotics both of them which offer a
common ground for benchmarking and valuable knowledge
sharing. In RoboCup most teams in industrial and domestic
domains use finite automata to coordinate the execution of
particular skills, such as navigation and manipulation. How-
ever, big state machines are hard to maintain, unintuitive for
humans to program and hard to reuse. The use of classical
planners allows the specification of a goal and domain in
an high-level planning domain. However, classical planning
algorithms tend to not scale well with the complexity of the
domain: it is not reasonable for a robotics domain for a plan-
ner to take more than a few seconds to obtain a feasible plan.

1.2 Problem Description
The problem is described as the integration of classical plan-
ning and real robots and how to overcome the limitations of
classical planning when dealing with unstructured, stochas-
tic, real world domains. We assume the availability of a
set of robot skills, namely autonomous navigation, mobile
manipulation, perception, and natural language interaction.
Given a task, requiring a subset of these skills, we aim at
integrating a classical planning into an execution layer of a
robot. We focus particularly on the problem of near real-time
planning time and robustness to unexpected action effects.

1.3 Structure of this work
In section 2 we start highlighting some of the features that
are needed in robotics from the planning community, then
we present existing approaches that have merged classical
planning and robotics, then we talk about ROSPlan (Cash-
more et al. 2015) as one of our dependencies and a close re-
lated work, then we briefly describe our selected solver Mer-
cury (Katz and Hoffmann 2014) a well-known planner from
IPC 2014, that scored in second place in the deterministic
track. In section 4 we briefly describe each of the required
components for planning in robotics and how they interact
with each other by using a planning coordinator automata.
In section 5 we talk about the robots used, their hardware, a
description of the industrial and domestic domains that were

2AI summer school 2017
www.lucia.isr.tecnico.ulisboa.pt

75

modeled and the experiments that we designed to investigate
some of the Mercury planner features. Section 6 comments
on the scalability and cost assignment results and sections 7
and 8 talk about the conclusions of this work.

2 Related Work
2.1 Planning under time constraints
In the international planning competition typically planners
are provided with a 30 min timeout, however in service
robotics (or @Home) for instance you can’t afford having
a robot thinking for more than e.g. 10 seconds, otherwise
you deeply affect the human robot interaction process.

Fast approaches like real time (Korf 1990), deadline
aware (Burns, Ruml, and Do 2013) or anytime search
(Richter and Westphal 2010) are critical for service robotics.

2.2 Classical Planning in Robotics
One of the oldest examples of integration between AI and
robotics is the Stanford Research Institute Problem Solver
(STRIPS) (Fikes and Nilsson 1971). The famous automated
planner was implemented on a real robot ”Shakey” (Nils-
son 1984). Without a doubt, a milestone in AI planning and
robotics.

2.3 RoboCup Logistics League
In RoboCup (Kitano et al. 1997) Logistics league, the sys-
tem used by the Carologistics (Niemueller et al. 2015) team
(winner of 2014-2016) is based on the Fawkes Robot Soft-
ware Framework (Niemueller, Reuter, and Ferrein 2015).
The software stack contains components for localization,
navigation, perception and basic behaviors using a Lua-base
behavior engine and complete task-level executive based
on the C Language Integrated Production System (CLIPS)
(Wygant 1989). CLIPS is public domain software built
for expert systems. It was initially developed in 1985 at
the NASA Jhonson Space Center and presents an object-
oriented language for writing expert systems. Like other lan-
guages CLIPS deals with rules and fact to operate. One of
the main problems with ruled based systems is the amount
of rules they require to work efficiently, making them hard
to extend and maintain.

2.4 RoboCup at Work League
While most teams in the league use automatas for decision
making, the team LUHbots @Work3 from Hannover, uses a
graph-based search algorithm (greedy) and a minimization
cost function.

2.5 ROSPlan
Developed at King’s College London University KCL ROS-
Plan (Cashmore et al. 2015) introduces a framework with a
generic method for the integration of PDDL planning and
the famous Robot Operating System (ROS) which is the
standard middleware in robotics. It exposes a Knowledge
base (KB), an automatic PDDL problem generator and plan
dispatcher to interact with a robot.

3http://luhbots.de/wordpress/

Re-planning in ROSPlan is done based upon 3 different
criteria: because the dispatcher reports failure on an action,
the KB changed in such a way that invalidates the current
plan or because the action has consumed to much resources
(e.g. time or energy).

2.6 Mercury Planner
Mercury (Katz and Hoffmann 2014) is a sequential, clas-
sical, satisficing planner (no optimal solution is guaranteed)
which won 2nd place at IPC 2014. The planner starts with an
initial greedy best first search and once a solution has being
found it performs multiple iterations of heuristic search with
a weighted A* algorithm. Mercury uses a partial relaxation
delete list heuristic called Red-Black. Red variables take the
relaxed semantics (ignore the delete list) while black vari-
ables take the regular semantics (will not ignore the delete
list) (Katz and Hoffmann 2014). The method used to find
black variables is called the paint strategy and is domain de-
pendent. The rationale behind having selected this planner
was because it outperformed all other planners in the trans-
port domain (in IPC 2014), which is similar to our industrial
domain : basic robot transportation task.

3 Background
The domains were modeled based on the tasks proposed
by the international RoboCup competition @Work and
@Home leagues and in particular, the Basic Transportation
Test (BTT) and General Purpose Service Robot (GPSR).

3.1 Industrial Domain
In the BTT domain, the industrial KUKA YouBot robot
(Bischoff, Huggenberger, and Prassler 2011) (see Figure 1),
the standard platform of the league, needs to transport ob-
jects between locations. The robot has a rear metal plat-
form where a maximum of three objects can be stored and a
robotic manipulator with a gripper that can fetch small ob-
jects. Additionally a RGBD camera was placed near the end
effector to perceive the objects in the environment.

A diagram of the simplified environment is depicted in
Figure 2.

From the planning perspective the domain is composed
of the following actions: move to location, perceive, pick,
place, stage and unstage object. The full domain PDDL def-
inition can be consulted online4.

3.2 Domestic Domain
The General Purpose Service Robot (GPSR) domain tests
the ability of the robots to respond to various commands
given from human beings. The robot is provided with a list
of locations, items, persons and objects and is expected to
execute flexible commands such as: guiding people from
source to destination, answer questions, introduce himself,
grasp and place objects (transportation) or telling something
to someone.

4www.github.com/oscar-lima/mercury_
planner_experiments

76

Figure 1: KUKATMYouBot industrial robot
at RoboCup world championship 2015 Hefei, China.

S6

S5

S4

S3

S2

S1

EXIT

ST
A
R
T

Figure 2: Basic transportation test domain
simplified diagram.

The robot that we use for this purpose is the MOnarCH
robot (see Figure 3) which is equipped with various sensors
and actuators that allow him to interact in the home scenario.

4 System Architecture
Our integration strategy is to use commercial off-the-shelf
software while developing custom components we are inter-
ested from a research perspective. We briefly describe them
in section 4.1.

4.1 Component Description
Speech recognition, natural language understanding and
intention to knowledge. In the domestic domain a hu-
man needs to interact with the robot, we do this via a 3
step pipeline (see Figure 4). The speech recognition mod-
ule inputs audio stream from the robot’s microphone into
the computer and converts it into a sentence. The sentence is

Figure 3: MOnarCH service robot.

input to the natural language understanding component that
first divides the sentence into multiple phrases and recog-
nizes the intention and arguments, e.g. sentence: “go to the
kitchen and pick the water bottle”, would get divided into
2 phrases: “go to the kitchen” and “pick the water bottle”,
from each phrase we extract the intentions: “go, grasp” with
the arguments: “kitchen, water bottle”. Finally we map the
intention to knowledge, e.g. (at robot destination), (holding
object robot), where destination is kitchen and object is wa-
ter bottle.

Knowledge Base. We reuse this components from ROS-
Plan (Cashmore et al. 2015) to store the instances, facts and
goals that are required for the planning process. We define
four possible ways to interact with the knowledge base.

1. At startup fixed initial conditions can be uploaded to KB,
e.g. A robot is at the entrance and its gripper is empty.

2. A human can provide facts or goals through voice.
3. The dispatcher (based upon success or action failure) can

update the KB with the world state.
4. The action automatas modify KB based upon expert

knowledge that tries to best fit the current world state
based for instance on perception input.

PDDL problem generator. We partially reuse this com-
ponents from ROSPlan (Cashmore et al. 2015), fetch in-
stances, facts and goals from KB to construct a PDDL prob-
lem definition. Only one thing is missing: cost. We have ex-
tended their PDDL problem generator component to accept
and produce PDDL problems with cost information. The
cost information is computed by calling a motion planning
algorithm based upon a particular environment, calculating
distance between locations and generating a distance matrix
that increases the cost function as en effect of the navigation
operator. A video showing this process can be seen here5.

Knowledge base analyzer. This component answers the
following questions: 1. are there unfinished goals in the KB?
2. Is there new knowledge in the KB? (w.r.t. the last query).

5www.youtube.com/watch?v=VPuuv7F1auw

77

Figure 4: Human voice to knowledge pipeline.

Planner. This component currently calls Mercury (Katz
and Hoffmann 2014), however other PDDL planners could
be used due to the flexible architecture that we developed.

Plan Validation (VAL). The plan validation tool (Howey,
Long, and Fox 2004) inputs the generated plan, the domain
model and the problem definition and outputs a boolean re-
sponse with information whether if the plan solves the im-
posed goals.

Plan parser. Currently structured to parse IPC formated
plans, can be easily modified to adapt to other planners out-
put. However most recent planners available in the commu-
nity will produce the plan in the correct format.

Scheduler and execution layer. Receives the plan as a se-
quence of actions to be executed, iterates over each of them
and updates the world state based on the action outcome
(success or failure). The execution layer is based on high
level actions logically structured by the domain model but
on the inside each action is coded as an automata. This ap-
proach keeps each state machine well factored while main-
taining the planner search space in control of the user (de-
pends on how the domain is modeled).

4.2 Planning coordinator
In Figure 5 we present the planning architecture, it shows the
interaction between components described in section 4.1.

The planning coordinator implementation itself is also an
automata, depicted in Figure 6, notice that the framework
allows you to implement your own re-planning strategy by
creating your own automata.

The planning coordinator loop starts by uploading intrin-
sic or basic facts to the KB, then waits until unfinished goals
are available in the KB, afterwards it checks if new knowl-
edge is available. This step avoids loops when the planner
fails to make a solution, preventing it from continuous fail-
ure and waiting until new knowledge arrives, before attempt-
ing to solve the problem again.

Next step is to automatically generate a PDDL problem
instance from the Knowledge stored in the KB, then the pro-
duced plan is validated with the plan validation tool (VAL)
(Howey, Long, and Fox 2004) to ensure that the solution
solves the goal. Then we parse the planner output and con-
vert it into a vector of actions that is sent for execution to
individual action based automatas. Every time an actions is

Figure 5: System architecture showing the specifics of the
planning framework.

completed the dispatcher updates the KB. If one of the ac-
tions reports failure then we trigger re-planning.

4.3 Execution layer : State Machines
Planners are well known to suffer from curse of dimension-
ality, this usually leads to the advice: keep the domain as
simple as possible. In our approach the domain expert has
to balance this situation. There is always a trade off between
flexibility and planning time.

Behind each high level planning operator there is an
automata that deals partially with the complexity of the
stochastic domain. In this approach there is a mutual benefit:
the planning domain helps to refactor and logically organize
each individual automata and they in return help the planner
to keep its actions simple enough to be able to find a plan in
real time.

The state machine refactoring was guided by the operators
within the planning domain. This is one more example of
how planning theory can help guide roboticists.

What existed before the integration of planning technol-
ogy were monolithic state machines that would carry out the
tasks seen in the domains. The burden of providing a state
machine responsible for the whole plan fell to the develop-
ers. The use of automated planning technology enabled us
to simply model the domains and create a state machine for
each operator leaving the planner to decide which sequence
of actions would constitute the plan. This refactoring was
thoroughly explained in previous work (Lima 2016).

5 Experiment Setup
We performed three different experiments, in the first one
we have participated in two RoboCup international scientific
competition (China 2015, Leipzig 2016) to evaluate against
other teams which are mostly using automatas (only two
@Work teams used planning). Since this work presents re-
sults in planning, execution and monitoring on real robots

78

succeded

succeded

succeded

succeded

failed

(REPLAN)

failed

succeded

succeded

succeded

EXECUTE

PLAN

PARSE

PLAN

VALIDATE

PLAN

MAKE

PLAN

UPLOAD

BASIC

FACTS

GENERATE

PLANNING

PROBLEM

WAIT FOR

UNFINISHED

GOALS

WAIT FOR

NEW

KNOWLEDGE

WAIT FOR

EXECUTION

RESULT

goals available

new knowledge

available

Figure 6: Planning coordinator automata.

we benchmark our robot with this real life experiment.
In the second and third experiment we focused on the

planner. The first experiment aims to examine the scalability
of the planner. We start giving a small problem to solve and
we increase the amount of goals gradually. The experiments
were performed on computers with 5 cores and 2-8 GB of
RAM (2GB for @Work scenario and 8GB for @Home).

5.1 Mercury planner parameters
The planner has mainly the following search parameters to
configure: timeout, cost type, Landmark (lm) cost type and
heuristic weight. Since the planner is not anytime the time-
out in this case will just basically interrupt the planning pro-
cess without a solution. The cost type can be NORMAL,
ONE and PLUSONE and it refers to the operator cost ad-
justment type. The lm cost type can be NORMAL, ONE,
PLUSONE and it refers to the landmark action cost adjust-
ment. 10 different parameter sets were selected for our ex-
periments based on what the original authors have used in
their planning scripts. Table 1 shows the selected parame-
ters that from now on will be refereed as parameter set n.

5.2 Scalability experiment
The problem instance for the @Work scenario requires the
robot to transport objects between locations (see Figure 2).
We start with one object to be transported and we gradually
increase the amount of objects one at a time until 25. A time-
out of 1 minute was given to the planner to produce solution
for all experiments.

For the @Home scenario we have generated an exam-
ple problem instance where the robot has to guide a cer-
tain amount of people (1-25). Notice that the domain can
do many other things (including the transportation of ob-
jects) and only one particular operator is being tested in this
experiment (guide).

cost type lm cost type w
parameter set 1 1 1 1
parameter set 2 1 1 2
parameter set 3 1 1 3
parameter set 4 1 1 4
parameter set 5 1 1 5
parameter set 6 2 2 1
parameter set 7 2 2 2
parameter set 8 2 2 3
parameter set 9 2 2 4
parameter set 10 2 2 5

Table 1: 10 different search parameters were used for the
experiments.

The idea behind the scalability experiments is to investi-
gate how the planning time and plan quality (cost) behave
when the problem size grows.

The navigation cost information for the @Work domain
obeys a distance matrix generated from an example scenario
(see Figure 2) and was calculated by using a motion plan-
ning algorithm between all locations. All other actions (per-
ceive, pick, place, stage, unstage) are having unit cost.

The cost information used for the @Home experiment is
as follows: navigation action (2), guide action (500), all oth-
ers (1).

6 Experiment Results
Automated scripts were used to create different solutions to
the proposed PDDL problems in a 26 hour experiment run.
The planner was asked to create over 40,000 plans.

6.1 Scalability Tests
In Figure 7 we present the results for the scalability experi-
ment, we can see that while planning time grows exponen-
tially the plan length grows linearly. Additionally each plan-
ner parameters produces different plan quality and time, e.g.
parameter set 1 ”saturates” fast and is unable to handle prob-
lems which are bigger than 5 objects to transport for 1 min
timeout.

In Figure 8 we present the results from the scalability test
in the @Home scenario. We can observe a similar behav-
ior compared to @Work, but this particular domain is more
complex, therefore “saturates” earlier.

7 Discussion
We have seen that one possibility to reduce the search space
of the planner is to interleave high level actions with the
use of automatas. The domain model provides with a logical
structure on how such automatas should be factored. Model-
ing real robot domains can be quite challenging as it requires
experience on the domain. Typically roboticists are focused
on specific areas, e.g. navigation, manipulation, perception,
human-robot interaction, but rarely on all of them.

Modeling such domains is usually an iterating process,
you start with a subset of actions and you try to scale up the

79

0 10 20
0

20

40

Pl
an

ni
ng

tim
e

[s
]

1.CT1W1

2.CT1W2

3.CT1W3

4.CT1W4

5.CT1W5

6.CT2W1

7.CT2W2

8.CT2W3

9.CT2W4

10.CT2W5

0 5 10 15 20 25
0

50

100

150

Amount of objects to transport

Pl
an

le
ng

th
[s

te
ps

]

Figure 7: As problem increases in complexity, so does the
planning time, 10 different parameters have been used.

domain by adding more actions on each iteration. It is impor-
tant to notice that task planning software is not mature and
is quite experimental, usually you don’t get much feedback
about syntax mistakes as you would get in programming lan-
guages such as c++ or python.

Without the first extension to the problem generator, we
would not have been able to use the Mercury planner. The
automata-based execution layer allows for complex execu-
tion of a plan that was generated with various assumptions
to simplify the planning part. The use of refactored action-
based automatas in the execution layer helps to balance the
various robot skills by offloading the complexity either to
the planner or to the automata (design choice).

Although any PDDL planner can be easily integrated in
our architecture, we provide with an interface for the IPC
2014 Mercury planner (Katz and Hoffmann 2014). The rea-
son behind it, being it’s top performance in the IPC 2014
transport domain which was similar to our industrial @Work
domain.

8 Conclusions
In this work which we consider a success story in planning
we have presented with a use case where classical task plan-
ning and robotics were integrated. It shows the interaction
between individual contributions that were published in the

0 5 10
0

20

40

60

Pl
an

ni
ng

tim
e

[s
]

1.CT1W1

2.CT1W2

3.CT1W3

4.CT1W4

5.CT1W5

6.CT2W1

7.CT2W2

8.CT2W3

9.CT2W4

10.CT2W5

0 2 4 6 8 10 12 14
0

10

20

30

Amount of persons to guide

Pl
an

le
ng

th
[s

te
ps

]

Figure 8: As problem increases in complexity, so does the
planning time, 10 different parameters have been used.

ICAPS domain, that can be used to build the overall system
out of diverse but compatible components.

The system has proven to be a working solution and led
the team to win 3rd place in 2015 and 2nd place in 2016
in the RoboCup @Work international scientific competition
(Kitano et al. 1997). With regard to @Home the system is
still in experimental phase and has only being tested in local
demonstrations in our lab. A video showing the global robot
performance can be seen here6.

The complexity analysis that we have done is helpful to
know the scalability of the planner and to balance the com-
plexity between domain operators and the automata. Addi-
tionally our benchmark experiments provide an intuition of
the problem size that a classical planner can handle.

Both competition domains include non-deterministic out-
comes and incomplete information. The execution layer per-
formed as expected and yielded good results7 for the overall
systems performance.

The representation of the execution layer as a state ma-
chine is an improvement over other implementations, e.g.
ROSPlan, where it is difficult to analyze or change the re-

6www.youtube.com/watch?v=7fvAQVNoKjo
7Our team obtained 3rd place in 2015 and 2nd place in 2016 in

the RoboCup @Work international scientific competition.

80

planning behavior. It is important to highlight that while this
work uses some tools from ROSPlan (KB and part of the
PDDL problem generator) the framework is entirely our own
work. The changes we have made to the ROSPlan problem
generator were necessary to enable it to cope with cost in-
formation however the system we have created can handle
any PDDL planner with or without cost information.

One of the central execution issues is dealt with by coding
actions as automatas.

Our experience shows that SMACH state machines meet
our requirements and allows us to represent what is neces-
sary to achieve the robustness that we have during the acting
phase. This includes the action execution monitoring, han-
dling failures that do not require replanning, updating the
KB (based on whether actions were perceived by the robots
sensors to have succeeded or failed during the monitoring
phase) thereby providing up-to-date information for the re-
planning process when it is needed.

Contributions of this work are: The integration of various
different planning components into real robot systems with
two use cases: Industrial and Domestic service robots. Do-
main models that work in real scenarios. Experiments on a
state of the art planner on scalability and cost assignment
that provide with valuable guidelines on what problem size
can the planner solve (and in which time), and cost assign-
ment strategy, regarding the numerical values that can be set.

This work is relevant for roboticists that want to add plan-
ning capabilities to their robot systems.

Acknowledgment
Bonn-Rhein-Sieg University, as I did part of this work dur-
ing my master thesis work in there.

This work was supported by the FCT project
[UID/EEA/50009/2013].

This work was supported by project [PTDC/EEI-
SII/4698/2014].

References
Bischoff, R.; Huggenberger, U.; and Prassler, E. 2011. Kuka
youbot-a mobile manipulator for research and education. In
Robotics and Automation (ICRA), 2011 IEEE International
Conference on, 1–4. IEEE.
Burns, E.; Ruml, W.; and Do, M. B. 2013. Heuristic search
when time matters. Journal of Artificial Intelligence Re-
search 47:697–740.
Cashmore, M.; Fox, M.; Long, D.; Magazzeni, D.; Ridder,
B.; Carrera, A.; Palomeras, N.; Hurtós, N.; and Carreras, M.
2015. Rosplan: Planning in the robot operating system. In
ICAPS, 333–341.
Fikes, R. E., and Nilsson, N. J. 1971. Strips: A new approach
to the application of theorem proving to problem solving.
Artificial intelligence 2(3-4):189–208.
Howey, R.; Long, D.; and Fox, M. 2004. Val: Automatic
plan validation, continuous effects and mixed initiative plan-
ning using pddl. In Tools with Artificial Intelligence, 2004.
ICTAI 2004. 16th IEEE International Conference on, 294–
301. IEEE.

Katz, M., and Hoffmann, J. 2014. Mercury planner: Pushing
the limits of partial delete relaxation. Proceedings of the 8th
International Planning Competition (IPC-2014).
Kitano, H.; Asada, M.; Kuniyoshi, Y.; Noda, I.; Osawa, E.;
and Matsubara, H. 1997. Robocup: A challenge problem for
ai. AI magazine 18(1):73.
Korf, R. E. 1990. Real-time heuristic search. Artificial
intelligence 42(2-3):189–211.
Lima, O. 2016. Task planning, execution and monitoring
for mobile manipulators in industrial domains, (master
dissertation). retrieved from: https://github.com/oscar-
lima/isr planning/blob/kinetic/oscar lima master thesis.pdf.
Niemueller, T.; Reuter, S.; Ewert, D.; Ferrein, A.; Jeschke,
S.; and Lakemeyer, G. 2015. The carologistics approach to
cope with the increased complexity and new challenges of
the robocup logistics league 2015. In Robot Soccer World
Cup, 47–59. Springer.
Niemueller, T.; Reuter, S.; and Ferrein, A. 2015. Fawkes for
the robocup logistics league. In Robot Soccer World Cup,
365–373. Springer.
Nilsson, N. J. 1984. Shakey the robot. Technical report, SRI
INTERNATIONAL MENLO PARK CA.
Richter, S., and Westphal, M. 2010. The lama planner: Guid-
ing cost-based anytime planning with landmarks. Journal of
Artificial Intelligence Research 39:127–177.
Wygant, R. M. 1989. Clipsa powerful development and
delivery expert system tool. Computers & Industrial Engi-
neering 17(1-4):546–549.

81

Interactive Plan Execution during Human-Robot Cooperative Manipulation

Jonathan Cacace, Riccardo Caccavale, Alberto Finzi and Vincenzo Lippiello
PRISMA Lab, Dipartimento di Ingegneria Elettrica e Tecnologie dell’Informazione,

Università degli Studi di Napoli Federico II, via Claudio 21, 80125, Naples, Italy
e-mail: {jonathan.cacace, riccardo.caccavale, alberto.finzi, vincenzo.lippiello}@unina.it

Abstract
Collaborative robots (Cobots) are robotic systems designed
to physically interact with humans during task execution in
a shared industrial workspace. In this paper, we consider a
scenario in which a human operator can be supported by a
lightweight robotic arm in order to accomplish complex ma-
nipulation tasks. Specifically, we assume that manipulation
tasks are explicitly represented as hierarchical task networks
to be interactively executed exploiting the human physical
guidance. In this setting, the human interventions are con-
tinuously interpreted by the robotic system in order to infer
whether the human guidance is aligned or not with respect
to the planned activities. The interpreted human interventions
are then exploited by the robotic system to adapt its cooper-
ative behavior during the execution of the shared plan. De-
pending on the estimated operator intentions, the robotic sys-
tem can replan/adjust tasks or motions, while regulating the
robot compliance in order to follow or lead the human co-
worker. The proposed approach is demonstrated in a testing
scenario consisting of a human operator that interacts with a
Kuka LBR iiwa arm in order to perform a cooperative ma-
nipulation task. The collected experimental results show the
feasibility and the effectiveness of the approach.

Introduction
Collaborative robots (cobots) are robotic systems enabling
physical human-robot interaction and collaborative task ex-
ecution in a shared workspace (Colgate et al. 1996). In this
setting, the cooperation between the human and the robotic
co-worker should not only be safe, but also natural and ef-
fective. While robotic platforms suitable for a safe and com-
pliant physical human-robot interaction are wide spreading
in service robotics applications (De Santis et al. 2007), the
collaborative execution of complex tasks still poses relevant
research challenges (Johannsmeier and Haddadin 2017). In-
deed, in these setting, the robotic control system should gen-
erate and flexibly orchestrate structured plans, taking into
account the human intentions and interventions. These is-
sues are particularly evident in industrial service robotics,
where the tasks are usually well defined and explicitly for-
malized (Vernon and Vincze 2016), but their execution needs
to be flexibly adapted to the co-workers behaviors in order
to ensure a safe and natural human-robot collaboration. In
Copyright c© : A version of this paper has been submitted to a

conference.

this paper, we tackle this problem considering a scenario
in which a human operator can physically interact with a
lightweight robotic manipulator in order to accomplish com-
plex collaborative activities represented as hierarchical task
networks (HTNs). In this setting, we propose an approach
to interactive plan execution based on a continuous inter-
pretation of the human physical guidance. In the proposed
framework, the operator physical interventions are assessed
with respect to the planned activities and motions in order
to estimate the human intentions and targets. These are then
exploited by the robotic system in order to suitably adapt
its collaborative behavior at different levels of abstraction.
Specifically, when the human interventions are aligned with
respect to the planned task, these are maintained and the
robotic manipulator can proactively guide the user towards
the estimated targets. Otherwise, depending on the assess-
ment of the operator aims, the robotic system can change
targets and tasks, while regulating the robot compliance in
order to follow or lead the human guidance. The overall sys-
tem has been demonstrated in a testing scenario in which a
human operator interacts with a Kuka LBR iiwa arm in order
to perform a simple assembly task. We assessed the system
by comparing its performance with or without the proposed
interactive plan execution mechanism. The collected results
show the effectiveness of the approach in cooperative task
execution and human intention estimation.

Related works
Collaborative task/plan execution is a very relevant topic in
the human-robot interaction literature (Karpas et al. 2015;
Shah et al. 2011; Clodic et al. 2008; Caccavale and Finzi
2017; Sisbot et al. 2007). In this paper, we focus on phys-
ical human-robot interaction during the execution of com-
plex co-manipulation tasks. A framework suited for a sim-
ilar scenario can be found in (Johannsmeier and Haddadin
2017), where a layered architecture is proposed to enable
the execution of hierarchical assembly tasks. In this con-
text, the main focus is on activity coordination and alloca-
tion, in contrast, we are interested in a natural and com-
pliant collaboration between the human and the robot dur-
ing the execution of the shared task, which is a less ex-
plored topic in physical human-robot interaction. In partic-
ular, we propose a framework that combines the human and
the robotic guidance by means of a continuous interpreta-

82

tion of the human interventions. Estimating the human inten-
tions during the interaction is considered as a very relevant
topic in human-robot collaborative execution, indeed it is ex-
ploited in many frameworks (Hoffman and Breazeal 2004;
2007). For instance, similarly to our approach, in (Jlassi,
Tliba, and Chitour 2014) a shared trajectory generator based
on operator force contact is proposed to translate the human
intentions into ideal trajectories for the robot. For this pur-
pose, an on-line trajectory generator is combined with a clas-
sical impedance control system. In contrast, we propose an
integrated framework that combines plan execution and in-
tention estimation to enable a task-based interpretation of
the human intentions and targets. Interestingly, in (Peternel
et al. 2016) the authors propose to adapt the robot behavior
with respect to the operator fatigue during a co-manipulation
task, but intentions and targets are not inferred. Less related
to the work presented in this paper, in other approaches, hu-
man intention estimation is also exploited to increase the ef-
ficiency of task planning algorithms (Hoang and Low 2013;
Caccavale et al. 2016a). Intention recognition methods typ-
ically consider external forces excreted by the human op-
erator on the robot side to regulate the low level con-
trol of the robot (Park, Park, and Manocha 2016; Peternel
and Babic 2013; Gribovskaya, Kheddar, and Billard 2011;
Li et al. 2015). In contrast, in our framework the assessed
human intentions are exploited at different levels of abstrac-
tion. Indeed, not only they are used to adapt the robot role
(from active to passive and vice versa) and compliance dur-
ing the co-manipulation, but also to suitably modify the exe-
cution of a cooperative task when novel intended targets are
estimated from the human physical interventions. Our ap-
proach to task/trajectory deviation can be related to the one
proposed by (Cacace, Finzi, and Lippiello 2014) for shared
teleoperation of an aerial vehicles, which is here suitably
adapted to physical collaborative manipulation. Human mo-
tion estimation is also deployed in (Ge, Li, and He 2011),
where the authors employ Neural Networks to extract human
motion parameters and predict whether the human interven-
tions are active or passive; in contrast, we assess human in-
tentions and possible targets with respect to the activities of
a cooperative task.

System Architecture
The proposed control architecture is illustrated in Figure 1.
The High-level control system is responsible for task plan-
ning/replanning, plan monitoring, and plan execution, while
the Adaptive shared controller module manages the robot
motion according to the selected target and the human guid-
ance. We assume that this controller can directly provide po-
sitions and orientations of the manipulator end effector, del-
egating inner control loops to solve the associated inverse
kinematics. In addition, we assume that robotic system can
directly estimate the forces Ft acting on the manipulator end
effector and externally provided by the operator, who per-
ceives an associated force feedback Fext. These forces are
continuously monitored during physical human-robot inter-
action in order to interpret the human guidance in the context
of to the current plan. For this purpose, the Operator Inten-
tion Estimation module assesses whether the human inter-

Figure 1: The overall architecture integrates an High-Level
Control System that interacts with the Operator Intention Es-
timation module providing the estimated intention and target
to the Adaptive Shared Controller and receiving the reached
target points. The Human Operator can guide the task exe-
cution by physically interacting with the manipulator.

ventions are aligned or not with respect to the robot activi-
ties and targets. This module is exploited by the High-level
Control System to interact with the Adaptive Shared Con-
troller in order to suitably estimate the robot targets and
adapt its compliant behaviour during the execution of the
cooperative task. Specifically, the H-L Control System se-
lects and monitors the plan and the associated target points,
while the selected target pointXt is provided to the Adaptive
Shared Controller along with an associated control mode b.
The Adaptive Shared Controller module not only generates
and monitors the motion dataXd for each targetXt, but also
regulates the robot behavior according to the operator guid-
ance. For this purpose, we exploit an admittance controller
that enables the robot to dynamically combine the forces ap-
plied to the robot and its displacement from its desired posi-
tion (Hogan 1984). Finally, the end effector trajectories are
converted into joint values q to be executed by the manip-
ulator controller. These modules are further detailed in the
following sections.

In this section, we describe the High Level Control System
that integrates plan generation, plan monitoring, and execu-
tion. The overall system architecture is depicted in Figure 2.
The proposed framework relies on an Executive System ca-
pable of continuously monitoring and orchestrating multiple
hierarchical tasks, in order to adapt in real time plan selec-
tion/execution with respect to the recognized human inten-
tion. The Executive System can exploit a hierarchical Task
Planner for plan generation and replanning, while a Target
Selector is introduced to interpret the human guidance with
respect to the current tasks providing targets and control
modes for the Adaptive Shared Control. The proposed ex-
ecutive framework is inspired by the one proposed by (Cac-
cavale et al. 2016b; Caccavale and Finzi 2017). It is based
on a control cycle that involves an internal structure, called
Working Memory (WM) and a plan library, called Long Term
Memory (LTM). The LTM is a repository that contains a
declarative representations of the tasks and the actions the
robotic system can perform. In order to be executed, a task
is to be allocated, hierarchically decomposed, and instanti-
ated into the WM. This structure represents the executive
state of the system and collects the set of activities currently

83

alivealive

task1task1

task2task2

task3task3 task4 task4 task5task5

LTM
method(task1,[task2...]).
method(task2,[task3...]).
operator(task3,[...]).
operator(task4,[...]).
operator(task5,[...]).
...

alivealive

WM

Task Planner

Target Selector

Executive System

Figure 2: The High Level Control System relies on an Exec-
utive System that interacts with a Task Planner in order to
expand and instantiate hierarchical tasks. Hierarchical task
definitions are represented in the Long Term Memory (LTM),
while the Working Memory (WM) collects the set of tasks
currently under execution .

under execution, including both abstract and primitive tasks,
representing, respectively, structured activities and concrete
sensorimotor processes.

Task Representation
Each task is hierarchically represented in the LTM by means
of methods and primitives actions. We deploy a represen-
tational framework, which is inspired by the one proposed
for Hierarchical Task Networks (HTNs) (Nau et al. 2003). A
method is represented by the quadruple (h,C, T,E), where
h is a compound task (head of the clause), C are the pre-
conditions, T = (t1, . . . , tn) is the list of subtasks, while
E is the set of post-conditions. A primitive action is repre-
sented as a quadruple (h,A,D,E) where h is a primitive
task, A and D are, respectively, the add and the delete lists
of a STRIPS-like representation, while E is a postcondition.
Notice that, in this task formulation, postconditions of meth-
ods and actions are introduced in order to enable plan moni-
tor during plan execution; by neglecting postconditions, the
proposed encoding can be also exploited for plan generation
by a HTN-based planning process as in (Nau et al. 2003).

Working Memory
The WM collects the abstract and concrete processes allo-
cated and instantiated for the execution. In our framework,
these processes are represented by an annotated rooted tree
T = (r,B,E), whose nodes in B represent allocated pro-
cesses, the root r ∈ B is the process that bootstraps and
manages the WM, while the edges E represent parental re-
lations among sub-processes. These nodes can be either con-
crete, representing real sensorimotor processes, or abstract,
which are for instantiated methods to be hierarchically de-
composed according their definition in the LTM. Each node
in WM is represented by a 5-tuple (m, q, p, x, µ), wherem is

the name of the allocated task, q and p represent the instanti-
ated precondition and postcondition respectively, x is the set
of sub-behaviors generated by m, while µ is an activation
value for that node (which is not used in this work). Notice
that multiple tasks can be allocated and executed in the WM.
A node in the WM is considered enabled if all the precondi-
tions along his branch are satisfied. A special process (alive
in Figure 2) is the root of the WM tree and manages its up-
dates by allocating and deallocating tasks.

Plan Execution
In this work, we focus on plan execution, therefore, we as-
sume that the system is to execute a task already decom-
posed by a hierarchical planner. In particular, we assume that
a task t is associated with set of alternatives P1, . . . , Pk each
representing a possible executable plan generated by a HTN
planner. We also assume that each plan Pi is represented by
a suitable node allocated in the WM and connected with a
hierarchical structure Hi that contains the ground instances
(either methods and operators) of the task network generated
during the planning process. Each plan node is also associ-
ated with a process responsible for plan monitoring.

add-brown-sugar(coffee)add-brown-sugar(coffee) take(coffee)take(coffee)

add-sugar(coffee)add-sugar(coffee)

add-white-sugar(X)add-white-sugar(X)

white-sugar

add-sugar(X)add-sugar(X)

method1
brown-sugar

method2

take(coffee)take(coffee)

add-sugar(coffee)add-sugar(coffee)

add-white-sugar(coffee)add-white-sugar(coffee)

plan1plan1

add-sugar(coffee)add-sugar(coffee)

plan2plan2
method1 method2

Goal Task

Hierarchical
Task Network

Plans

add-brown-sugar(X)add-brown-sugar(X)

take(coffee)take(coffee)

Figure 3: Hierarchical representation of plans. Starting from
a list of goal tasks (upper-level), the planner exploits the
HTN representation of the tasks (middle-level) in order
to produce two plan sequences along with their hierarchy
(lower-level). Notice that light and dark gray boxes stand
for compound and primitive tasks respectively, while green
boxes are preconditions.

An example of task decomposition is depicted in Fig-
ure 3. The goal tasks is composed of add-sugar(coffee)
and take(coffee). In this case, add-sugar(coffee) is a com-
pound task that can be performed in two ways (methods)
by adding either brown or white sugar to the coffee; instead,
take(coffee) is already a primitive task, which can be directly
executed with no further decompositions. If both types of
sugar are available (brown and white) in the initial state,
two plans can be generated (Figure 3, plans) and allocated
in the WM for the execution. In Figure 4, we show how the
two plans of Figure 3 are allocated in the WM. In this case,
primitives and methods provide the following task-specific
postconditions: the add-sugar tasks are associated with the
sugar.added postcondition while take(coffee) is associated

84

with coffee.taken. Once allocated in the WM, the execution
of one of these two plans is then decided at run-time depend-
ing on the WM updates due to the environmental changes
and the operator guidance. In this setting, when multiple
conflicting activities are enabled, the human operator guid-
ance can be exploited to implicitly overcome the produced
impasse pointing the system towards the desired target. Dur-
ing the interaction, the WM maintains the hierarchical struc-
ture of the allocated plans. It keeps track of the current state,
including active tasks, sub-tasks, and the concrete sensori-
motor processes that allow to continuously monitor both the
environment and the human interventions. In this setting, in
order to assess which task/action is accomplished among the
active ones, we provide each method/primitive action with
a specific postcondition. When a postcondition is satisfied
the associated task is considered as accomplished, hence dis-
abled.

add-sugar(coffee)add-sugar(coffee)

plan1plan1
TRUE

add-white-sugar(coffee)add-white-sugar(coffee)

white-sugar

AliveAlive

sugar.added

sugar.added

take(coffee)take(coffee)

coffee.taken

sugar.added

add-sugar(coffee)add-sugar(coffee)

plan2plan2
TRUE

add-brown-sugar(coffee)add-brown-sugar(coffee)

brown-sugar

sugar.added

sugar.added

take(coffee)take(coffee)

coffee.taken

sugar.added

TRUE TRUE

Figure 4: Representation of plans in WM. Light and dark
gray ovals are for compound and primitive tasks. Each oval
contains the ground instance of the related task, while green
and blue boxes are preconditions and postconditions pro-
vided by the planned methods/actions. The root of the hi-
erarchy, the alive node, is associated with the behavior that
manages the WM.

Integrating Robot and Human Guidance
The human interactive physical interventions are continu-
ously interpreted in order to estimate the associated intention
and to accordingly adjust the robot collaborative behavior at
different levels of abstraction: trajectories, targets, and tasks.
The interpretation of the human intention is obtained by the
interaction of the High-level Control System and the Opera-
tor Intention Estimation modules (see Fig. 1). The first one
proposes possible targets for robotic manipulator depending
on the planned and executed activities; each possible tar-
get is then evaluated by the Operator Intention Estimation
with respect to the current human physical guidance. The
interpreted targets are then provided to the Target Selector,
whose outcome is sent to the Adaptive Shared Controller,
which is to accordingly adapt the robot behavior. In partic-
ular, when the human guidance is coherent with respect to
the planned task, hence a human-robot shared target clearly
emerges, the Adaptive Shared Controller provides a robotic
behavior which is compliant with the human action. Oth-
erwise, if the assessed intention is misaligned with respect

to the planned targets, or the current target is ambiguous
(see Target Selector in the next section), the Adaptive Shared
Controller switches in a passive mode in order to enable the
human to easily guide the manipulator end-effector.

Intention Classification
Given a target (and the trajectory to reach it), we classify the
human interventions into four possible main intentions. In a
first case, the user guidance is coherent with both the target
and trajectory (Coinciding). Instead, in a different scenario,
the human aims at adjusting the robot motion (e.g. in order to
avoid an obstacle) without changing the target point (Deviat-
ing). We also consider two cases in which the human inten-
tion is to contrast the robot motion (e.g. to stop or suspend
the execution) (Opposite) or to switch towards a different
task/target (Opposite Deviating). In our framework, inten-
tion classification is based on a three layered feed-forward
Neural Network that classifies the aim of the human phys-
ical interventions from three input data: the magnitude of
the contact forces ||Ft|| provided by the operator on the ma-
nipulator end effector; the distance dh between the current
position of the end effector Xc and the closest point to the
planned trajectory Cp, i.e. ||Xc − Cp||; the deviation dp be-
tween the planned and human motions, calculated as the an-
gle between the two movement vectors, i.e 6 (−→dc ,−→dd). The
outcome of the network are the 4 classes described above
(Coinciding, Deviating, Opposite, Opposite Deviating) as-
sociated with 4 nodes. The middle layer is composed of 24
nodes. The network has been trained by involving 10 testers
(students and researchers), each physically interacting with
the robotic arm for 10 minutes in order to obtain data about
all the intentions classes. After this training phase, we tested
again the classified with another group of 10 testers, obtain-
ing an accuracy of about 92%, 70%, 82%, 72% for Coincid-
ing, Deviating, Opposite, Opposite Deviating, respectively.

Target Selection
We now illustrate how the plans allocated in the WM and
the human interventions are continuously monitored and in-
tegrated in order to define the target positions and the con-
trol modes for the Adaptive Shared Controller. As already
explained above, the multiple plans allocated in the WM are
decomposed into a set of concrete sensorimotor processes,
each associated with a primitive operator. The execution cy-
cle of a generic process is illustrated in Algorithm 1. For
each allocated primitive task, if enabled, i.e. all the precon-
ditions along the branch are satisfied (line 2), the estimated
human intention (line 3) and the task are sent to the Tar-
get Selector, which is to produce the inputs for the Adap-
tive Shared Control. When the postconditions E are satis-
fied (line 5), the operator is assumed to be executed, hence
the add and delete lists are exploited to check the state and
accordingly update it (line 6). Finally, h is deallocated from
the WM (along with all the ancestors with the same post-
conditions). For each time stamp, the enabled primitive tasks
produce a list of couples (h, Ih) that is exploited by the Tar-
get Selector in order to define the target position Xt for the
robot along with the interaction mode. From this list we can

85

Algorithm 1 Execution cycle of a monitoring-behavior as-
sociated with the operator (h,A,D,E).

1: while task h is allocated in WM do
2: if h preconditions are satisfied then
3: assess the human intention Ih for h
4: send (h, Ih) to the Target Selector
5: if E postcondition is satisfied then
6: check and update the state according toA andD
7: remove h from WM
8: end if
9: end if

10: end while

also extract the possible targets in the current executive state.
For this purpose, we assume that each primitive task h, that
determines a robot motion, is directly associated to a tar-
get position Xh for that motion. Target selection works as
follows. We introduce an ordering on the intentions such
that Coinciding > Deviating > Opposite, > Opposite
Deviating which induces a partial ordering on the set of
targets (i.e. Xh1 > Xh2 if Ih1 > Ih2). Whenever only one
target is enabled with the intention assessed as Coinciding
or Deviating, that target is selected. When multiple targets
are enabled, if their ordering determines a unique best tar-
get (neither Opposite or Opposite Deviating), this is se-
lected. Otherwise, no target is selected. The Target Selector
couples each target with an operation mode that coincides
with the estimated intention in the case of Coinciding or
Deviating, otherwise, when no target is defined, the oper-
ation mode is set as Passive leaving the lead to the human
operator until a unique target is again available.

Adaptive Shared Controller
The Adaptive Shared Controller receives target posi-
tions Xt = (xt, yt, zt) along with the operation mode
(Coinciding, Deviating, Passive) from the High-Level
Control System in order to guide the manipulator towards
that target in cooperation with the human exerting a force
Ft on the end effector. The Adaptive shared controller is to
generate the motion data Xd needed to reach the target Xt.
In order to reach the target position, the controller generates
a velocity reference Ẋd for each time stamp i, as follows:

Ẍdi = ω2ep − 2ζẊdi−1 (1)

Ẋdi
= Ẋdi−1

+ Ẍdi
τ (2)

where ω and ζ are gains representing frequency and damp-
ing of the system, τ is the sampling interval of the controller,
while ep = (Xt−Xc) is the distance of the manipulator (Xc)
from the target position (Xt). The velocity in Eq. 2 is then
integrated to reach the desired position of the robot, that is:

Xdi
= Xdi−1

+ Ẋdi+1
τ (3)

Since the manipulator should be adaptive with respect to
the operator physical guidance, we exploit an admittance
controller, which is typically described by the second-order
equation:

mẍ+ dẋ+ kx = F (4)

that in our case can be specialized as follows:

Ẍci+1
=
MẌdi

+D(Ẋdi
− Ẋci) +K(Xdi

−Xci) + Ft

M
.

(5)
withM ,D andK representing, respectively, the desired vir-
tual inertia, the virtual damping and the virtual stiffness.
The output of this module is the instant compliant posi-
tion Xc, representing the control command for the Position-
Controlled System. Depending on the estimated target and
the human intention, the robotic manipulator may set a pas-
sive or an active mode. In the first case, the manipulator is
fully compliant to the operator interaction without providing
any contribution to the task execution. Instead, in the second
case, the robot is to protectively assist the operator in reach-
ing the execution of the cooperative task. In our framework,
the system can switch from a passive to an active mode by
removing the virtual stiffness from Eq. 5 and by setting to
zero the desired acceleration and velocity. Instead, when the
target is associated with a Coinciding or Deviating mode, the
virtual stiffness is set to a value higher than zero. In particu-
lar, when the operator intention is interpreted as Coinciding
the planned target point and the motion trajectories are main-
tained, along with the admittance parameters for cooperative
manipulation. Instead, when the operation mode is Deviat-
ing, a more docile behavior for the robot is needed. For this
purpose, we set different admittance parameters that enable
the human to deviate, but can be also guided back towards
the planned target. In order to achieve this effect, while the
operation mode is Deviating, the Adaptive Shared Con-
troller not only sets different admittance parameters, but also
generates intermediate target points between the final tar-
get position Xt and the closest point to the planned path
Cp in order to guide the user towards the planned trajec-
tory. This intermediate target is updated until the operative
mode changes. When the manipulator is guided back to the
planned trajectory a Coinciding mode is activated; other-
wise, the system switches to the Passive mode, following
the human guidance. It is worth noticing that, similarly to
(Cacace, Finzi, and Lippiello 2014), as a side effect of the
robot compliant behavior, the operator receives also a force
feedback from the robotic manipulator that provides a haptic
perception the displacement between the current robot state
and the planned one.

Case Study
In this section, we describe a pilot test to assess the system
capability of suitably executing planned activities under the
human physical guidance. For this purpose, we introduce a
simple assembly task where a human co-worker is to guide
the robotic manipulator in order to built a small pyramid of
objects. The experimental workspace is illustrated in Figure
6. In our set-up we have three colored blocks (two white and
one red) that have to be stack in order to create a pyramid
on the central support: the two white blocks should be used
as the base of the pyramid, while the red one as the ver-
tex (see Figure 6). This task can be executed in two ways,
depending on which white block is picked at first. In this ex-
periment, both these alternatives are considered by allocat-

86

Figure 5: Experimental setup for the assembly-task: it com-
prises three colored blocks and a support (up). The blocks
have to be composed on the support to create a pyramid
(down).

plan1plan1
TURE

AliveAlive

assemble(b1,base)assemble(b1,base)
TRUE

base(b1)
assemble(b2,base)assemble(b2,base)

base(b1)

base(b2)
assemble(b3,base)assemble(b3,base)

base(b1) base(b2)∧

base(b3)

plan1plan1
TURE

assemble(b2,base)assemble(b2,base)
TRUE

base(b2)
assemble(b1,base)assemble(b1,base)

base(b2)

base(b1)
assemble(b3,base)assemble(b3,base)

base(b1) base(b2)∧

base(b3)

Figure 6: WM representation of the assembly-task: the robot
is to cooperate with the human operator following two pos-
sible plans.

ing two alternative plans in WM (Figure 6), while the actual
plan/action selection process depends on the users physical
guidance. In these tests, we exploit as robotic manipulator a
KUKA LWR IV+, equipped with a WSG50 2-fingers grip-
per. The workspace is a table of 50 × 70 cm. We involved
3 users in the experiments. Notice that in co-bots industrial
scenarios the users are supposed to be expert and trained,
hence the testers are students with robotics background pro-
vided with an informal description of the system features
and the task. Each user performed 4 executions of the task
in two different modalities, enabling and disabling the plan
guidance. In the second case, we assume that all the possible
targets points are always enabled (i.e. Target Selector does
not filter out targets), hence not selected exploiting the plan.
Our aim here is to test whether and how the proposed plan
guidance supports cooperative task execution and enhances
the accuracy of intention estimation.

Table 1 compares the system and the human performance

Plan no-Plan
Accuracy 0.986 0.639
Errors (avg ± std) 0.167 ± 0.408 3.332 ± 3.724
Times (avg ± std) 82”±14” 145”±38”
Speed-up 16.1% - 59.6%

Table 1: Systems performance on assembly-task.

during the assembly task, with or without the plan guidance
support. As for the system performance, in the upper part
we report the accuracy of the intention and target recog-
nition along with the average number of miss-recognitions
per execution, with or without the plan. We can observe
that the plan guidance clearly improves the system ability
to recognize the human intentions and targets during the in-
teraction. Here, as expected, the planned activities propose
a reduced set of possible targets, filtered by the plan, which
can be better evaluated by the Operator Intention Estima-
tion. This way, the plan guidance is more effective, as we
can observe in the in the lower part of Table 1 that illus-
trates the minimum and maximum improvement (speed-up)
in terms of time to accomplish the task in the two testing
modes. For each tester, this improvement is calculated as
(timenp − timep)/timenp, where timenp and timep are
for the time to accomplish the task with or without the plan
guidance.

Conclusions and Future works
We presented a framework that integrates interactive plan
execution and physical human-robot interaction in order to
enable the execution of complex co-manipulation tasks. In
the proposed approach, we assume that system is endowed
with hierarchically represented tasks that can be executed
exploiting the human physical guidance. In contrast with al-
ternative approaches to physical human-robot interaction, in
the proposed framework the operator physical guidance is
interpreted in the context of a structured collaborative task.
In this setting, during the interactive manipulation, the user
interventions are continuously assessed with respect to the
possible alternative tasks/activities proposed by the plan, in
order to infer intentions and targets. These are then exploited
both for task selection and to on-line regulate the robotic
compliance with respect to the human interactive behavior.
We described the overall architecture detailing the plan exe-
cution framework, the intention estimation system, the target
selection mechanism, and the adaptive shared control sys-
tem. The proposed framework has been demonstrated in a
real world testing scenario in which a user interacts with
a lightweight manipulator in order to accomplish a simple
assembly tasks. In this context, we compared the perfor-
mance of the system with or without the support of the plan
guidance. The collected results suggest that the proposed
approach effectively exploits the plan structure to enhance
both intention/target estimation and cooperative task execu-
tion. These results encourage us to investigate the system be-
havior in more complex co-manipulation settings assessing
additional parameters from the human side (e.g. human fa-

87

tigue, cognitive workload, situation awareness, etc.). We are
also interested in the enhancement of the proposed plan ex-
ecution framework by introducing additional constructs and
constraints.

References
Cacace, J.; Finzi, A.; and Lippiello, V. 2014. A mixed-
initiative control system for an aerial service vehicle sup-
ported by force feedback. In 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 1230–1235.
Caccavale, R., and Finzi, A. 2017. Flexible task execu-
tion and attentional regulations in human-robot interaction.
IEEE Transactions on Cognitive and Developmental Sys-
tems 9(1):68–79.
Caccavale, R.; Cacace, J.; Fiore, M.; Alami, R.; and Finzi, A.
2016a. Attentional supervision of human-robot collabora-
tive plans. In 25th IEEE International Symposium on Robot
and Human Interactive Communication, RO-MAN 2016.
Caccavale, R.; Cacace, J.; Fiore, M.; Alami, R.; and Finzi,
A. 2016b. Attentional supervision of human-robot collabo-
rative plans. In Robot and Human Interactive Communica-
tion (RO-MAN), 2016 25th IEEE International Symposium
on, 867–873. IEEE.
Clodic, A.; Cao, H.; Alili, S.; Montreuil, V.; Alami, R.; and
Chatila, R. 2008. SHARY: A supervision system adapted
to human-robot interaction. In ISER, volume 54 of Springer
Tracts in Advanced Robotics, 229–238. Springer.
Colgate, J. E.; Edward, J.; Peshkin, M. A.; and Wannasupho-
prasit, W. 1996. Cobots: Robots for collaboration with hu-
man operators. In Proceedings of the ASME Dynamic Sys-
tems and Control Division, 433–439.
De Santis, A.; Siciliano, B.; Luca, A.; and Bicchi, A. 2007.
An atlas of physical human-robot interaction. Mechanism
and Machine Theory 43(3):253–270.
Ge, S. S.; Li, Y.; and He, H. 2011. Neural-network-based
human intention estimation for physical human-robot inter-
action. In 2011 8th International Conference on Ubiquitous
Robots and Ambient Intelligence (URAI), 390–395.
Gribovskaya, E.; Kheddar, A.; and Billard, A. 2011. Motion
learning and adaptive impedance for robot control during
physical interaction with humans. In 2011 IEEE Interna-
tional Conference on Robotics and Automation, 4326–4332.
Hoang, T. N., and Low, K. H. 2013. Interactive POMDP
lite: Towards practical planning to predict and exploit in-
tentions for interacting with self-interested agents. CoRR
abs/1304.5159.
Hoffman, G., and Breazeal, C. 2004. Collaboration in
human-robot teams. Proceeding of the AIAA 1st Intelligent
Systems Technical Conference 1.
Hoffman, G., and Breazeal, C. 2007. Effects of anticipa-
tory action on human-robot teamwork efficiency, fluency,
and perception of team. Proceeding of the ACM/IEEE inter-
national conference on Human-robot interaction - HRI ’07
1.
Hogan, N. 1984. Impedance Control: An Approach to Ma-
nipulation. IEEE American Control Conference 304–313.

Jlassi, S.; Tliba, S.; and Chitour, Y. 2014. An On-
line Trajectory generator-Based Impedance control for co-
manipulation tasks. IEEE Haptics Symposium, HAPTICS
391–396.
Johannsmeier, L., and Haddadin, S. 2017. A Hierarchi-
cal Human-Robot Interaction-Planning Framework for Task
Allocation in Collaborative Industrial Assembly Processes.
IEEE Robotics and Automation Letters 2(1):41–48.
Karpas, E.; Levine, S. J.; Yu, P.; and Williams, B. C. 2015.
Robust execution of plans for human-robot teams. In ICAPS,
342–346. AAAI Press.
Li, Y.; Tee, K. P.; Chan, W. L.; Yan, R.; Chua, Y.; and Limbu,
D. K. 2015. Continuous Role Adaptation for Human Robot
Shared Control. IEEE Transactions on Robotics 31(3):672–
681.
Nau, D. S.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock,
J. W.; Wu, D.; and Yaman, F. 2003. Shop2: An htn planning
system. Journal of artificial intelligence research 20:379–
404.
Park, J. S.; Park, C.; and Manocha, D. 2016. Intention-
aware motion planning using learning based human motion
prediction. CoRR abs/1608.04837.
Peternel, L., and Babic, J. 2013. Learning of compli-
ant human-robot interaction using full-body haptic interface.
Advanced Robotics 27:1003–1012.
Peternel, L.; Tsagarakis, N.; Caldwell, D.; and Ajoudani, A.
2016. Adaptation of robot physical behaviour to human fa-
tigue in human-robot co-manipulation. IEEE-RAS Interna-
tional Conference on Humanoid Robots 489–494.
Shah, J.; Wiken, J.; Williams, B.; and Breazeal, C. 2011.
Improved human-robot team performance using chaski, a
human-inspired plan execution system. In Proceedings of
the 6th International Conference on Human-robot Interac-
tion, HRI ’11, 29–36. New York, NY, USA: ACM.
Sisbot, E. A.; Marin-Urias, L. F.; Alami, R.; and Simeon, T.
2007. A human aware mobile robot motion planner. IEEE
Transactions on Robotics 23(5):874–883.
Vernon, D., and Vincze, M. 2016. Industrial priorities for
cognitive robotics. In EUCognition, volume 1855 of CEUR
Workshop Proceedings, 6–9. CEUR-WS.org.

88

Action trees for scalable goal recognition in robotic applications

Helen Harman, Keshav Chintamani, Pieter Simoens
Department of Information Technology - IDLab,

Ghent University - imec,
Technologiepark 15, B-9052 Ghent, Belgium

{firstname.surname}@ugent.be

Abstract

Robots are being deployed in a wide range of environments
to assist humans with their daily activities. To assist a per-
son, and avoid obstructing them when executing a different
task, a robot needs to know what the intentions of the people
are. In this short paper we present an early version of our
work, in which we focus on goal recognition using techniques
from classical symbolic planning to form an Action Tree. We
present results which show improved goal recognition times,
without compromising on accuracy.

Introduction
Increasingly robots are being developed to work alongside
and help humans, therefore it is essential for a robot to un-
derstand the intentions of the humans. In many situations
there are multiple ways the same aim can be achieved. Thus,
in order to assist the person a robot will need to recog-
nise both the goal and the intended plan. However, humans
are likely to switch between goals and leave goals partially
completed causing real world intention recognition to be a
challenging problem. In addition to this, noisy erroneous
sensor observations may cause further problems. Our long-
term aim is to enable robots to provide assistant to humans
with their daily activities, by recognising a person’s goal and
how they intend to reach that goal (i.e. their plan).

In this paper we focus on single-goal recognition, as a first
step. This is to show our algorithm’s potential advantages for
use in intention recognition in robotic applications. We pro-
pose transforming the planning problem into an Action Tree
(i.e. AND-OR tree with some temporal constraints). This al-
lows the dependencies between different actions to be rep-
resented, and the most likely plans as well as goals can be
extracted.

A well-studied approach to intention recognition is
searching through a dictionary/library of predefined plans
(Zhuo and Li 2011). (Holtzen et al. 2016) take a similar ap-
proach to us, as they use a Temporal AND-OR tree. How-
ever, their probability update rules differ from ours, and we
do not use a dictionary, as we aim to allow more flexibility
in the way a person’s intentions are modelled (Ramırez and
Geffner 2010).

One approach is through training a model on humans’ in-
tentions using a set of training data, such as HMM (Singla,
Cook, and Schmitter-Edgecombe 2010) and RNN (Bisson,

Larochelle, and Kabanza 2015). These types of approaches
can require a lot of time being spent on manually labelling
data and can produce models which only work on data sim-
ilar to the training set (Yordanova, Krüger, and Kirste 2012).

Due to the above disadvantages we have opted to use a
classical planning approach to intention recognition, which
in some literature is referred to as goal/plan recognition as
planning (Sohrabi, Riabov, and Udrea 2016) or inverse plan-
ning (Ramırez and Geffner 2010). In (Ramırez and Geffner
2010), (Chen et al. 2013) and (Freedman and Zilberstein
2017) a planner must be called twice for every possible goal,
which is unscalable to large state-spaces.

(Pereira, Oren, and Meneguzzi 2017) significantly reduce
the recognition time through the use of landmarks, i.e. ac-
tions that must always be performed for a goal to be reached.
We will compare our approach to this and show we have im-
proved the scalability of goal recognition. In (Freedman et
al. 2018) an algorithm to speed-up recognition time, by only
using a single call to the planner, has been proposed but not
yet implemented, therefore in future work we would look at
also comparing to this approach.

We begin by presenting a brief description of the planning
algorithm we have adapted. Then, we describe our approach
to goal recognition. Finally, we give our preliminary result.

Background
Traditionally a planning problem is formally defined as
P = (F, I,A,G). Where F is a set of atoms, I ⊂ F is
the initial state, G ⊂ F is a goal state, and A is a set of
actions along with their preconditions and effects (Ramırez
and Geffner 2010). A task planner is used to find the least
costly sequence of actions required to reach the goal state.
Often these planning problems are written in Planning Do-
main Definition Language (PDDL).

In Fast Downward (FD) (Helmert 2006) the planning
problem is first translated into SAS+ (a “multivalued plan-
ning tasks” representation). Actions and states which are
impossible to reach from the goal are removed during this
translation. From this the causal relationships between state
variables (i.e. causal graph) and how the variables change
state i.e. Domain Transition Graphs (DTGs) are determined.
Every variable has its own DTG. The causal graph and DTG
are used during the search for a plan.

89

Goal recognition is often viewed as the inverse of plan-
ning i.e. T = (F, I,A,O,G) where G is the set of all
possible goals and O is the sequence of observed actions
(Ramırez and Geffner 2010). In this paper, we aim to find
the probability of each G ∈ G.

Dataset
For evaluating our approach we use the datasets produced by
(Pereira, Oren, and Meneguzzi 2017), which are based on
the problems used for the International Planning Competi-
tion (IPC). Each dataset contains a PDDL domain and tem-
plate (i.e. problem without a goal) file, a list of possible goals
G, and a sequence of observations O ⊂ A. To check the res-
ults produced by goal recognition the real goal is provided.

In Figure 2 we show the Action Tree for the Kitchen data-
set. The next section describes how it has been created and
how the probability of an action being performed is updated.

Method
Our software starts by creating a PDDL problem file, con-
sisting of the template plus a goal state containing all of the
possible goals G in an or statement. The PDDL domain and
problem file is then transformed into a set of DTGs. Once the
Action Tree has been created from the DTGs, the probability
of each action a ∈ A appearing in the person’s plan is up-
dated based on the observations O. The tree is then searched
for the most likely actions which result in each of the pos-
sible goals being reached. The goal(s) with the highest prob-
ability are returned, i.e. the candidate goals C ⊂ G. Multiple
candidate goals could be returned as several goals can be
equally likely. An overview of our system is shown in Fig-
ure 1. We use the term dependencies to mean the actions that
must be performed before another action can be performed.

Figure 1: The most important classes in our system are de-
picted in green boxes; grey boxes show the steps performed
by the original task planner FD (Helmert 2006).

To describe our method we use the Kitchen dataset. In
this dataset there are 3 possible goals: made breakfast,
lunch packed and made dinner. For each of these goals
there are multiple plans which can be used to reach that goal,
e.g. for lunch packed a person must always perform the
take(lunch bag) action and has the option of either per-
form the activity-make-peanut-butter-sandwich
or activity-make-cheese-sandwich action.

Action tree creation
To perform goal recognition, we transform the DTGs into
an Action Tree, in which leaf nodes are actions and all other
nodes are: OR nodes in which one or more of the sub-trees
must be performed; UNORDERED-AND nodes where all sub-
trees are performed in any order, and ORDERED-AND nodes

for which all sub-trees must be performed in order.. All ex-
amples used in this section are shown in the Action Tree
depicted in Figure 2. Action (leaf) nodes and ORDERED AND
nodes can have multiple parent nodes, as the Action Tree
only contains one action node per action. Unless otherwise
stated, we always use the term parent(s) to refer to the direct
parent(s) of a node. A tree is initialised with an OR node as
the root, this root remains the same and will receive a new
child for every action inserted into the tree.

Each DTG describes how a variable changes state.
Multiple labels are given to transitions with multiple pos-
sible preconditions, e.g. the preconditions for activity-
Pack-lunch require either (made cheese sandwich)
or (made peanut butter sandwich) to be true.
activity-Pack-lunch has the effect lunch packed,
therefore the transition to lunch packed being true will
have at least two labels.

Figure 2: Small section of the action tree created from
the kitchen domain. O-AND stands for ORDERED-AND
and U-AND is UNORDERED-AND. For readability some ac-
tion names have been shortened, e.g. activity-make-peanut-
butter-sandwich has been shortened to peanutB-sandwich.
Note, in this figure nodes have been repeated to represent
that they have multiple parent nodes.

Our system iterates through all the DTG transitions for
all of the variables and adds each transition (i.e. action) to
the tree. Actions which do not have any preconditions are
appended to the root node’s children, e.g. take(bread).
Actions with dependencies/preconditions are added after
all of their dependencies are, e.g. take(lunch bag),
activity-make-cheese-sandwich and activity-
make-peanut-butter-sandwich are added to the tree
before activity-pack-lunch is.

When an action has dependencies, an UNORDERED-AND
node is created containing all the dependencies as its chil-
dren. These children will now have at least two parents,
the UNORDERED-AND and the root node. The UNORDERED-
AND node along with the action itself are added to a new
ORDERED-AND node, which is appended to the root node’s
children. If the dependencies have dependencies, then a dir-
ect child of the UNORDERED-AND node will be an ORDERED-
AND node.

For example, the action activity-make-cheese-
sandwich requires the actions take(bread),
take(cheese) and take(plate) to be performed
first, however it does not matter what order the required
actions are performed, therefore they become the chil-

90

dren of an UNORDERED AND node; which along with the
activity-make-cheese-sandwich action is set as
the ORDERED AND node’s children. Note, if a node has
an ORDERED-AND node as its parent it can only have one
parent.

When a PDDL action contains a precondition which has
an or statement or multiple actions exist which result in
the same state being reached, the DTG transition will have
multiple labels. This results in OR nodes being inserted into
the tree. For example, to complete the preconditions of
the action activity-pack-lunch the take(lunch bag)
and either activity-make-peanut-butter-sandwich
or activity-make-cheese-sandwich must have been
performed.

Updating probabilities based on observations
All action nodes are initialised with a probability of 0.5,
as they are all equally likely to appear or not appear in a
person’s plan. We experimented with different initial values
but found this made little difference to our results. In fu-
ture work we intend to experiment with multiple interleav-
ing goals, which this value may have a greater impact on.

When an observation o ∈ O ⊂ A is received that action’s
probability is set to 1, this is shown in line 3 of Algorithm 1.
The action node’s parents are then updated (lines 10-12). If
a parent is an OR node its probability is set to the maximum
probability of its children (line 5), otherwise it is set to the
mean probability of its children (line 7). This algorithm re-
curses (line 11) until the root node is reached (line 13). It
does not matter in which order a node’s parents are updated.

Algorithm 1 Update node probability upwards
1: function UPDATE PROBABILITY UPWARDS(node)
2: if node is an action node then . The observed action
3: node.probability = 1.0.
4: else if node is an OR node then
5: node.probability = max(children).
6: else node is an AND node
7: node.probability = children
8: end if
9: for each parent in node.parents do

10: UPDATE PROBABILITY UPWARDS(parent)
11: end for
12: if node is an action node then . The observed action
13: UPDATE PROBABILITY DOWNWARDS(root)
14: end if
15: end function

We considered using product, rather than mean but found
the size of the sub-trees had a much larger effect on the prob-
ability of a goal (i.e. strongly favours shorter plans), there-
fore we opted to use mean as this achieved better results.
The maximum probability is used for OR nodes as it does
not matter which one of its children have been (partially)
executed.

To set the probability of an action appearing in the sub-
sequently performed actions we then traverse down the tree
(depth-first) using Algorithm 2. If the current node is an
AND node (line 2) and its child’s probability is lower, then

the child’s probability is assigned the AND node’s probability
(lines 3-5). The direct children of OR nodes are not updated.

Algorithm 2 Update node probability downwards
1: function UPDATE PROBABILITY DOWNWARDS(node)
2: if node is an AND node then
3: for each child in node.children do
4: child.probability = max(child, this)
5: end for
6: end if
7: for each child in node.children do
8: UPDATE PROBABILITY DOWNWARDS(child)
9: end for

10: end function

Goal recognition

Each goal Gi ∈ G contains one or more atoms Gi ⊂ F .
For each atom f ∈ Gi we find the most likely action whose
effects contain f ; and find the average over all atoms in Gi.
This is shown in Equation 1.

p(Gi) =

∑
f∈Gi

max(p(a1f∈eff), ..., p(aNf∈eff))

|f ∈ Gi|
(1)

Where p(Gi) is the probability of the i-th goal in G and
p(a1f∈eff) is the probability of an action a1 ∈ A whose ef-
fects contain f . If p(Gi) ≡ max(p(G1), p(G2), ..., p(GN))
then Gi is added to the set of candidate goals C.

Preliminary results

We ran our goal recognition, and the goal completion heur-
istic from (Pereira, Oren, and Meneguzzi 2017), on a dataset
they produced. For both approaches we only consider the
most likely goals as being in the set of candidate goals (i.e.
the threshold value described by Pereira et al. is set to 0).

The dataset consists of 15 domains and a total of 6313
goal recognition problems; which include problems where
10%, 30%, 50%, 70% and 100% of observations are
provided. The goal recognition times for each domain are
given in Table 1 and the accuracy is presented in Table 2.
|C| is the number of candidate goals, and the accuracy A is
determined by the number of times the correct goal appears
in the list of candidate goals.

On all plan recognition problems our approach is faster
than that of (Pereira, Oren, and Meneguzzi 2017). Overall
our approach took 1727s to run on all plan recognition prob-
lems, whereas their approach took 7798s.

91

Table 1: Recognition times per domain. All times are in
seconds. As planning problems can greatly vary in size we
show the standard deviation.

Ours Pereira et al.
Domain |probs| ∑

t t ± std
∑

t t ± std
miconic 364 125.44 0.34± 0.26 546.90 1.50± 1.07

sokoban 364 140.09 0.38± 0.14 579.63 1.59± 0.49

satellite 364 127.15 0.35± 0.23 621.45 1.70± 1.19

logistics 673 170.24 0.25± 0.25 1089.15 1.61± 1.05

ferry 364 60.86 0.17± 0.07 258.40 0.71± 0.17

rovers 364 186.93 0.51± 0.33 545.47 1.49± 0.78

intrusion-detection 465 54.97 0.12± 0.01 331.35 0.71± 0.07

kitchen 75 8.10 0.11± 0.00 41.64 0.55± 0.07

easy-ipc-grid 673 127.58 0.19± 0.05 743.55 1.10± 0.37

blocks-world 1076 205.36 0.19± 0.07 941.76 0.88± 0.57

depots 364 134.22 0.37± 0.17 481.02 1.32± 0.30

zeno-travel 364 166.02 0.46± 0.16 615.76 1.69± 0.65

dwr 364 110.78 0.30± 0.06 517.21 1.42± 0.37

campus 75 8.74 0.12± 0.00 45.42 0.61± 0.06

driverlog 364 100.80 0.28± 0.17 438.87 1.21± 0.71

ALL 6313 1727.27 0.27± 0.20 7797.56 1.24± 0.84

On average when 10% of observations are provided our
approach has more candidate goals and therefore a higher
accuracy. As the number of observations increases the num-
ber of candidate goals decreases. For (Pereira, Oren, and
Meneguzzi 2017) the number of candidate goals does not
decrease by much, however the accuracy increases as the
number of observations increases. There are some domains
which are exceptions to this trend, such as the kitchen do-
main where our approach produces fewer candidate goals.

Conclusion and future work
In this paper we presented an early version of our intention
recognition system, where we focus on single-goal recog-
nition. DTGs are translated into an Action Tree which is
used to predict the probability of a person performing an ac-
tion. We compared our approach to (Pereira, Oren, and Me-
neguzzi 2017) and found our approach is quicker and per-
forms equally well in terms of accuracy.

We intend to extract the most likely actions a human will
perform from the tree. This will enable a robot to assist the
person (e.g. open doors, fetch objects, provide instructions)
and avoid obscuring the person when performing a different
task within the same environment. In the case of assisting
a person, we will investigate how confident the recognition
should be before the robot attempts to give assistance.

In future work we will also provide experimentation res-
ults for datasets containing invalid and missing observations
caused by noisy sensor readings. Additionally, we will test
our approach on multiple interleaving and concurrent goals.
In dynamically changing environments multiple humans act
continuously, including leaving and returning to the envir-
onment. Therefore, rather than ending when a goal (or set of
goals) is reached, we will investigate how the intentions of a
human can be continuously updated. To do this we will ex-
periment with decaying the probability of actions the human
has performed, when they are no-longer part of the person’s
intended plan.

Acknowledgements
H. Harman is an SB fellow at FWO (prj. 1S40217N). Part of
this research was funded via imec’s RoboCure project.

Table 2: Accuracy for the different domains when different
percentages of observations are known. To save space we do
not show results for 100% of observations.

Ours Pereira et al.
Domain |G| Obs % |C| A |C| A

miconic 6

10 4.40 0.96 1.46 0.69
30 2.64 0.96 1.15 0.98
50 1.88 0.96 1.02 0.99
70 1.23 0.96 1.01 1.00

sokoban 7.14

10 5.35 0.93 2.10 0.55
30 2.73 0.82 1.40 0.58
50 2.26 0.86 1.35 0.71
70 1.45 0.95 1.08 0.86

satellite 6.43

10 2.65 0.87 2.18 0.70
30 1.51 0.87 1.45 0.86
50 1.17 0.89 1.29 0.94
70 1.11 0.96 1.05 0.99

logistics 10.46

10 6.74 0.96 2.01 0.63
30 3.39 0.98 1.34 0.86
50 1.91 0.97 1.21 0.95
70 1.24 0.99 1.10 0.97

ferry 7.57

10 3.51 0.98 1.45 0.64
30 1.50 0.88 1.15 0.86
50 1.26 0.92 1.07 0.94
70 1.12 1.00 1.00 0.96

rovers 6

10 2.73 0.87 1.82 0.67
30 1.31 0.85 1.36 0.82
50 1.12 0.96 1.12 0.89
70 1.00 0.98 1.05 1.00

intrusion-detection 16.67

10 1.39 0.73 1.37 0.74
30 1.05 0.96 1.03 0.95
50 1.01 0.99 1.03 1.00
70 1.00 0.99 1.00 1.00

kitchen 3

10 1.00 0.80 3.00 1.00
30 1.00 0.93 2.60 1.00
50 1.00 0.93 2.60 1.00
70 1.00 0.93 2.33 1.00

easy-ipc-grid 8.66

10 7.67 1.00 2.58 0.67
30 6.03 1.00 1.65 0.82
50 3.97 1.00 1.18 0.91
70 3.12 1.00 1.07 0.97

blocks-world 20.28

10 7.07 0.62 1.26 0.44
30 1.65 0.62 1.17 0.56
50 1.20 0.74 1.13 0.63
70 1.19 0.91 1.15 0.84

depots 8.86

10 4.42 0.90 1.31 0.39
30 2.44 0.93 1.15 0.67
50 1.69 0.98 1.11 0.85
70 1.44 0.99 1.01 0.94

zeno-travel 6.86

10 3.33 0.92 1.43 0.45
30 2.11 0.90 1.40 0.79
50 1.27 0.96 1.15 0.82
70 1.05 1.00 1.10 0.98

dwr 7.29

10 2.55 0.61 1.20 0.38
30 1.51 0.75 1.10 0.64
50 1.38 0.85 1.06 0.73
70 1.15 0.89 1.05 0.90

campus 2

10 1.93 0.93 1.13 0.87
30 1.93 0.93 1.13 0.87
50 1.80 0.87 1.13 0.93
70 1.73 0.93 1.00 1.00

driverlog 7.14

10 3.17 0.83 1.29 0.45
30 1.67 0.73 1.24 0.60
50 1.40 0.90 1.29 0.77
70 1.19 0.95 1.24 0.93

ALL 10.43

10 3.86 0.86 1.71 0.62
30 2.16 0.87 1.36 0.79
50 1.62 0.92 1.25 0.87
70 1.33 0.96 1.15 0.96

References
Bisson, F.; Larochelle, H.; and Kabanza, F. 2015. Using a
recursive neural network to learn an agent’s decision model
for plan recognition. In IJCAI, 918–924.
Chen, J.; Chen, Y.; Xu, Y.; Huang, R.; and Chen, Z. 2013. A
planning approach to the recognition of multiple goals. Intl
Journal of Intelligent Systems 28(3):203–216.

92

Freedman, R. G., and Zilberstein, S. 2017. Integration of
planning with recognition for responsive interaction using
classical planners. In AAAI, 4581–4588.
Freedman, R. G.; Fung, Y. R.; Ganchin, R.; and Zilberstein,
S. 2018. Towards quicker probabilistic recognition with
multiple goal heuristic search.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Holtzen, S.; Zhao, Y.; Gao, T.; Tenenbaum, J. B.; and Zhu,
S.-C. 2016. Inferring human intent from video by sampling
hierarchical plans. In Intelligent Robots and Systems (IROS),
2016 IEEE/RSJ Intl Conf on, 1489–1496. IEEE.
Pereira, R. F.; Oren, N.; and Meneguzzi, F. 2017. Landmark-
based heuristics for goal recognition. In Thirty-First AAAI
Conf on Artificial Intelligence (AAAI-17). AAAI Press.
Ramırez, M., and Geffner, H. 2010. Probabilistic plan re-

cognition using off-the-shelf classical planners. In Proceed-
ings of the Conf of the Association for the Advancement of
Artificial Intelligence (AAAI 2010), 1121–1126.
Singla, G.; Cook, D. J.; and Schmitter-Edgecombe, M. 2010.
Recognizing independent and joint activities among mul-
tiple residents in smart environments. Journal of ambient
intelligence and humanized computing 1(1):57–63.
Sohrabi, S.; Riabov, A. V.; and Udrea, O. 2016. Plan recog-
nition as planning revisited. In IJCAI, 3258–3264.
Yordanova, K.; Krüger, F.; and Kirste, T. 2012. Con-
text aware approach for activity recognition based on
precondition-effect rules. In PERCOM Workshops, 2012
IEEE Intl Conf on, 602–607. IEEE.
Zhuo, H. H., and Li, L. 2011. Multi-agent plan recogni-
tion with partial team traces and plan libraries. In IJCAI,
volume 22, 484.

93

1

Abstract

This paper presents a robust human activity monitoring algorithm.

We focus on a human activity monitoring problem with three

distinct characteristics: i) there is significant sensing noise, ii)

humans act according to a predefined abstract behavior model in the

context of a plan, and iii) spatial relations between the objects

involved are an important aspect. Our algorithm, called Logical

Activity Recognition System (LCARS), has two components: i) the

offline compilation component and ii) the online estimation

component. The offline part autonomously generates the online part

in offline, using common sense structural and logical knowledge.

This knowledge is based on the abstract human behavior model,

written in Planning Domain Definition Language (PDDL), and

spatial relations between objects, represented using Region

Connection Calculus-8 (RCC-8). Especially, use of PDDL allows

this work to be fluently connected to other planning and execution

works. The resulting online part performs online estimation with

sensor measurements. It has a layered structure with a series of

Hidden Markov Models (HMMs) coding common sense knowledge.

Experimental result shows that LCARS is robust even under

significant sensing noise.

Keywords

Human activity monitoring, Human robot collaboration, Planning

Domain Definition Language (PDDL), predicate estimation, and

Qualitative Spatial Representation and Reasoning (QSR)

Introduction

Applications where humans and robots need to cooperate
are of increasing interest, a manufacturing environment for
example. In human-robot interaction, a robot’s ability to
recognize and monitor which activity the human is performing
is crucial to ensuring both safe and effective collaboration. In
this paper, we focus on a human activity monitoring problem
with three distinct characteristics. Firstly, there is a significant
amount of noise in our sensing capability. This would require
the solution to be robust to noise. Secondly, humans act
according to a predefined abstract behavior model. Thirdly,
the spatial relations between the objects are an important
aspect of a human-robot interaction scenario.

We present Logical Activity Recognition System (LCARS)
for the human activity monitoring problem. It has two

components: i) the offline compilation component and ii) the
online activity estimation component. The offline part builds
the online part autonomously using common sense structural
and logical knowledge. This knowledge is based on an
abstract human behavior model and spatial relations between
objects. For example, if a human is holding a red block, he/she
must place it before picking up a green block, meaning that the
hand, first in contact with a red block, should be away from it
and then be in contact with a green block. The online part,
which is the result from offline compilation, is the one that
actually performs estimation over predicates and activities. It
has a layered structure. Each layer is designed as a set of
Hidden Markov Models (HMMs) (Murphy 2012), coding
common sense knowledge. Using the probabilistic approach
based on common sense information filters out noisy
observations and ensures robustness. We explain LCARS
using a general pick-and-place example.

The use of structural and logical information in the offline
compilation process of LCARS is possible because we applied
Planning Domain Definition Language (PDDL) (Fox and
Long 2003) to code the abstract human behavior model,
specifying conditions and effects of each activity. In this work,
we assume that humans perform tasks based on a predefined
PDDL code. PDDL is a predicate-based language (it has
statements like (𝑒𝑚𝑝𝑡𝑦 𝑚𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑡𝑜𝑟), which is true if and
only if the manipulator is empty) widely used in the artificial
intelligence (AI) community for activity planning and
execution. Using PDDL has the following advantages: i) we
can use an existing and well-proven language, and ii) our work
can be easily integrated with existing planning and execution
work. Despite these advantages, PDDL has one downside.
Extracting the common sense structural information we can
use is not direct, due to its predicate-based nature. However,
we apply a recently developed algorithm called invariant
synthesis to solve this problem (Bernardini and Smith 2011).

In many cases, predicates in PDDL are closely related to
qualitative spatial relations between objects. For instance, the
(𝑒𝑚𝑝𝑡𝑦 𝑚𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑡𝑜𝑟) predicate is true if the manipulator is
not in contact with any objects: (𝑒𝑚𝑝𝑡𝑦 𝑚𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑡𝑜𝑟) ≔
∀𝑜𝑏𝑗𝑒𝑐𝑡, ~(𝑖𝑛_𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑚𝑎𝑛𝑖𝑝, 𝑜𝑏𝑗𝑒𝑐𝑡) . Thus, we can
represent predicates using primitive statements about spatial
relations, such as (𝑖𝑛_𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑚𝑎𝑛𝑖𝑝, 𝑜𝑏𝑗). We use Region
Connection Calculus (RCC) (Cohn et al. 1997), a calculus
used in Qualitative Spatial Reasoning (QSR) (Freksa 1991),

Robust Human Activity Monitoring Using Qualitative Spatial

Representation and Reasoning

Sang Uk Lee, Ashkan Jasour, Andreas Hofmann, Brian Williams

Massachusetts Institute of Technology

 77 Massachusetts Ave, Cambridge, MA, 02139, USA

sangukbo@mit.edu, jasour@mit.edu, hofma@csail.mit.edu, williams@csail.mit.edu

94

for this purpose. The benefits of using QSR are: i) it can
represent spatial predicates in PDDL easily; ii) it better
matches intuitive thinking; and iii) it enables us to use
qualitative reasoning to represent complex ideas.

The main contribution of this work is that it provides a
robust human activity monitoring algorithm using PDDL and
QSR. There has been other works that use QSR for human
activity monitoring, such as (Schlenoff 2013; 2015). However,
these works only provide deterministic approaches and lack
robustness. Our online estimation component uses
probabilistic approach through layers of HMMs, ensuring
robustness to noisy observation. Experimental results compare
the two. Also, to author’s knowledge, this paper is the first to
use PDDL, a well-known existing language, for human
activity monitoring. Other human activity recognition works
such as (Schlenoff 2013), (Awais and Henrich 2010), and
(Schrempf and Hanebeck 2005) used a predefined human
behavior model, written in languages of their own. This might
make the human activity monitoring problem itself easier,
since the language can be specialized to the activity
monitoring problem. However, it would be more difficult to
integrate the activity monitoring work with other planning and
execution works. Especially, by using PDDL, LCARS
estimates over not only human activities, but also predicates in
PDDL, thus performing the role of predicate estimator as well.

This paper presents several supplementary novelties.
Firstly, this paper provides how we can use RCC-8 for human
activity monitoring problem. In previous human activity
monitoring works using QSR, such as (Schlenoff 2013; 2015),
used RCC-3D (Albath et al. 2010), a variant of RCC, instead
of RCC-8. We state that RCC-3D only complicates the
representation unnecessarily. We support this statement by
providing a complete explanation on how to use RCC-8 for
human activity monitoring, illustrating how basic spatial
predicates, such as on, in, empty (manipulator) etc., can be
represented in RCC-8. Secondly, LCARS’ offline component
can generate the online activity estimation unit for different
PDDL scenarios autonomously. Autonomous compilation for
other scenarios hasn’t been discussed much in other works.
This automation is possible thanks to the repetitive structure of
online estimation component of LCARS and the invariant
synthesis algorithm. Thirdly, this paper shows that we can use
a collision detection algorithm to efficiently find which
RCC-8 statements hold for any two given regions.

This paper is organized as follows. Section II provides a
pick and place example used throughout the paper. Section III
provides the formal problem statement and an overview of our
solution. The background is presented in Section IV. Brief
explanations of PDDL and RCC, in addition to our
pick-and-place example are provided here. A detailed
illustration of LCARS is presented in Section V and Section
VI, with Section V for the online estimation component and
Section VI for the offline compilation component. Section VII
presents experimental results. Finally, the paper is concluded
in Section VIII.

Pick and Place Example

In this paper, we use a pick and place example throughout.
Experimental results are also based on this example. Our pick
and place example has three actions; pick, place, and pass. In
pick action, a manipulator picks up a block from a location. In
place action, a manipulator places a block on a location. In
pass action, a manipulator holding a block (a human hand)
passes the block to another empty manipulator (a robot
manipulator). We provide the PDDL code for our pick and
place example in Table I. Our goal is to estimate which action
human is performing, among actions given in the PDDL code.
The meaning of each predicate and action is commented with
//. Note that we use the term action instead of activity in PDDL,
and two terms have the same meaning in this paper.

TABLE I. EXAMPLE PICK AND PLACE PDDL CODE

(define (domain PDDL-domain)

(:requirements :strips :typing :durative-actions)
(:types manipulator object location)

(:predicates

(on ?obj - object ?loc - location) // true when ?obj is on ?loc
(clear ?obj - object)

// true when no manipulator is holding ?obj (clear to hold)

(empty ?manip - manipulator) // true when ?manip is empty
(holding ?obj - object ?manip - manipulator)

// true when ?manip holding ?obj

(in-pass-region ?manip - manipulator))
// true when ?manip is in predefined region used for passing

(:durative-action pick // ?manip picks up ?obj from ?loc

:parameters (?obj - object ?manip - manipulator ?loc - location)
:duration (= ?duration 20)

:condition (and

(at start (on ?obj ?loc)) (at start (clear ?obj))
(at start (empty ?manip)) (at start (not (in-pass-region ?manip)))

(at end (on ?obj ?loc)) (at end (not (clear ?obj))

(at end (not (empty ?manip))) (at end (holding ?obj ?manip))

(at end (not (in-pass-region ?manip)))

(over all (on ?obj ?loc)) (over all (not (clear ?obj))

(over all (not (empty ?manip))) (over all (holding ?obj ?manip))
(over all (not (in-pass-region ?manip))))

:effect (and

(at start (not (clear ?obj))) (at start (not (empty ?manip)))
(at start (holding ?obj ?manip)))) (at end (not (on ?obj ?loc)))

(:durative-action place // ?manip places ?obj on ?loc
:parameters (?obj - object ?manip - manipulator ?loc - location)

:duration (= ?duration 20)

:condition (and
(at start (not (on ?obj ?loc))) (at start (not (clear ?obj)))

(at start (holding ?obj ?manip))

(at start (not (in-pass-region ?manip))) (at end (on ?obj ?loc))
(at end (not (clear ?obj))) (at end (holding ?obj ?manip))

(at end (not (in-pass-region ?manip))) (over all (on ?obj ?loc))

(over all (not (clear ?obj))) (over all (holding ?obj ?manip))
(over all (not (in-pass-region ?manip))))

:effect (and

(at start (on ?obj ?loc)) (at end (clear ?obj))
(at end (empty ?manip)) (at end (not (holding ?obj ?manip)))))

(:durative-action pass // ?m1 passes ?obj to empty ?m2

:parameters (?obj - object ?m1 - manipulator ?m2 - manipulator)
:duration (= ?duration 30)

:condition (and

(at start (not (clear ?obj))) (at start (not (empty ?m1)))
(at start (holding ?obj ?m1)) (at start (in-pass-region ?m1))

(at start (empty ?m2)) (at end (not (clear ?obj)))

(at end (not (empty ?m1))) (at end (holding ?obj ?m1))

95

(at end (in-pass-region ?m1)) (at end (not (empty ?m2)))
(at end (holding ?obj ?m2)) (at end (in-pass-region ?m2))

(over all (not (clear ?obj))) (over all (not (empty ?m1)))

(over all (holding ?obj ?m1)) (over all (in-pass-region ?m1))
(over all (not (empty ?m2))) (over all (holding ?obj ?m2))

(over all (in-pass-region ?m2)))

:effect (and
(at start (not (empty ?m2))) (at start (holding ?obj ?m2))

(at start (in-pass-region ?m2)) (at end (empty ?m1))

(at end (not (holding ?obj ?m1))))))

This example is written in PDDL version 2.1, where
durative actions were first introduced to represent actions with
a time duration. Note, definition of predicates and activities in
the above PDDL code is ungrounded. In our experiment, we
used one manipulator (a human hand), three blocks (red, green,
and blue), and two locations (A and B). Thus, there were 14
grounded predicates (6 for on, 3 for clear, 1 for empty, 3 for
holding, and 1 for in-pass-region), and 15 grounded activities
(6 for pick, 6 for pick, and 3 for pass). For pass activity, we
needed a second manipulator (a robot manipulator), but since
we are performing human activity monitoring, the robot
manipulator was preprogrammed and not part of estimation (it
was assumed to be perfectly observable).

Problem Statement and Solution Overview

The task of human activity monitoring is to estimate the
activities that a human is performing and their statuses (and
also estimate the state of the world, given in predicate
statements in many cases, if possible). Note that we are
interested in activities with a temporal duration: thus, we have
distinguished the activity (type, i.e. pick, place, etc.) from its
status (the temporal stage, i.e. executing, finished, etc.). Three
main characteristics of our problem are: i) sensors are assumed
to be noisy, ii) humans act according to a predefined abstract
behavior model, and iii) spatial relations between objects are
of great interest. The human activity monitoring task can be
visualized as in Figure 1 (Heinze 2004).

Figure 1. Human activity monitoring problem (Heinze 2004)

We assume that the true model of how a human’s activity
and activity status affect the true state 𝑥1:𝑡 , positions and
orientations of objects, can be represented as some function,
𝑥1:𝑡 = 𝑓(𝑚1:𝑡 , 𝑤1:𝑡) . 𝑤1:𝑡 represents probabilistic behaviors
within the true model. We can sense 𝑥1:𝑡 using a noisy sensor,
𝑜1:𝑡 = ℎ(𝑥1:𝑡 , 𝑣1:𝑡), where 𝑣1:𝑡 is the sensor noise. Our job is
to model the human activity monitoring system, �̂�𝑡 =
𝑓−1(𝑜1:𝑡), to estimate the current activity and activity status.
We suggest that this can be modeled well using the abstract
human behavior model and spatial relations between objects.

Figure 2. Graphical representation of LCARS

Figure 2 visualizes the structure of our solution called
LCARS. It has two components: i) the offline compilation
component and ii) the online estimation component. In the big
picture, LCARS takes three inputs, continuous sensor data,
PDDL code, and user specified definitions about how each
predicate in PDDL is to be represented in RCC-8 statements,
as in Table III. It estimates the current activity a human is
performing and its status. To be specific, the offline part uses
the PDDL code and user specified definitions to generate the
online estimation algorithm autonomously. The resulting
online part uses the continuous sensor data to estimate the
current activity and status. The online estimation component
has a layered structure with four filters. Each filter is designed
as a set of HMMs. Each filter layer applies structural and
logical relations, based on PDDL and RCC-8 formulation, in a
series. This information might be hard to apply together at one
time, so we apply it in a sequence, through a series of filters.

Algorithm Background

PDDL and Invariant Synthesis

Planning Domain Definition Language is widely used in
activity planning (Fox and Long 2003). An example PDDL
code is provided in Table I. PDDL is based on predicates that
can be true or false. For example, a predicate
(𝑜𝑛 𝑏𝑙𝑜𝑐𝑘𝑟 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐴) is true if and only if the red block is at
location A. Each durative action has the same structure.
condition is a set of predicates that must hold to execute the
action, and effect is a set of predicates that results from
applying the action. at start indicates predicates related to the
beginning of an action, and at end indicates predicates related
to the end. over all indicates predicates related to the duration
between start and end. A more detailed explanation of PDDL
2.1 is provided in (Fox and Long 2003).

PDDL is a planning language based on predicate
statements; it is different from representations that use
multi-valued state variables. Let’s explain this further with
PDDL predicates: (𝑒𝑚𝑝𝑡𝑦 ℎ𝑎𝑛𝑑), (ℎ𝑜𝑙𝑑𝑖𝑛𝑔 𝑏𝑙𝑜𝑐𝑘𝑟 ℎ𝑎𝑛𝑑),
(ℎ𝑜𝑙𝑑𝑖𝑛𝑔 𝑏𝑙𝑜𝑐𝑘𝑔 ℎ𝑎𝑛𝑑), and (ℎ𝑜𝑙𝑑𝑖𝑛𝑔 𝑏𝑙𝑜𝑐𝑘𝑏 ℎ𝑎𝑛𝑑). We

can think of them as separate statements, where each statement
either can be true or false, which is how PDDL works.
However, we can combine them and form a new multi-valued
state variable, 𝑥ℎ𝑎𝑛𝑑 , with four possible states, stating that
ℎ𝑎𝑛𝑑 must either be empty or holding one of the blocks.
Transition between states can be accomplished through
defined pick and place actions. This representation offers
some advantages: i) it provides us with structural information

96

about the possible transitions between states, ii) it is more
intuitive to human users, and iii) it reduces the size of the
possible domain. An algorithm recently introduced in the
activity planning community, called invariant synthesis,
extracts multiple-valued state variables from PDDL. To be
more specific, the invariant synthesis algorithm finds sets of
predicates that are mutually exclusive to each other, meaning
that only one predicate in the set can be true at any time. A
more detailed explanation of invariant synthesis is in
(Bernardini and Smith 2011).

QSR and RCC-8

Qualitative Spatial Reasoning (Freksa 1991) abstracts
continuous spatial data on objects or regions (positions and
orientations) into qualitative relations between them. Then, we
can perform reasoning using the abstract spatial relations.
Region Connection Calculus (Cohn et al. 1997) is a promising
approach for this job.

In RCC, there is only a finite number of qualitative
relations possible for any two given (regular (Cohn et al. 1997))
objects or regions. The number is 5 for RCC-5, 8 for RCC-8,
and 23 for RCC-23 (Cohn et al. 1997), etc. RCC-8 is going to
be used in this paper since it is rich enough. In RCC-8, the
finite relations are i) A is disconnected from B (𝐷𝐶(𝐴, 𝐵)), ii)
A is edge-connected with B (𝐸𝐶(𝐴, 𝐵)), iii) A is partially
occluded by B (𝑃𝑂(𝐴, 𝐵)), iv) A is identical with B
(𝐸𝑄(𝐴, 𝐵)), v) and vi) A is a tangentially proper part of B, or
the inverse (𝑇𝑃𝑃(𝐴, 𝐵) or 𝑇𝑃𝑃𝑖(𝐴, 𝐵)), vii) and viii) A is a
nontangentially proper part of B, or the inverse (𝑁𝑇𝑃𝑃(𝐴, 𝐵)
or 𝑁𝑇𝑃𝑃𝑖(𝐴, 𝐵)). These relations are visualized in Figure 3.
We are going to use RCC-8 statements as primitives to express
complex predicates in PDDL.

Figure 3. RCC-8 statements (Cohn et al. 1997)

Given two closed regular regions A and B in ℝ3 space, we
can acquire an RCC-8 relation using a collision detection
algorithm. We emphasize that no other papers have discussed
this potential. Since collision detection has been a massive
research field with many efficient algorithms developed
(Ericson 2004), we can find the RCC-8 statement very
efficiently. Table II shows how. Here, 𝑐𝑜𝑙𝑙(𝐴, 𝐵) is “True” if
and only if A and B are in collision. 𝑖𝑛𝑡(𝐴), 𝑒𝑥𝑡(𝐴), and 𝜕(𝐴)
indicate interior, exterior, and boundary of region A
respectively.

TABLE II. RCC-8 STATEMENTS USING COLLISION DETECTION

RCC-8 Representation using collision detection

𝐷𝐶(𝐴, 𝐵) (~𝑐𝑜𝑙𝑙(𝑖𝑛𝑡(𝐴), 𝑖𝑛𝑡(𝐵))) ∧ (~𝑐𝑜𝑙𝑙(𝜕(𝐴), 𝜕(𝐵)))

𝐸𝐶(𝐴, 𝐵) (~𝑐𝑜𝑙𝑙(𝑖𝑛𝑡(𝐴), 𝑖𝑛𝑡(𝐵))) ∧ (𝑐𝑜𝑙𝑙(𝜕(𝐴), 𝜕(𝐵)))

𝑃𝑂(𝐴, 𝐵) (𝑐𝑜𝑙𝑙(𝑖𝑛𝑡(𝐴), 𝑖𝑛𝑡(𝐵))) ∧ (~(𝐸𝑄 ∨ 𝑇𝑃𝑃 ∨ 𝑇𝑃𝑃𝑖 ∨ 𝑁𝑃𝑃 ∨ 𝑁𝑃𝑃𝑖))

𝐸𝑄(𝐴, 𝐵)
(𝑐𝑜𝑙𝑙(𝑖𝑛𝑡(𝐴), 𝑖𝑛𝑡(𝐵))) ∧ (~𝑐𝑜𝑙𝑙(𝑒𝑥𝑡(𝐴), 𝑖𝑛𝑡(𝐵)))

∧ (~𝑐𝑜𝑙𝑙(𝑖𝑛𝑡(𝐴), 𝑒𝑥𝑡(𝐵)))

𝑇𝑃𝑃(𝐴, 𝐵)
(𝑐𝑜𝑙𝑙(𝑖𝑛𝑡(𝐴), 𝑖𝑛𝑡(𝐵))) ∧ (𝑐𝑜𝑙𝑙(𝜕(𝐴), 𝜕(𝐵)))

∧ (~𝑐𝑜𝑙𝑙(𝑖𝑛𝑡(𝐴), 𝑒𝑥𝑡(𝐵)))

𝑇𝑃𝑃𝑖(𝐴, 𝐵)
(𝑐𝑜𝑙𝑙(𝑖𝑛𝑡(𝐴), 𝑖𝑛𝑡(𝐵))) ∧ (𝑐𝑜𝑙𝑙(𝜕(𝐴), 𝜕(𝐵)))

∧ (~𝑐𝑜𝑙𝑙(𝑒𝑥𝑡(𝐴), 𝑖𝑛𝑡(𝐵)))

𝑁𝑇𝑃𝑃(𝐴, 𝐵)
(𝑐𝑜𝑙𝑙(𝑖𝑛𝑡(𝐴), 𝑖𝑛𝑡(𝐵))) ∧ (~𝑐𝑜𝑙𝑙(𝜕(𝐴), 𝜕(𝐵)))

∧ (~𝑐𝑜𝑙𝑙(𝑖𝑛𝑡(𝐴), 𝑒𝑥𝑡(𝐵)))

𝑁𝑇𝑃𝑃𝑖(𝐴, 𝐵)
(𝑐𝑜𝑙𝑙(𝑖𝑛𝑡(𝐴), 𝑖𝑛𝑡(𝐵))) ∧ (~𝑐𝑜𝑙𝑙(𝜕(𝐴), 𝜕(𝐵)))

∧ (~𝑐𝑜𝑙𝑙(𝑒𝑥𝑡(𝐴), 𝑖𝑛𝑡(𝐵)))

In several previous studies, RCC specialized for ℝ3 space
was introduced, namely RCC-3D (Albath et al. 2010). In
addition, RCC-3D was used in human activity monitoring
works such as (Schlenoff 2013; 2015). However, we would
like to state that RCC-8 is rich enough to deal with ℝ3 space
as well. Using RCC-3D would only complicate the
representation unnecessarily. Since the main purpose of using
QSR in our work, via RCC-8, is to represent predicates in
PDDL (which are defined over ℝ3 space, of course), we
support our argument by showing how some fundamental
predicates can be translated using RCC-8 in Table III. This is
based on (Aurnague and Vieu 1993).

TABLE III. FUNDAMENTAL PREDICATES USING RCC-8 PRIMITIVES

Predicates Primitive representation

(𝑖𝑛 𝐴 𝐵) 𝑁𝑇𝑃𝑃(𝐴, 𝐵) ∨ 𝑇𝑃𝑃(𝐴, 𝐵)

(𝑜𝑛1 𝐴 𝐵) 𝐸𝐶(𝐴, 𝐵) ∧ (𝑖𝑛 𝐴 𝑟𝑒𝑔𝑖𝑜𝑛𝑜𝑛(𝐵))

(𝑜𝑛 𝐴 𝐵)
(𝑜𝑛1 𝐴 𝐵)

∨ (∃𝑜𝑏𝑗 𝑠. 𝑡. ((𝑜𝑛1 𝑜𝑏𝑗 𝐵) ∧ (𝑜𝑛1 𝐴 𝑜𝑏𝑗))) …

(ℎ𝑜𝑙𝑑𝑖𝑛𝑔 ℎ𝑎𝑛𝑑 𝐴) ~(𝐷𝐶 ℎ𝑎𝑛𝑑 𝐴)

(𝑒𝑚𝑝𝑡𝑦 ℎ𝑎𝑛𝑑) ∀𝑜𝑏𝑗, (𝐷𝐶 𝐴 𝑜𝑏𝑗)

(𝑖𝑛 𝐴 𝐵) means A is in
B, and (𝑜𝑛 𝐴 𝐵) means A
is on B. (𝑜𝑛1 𝐴 𝐵) is for
when A is directly on top of
B, while the two objects are
in contact. 𝑟𝑒𝑔𝑖𝑜𝑛𝑜𝑛(𝐵) is
the region around B that
users can define for the on
predicate. An example of
this region is shown in Figure 4. (𝑜𝑛 𝐴 𝐵) is more complex;
there can be other objects in between. We left … since there
can continue to be more than one object in between. This can
be defined recursively. This is a good example of an advantage
of how using QSR enables us to express complex ideas
through reasoning. Predicates such as (𝑢𝑛𝑑𝑒𝑟 𝐴 𝐵) ,
(𝑛𝑒𝑥𝑡 𝐴 𝐵), etc. can be defined similarly.

Note that Table III represents the user specified definitions
shown in Figure 2. Other users are welcomed to use ours, but
they need to provide such definitions if they want to use
different predicates or change the definitions. A final
comment is that if we want to use a deterministic approach to
state predicates, as in (Schlenoff 2013), we apply relations in
Table II and Table III directly, without combining them with
HMMs. We provide an outline of a deterministic approach in
Algorithm 2.

Figure 4. A, B, and 𝑟𝑒𝑔𝑖𝑜𝑛𝑜𝑛(𝐵)

97

 (a) (b)

Online Estimation Component

The online estimation component takes the continuous
sensor data and estimates the current activity statuses as well
as primitives and predicates. It has four layers of HMMs
performing filtering. The overall structure is shown in
Algorithm 1. Though the offline compilation component
operates first to make the online estimation component for
given PDDL problem, we illustrate the online component first
for easier explanation.

Algorithm 1 : Online layered HMM filtering

1

𝐈𝐧𝐩𝐮𝐭 ∶ 𝑏𝑒𝑙(𝑝𝑜𝑠𝑒𝑡−1), 𝑏𝑒𝑙(𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝑡−1), 𝑏𝑒𝑙(𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑡−1)

 𝑏𝑒𝑙(𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑡−1), 𝑜𝑡
𝑝𝑜𝑠𝑒

// 𝑏𝑒𝑙(𝑠) is belief state over 𝑠, 𝑜𝑡
𝑝𝑜𝑠𝑒

 is vector of object poses

2

𝐎𝐮𝐭𝐩𝐮𝐭 ∶ 𝑏𝑒𝑙(𝑝𝑜𝑠𝑒𝑡), 𝑏𝑒𝑙(𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝑡), 𝑏𝑒𝑙(𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑡),

 𝑏𝑒𝑙(𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑡) // we can get most probable state from 𝑏𝑒𝑙(𝑠)

3 𝑏𝑒𝑙(𝑝𝑜𝑠𝑒𝑡) ← Kalman_Filter(𝑏𝑒𝑙(𝑝𝑜𝑠𝑒𝑡−1), 𝑜𝑡
𝑝𝑜𝑠𝑒

)

4 𝑝𝑜𝑠𝑒𝑡
𝑚𝑙 ← argmax

𝑝𝑜𝑠𝑒𝑡

(𝑏𝑒𝑙(𝑝𝑜𝑠𝑒𝑡)) // most likely pose

5

𝑜𝑡
𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒

← 𝑅𝐶𝐶 − 8_𝑓𝑟𝑜𝑚_𝑇𝑎𝑏𝑙𝑒_𝐼𝐼(𝑝𝑜𝑠𝑒𝑡
𝑚𝑙)

// 𝑜𝑡
𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒

 is vector of relevant RCC-8 statements

6 𝑏𝑒𝑙(𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝑡) ← Primitive_Filter(𝑏𝑒𝑙(𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝑡−1), 𝑜𝑡
𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒

)

7 𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝑡
𝑚𝑙 ← argmax

𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝑡

(𝑏𝑒𝑙(𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝑡)) // most likely primitive

8

𝑜𝑡
𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒

← 𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒_𝑇𝑎𝑏𝑙𝑒_𝐼𝐼𝐼(𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝑡
𝑚𝑙)

// 𝑜𝑡
𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒

 is vector of relevant predicate statements

9 𝑏𝑒𝑙(𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑡) ← Predicate_Filter(𝑏𝑒𝑙(𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑡−1), 𝑜𝑡
𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒

)

10 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑡
𝑚𝑙 ← argmax

𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑡

(𝑏𝑒𝑙(𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑡)) // most likely predicate

11

𝑜𝑡
𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦

← 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦_𝐹𝑖𝑔𝑢𝑟𝑒_7(𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑡
𝑚𝑙)

// 𝑜𝑡
𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦

 is vector of relevant activity statuses

12 𝑏𝑒𝑙(𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑡) ← Activity_Filter(𝑏𝑒𝑙(𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑡−1), 𝑜𝑡
𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦

)

Kalman Filter

The Kalman filter (Vaseghi 2008) in our layered

framework takes continuous sensor data (𝑜𝑡
𝑝𝑜𝑠𝑒

) as the input

and outputs the filtered estimate of positions and orientations
of objects. We use the transition function 𝑥𝑡+1 = 𝑥𝑡 + 𝑤𝑡 ,
where 𝑥𝑡 is a 6 by 1 vector of the object’s position and
orientation. We use this model because we assume that we
have no information about what a human is going to do at this
level. The observation function is 𝑜𝑡 = 𝑥𝑡 + 𝑣𝑡 . It adds the
additive sensor noise term. The Kalman filter is used to
process the noise initially to some extent. 𝑤𝑡 and 𝑣𝑡 can be
learned using training dataset.

Primitive Filter

Primitive filter converts the output from the Kalman filter

into an estimate of currently true RCC-8 primitive statements,

such as (𝐷𝐶 ℎ𝑎𝑛𝑑 𝑏𝑙𝑜𝑐𝑘𝑟), (𝑁𝑇𝑃𝑃 𝑏𝑙𝑜𝑐𝑘𝑟 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐴), etc. (line 4 ~

6 in Algorithm 1). We design a distinct HMM for each

combination of objects or regions, such as {ℎ𝑎𝑛𝑑, 𝑏𝑙𝑜𝑐𝑘𝑟} and

{ℎ𝑎𝑛𝑑, 𝑏𝑙𝑜𝑐𝑘𝑔}, to get RCC-8 statements for all combinations.

Each combination is considered independently. The HMM in

the primitive filter is graphically represented in Figure 5 (a).

For each HMM, we need transition (𝑃(𝑥𝑡+1|𝑥𝑡), ⓐ) and

observation (𝑃(𝑜𝑡|𝑥𝑡), ⓑ) models. For the transition model,

we use the continuity network for RCC-8 shown in Figure 5

(b) (Cohn et al. 1997). It specifies which transitions between

RCC-8 primitive statements are possible. Self-transition is

omitted. Note, for example, that 𝐷𝐶 cannot move to 𝑃𝑂

without visiting 𝐸𝐶. The observation model is much simpler,

it is just the matrix representing 𝑃(𝑜𝑡|𝑥𝑡), where both 𝑥𝑡 and

𝑜𝑡 are in the RCC-8 statements. To perform HMM filtering,

we need observation value 𝑜𝑡 . To get 𝑜𝑡 , we use the most

probable estimate of pose from Kalman filter (𝑝𝑜𝑠𝑒𝑡
𝑚𝑙) and

apply Table II, as if we were using a deterministic approach

(line 4 - 5 in Algorithm 1). That is, if using 𝑝𝑜𝑠𝑒𝑡
𝑚𝑙 for 𝑏𝑙𝑜𝑐𝑘𝑟

and ℎ𝑎𝑛𝑑 satisfies (~𝑐𝑜𝑙𝑙(𝑖𝑛𝑡(𝑏𝑙𝑜𝑐𝑘𝑟), 𝑖𝑛𝑡(ℎ𝑎𝑛𝑑))) ∧

(𝑐𝑜𝑙𝑙(𝜕(𝑏𝑙𝑜𝑐𝑘𝑟), 𝜕(ℎ𝑎𝑛𝑑))) statement in Table II, 𝑜𝑡
𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒

=

𝐸𝐶(𝑏𝑙𝑜𝑐𝑘𝑟 , ℎ𝑎𝑛𝑑) for combination {ℎ𝑎𝑛𝑑, 𝑏𝑙𝑜𝑐𝑘𝑟}. We would like

to emphasize that, since 𝑥𝑡 and 𝑜𝑡 have the same domain,

HMM filtering can be considered as a noise rejection process,

as in control theory (Vaseghi 2008). HMMs in other filters

have similar structure.

Figure 5. (a) The HMM for primitive filter, and (b) Continuity network

(Cohn et al. 1997)

Predicate Filter

The predicate filter takes the output from the primitive
filter as its input. It estimates the currently true predicates (line
7 ~ 9 in Algorithm 1). We design a distinct HMM for each set
of mutually exclusive (grounded) predicates. We can find
mutually exclusive predicates with invariant synthesis. In our
pick and place example, we will use the predicate set
{(𝑒𝑚𝑝𝑡𝑦 ℎ𝑎𝑛𝑑), (ℎ𝑜𝑙𝑑𝑖𝑛𝑔 𝑏𝑙𝑜𝑐𝑘𝑟 ℎ𝑎𝑛𝑑), (ℎ𝑜𝑙𝑑𝑖𝑛𝑔 𝑏𝑙𝑜𝑐𝑘𝑔 ℎ𝑎𝑛𝑑),

(ℎ𝑜𝑙𝑑𝑖𝑛𝑔 𝑏𝑙𝑜𝑐𝑘𝑏 ℎ𝑎𝑛𝑑)} to demonstrate how an HMM is
designed in predicate filter. If such a set has only one element,
for example {(𝑐𝑙𝑒𝑎𝑟 𝑏𝑙𝑜𝑐𝑘𝑟)}, the predicate forms an individual
HMM with two states, (𝑐𝑙𝑒𝑎𝑟 𝑏𝑙𝑜𝑐𝑘𝑟) and ¬(𝑐𝑙𝑒𝑎𝑟 𝑏𝑙𝑜𝑐𝑘𝑟). In our
pick and place example, there are 11 individual HMMs for
predicate filter (1 for {(𝑒𝑚𝑝𝑡𝑦 ℎ𝑎𝑛𝑑), (ℎ𝑜𝑙𝑑𝑖𝑛𝑔 𝑏𝑙𝑜𝑐𝑘𝑟 ℎ𝑎𝑛𝑑),

(ℎ𝑜𝑙𝑑𝑖𝑛𝑔 𝑏𝑙𝑜𝑐𝑘𝑔 ℎ𝑎𝑛𝑑), (ℎ𝑜𝑙𝑑𝑖𝑛𝑔 𝑏𝑙𝑜𝑐𝑘𝑏 ℎ𝑎𝑛𝑑)} form and 10 for
{(𝑐𝑙𝑒𝑎𝑟 𝑏𝑙𝑜𝑐𝑘𝑟), ¬(𝑐𝑙𝑒𝑎𝑟 𝑏𝑙𝑜𝑐𝑘𝑟)}
form). Note that using
invariant synthesis
reduced the number of
HMMs needed from 14
to 11.

 As for each HMM,

an example transition

model is given in

Figure 6. Example transition model

98

Figure 6. Note that if hand is initially holding 𝑏𝑙𝑜𝑐𝑘𝑟 , it must

place 𝑏𝑙𝑜𝑐𝑘𝑟 and be empty before picking up 𝑏𝑙𝑜𝑐𝑘𝑔. The

observation model is a matrix representing 𝑃(𝑜𝑡|𝑥𝑡), where

𝑥𝑡 and 𝑜𝑡 are both predicates in PDDL. To get 𝑜𝑡, we use the

most probable estimate from primitive filter (𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝑡
𝑚𝑙) and

apply Table III, as if we were using a deterministic approach

(line 7 - 8 in Algorithm 1). That is, if using 𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝑡
𝑚𝑙 for

combination {ℎ𝑎𝑛𝑑, 𝑏𝑙𝑜𝑐𝑘𝑟} satisfies ~(𝐷𝐶 ℎ𝑎𝑛𝑑 𝐴) statement in

Table III, 𝑜𝑡
𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒

= (ℎ𝑜𝑙𝑑𝑖𝑛𝑔 𝑏𝑙𝑜𝑐𝑘𝑟 ℎ𝑎𝑛𝑑).

Note, using the output from predicate filter, LCARS can

also be used to estimate over the predicates related to human

activities.

Activity/Status Filter

The activity/status filter takes the output from the predicate
filter. It estimates the current action and status (line 10 ~ 12 in
Algorithm 1). Each (grounded) action is designed as a separate
HMM. In our pick and place example, there are 15 individual
HMMs for activity/status filter.

For each HMM, the transition model is given in Figure 7,
which is based on the work in (Wang and Williams 2015) and
(Lane 2016). It shows how six predefined statuses (circled in
Figure 7) evolve. All guard conditions (indicated along each
edge) are ignored since, we use a homogeneous HMM for
simplicity. The observation model is a matrix representing
𝑃(𝑜𝑡|𝑥𝑡), where 𝑥𝑡 and 𝑜𝑡 are both activity statuses. As for the
previous filters, we use the most probable predicates from the
predicate filter (𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑡

𝑚𝑙) and apply the structure in Figure 7
(with guard conditions) to get 𝑜𝑡 , as if we were using a
deterministic approach (line 10 - 11 in Algorithm 1). That is,
we assume that our previous most probable action status,
𝑥𝑡−1 = 𝑎𝑟𝑔𝑚𝑎𝑥

𝑥𝑡−1

𝑃(𝑥𝑡−1|𝑂1:𝑡−1), is given. Then, we assume that we

are at status �̂�𝑡−1 at time 𝑡 − 1. If any of the guard conditions

for each edge that starts at �̂�𝑡−1 is satisfied, 𝑜𝑡
𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦

 is

assigned as the destination status. If not, 𝑜𝑡
𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦

= �̂�𝑡−1. For

example, if we start from 𝑁𝑒𝑢𝑡𝑟𝑎𝑙, �̂�𝑡−1 = 𝑁𝑒𝑢𝑡𝑟𝑎𝑙, and the
output from the predicate filter tells us that the at start
condition is satisfied, then 𝑜𝑡 = 𝑅𝑒𝑎𝑑𝑦 . Here, we are
assuming that 𝑥𝑡−1 ≈ �̂�𝑡−1.

Figure 7. Connection between statuses in each action

Offline Compilation Component

The offline compilation component takes given PDDL
code (Table I) and user specified definitions over predicates
(Table III) and generates the online estimation component
autonomously. That is, even when a different human activity
monitoring problem is given, we can autonomously generate
online estimation component by modifying only Table I and
Table III. The offline compilation process can be automated
since filters in the online estimator have repetitive structure
with three parts: i) a transition model, ii) an observation model
(omitted here since it has a simple matrix form), and iii) an
algorithm for obtaining observation 𝑜𝑡. The process is outlined
in the following.

1. Inputs are PDDL code as in Table I, and user specified
definitions about how each predicate in PDDL code is
to be represented in RCC-8 primitives as in Table III.
Note, user only need to provide these two inputs for
autonomous generation of online estimator.

2. The Kalman filter is generated as in Section IV.

3. The primitive filter is generated using a continuity
network for the transition model and Table II for the
algorithm to find observation 𝑜𝑡 . Note, continuity
network structure and Table II don’t change for
different human activity monitoring problems.

4. The invariant synthesis algorithm is applied to find
sets of mutually exclusive predicates.

5. The predicate filter is generated using the result from
step 4 for the transition model and user specified
definitions (Table III) for the algorithm to find
observation 𝑜𝑡 (line 8 in Algorithm 1). Note, once all
user-required inputs (Table I and Table III) are given,
the process can be automated since the invariant
synthesis algorithm can extract sets of mutually
exclusive predicates autonomously.

6. The activity/status filter is generated using Figure 7
for the transition model. The algorithm to find
observation 𝑜𝑡 is generated as in Section IV. Note,
Figure 7 structure doesn’t change for different human
activity monitoring problems.

Experimental Results

We performed an
experiment using the
PDDL in Table I. Figure
8 shows the experiment
environment. Again, we
used three blocks (red,
green, and blue), two
locations (A and B), and
one manipulators (a
human hand). Thus,
there were 14 grounded predicates and 15 grounded activities.

Figure 8. Experimental environment

99

We used a Vicon system to measure the position (global 𝑥,
𝑦, and 𝑧 coordinates for the center of mass) and orientation
(helical 𝑥, 𝑦, and 𝑧 coordinates) of each object, while a person
performing a pick, place, and pass action manually. Since the
Vicon system is very accurate, we included random white
Gaussian noise. For position, we added zero mean noise with

covariance [
400 0 0

0 400 0
0 0 400

] (𝑚𝑚2). For orientation, covariance

was [
0.01 0 0

0 0.01 0
0 0 0.01

] (𝑟𝑎𝑑2). Note that the length of the blocks’

sides ranged from 70 mm to 200 mm, so the added noise was
relatively significant. Then, we applied both our probabilistic
approach (online estimatior of LCARS) and a deterministic
approach (Schlenoff 2013) to estimate activity statuses. The
object pose measurement was performed for about 100
seconds, receiving 9848 sequential measurements. For the
deterministic approach, we applied relations in Table II and
Table III directly, which is equivalent to not using lines 3, 6, 9,
and 12 in Algorithm 1, which is summarized in Algorithm 2.

Algorithm 2 : Deterministic approach (similar to (Schlenoff 2013))

1 𝐈𝐧𝐩𝐮𝐭 ∶ 𝑜𝑡
𝑝𝑜𝑠𝑒

 // 𝑜𝑡
𝑝𝑜𝑠𝑒

 is vector of object poses

2 𝐎𝐮𝐭𝐩𝐮𝐭 ∶ 𝑝𝑜𝑠𝑒𝑡, 𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝑡 , 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑡, 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑡

3 𝑝𝑜𝑠𝑒𝑡 ← 𝑜𝑡
𝑝𝑜𝑠𝑒

4

𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝑡 ← 𝑅𝐶𝐶 − 8_𝑓𝑟𝑜𝑚_𝑇𝑎𝑏𝑙𝑒_𝐼𝐼(𝑝𝑜𝑠𝑒𝑡)

// 𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝑡 is vector of relevant RCC-8 statements

5

 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑡 ← 𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒_𝑇𝑎𝑏𝑙𝑒_𝐼𝐼𝐼(𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝑡)

// 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑡 is vector of relevant predicate statements

6

𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑡 ← 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦_𝐹𝑖𝑔𝑢𝑟𝑒_7(𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑡)

// 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑡 is vector of relevant activity statuses

In our work, the accuracy rate is the rate of estimating the
most likely activity statuses (or primitives and predicates)
correctly compared to the true activity statuses (or primitives
and predicates), which was kept separately along the
measurement (note the estimation problem in our work is
fundamentally the same as the classification problem).
Though the main purpose is to estimate the activity and its
status, LCARS can also estimate the primitive and the
predicate, since we also calculate the belief state over
primitives can predicate in Algorithm 1. Thus, we also
calculated the primitive and predicate accuracy rates to show
LCARS estimate them correctly as well.

We calculated the accuracy rates for primitives. For the
deterministic approach, the accuracy rate for all primitives
being correct (estimating the whole vector of primitives
correctly, for all combinations of objects) at a time was
19.82%. It was 65.86% for LCARS. The primitive filter
reduces the noise to some degree before the predicate filter.
Next, we calculated the accuracy rates for predicates. For the
deterministic approach, the accuracy rate for all predicates
being correct at a time was 21.66%. It was 94.53% for LCARS
(using both primitive and predicate filters), ensuring
robustness. In addition, when we used the probabilistic
predicate filter only, without a probabilistic primitive filter
(first running until line 5 of Algorithm 2, then running from
line 9 of Algorithm 1), the accuracy rate was 63.18%. This
shows that combining filters performs better than using only
one of them. The results are summarized in Table IV.

TABLE IV. ACCURACY RATES FOR PRIMITIVES AND PREDICATES

Case Primitives Case Predicates

Deterministic only 19.82 % Deterministic only 21.66 %

Primitive filter 65.86 %
Predicate filter

only
63.18 %

- - Layered structure 94.53 %

We also calculated the accuracy rates for individual
mutually exclusive predicates (rather than as a whole vector).
Table V shows the result for some. The result does not deviate
much for omitted ones.

TABLE V. ACCURACY RATES FOR MUTUALLY EXCLUSIVE PREDICATES

Mutually Exclusive Predicates Deterministic LCARS

{(𝑒𝑚𝑝𝑡𝑦 ℎ𝑎𝑛𝑑), (ℎ𝑜𝑙𝑑𝑖𝑛𝑔 ? 𝑜𝑏𝑗 ℎ𝑎𝑛𝑑) ∀? 𝑜𝑏𝑗} 76.45 % 97.83 %

{(𝑐𝑙𝑒𝑎𝑟 𝑏𝑙𝑜𝑐𝑘𝑟), ¬(𝑐𝑙𝑒𝑎𝑟 𝑏𝑙𝑜𝑐𝑘𝑟)} 92.01 % 99.20 %

{(𝑜𝑛 𝑏𝑙𝑜𝑐𝑘𝑟 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐴), ¬(𝑜𝑛 𝑏𝑙𝑜𝑐𝑘𝑟 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐴)} 88.76 % 99.75 %

{(𝑜𝑛 𝑏𝑙𝑜𝑐𝑘𝑟 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐵), ¬(𝑜𝑛 𝑏𝑙𝑜𝑐𝑘𝑟 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐵)} 72.26 % 99.44 %

Finally, we checked if LCARS calculates the activity
statuses correctly. We applied LCARS to other 60 datasets,
performing one of three actions (20 datasets for each of pick,
place, and pass action) with either red, green, or blue block
and either location A or B. We also included occasional failure
of actions (by intentionally violated guard conditions in Figure
7) to show LCARS detects the action failure correctly as well.
For example, for pick action, we violated (ℎ𝑜𝑙𝑑𝑖𝑛𝑔 ? 𝑜𝑏𝑗 ℎ𝑎𝑛𝑑)
in at end condition, simulating block slipping from hand.
Table VI shows the accuracy rates for getting statuses for all
grounded actions correctly (again, for whole vector of all
grounded actions). Note, we assumed actions are not mutually
exclusive and multiple actions can happen at the same time,
for more general future extensions.

TABLE VI. ACCURACY RATES FOR ACTIVITY/STATUS

Action type Average status accuracy over 20 datasets

Pick 93.42 %

Place 94.02 %

Pass 90.99 %

Figure 9 shows how LCARS estimated the activity
statuses over time for an individual example action (for
grounded action (𝑝𝑖𝑐𝑘 ? 𝑜𝑏𝑗 = 𝑟𝑒𝑑 ? 𝑚𝑎𝑛𝑖𝑝 = ℎ𝑎𝑛𝑑 ? 𝑙𝑜𝑐 =

 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝐴)). The 𝑥 axis represents the elapsed time; the 𝑦 axis
shows the status (integers from 1 to 6 indicate
{𝑁𝑒𝑢𝑡𝑟𝑎𝑙, 𝑅𝑒𝑎𝑑𝑦, 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑛𝑔, 𝑁𝑒𝑎𝑟, 𝐹𝑖𝑛𝑖𝑠ℎ𝑒𝑑, 𝐹𝑎𝑖𝑙𝑒𝑑} , respectively).
Note LCARS successfully detects the action being finished
around 6 seconds (red dotted line reaches status 5). We would
like to point out that LCARS always detected the success in
finishing the action or failure of the action correctly, with
slight delay due to the nature of HMM.

100

Figure 9. The progress graph for an example grounded action

From the above results, we can conclude that using
LCARS reduces noise very effectively. In addition, combining
filters as a layered structure performs much better.

Conclusion

This paper presents the LCARS algorithm for robust
human activity monitoring tasks. The task has three interesting
points: i) sensor noise, ii) a predefined abstract human
behavior model and iii) the spatial relations between objects.
LCARS has two components: i) the offline compilation
component and ii) the online estimation component. The
offline part autonomously generates the online part using the
common sense structural and logical knowledge. The
knowledge is based on the abstract human behavior model,
written in PDDL, and spatial relations between objects,
represented using RCC-8. The resulting online part has a
layered structure, designed as a series of HMMs to estimate
the current activity and its status. Experimental results show
that our solution is robust.

Future efforts will focus on modeling a more sophisticated
structure to capture the dependencies between primitives,
predicates, and activities/statuses. Our model is a bottom-up
model. That is, it captures well how primitives affect
predicates and how predicates affect actions and statuses,
compared to the other direction. We hope to model the other
direction better by using a variant of an HMM, such as a
hierarchical HMM (HHMM) (Murphy 2012). In addition, we
will apply LCARS to other noisy sensing technologies. For
example, cameras with neural network based object detection
algorithms are widely used nowadays. The measurement is
very noisy and we expect LCARS to be effective in this case
as well.

References

Albath, J.; Leopold, J. L.; Sabharwal, C. L.; and Maglia, A. M.

2010. RCC-3D: Qualitative Spatial Reasoning in 3D.

International Conference on Computer Applications in

Industry and Engineerining (CAINE), 74-79. Las Vegas, NV,

USA.

Aurnague, M. and Vieu, L. 1993. A Three-level Approach to

the Semantics of Space. In The Semantics of Prepositions:

from Mental Processing to Natural Language Processing 3,

393-440. Walter de Gruyter.

Awais, M. and Henrich, D. 2010. Human-robot Collaboration

by Intention Recognition Using Probabilistic State Machines.

Robotics in Alpe-Adria-Danube Region (RAAD), 2010 IEEE

19th international Workshop on, 75-80. Balantonfured,

Hungary.

Bernardini, S. and Smith, D. E. 2011. Automatic Synthesis of

Temporal Invariants. Ninth Symposium on Abstraction,

Reformulation and Approximation (SARA), 10-17. Parador de

Cardona, Spain.

Cohn, A. G.; Bennett, B.; Gooday, J.; and Gotts, N. M. 1997.

Qualitative Spatial Representation and Reasoning with the

Region Connection Calculus. GeoInformatica 1(3): 275-316.

Ericson, C. 2004. Real-Time Collision Detection. CRC press.

Fox, M. and Long, D. 2003. PDDL 2.1: An extension to

PDDL for expressing temporal planning domains, Journal of

Artificial Intelligence Research Vol. 20: 61-124.

Freksa, C. 1991. Qualitative Spatial Reasoning. Cognitive

and Linguistic Aspects of Geographic Space Vol. 63:

361-372.

Heinze, C. 2004. Modelling Intention Recognition for

Intelligent Agent Systems, No. DSTO-RR-0286. Defence

Science and Technology Organisation Salisbury (Australia)

Systems Sciences Lab.

Lane, S. D. 2016. Propositional and Activity Monitoring

Using Qualitative Spatial Reasoning. M.S. Dissertation,

Massachusetts Institute of Technology.

Murphy, K. P. 2012. Machine Learning: A Probabilistic

Perspective. MIT press.

Schlenoff, C.; Pietromartire, A.; Kootbally, Z.; Balakirsky, S.;

and Foufou, S. 2013. Ontology-based State Representations

for Intention Recognition in Human–robot Collaborative

Environments. Robotics and Autonomous Systems 61(11):

1224-1234.

Schlenoff, C.; Kootbally, Z.; Pietromartire, A.; Franaszak, M.;

and Foufou, S. 2015. Intent Recognition in Manufacturing

Applications. Robotics and Computer-Integrated

Manufacturing Vol. 33: 29-41.

Schrempf, O. C. and Hanebeck, U. D. 2005. A Generic Model

for Estimating User Intentions in Human-robot Cooperation.

International Conference on Informatics in Control,

Automation, and Robotics (ICINCO), 250-256. Barcelona,

Spain.

Vaseghi, S. V. 2008. Advanced Digital Signal Processing and

Noise Reduction. Wiley.

Wang, D. and Williams, B. 2015. tBurton: A Divide and

Conquer Temporal Planner. Association for the Advancement

of Artificial Intelligence (AAAI), 3409-3417. Austin, TX,

USA.

101

Domain Reasoning for Robot Task Planning — A Position Paper

Uwe Köckemann, Ali Abdul Khaliq, Federico Pecora, Alessandro Saffiotti
Center for Applied Autonomous Sensor Systems (AASS), Örebro University, Örebro, Sweden

firstname.lastname@oru.se

Abstract

In this position paper we argue for moving towards general
purpose domains to promote the usage of task planning for
real-world robot systems. Planning approaches should extract
concrete domains based on their current context in order to
solve problems. Towards this aim, we define the problem of
domain reasoning, by which a planning domain is obtained
from a more general, multi-purpose domain definition, given
the current deployment and context of the robot system. We
provide examples motivating the need for domain reasoning
in robot task planning, as well as a discussion of potential
solutions to the domain reasoning problem.

Introduction
In order to make automated planning ready for real-world
robotic applications, we need to be able to specify general
purpose domains for planning that can be adapted to a va-
riety of different deployment contexts. In order to support
this claim, we will employ three hypothetical applications
of robot systems as running examples throughout this posi-
tion paper.
Example 1. A general-purpose personal robot assistant can
be deployed in a variety of different cultural contexts. It
should be possible to automatically adapt the domain for-
mulation which drives the robot’s task planning to account
for background knowledge of the culture and of the personal
perferences of the user(s) it is deployed with.
Example 2. A general purpose robotic assistant can be de-
ployed either in an office environment to escort visitors or
in a museum environment to give guided tours. We want the
robot to rely on different context-based instantiations of the
same operators. In the office case, movement may be focused
on efficiently reaching the target office. In the museum con-
text, movement should be slower and the robot should move
with a crowd of visitors that following it.
Example 3. Human-aware planning for a robot compan-
ion for children and for elderly people might be structurally
similar but have different goals, adjusted robotic behaviors,
and different constraints on feasible plans. Here, the domain
may include constraints for not disturbing school work and
not disturbing when the nurse is present. Depending on the
deployment context, the correct sub-set of rules is chosen.
In case both children and elderly are present in the same

household, the domain reasoner should dynamically choose
which parts of the domain to apply depending on the current
context (e.g., who is at home currently).

In each of the applications above, the same robot can be
used across different contexts. Indeed, we can easily envis-
age using the same robot across applications. In order to do
this, we claim that some form of domain reasoning is nec-
essary. Broadly speaking, domain reasoning is the problem
of determining a specific domain to be used by a task plan-
ner given a general purpose domain and the current context.
In this paper, we will attempt to provide a more concrete
definition of this problem.

There is a variety of possible advantages for general pur-
pose domains: Using such domains may increase the quality
of plans, since domain reasoning would distill a purpose-
built, highly contextual concrete domain to be used for task
planning. There may also be benefits from the point of view
of the efficiency of planning. Domain reasoning may fil-
ter out large portions of the general purpose domain, po-
tentially leading to smaller problem instances, and in some
cases changing the complexity of the problem. Realizing,
for instance, that the temporal aspect of a domain is not im-
portant in a certain context, planning operators could be re-
stricted to their non-temporal parts. Similarly, context may
indicate whether probabilistic planning is necessary. The
planning community is well aware of the fact that no plan-
ning method performs well across the board for all forms of
planning, hence it seems reasonable to investigate AI meth-
ods for deciding when to use which fraction of a domain.
This could, in principle, include knowledge about uncer-
tainty, temporal relations, and other forms of knowledge at
the same time.

There are various engineering benefits connected to the
use of domain reasoning, such as re-usability, testing, and
validation. Operators that are used in most domains (e.g.,
move the robot from one location to another) may be au-
tomatically adjusted rather than having to be manually re-
formulated. Finally, to extend an existing general purpose
domain with a new context should be easier than creating
a new domain from scratch, since many aspects are already
present. This is especially true if the underlying robot re-
mains the same.

In this paper we formalize the notion of context-adapted
planning domains, and analyze different ways of extracting

102

the domain from the general purpose domain. All our con-
siderations are independent of a specific planning approach,
and should therefore be applicable to any domain definition
language. In light of our problem definition, we discuss a
series of examples in a more detailed way, drawing freely
from the three application examples sketched above.

A Formal Model for Domain Reasoning
A general task planning problem can be expressed as a tuple
Π = (Φ,O, δ, θ), where Φ is a set of expressions describ-
ing knowledge about the environment. Φ may contain, for
instance, current states, projected future states, as well as
constraints or rules regulating how the environment works.
For practical reasons, we consider the initial state I ⊆ Φ and
goals G ⊆ Φ. The set of operatorsO describes decisions that
the planner can make to change aspects of the environment.
Usually, each operator o ∈ O has conditions under which it
can be applied and a description of how it changes Φ. The
function δ : 2Φ × O → 2Φ applies an operator and creates
a new description of the environment. Finally, the function
θ : 2Φ×G → {True,False} tests if a goal has been achieved
in a description of the environment. With this problem defi-
nition, planning is usually reduced to a search problem that
finds a (partially or totally ordered) set of operators leading
to some Φ′ in which all goals are achieved.

Both Φ andO are expressed in terms of a Domain Defini-
tion Language (DDL) LD. In addition, we assume a context
definition language LC . A planning domain D can now be
defined as D = Φ ∪ O ∈ LD. with these ingredients, we
can now define four concepts that are not traditionally con-
sidered in automated planning:

Context C ∈ LC: circumstances that determine which sub-
set of a domain has to be used. May be static or dynamic
(or have both static and dynamic components)

General Purpose Domain D∗ ∈ LD: an unfiltered domain
that models all possible application domains (may not be
consistent as is, due to mutually exclusive requirements
for mutually exclusive contexts)

Context Reasoning fC : LD → LC: to determine the rele-
vant context, given all available information

Domain Reasoning fD : LD × LC → LD: to generate a
domain for a given context

Using this formal model we will now consider a series of
questions that arise in practice.

What does the domain reasoning function do? There
are several options here. One option is variable substitu-
tion (e.g., substitute cultural or personal preferences of the
user in Example 1 into operators). Another option is subset
selection, that is, removing unnecessary or unwanted oper-
ators, constraints, or other parts of the general purpose do-
main. Indeed, HTN planning can be seen as a form of sub-
set selection. Finally, structure generation/alteration could
be used to assemble operators and/or constraints dynami-
cally for a given context. A move operator in a museum (see
Example 2) may have different internal conditions (e.g., stay
close to the visitor group) from those of a movement oper-
ator that does not include others. A temporally expressive

operator could be reduced to a simpler operators if temporal
information is not relevant in the current context.

When/how does the context change? User driven con-
text changes are caused directly by user interactions with the
robot. The current goal has a strong impact on which parts
of a domain should be considered for planning. Escorting
a visitor to an office or giving a guided tour to a visitor are
different goals that should use a different domain. In the
same way, goals can also limit the background knowledge
used by the planner. For instance, going to the supermarket
may require a map of an apartment building and part of a
city; fetching an object from the kitchen, on the other hand,
requires only a map of the apartment. In a similar way, cur-
rent/future states, as well as background knowledge can de-
termine the context. Depending on the culture of the owner
(see Example 1), a robot may have to solve problems in a dif-
ferent way when the user is alone at home compared to when
there are visitors. Cleaning an apartment in a noisy way is
not a problem when the owner is not at home, but constraints
may apply otherwise (e.g., robot should not clean the room
in which the owner is present).

How is context expressed? Context could be expressed
in a propositional way (similar to states in classical plan-
ning), or in a declarative languages such as Prolog (Bratko,
2000), or Constraint Processing (Dechter, 2003) languages.
The latter becomes interesting when inferences about im-
plied context need to be made. Separating LC from LD is
useful conceptually, but in practice they may overlap, as task
planners may also require context for decision making (Pec-
ora et al., 2012). Coutaz et al. (2005) argue for treating con-
text as a process rather than a state.

Examples of Domain Reasoning & Context
In this section we go through a detailed set of examples
taken from of the possible content of the general purpose do-
main and how context could influence it. Consider that all of
the following paragraphs describe parts of the same general
purpose domain used by a robot for household and/or office
applications across the globe. We will highlight how sub-
stitution, filtering, and structural changes could come into
play for each of these aspects of the general purpose domain.
Context in this domain may be determined by a multitude of
factors such as relevant users, deployment focus (private or
business), current and/or relevant locations, current goals or
tasks, user background information (country, city, language,
cultural background, or the user’s role in the environment),
and relevant events (e.g., visits, parties, birthdays, important
deadlines).

Maps and Objects. The general purpose domain may in-
clude a set of maps of varying detail and objects within the
environment (e.g., apartment, house, office building, city).
Information about locations and objects can be filtered out
when it is not relevant to the given context. Filtering could
be done by analyzing the structure of the problem (as, e.g.,
described by Helmert, 2004) or maintaining a knowledge
base that describes the relevance of parts of D∗ depending
on the context c. A query to this knowledge base for context
c could be answered with a domain D ⊆ D∗. Depending on
the chosen form of knowledge representation, the amount of

103

knowledge that has to be modeled here may vary. An ontol-
ogy could capture a lot of information that is independent of
concrete objects, and could be queried to retrieve the prop-
erties of groups of objects. This part of the general purpose
domain may also lead to structural variations. There may be
special preconditions that only apply to certain sub-classes
of objects (e.g., handle with care); in such cases we could
consider adapting the structure of a manipulation operator
to the object being manipulated.

Information about users. Preferences, cultural back-
ground, or the role of a user can be substituted via domain
reasoning into operators that involve human-robot interac-
tion. Engaging in a conversation with a user, for instance, re-
quires the robot to approach the user. The approach distance,
as well as the topic of conversation and how the conversa-
tion is initiated, may depend on the user’s cultural back-
ground, preferences, and role within the environment. As
before, user preferences may lead to changes in operator
structure in cases where users have special needs. A robot
that would normally navigate between two people who are
talking to each other may be considered very rude if the peo-
ple were using sign language. As a result, the domain rea-
soner should adapt all operators that involve moving in these
circumstances.

General Operators. A general purpose domain would
likely include a default set of operators covering task-
independent robot capabilities, such as movement and ma-
nipulation. Robot movement may change depending on the
environment (inside or outside). These changes could be
substituted into the existing movement operator. Some lo-
cations may have special conditions that restrict movement.
The robot may need special permission to enter the archive
of an office, some objects may need to be handled with care,
or movement may need to be adapted considering who the
robot is moving with (see examples above). Crossing a street
may require the traffic light to be green, while moving from
one room to another requires the door to be open. Consid-
ering these issues as structural changes made to the general
purpose domain by the domain reasoner is interesting, be-
cause it may lead to a situation where the general purpose
domain is actually more compact than the extracted domain.
One general purpose movement operator, for instance, may
lead to a set of concrete operators adapted to the context
at hand. Modeling context dependence in the form of pre-
conditions would lead to a large number of variations of the
same operator(s), which quickly becomes hard to maintain.

Specialized Operators. As robots become more capable
at executing everyday tasks, such as tidying, doing laundry,
folding clothes, or shopping, a large number of specialized
operators will be added to the general purpose domain. If not
relevant, many of these operators can be filtered out. How-
ever, domain reasoning could also consider what is relevant
for these operators. Cleaning a load of laundry and fold-
ing it afterwards, for instance, are local tasks. They should
not involve leaving the house (unless some cleaning product
needs to be bought or fetched from some other building).
The locations involved in planning for shopping depend on
the items on the shopping list. A general way to model this
relevance (e.g., through an ontology) could be an interest-

ing start for creating a domain reasoner that does not require
explicit knowledge of all such details for every object.

Rules and Constraints. There are potentially many rules
and constraints that planners should uphold only under spe-
cific circumstances. Rules for goal reasoning (Vattam et al.,
2013) may cover under which circumstances a planner adds
a new goal or changes an existing goal. These rules may be
relevant only in specific situations. In a similar way, con-
straints for social acceptability (Köckemann, Pecora, and
Karlsson, 2014) may apply only given a user’s cultural back-
ground or personal preferences. Enforcing the full set of
these rules and constraints may lead to a very difficult or
unsolvable problem. If, for instance, in the current context
the user is not at home for the entire day, there is no reason
for the planner to take into account any constraints that de-
pend on the location of the user. For the same reason, every
rule for goal reasoning (e.g., describing when to formulate
a goal) that involves the user performing an activity can be
disregarded. The structure of these rules and constraints may
change as well, depending on the circumstances. How goals
are formulated, or which situation possibly violates social
acceptability, may vary depending on the context.

Related Work
The problem that we wish to address here is quite general
and related to many other aspects of planning research. We
attempt here to provide a short overview of research in task
planning that is related to domain reasoning. Given length
restrictions, this section is necessarily incomplete.

The lack of automated planning in real robot deployments
was also pointed out by Alterovitz, Koenig, and Likhachev
(2016), who list several research challenges for robot plan-
ning that involve planning in the real world (with perception)
and with humans (human-aware planning, predictability, un-
derstandability). We argue that for many of these issues,
some form of domain reasoning as suggested here will be
necessary in order to cope with the growing complexity of
the robot systems and tasks.

Many planning systems already support some form of do-
main reasoning by removing unnecessary predicates or op-
erators that cannot contribute to a goal.

Automatic domain abstraction through pre-compilation
(Knoblock, 1994) is often used to reduce domain complexity
before starting the search for a plan. A sub-set of operators
may actually never contribute to achieving certain goals, and
can safely be removed. These approaches can be considered
as a form of domain reasoning that applies filtering.

There is also a relation between our suggestion and the
approach taken by Hierarchical Task Network (HTN) plan-
ners (Nau et al., 2005). Methods in HTN planners describe
how a combinations of actions can be used to achieve a task.
This can also be seen as a form of domain reasoning, where
task decomposition leads from a general purpose domain to
a specific one. (Hartanto and Hertzberg, 2009) used a de-
scription logic reasoner as fD to complile HTN domains.

Borgo et al. (2016) extend the DOLCE ontology to model
global, local, and internal context for creating planning do-
mains for a Reconfigurable Manufacturing System.

104

Planning for large-scale domains has been addressed by
Galindo et al. (2008), who plan using several layers of ab-
straction. This approach incorporates domain reasoning di-
rectly into planning. Individual rooms, for instance, are only
considered after planning on the level of abstraction of areas
in a building.

The KnowRob project (Tenorth and Beetz, 2013) aimed to
provide general robot skills that can be downloaded and ex-
ecuted by any capable platform. In a way, this project can be
seen as an effort to bridge the task planning and robotics gap
from the robotics side (by making robot capabilities transfer-
able). In contrast, domain reasoning would reach out from
the AI side (by dealing with real-world domain complexity).

Depending on what we consider relevant context for a
planning system, there is related work to be found on the
topics of context recognition and inference (Pecora et al.,
2012), or activity recognition. Plan recognition (Carberry,
2001) could be used in a similar way.

Context for reasoning in first-order logic has been consid-
ered by McCarthy (1993) to provide a way of adjusting rea-
soning and the truth of sentences in first-order logic to con-
text. This allows to perform reasoning about other agents’
viewpoints, as well as about the implications of hypotheses.
The problem we consider in this paper is more specific and
driven by practical considerations.

In summary, while there is some work that goes in the
direction of domain reasoning, we are not aware of any ap-
proach attempting to generalize this idea in order to push
for task planners that are useful for robotics. The model for
domain reasoning suggested in this paper is independent of
the underlying planning approach. Our hope is that studying
this general formulation of domain reasoning will contribute
to bridging the gap between task planning and robotics.

Conclusion
In this position paper we have argued for general purpose
domains and domain reasoning to address the lack of task
planning technology in robot applications. Domain reason-
ing could allow us to address scalability by pruning do-
main subsets and by possibly limiting planning problems to
a lower complexity class (e.g., from temporal planning to
classical planning). In addition, maintaining a general pur-
pose domain for a robotic deployment should have a variety
of engineering benefits such as testability and extandability.

We have provided a simple formulation of the domain rea-
soning problem and related concepts, and discussed various
questions that arise when introducing the idea of context-
dependent domains to planning. We have discussed a series
of examples and possible solutions to the context and do-
main reasoning functions fC and fD.

We are currently using domain reasoning within the CA-
RESSES1 project, with the aim to design care robots that
adapt to the culture of the person they assist. In future work,
we intend to investigate alternative solutions to the domain
reasoning problem, and move towards implementation and
comparison of different approaches in terms of how well
they enable the use of automated task planning for robots.

1http://caressesrobot.org/.

Acknowlegements. This work was supported by the
European Commission Horizon2020 Research and Innova-
tion Programme under grant agreement No. 737858 (CA-
RESSES).

References
Alterovitz, R.; Koenig, S.; and Likhachev, M. 2016. Robot

planning in the real world: Research challenges and op-
portunities. AI Magazine 37(2):76–84.

Borgo, S.; Cesta, A.; Orlandini, A.; and Umbrico, A. 2016.
A planning-based architecture for a reconfigurable manu-
facturing system. In Proc. of ICAPS, 358–366.

Bratko, I. 2000. Prolog Programming for Artificial Intelli-
gence. Addison Wesley.

Carberry, S. 2001. Techniques for plan recognition. User
Modeling and User-Adapted Interaction 11:31–48.

Coutaz, J.; Crowley, J. L.; Dobson, S.; and Garlan, D. 2005.
Context is key. Commun. ACM 48(3):49–53.

Dechter, R. 2003. Constraint processing. Elsevier Morgan
Kaufmann.

Galindo, C.; Fernández-Madrigal, J.-A.; González, J.; and
Saffiotti, A. 2008. Robot task planning using seman-
tic maps. Robotics and autonomous systems 56(11):955–
966.

Hartanto, R., and Hertzberg, J. 2009. On the benefit of fus-
ing dl-reasoning with htn-planning. In Mertsching, B.;
Hund, M.; and Aziz, Z., eds., KI 2009: Advances in Ar-
tificial Intelligence, 41–48. Berlin, Heidelberg: Springer
Berlin Heidelberg.

Helmert, M. 2004. A Planning Heuristic Based on Causal
Graph Analysis. In Proc. of ICAPS, 161–170.

Knoblock, C. A. 1994. Automatically generating abstrac-
tions for planning. Artif. Intell. 68(2):243–302.

Köckemann, U.; Pecora, F.; and Karlsson, L. 2014. Grandpa
hates robots — interaction constraints for planning in in-
habited environments. In Proc. of AAAI.

McCarthy, J. 1993. Notes on Formalizing Context. In Proc.
of IJCAI, 555–562.

Nau, D.; Au, T.-C.; Ilghami, O.; Kuter, U.; Wu, D.; Yaman,
F.; Munoz-Avila, H.; and Murdock, J. W. 2005. Appli-
cations of SHOP and SHOP2. IEEE Intelligent Systems
20(2):34–41.

Pecora, F.; Cirillo, M.; Dell’Osa, F.; Ullberg, J.; and Saf-
fiotti, A. 2012. A Constraint-Based Approach for Proac-
tive, Context-Aware Human Support. Ambient Intelli-
gence and Smart Environments 4(2):347–367.

Tenorth, M., and Beetz, M. 2013. KnowRob: A knowledge
processing infrastructure for cognition-enabled robots. Int
Journal of Robotics Research 32(5):566–590.

Vattam, S.; Klenk, M.; Molineaux, M.; and Aha, D. W.
2013. Breadth of Approaches to Goal Reasoning : A Re-
search Survey. Goal Reasoning: Papers from the ACS
Workshop 111.

105

Improving Trajectory Optimization using a Roadmap Framework

Siyu Dai, Matthew Orton, Shawn Schaffert, Andreas Hofmann, Brian Williams
Massachusetts Institute of Technology

77 Massachusetts Avenue
Cambridge, MA 02139

Abstract

We present an evaluation of several representative sampling-
based and optimization-based motion planners, and then in-
troduce an integrated motion planning system which incorpo-
rates recent advances in trajectory optimization into a sparse
roadmap framework. Through experiments in 4 common ap-
plication scenarios with 5000 test cases each, we show that
optimization-based or sampling-based planners alone are not
effective for realistic problems where fast planning times are
required. To the best of our knowledge, this is the first work
that presents such a systematic and comprehensive evaluation
of state-of-the-art motion planners, which are based on a sig-
nificant amount of experiments. We then combine different
stand-alone planners with trajectory optimization. The results
show that the combination of our sparse roadmap and trajec-
tory optimization provides superior performance over other
standard sampling-based planners’ combinations. By using a
multi-query roadmap instead of generating completely new
trajectories for each planning problem, our approach allows
for extensions such as persistent control policy information
associated with a trajectory across planning problems. Also,
the sub-optimality resulting from the sparsity of roadmap, as
well as the unexpected disturbances from the environment,
can both be overcome by the real-time trajectory optimiza-
tion process.

1 Introduction
Robotic systems deployed in the real world have to contend
with a variety of challenges: light-weight arms or those with
series elastic actuators shake when they move, wheels slip,
IMUs drift, lidars do not reflect off glass doors, structure
light sensors fail outdoors, body-mounted cameras get oc-
cluded by appendages, and humans in the environment move
quickly and in unpredictable manners. These systems cannot
spend an unbounded amount of time searching for an opti-
mal motion plan – a plan that will ultimately be invalidated
by the next sensor reading, a change in the environment, or
a slipping wheel. Instead, a motion planner must find solu-
tions rapidly even at the expense of optimality. A motion
planner that operates quickly allows the robot to truly react
to new information and to feel interactive to humans. In ad-
dition to quick generation, these plans need to account for
the system’s dynamics, be robust to disturbances, and oper-
ate faithfully within a higher-level task plan.

The problem of moving a robot safely and efficiently in

uncertain environments, however, is a challenging one. Of-
ten, there is significant complexity with path planning alone,
due to the robot and environment geometry. Coupled with
dynamic obstacles and sensor noises, the planning problem
only becomes more challenging. Additionally, accounting
for dynamics and actuation limits becomes untenable within
many frameworks.

Due to the complexity of the overall problem, current mo-
tion planning and execution systems do not adequately ad-
dress all of these challenges simultaneously: they often as-
sume the environment is static, or at least, predictable; many
do not simultaneously support collision avoidance and com-
plex dynamics; and many generate completely new trajecto-
ries for each planning problem instead of allowing for per-
sistent control policy information associated with a trajec-
tory across planning problems.

We have previously developed Chekhov, a reactive motion
execution system that addresses these requirements (Hof-
mann et al. 2015). Chekhov avoids obstacles, incorporates
dynamic models and control policies, and observes tempo-
ral constraints. However, because Chekhov uses a roadmap
approach (Kavraki et al. 1996), and because robotic motion
planning state spaces are typically very large, Chekhov’s
coverage of the operating workspace is very sparse. As a
result, trajectories produced by Chekhov are sub-optimal. In
this work, we address this limitation by leveraging recent ad-
vances in obstacle-aware trajectory optimization (Schulman
et al. 2014). First, we show that recently developed trajec-
tory optimization techniques, which include some capabil-
ity to avoid obstacles, are not, by themselves adequate for
typical problems. We then show that by formulating trajec-
tory optimization problems based on the Chekhov roadmap,
the problems associated with using trajectory optimization
alone are solved. Further, we show that the optimized tra-
jectory is superior to (more optimal than) the trajectory pro-
duced by the roadmap alone. Thus, the combination results
in superior performance in terms of feasibility, optimality,
and also planning time. Our future goal is to integrate trajec-
tory optimization into the complete Chekhov motion execu-
tion system, so it is essential that the trajectory optimization
approach is able to incorporate dynamics and temporal con-
straints, as well as being able to react quickly to disturbances
in planning tasks.

106

2 Related Work
Optimization-based robotic motion planners are attracting
more and more attention with the increasing complex-
ity of robots and environments. Covariance Hamiltonian
Optimization for Motion Planning (CHOMP) (Ratliff et
al. 2009), Stochastic Trajectory Optimization for Motion
Planning (STOMP) (Kalakrishnan et al. 2011), Incremen-
tal Trajectory Optimization for Real-time Replanning (IT-
OMP) (Park, Pan, and Manocha 2012) and TrajOpt (Schul-
man et al. 2013) are several state-of-the-art optimization-
based planners. In this work, we focus on the TrajOpt plan-
ner for three reasons. First, the convex-convex collision
checking method used in TrajOpt can take accurate object
geometry into consideration, shaping the objective to en-
hance the ability of getting trajectories out of collision. In
contrast, the distance field method used in CHOMP and
STOMP consider the collision cost for each exterior point
on a robot (Zucker et al. 2013), which means two points
might drive the objective in opposite direction. Second, the
sequential quadratic programming method used in TrajOpt
can better handle deeply infeasible initial trajectories than
the commonly used gradient descent method (Schulman et
al. 2013). Third, customized differential constraints, for ex-
ample velocity constraints and torque constraints, can be in-
corporated in TrajOpt. This is an important consideration for
Chekhov which aims at building a motion execution system
that incorporates system dynamics models and control poli-
cies, while respecting additional temporal constraints.

Despite the advantages of optimization-based planners,
they are not stand-alone planners and their performance is
very sensitive to the quality of initializations. Also, numeri-
cal trajectory optimization often suffers from the problem of
getting stuck in high-cost local optima. Therefore, a natural
thought to improve the performance of optimization-based
planners is to combine them with global planners. Some ex-
isting work, for example Luna et al. (2013) and Campana
et al. (2015), has proposed online path shortening meth-
ods for sampling-based planners. The effect of optimization
in those approaches is mostly limited to trajectory smooth-
ing and shortening, and can’t account for real-time obstacle
avoidance and dynamics constraints. Therefore, those mod-
ified sampling-based planners still share the typical slow
planning times with other common sampling-based plan-
ners. Other researches (Park et al. 2015) have presented a
combined roadmap and trajectory optimization planning al-
gorithm. However, they additionally focused on avoiding
singularities in redundant manipulators and meeting Carte-
sian constraints resulting in relatively long planning times.
In comparison, our approach aims at fast reactive real-time
planning in practical planning scenarios, and extensive ex-
periment results in Section 5 show that our approach reaches
this goal.

3 Problem Statement and Approach
The problem solved by Chekhov is to quickly plan and
execute robot motions that accomplish a task specified by
a set of temporal and spatial constraints. The inputs to
Chekhov can change quickly and unexpectedly with time

while the motion is being executed. For practical applica-
tions, changes fall into three categories: 1) the current state
of the robot changes; 2) the goals to be achieved change;
and 3) an environment obstacle moves in a way that affects
the robot. Thus, we define a disturbance as such an unex-
pected change to task goals, environment, or robot state. The
system we aim at achieving should react, effectively, instan-
taneously to disturbances; it should act as if it always, “in-
stantly” knows what to do, for any combination of goals and
circumstances. This fast reaction is key to providing robots
the capability to operate effectively in unstructured, uncer-
tain, fast-changing environments.

We make a number of key assumptions in our approach.
Although these assumptions may seem restrictive, we be-
lieve that they are consistent with a large class of practi-
cal robotic manipulation problems. First, we assume that the
manipulation workspace is characterized by a limited set of
pre-grasp poses. Second, we assume that the pre-grasp to
grasp motion is short, and is best handled by visual and force
servoing loops, rather than open-loop planners. Third, we
assume that the collision environments are not overly com-
plex. We are not trying to solve “piano mover” problems
like reaching into tunnels or through a maze of obstacles.
Instead, we assume that there is a small set of potential ob-
stacles, such as a workpiece, a table, another robot, or a hu-
man, but that some of these may move. The emphasis here
is on achieving fast performance in typical, practical situa-
tions.

We endeavor to achieve a fast, reactive capability by us-
ing a roadmap-based approach. The roadmap represents the
static collision-free space, and therefore, is re-used across
planning instances. For each pair of nodes in the roadmap,
k shortest paths (k ≥ 1) are calculated and stored, so that
when dynamic obstacles invalidate some of the edges in
the roadmap, the probability of finding a collision-free path
for the planning task can be improved as we increase k.
Our approach features three key innovations from the pre-
vious Chekhov. First, as stated in Section 1, we extend the
roadmap approach used previously in Chekhov by incor-
porating recent advances in obstacle-aware trajectory opti-
mization (Schulman et al. 2014) in order to improve solu-
tion optimality and fast reaction to disturbances. Our goal
here is to consider the entire solution space, rather than the
very sparse one provided by the roadmap. Second, we use
a set of practically relevant test environments, rather than
random ones or ones that are artificially challenging. To
this end, we have developed three new environments that
represent typical motion planning scenarios. We have also
included a fourth environment developed previously in the
motion planning community. Third, we use semantic infor-
mation about the environment to help guide the construction
of the roadmap to favor inclusion of poses that are known to
be useful. Utilizing semantic information includes making
a basic distinction between static and dynamic obstacles. It
also includes utilizing knowledge of objects in the environ-
ment in order to generate pre-grasp poses that will be useful
for manipulating them.

107

4 Implementation
In order to test and compare the performance of different
path planners, we use four representational environments:
a “tabletop with a pole”, a “tabletop with a container”, a
“kitchen” and a “shelf with boxes” environment. We choose
environments that are representative of different application
domains rather than using an environment with randomly-
placed obstacles because our goal is to develop a path plan-
ner that operates quickly and provides short paths for real
world applications. The kitchen environment comes from
the TrajOpt package, whereas, we designed the remaining
three. The “tabletop with a pole” environment, shown in
Fig. 1, is a simple tabletop pick-and-place task environment,
with a slender pole in the middle of the table and a box
on each side of the pole. All the planners can easily han-
dle most planning queries in this environment. The “table-
top with a container” environment is similar, but has a large
container on the table with both boxes inside and outside of
it. The “kitchen” environment models a typical kitchen sce-
nario which is common in household domains. The “shelf
with boxes” environment, shown in Fig. 2, is a 7-level shelf
environment with boxes on each level of the shelf, which is
a common scenario in the logistic application domain. This
scenario is known to be hard because of the relatively large
total number of obstacles and the narrow space between
them.

For each environment, we generate 5000 feasible plan-
ning tests by randomly sampling 5000 start and target end-
effector pose pairs that are collision-free and kinemati-
cally feasible. For each sampled point, both the joint-space
position and the end-effector location and orientation are
recorded. For each experiment trial, planners are provided
with the starting joint-space position and the goal end-
effector pose. We specify the goal in workspace to give plan-
ners the opportunity to find different joint-space solutions to
the planning problem. We have ensured that all test cases
have a solution by executing all the planners on each test
case, and re-sampling start and goal points when no plan-
ners could find a solution. All the test cases, including the
environment and poses, are saved so that they can easily be
repeated in the future.

In our experiments, we use the Baxter robot (Re-
thinkRobotics) with its 7-DOF left arm as the manipulator.
Based on our initial tests, TrajOpt works quite similarly on
other manipulators, so here we take the left arm as an exam-
ple to implement the in-depth analysis.

In addition to the discrete-time collision costs approach,
the TrajOpt algorithm also provides a “swept-out volume”
method in order to ensure continuous-time collision check-
ing (Schulman et al. 2013). However, during our experi-
ments, we find that even when the continuous-time colli-
sion cost is utilized, collision can still occur in-between way-
points, and it is not obvious how to use TrajOpt’s reported
collision cost to detect collisions consistently since large
cost values can indicate either a collision or just a waypoint
close to an obstacle. Hence, rather than simply referring to
cost values returned by TrajOpt, in our experiments we also
implement an independent collision checking process for the
returned trajectory to test continuous-time safety. In particu-

Figure 1: The “tabletop with a pole” environment

Figure 2: The “shelf with boxes” environment

lar, we interpolate 100 intermediate waypoints between each
pair of adjacent waypoints and collision check each point
using the OpenRAVE collision checking. For our work, we
consider this fine-grained discrete-time collision check to
approximate a continuous-time collision check sufficiently
well.

As introduced previously, we can use semantic informa-
tion about the environment to improve roadmap construction
and thus, the motion planning result. Semantic Object Maps
(SOM) (Pangercic et al. 2012) provide a representation of
such information, including an overall ontology, and also
part composition and articulation. This can be used, for ex-
ample, to represent how a refrigerator door, or a desk drawer
opens and closes, which can be used to generate precise pre-
grasp poses for the open and closed positions. This is impor-
tant as it guarantees that required poses will exist directly
in the roadmap. Additionally, semantic information can be
used to bias sampling of poses during roadmap construc-

108

tion to favor areas of interest. For example, the area above
a desktop is more likely to contain objects of interest and
hence should get more nodes than the (free) area under the
desktop.

Although our tube-based roadmap architecture supports
dynamics and temporal constraints (Hofmann and Williams
2017), our experiments here mainly focus on kinematic
planning tasks for robot manipulation considering obstacle
avoidance. We have already incorporated customized con-
straints into TrajOpt which respect system dynamics such
as torque constraints, velocity limits and acceleration limits.
Experiments on planning tasks with dynamics and tempo-
ral constraints are beyond the focus of this paper but will
be further explored in our future research. Furthermore, for
the purposes of evaluating key aspects of our approach, we
have assumed that all obstacles in the test environments
are static. We focus here on static rather than dynamic ob-
stacles because static obstacles occupy the majority of the
workspace in many practical applications. As stated in Sec-
tion 3, we handle dynamic obstacles through storing redun-
dant roadmap paths and by coupling these paths with fast
optimization from TrajOpt. Therefore, experiments with dy-
namic obstacles can be straightforwardly extended from our
current experiments.

5 Experiments and Results
In Section 5, we provide experiment results and perfor-
mance evaluation of five standard path planners (OpenRAVE
BasicRRT, OMPL LazyPRM (Bohlin and Kavraki 2000),
OMPL PRM* (Karaman and Frazzoli 2011), OMPL RRT*
(Karaman and Frazzoli 2011), and TrajOpt with a straight-
line joint-space initialization).In Section 5, we show the re-
sults and evaluation of four combined planners which pass
in a sampling-based planner solution as an initial path (or
“seed path”) to TrajOpt. Their performance is analyzed and
compared in terms of failure-rate, average joint-space path
length and average algorithm runtime. Additionally, we also
implemented our own roadmap planner which can provide
seed paths to TrajOpt – the results and evaluation of which
is described in Section 5. Each of the experiments includes
5000 test queries and is conducted in all the four environ-
ments mentioned in Section 4, but for brevity, most of the
tables only provide the results summary for the “tabletop
with a pole” environment and the “shelf with boxes” envi-
ronment, which qualitatively represent the easiest and hard-
est environments for the planners, respectively.

Limitation of current planners
Currently, popular path planners include sampling-based
path planners, which can operate stand-alone, and trajectory-
optimization type path planners, which modify a seed tra-
jectory and return the optimized solution. However, in prac-
tical application scenarios, each of those planners has their
own disadvantages. The sampling-based path planners are
usually not fast enough for real-time planning tasks, and
some of them (like PRM and PRM*) can not incorporate dy-
namic constraints. Meanwhile, trajectory-optimization type
planners locally optimize a path, thus their performance de-

pends much on the quality of seed trajectories. When pro-
vided with a bad seed, trajectory-optimization type planners
can have high collision-rates or get stuck in local optima.
This section provides a systematic empirical study on some
sampling-based planners and a trajectory-optimization type
planner, TrajOpt (Schulman et al. 2013), comparing their
performance in terms of failure-rate, average joint-space
path length, and average algorithm runtime.

We compared five off-the-shelf planners (OpenRAVE Ba-
sicRRT, OMPL LazyPRM, OMPL PRM*, OMPL RRT* and
TrajOpt with straight-line joint-space initialization) on all
5000 cases for each environment. For the sampling-based
planners, we set the runtime upper bound for generating a
plan to 300s. The runtime upper bound was choosen, af-
ter initial testing, to reduce the failure rates of the optimal
sample-based planners (RRT* and PRM*). For example, if
we set the RRT* runtime bound to 60s, the failure rate for
the “shelf with boxes” environment will be as high as 70%.

TrajOpt works by formulating the kinematic motion plan-
ning problem as a non-convex optimization problem over a
T ×K-dimensional vector, where T is the number of time-
steps and K is the number of degrees of freedom (Schulman
et al. 2013). Hence every trajectory in TrajOpt is made up of
T waypoints, where the number T is set by the user. We ran
16 sets of tests, each with an increasing total number of way-
points, and observed that TrajOpt runtime increased approx-
imately linearly with number of waypoints while the colli-
sion rate dropped quickly with more waypoints. For our tests
on TrajOpt with straight-line seed trajectories, we found that
setting T = 30 provided a good balance between low col-
lision rates and algorithm runtimes. Henceforth, in this sub-
section, we use 30 total waypoints (including the start and
target waypoints).

Table 1 summarizes the experiment results in the easiest
environment, “tabletop with a pole”, and the hardest envi-
ronment, “shelf with boxes”, in terms of failure rate, average
runtime and average joint-space path length. The reported
failure rate encompasses all possible failure modality (i.e.,
not finding a solution or returning a solution in collision).
Since TrajOpt will always return a “solution” even if the op-
timization fails, we log a failure when our (secondary) col-
lision checker determines the solution to be in collision; for
sampling-based planners, failure rate is represented by the
percentage of cases where the planner failed to return a so-
lution.

If we compare the failure rate of different planners in Ta-
ble 1, we can see that, both in the relatively easy “table-
top with a pole” environment and in the relative hard “shelf
with boxes” environment, TrajOpt fails more frequently to
find collision-free solutions than any other planners. If we
compare the four sampling-based planners, it can be ob-
served that all the four planners find collision-free solu-
tions for most of the cases in the simple “tabletop with a
pole” environment. In contrast, in the complicated “shelf
with boxes” environment, RRT and LazyPRM show rela-
tively better solution-finding performance, whereas the opti-
mal planners RRT* and PRM*, even though provided 300s
runtime, still fail frequently. From the “average runtime”
column in Table 1, it can be observed that the sampling-

109

Environments Planners1 Failure
Rate2

Average
Runtime

(s)3

Average
Path

Length
(rad)

Tabletop
with a Pole

RRT 2.30% 17.88 0.77
LazyPRM 0.22% 7.32 1.76

RRT* 5.32% 300.19 0.63
PRM* 1.00% 300.71 0.79

TrajOpt 17.38% 0.56 0.71

Shelf with
Boxes

RRT 10.00% 63.86 1.06
LazyPRM 16.94% 63.85 2.08

RRT* 26.78% 300.37 0.93
PRM* 24.34% 300.79 1.16

TrajOpt 32.06% 1.59 1.51
1 For each planner in each environment, 5000 planning tasks are

tested and the data shown in this table are averaged from the 5000
results.

2 For TrajOpt with a straight-line seed, failure rate is the percent-
age of cases where the solution is in collision; for sampling-
based planners, failure rate is the percentage of cases where the
sampling-based planner failed to find solution.

3 The runtime upper-bound is set to 300s. RRT* and PRM* always
use the full amount of time – the small deviation from 300s shown
in the table is due to small timing errors during simulation.

Table 1: Evaluation of Current Sampling-based and Trajec-
tory Optimization Planners

based planners require too much time for most practical path
planning applications. In the case of the optimal planners
(RRT* and PRM*), they take all the given time to approxi-
mate the optimal solution, therefore their average runtime is
always around 300s. Even for LazyPRM, 7.32s in the sim-
ple environment and 63.85 in the complicated environment
is infeasible for real-time reaction to disturbances in plan-
ning tasks. In terms of average path length, optimal planners
have noticeable advantages in finding shorter solutions, es-
pecially in harder environments. Among the remaining plan-
ners, LazyPRM tends to return longer solutions, which is
reasonable due to the intrinsic mechanism of lazy searching
algorithms. TrajOpt performance in path length is compara-
ble to sampling-based planners, especially in relatively easy
environments.

In conclusion, although sampling-based planners are
good at avoiding collision, they often take too long for
practical application to find a solution. In contrast, TrajOpt
shows good performance in terms of runtime, but the high
collision-rate makes it an unsatisfactory practical planner.

TrajOpt performance with a collision-free seed
The way TrajOpt works indicates its sensitivity and depen-
dency on the initialization condition (Schulman et al. 2013).
Therefore, we propose that the performance of TrajOpt can
be dramatically improved if we pass in a collision-free tra-
jectory as a seed instead of using the joint-space straight-
line seed. Based on the sampling-based planner experiment
results from Section 5, we conduct systematic tests on Tra-
jOpt’s performance when provided with a sampling-based
planner solution as a seed trajectory. For the cases where
a sampling-based planner found a solution, we pass in the

solution as the seed trajectory to TrajOpt and record the Tra-
jOpt runtime, solution path length, and collision rate.

TrajOpt algorithm requires the number of waypoints in
the solution trajectory to be the same as in the seed. There-
fore, if we pass in seeds directly from sampling-based plan-
ners without any pre-processing, the number of waypoints
in different cases will fluctuate drastically. As mentioned in
Section 5, TrajOpt runtime increases approximately linearly
as the number of waypoints increases, which means the vari-
ation of waypoint numbers will influence runtime. Addition-
ally, seeds taken directly from the sampling-based planners
with a fewer number of waypoints will results in higher col-
lision rates after processing by TrajOpt than those with more
waypoints. This is because such cases usually have longer
edges in-between waypoints and are more likely to have
seed paths that are very close to obstacles. Our tests show
that TrajOpt has a much weaker ability to deal with edge
collisions than with waypoint collisions, and it is likely to
push path edges into obstacles when shortening and smooth-
ing the trajectory. Hence, before passing the seed paths into
TrajOpt, we sample them by setting a upper bound of 0.16
rad for the distance between adjacent waypoints. This pre-
processing dramatically reduced the collision rate of TrajOpt
solutions, as well as narrowing down the variance of Tra-
jOpt’s runtime among different cases. Inevitably, the average
TrajOpt runtime is increased because of more waypoints af-
ter sampling the seed, but it is still generally under 1s, which
is acceptable for real-time planning tasks.

The performance of this combined “seed + TrajOpt” plan-
ner is shown in Table 2. Comparing the TrajOpt runtime
column in Table 2 and the straight-line seed TrajOpt run-
time in Table 1, we see that when provided with a good
seed, the TrajOpt runtime generally decreased. Specializing
to the cases where TrajOpt with a straight-line seed failed
to push the trajectory out of collision, we found a 50% -
70% runtime drop after provided with sampling-based plan-
ners’ solutions as initializations. Although a small percent-
age of cases end up in collision when TrajOpt is smoothing
and optimizing the seeds, if we compare the “average path
length” column in Table 1 and Table 2, an obvious improve-
ment in average joint-space path length is observed. After
comprehensively comparing TrajOpt’s performance with a
sampling-based planner seed and with a straight-line seed,
we see that TrajOpt’s performance improves tremendously
in terms of both success rate and optimization time when
provided with a collision-free seed. However, according to
the “average runtime” for combined planners shown in Ta-
ble 2, it is not feasible to use sampling-based planners as
seed planners for practical path planning tasks. Thus, the
challenge becomes how to generate a good enough seed
quickly.

TrajOpt with Standard Sampling-based Planner
Seed and Roadmap Seed
The core of the roadmap framework for Chekhov is a simpli-
fied PRM variant combined with a cache of all-pair-shortest-
paths (APSP) solutions. The roadmaps are constructed by
randomly sampling points in joint space until a pre-defined
number of collision-free points have been sampled. The

110

Environ-
ments

Seed
Planners

Average
TrajOpt

Run-
time
(s)

Seed + TrajOpt Planner
Average

Run-
time
(s)1

Average
Path

Length
(rad)

Collision
Rate2

Tabletop
with a
Pole

RRT 0.63 18.51 0.70 1.29%
LazyPRM 0.98 8.30 1.28 0.12%

RRT* 0.29 300.48 0.54 0.02%
PRM* 0.36 301.07 0.64 0.10%

Shelf
with

Boxes

RRT 0.92 64.78 0.98 4.20%
LazyPRM 1.36 65.21 1.60 1.57%

RRT* 0.46 300.83 0.81 1.17%
PRM* 0.67 301.46 0.95 1.98%

1 Sum of sampling-based seed planner runtime (as shown in Table
1 column 4) and TrajOpt runtime averaged from 5000 test cases.

2 Continuous-time collision rate.

Table 2: Performance of the Combined “Sampling-based
Seed + TrajOpt” Planner

sampling is uniform over the four most proximal joints of
the robot, and fixed values are assigned to the remaining
joints for all nodes. This approach is taken to more com-
pletely cover the workspace with random samples in joint
space. For the tests in Table III and Table IV, the roadmaps
start out with 1000 collision-free nodes. Then, each node is
connected to the k nearest neighbors for which collision-free
edges exist. For the tests below, k = 10 is used. The result-
ing graph is pruned of any nodes and edges disconnected
from the largest subgraph. For the environments tested, no
more than five of the 1000 points were disconnected from
the main subgraph. Then an APSP solution set is constructed
for the pruned roadmap and stored for rapid shortest path
queries.

Table III shows the performance of the roadmap planner
for all four tested environments. The remaining two envi-
ronments omitted in Table 1 and Table 2 are also included
to emphasize the difficulty of the “shelf with boxes” envi-
ronment relative to realistic environments. It makes sense
that it is difficult to establish collision-free straight-line con-
nections to randomly sampled points in the roadmap when
the environment contains narrow shelves with objects inside
them. That being said, tests were conducted to observe the
failure rates of roadmaps in different environments relative
to the number of randomly sampled points in the roadmap.
As the number of randomly sampled points increased, we
observed significant improvement in how often the roadmap
was connected to in all environments, particularly in the
“shelf with boxes” environment. This leads us to believe that
it will not be difficult to develop more intelligent sampling
methods that allow roadmaps to more effectively cover all
areas of interest within an environment.

If we compare the results in Table III to those in Table I,
we can see that, in terms of failure rate, our roadmap plan-
ner performs comparably or better than all tested sampling-
based planners. In the most difficult environment, only RRT
was able to produce a solution more often than our roadmap
planner. In addtion to failure rate, our roadmap planner’s av-
erage runtime is substantially better than the sampling-based

Environments1 Failure
Rate2

Average
Runtime

(s)

Average
Path

Length
(rad)

Best
Average3

(rad)

Tabletop with
a Pole 0.18% 0.14 1.24 0.63

Tabletop with
a Container 0.76% 0.18 1.32 0.80

Kitchen 1.92% 0.38 1.29 0.71
Shelf with

Boxes 12.06% 0.39 1.30 0.93

1 In each environment, roadmap performance is tested on 5000
planning tasks and the data shown in this table are averaged from
the 5000 results.

2 For these roadmaps, failure occurs when no collision-free
straight-line connection was found to an existing point on the
roadmap from the start or goal pose of a test case.

3 Best average is the shortest average path length between all
tested sampling-based planners in that environment. Shown here
to provide context for the roadmap performance.

Table 3: Roadmap Performance in All Environments

planners’ in all cases. It is faster by more than an order of
magnitude in most observed cases. This is a result of caching
the APSP solution set for fast queries. Additionally, it should
be noted that the roadmap planner constructs the roadmap
for each environment a priori whereas LazyPRM constructs
a new roadmap online for each case in our tests. For path
length, the roadmap planner performs worse than the opti-
mal planners and RRT, but better than LazyPRM. In general
with roadmap based planners, the sparsity of the roadmap
restricts ability to obtain short paths. With only 1000 nodes,
we consider the roadmaps we are using to be relatively
sparse for the workspace. That being said, the roadmap plan-
ner generates direct, collision-free paths compared to the off
the shelf sampling-based planners. Since these paths are just
seeds for TrajOpt and their lengths are well within an order
of magnitude of one another, the discrepancies in path length
are not a concern for us.

Table IV shows a comparison of solutions produced by
TrajOpt when traditional sampling-based planners are used
versus our roadmap planner. Many of the observations that
can be made from this table reinforce observations made
from comparing Table III to Table I. Something new to note
is that when the roadmap planner produces a solution, Tra-
jOpt in turn produces a collision-free trajectory more than
98% of the time. Additionally, these optimized trajectories
are on average more than 10% shorter than their correspond-
ing seed trajectories. Figure 3 shows the four proximal joints
for three different trajectories to help visualize the improv-
ments TrajOpt is making on the seed trajectories. The solid
lines are the roadmap seeds and the dashed lines are the out-
putted trajectories by TrajOpt when provided those seeds.
From Figure 3 we can see that TrajOpt fulfilled the task of
smoothing and shortening the sub-optimal trajectories pro-
duced by the Chekhov roadmap. This result is significant
because, as a start, it proves that TrajOpt can effectively op-
timize the roadmap solutions for kinematic planning prob-

111

Figure 3: Roadmap seed trajectories shown with corresponding trajectories optimized by TrajOpt to illustrate improvement on
the seed. The solid lines are the roadmap seeds and the dashed lines are the outputted trajectories by TrajOpt when provided
those seeds.

lems. Therefore, when we fully incorporate all the dynamics
and temporal constraints with TrajOpt, we are optimistic that
TrajOpt can also fulfill the task of optimizing trajectories for
the whole Chekhov motion and execution framework.

The difference in average runtime of the different seed
planner coupled with TrajOpt is most notable for high-
lighting the performance improvements provided by our
roadmap planner, but runtime as a metric does not reveal the
whole picture for many of these planners. As noted earlier,
the optimal planners like RRT* will always use the full al-
lotted time but may have a good non-optimal solution far
sooner than that. Also, in our test cases, LazyPRM con-
structs its roadmap online for one time use and then searches
for a path in that roadmap. In general, a PRM does not lend
itself to single-query problems. Our roadmap planner pre-
computes the roadmap and APSP solutions, but is also es-
sentially a PRM. It would be interesting to compare the per-
formance of our roadmap planner to faster RRT variants, but

Environ-
ments

Seed
Planners

Average
TrajOpt

Run-
time
(s)

Aver-
age

Seed
Length
(rad)

Seed + TrajOpt Planner
Average
Run-
time
(s)1

Average
Path

Length
(rad)

Colli-
sion
Rate2

Tabletop
with a
Pole

RRT 0.63 0.77 18.51 0.70 1.29%
LazyPRM 0.98 1.76 8.30 1.28 0.12%

RRT* 0.29 0.63 300.48 0.54 0.02%
Roadmap 0.45 1.24 0.59 0.82 0.06%

Shelf
with

Boxes

RRT 0.92 1.06 64.87 0.98 4.20%
LazyPRM 1.36 2.08 65.21 1.60 1.57%

RRT* 0.46 0.93 300.83 0.81 1.17%
Roadmap 0.61 1.30 1.00 1.02 1.98%

1 Sum of seed planner runtime and TrajOpt runtime averaged from
5000 test cases.

2 Continuous-time collision rate.

Table 4: TrajOpt Seeded with Sampling-based Planner So-
lution compared to Roadmap Solution

112

it is clear to us that the speed provided by querying precom-
puted solutions from a PRM of some form outweighs any
optimization to be had in online search, especially as system
dynamics are factored in.

Overall, our roadmap planner performs as well as if not
better than the off the shelf sampling based planners we
tested. The performance metrics used are failure rate, av-
erage runtime, and average path length. Since one of our
main goals is to develop a reactive motion execution sys-
tem that can “instantly” replan when disturbances occur,
average runtime is where we are most concerned with im-
provement. Fortunately, average runtime is where we saw
the greatest improvement when using our roadmap planner
to provide seed solutions rather than using other traditional
sampling-based planners. Although we are currently not us-
ing dynamic obstacles in our experiments, our average on-
line planning time leaves us optimistic that our planner will
be able to handle disturbances in planning tasks with fast
reaction.

6 Discussion
Our results show the benefit of extending the Chekhov
roadmap approach with the TrajOpt algorithm. The speed of
both approaches is preserved, and meanwhile the combina-
tion produces more optimal solutions than the roadmap ap-
proach alone and with less failure than the TrajOpt approach
alone. The average runtime of under 1 sec and the success
rate of above 98% in practical application scenarios show
that our approach can handle practical planning tasks with
fast reaction. We are currently distinguishing static from dy-
namic obstacles to the extent that the roadmap is constructed
to not collide with the static obstacles in the environment,
but dynamic obstacles introduced at runtime will likley ob-
struct nodes and edges in the roadmap. Incorporating incre-
mental search algorithms to account for these obstructions is
an active area of research in our group. We would also like to
improve the our ability to connect to our roadmaps in diffi-
cult environments, but since there are already techniques that
have been shown to improve roadmap coverage with sparse
sampling (Siméon, Laumond, and Nissoux 2000), we are not
currently researching new approaches to the problem.

Another active area of research in our group concerns the
interaction of dynamics and temporal constraints in inte-
grated motion and task planning problems. We have previ-
ously utilized Chekhov’s roadmap framework to incorporate
dynamics and temporal constraint information (Hofmann et
al. 2015), (Hofmann and Williams 2017), and we plan to ex-
tend this work using recent advances in control theory such
as Sum of Squares (Majumdar and Tedrake 2017) program-
ming. This is important for challenging underactuated ap-
plications like underwater mobile manipulators operating in
the proximity of reefs, and walking robots.

References
Bohlin, R., and Kavraki, L. E. 2000. Path planning us-
ing lazy prm. In Robotics and Automation, 2000. Pro-
ceedings. ICRA’00. IEEE International Conference on, vol-
ume 1, 521–528. IEEE.

Campana, M.; Lamiraux, F.; and Laumond, J.-P. 2015. A
simple path optimization method for motion planning.
Hofmann, A. G., and Williams, B. C. 2017. Temporally and
spatially flexible plan execution for dynamic hybrid systems.
Artificial Intelligence 247:266–294.
Hofmann, A.; Fernandez, E.; Helbert, J.; Smith, S.; and
Williams, B. 2015. Reactive integrated motion planning
and execution. AAAI Press/International Joint Conferences
on Artificial Intelligence.
Kalakrishnan, M.; Chitta, S.; Theodorou, E.; Pastor, P.; and
Schaal, S. 2011. Stomp: Stochastic trajectory optimization
for motion planning. In Robotics and Automation (ICRA),
2011 IEEE International Conference on, 4569–4574. IEEE.
Karaman, S., and Frazzoli, E. 2011. Sampling-based algo-
rithms for optimal motion planning. The international jour-
nal of robotics research 30(7):846–894.
Kavraki, L. E.; Svestka, P.; Latombe, J.-C.; and Overmars,
M. H. 1996. Probabilistic roadmaps for path planning in
high-dimensional configuration spaces. IEEE transactions
on Robotics and Automation 12(4):566–580.
Luna, R.; Şucan, I. A.; Moll, M.; and Kavraki, L. E. 2013.
Anytime solution optimization for sampling-based motion
planning. In Robotics and Automation (ICRA), 2013 IEEE
International Conference on, 5068–5074. IEEE.
Majumdar, A., and Tedrake, R. 2017. Funnel libraries for
real-time robust feedback motion planning. The Interna-
tional Journal of Robotics Research 36(8):947–982.
Pangercic, D.; Pitzer, B.; Tenorth, M.; and Beetz, M. 2012.
Semantic object maps for robotic housework-representation,
acquisition and use. In Intelligent Robots and Systems
(IROS), 2012 IEEE/RSJ International Conference on, 4644–
4651. IEEE.
Park, C.; Rabe, F.; Sharma, S.; Scheurer, C.; Zimmermann,
U. E.; and Manocha, D. 2015. Parallel cartesian planning
in dynamic environments using constrained trajectory plan-
ning. In Humanoid Robots (Humanoids), 2015 IEEE-RAS
15th International Conference on, 983–990. IEEE.
Park, C.; Pan, J.; and Manocha, D. 2012. Itomp: Incremental
trajectory optimization for real-time replanning in dynamic
environments. In ICAPS.
Ratliff, N.; Zucker, M.; Bagnell, J. A.; and Srinivasa, S.
2009. Chomp: Gradient optimization techniques for ef-
ficient motion planning. In Robotics and Automation,
2009. ICRA’09. IEEE International Conference on, 489–
494. IEEE.
RethinkRobotics. Baxter. http://www.rethinkrobotics.com/
baxter/.
Schulman, J.; Ho, J.; Lee, A. X.; Awwal, I.; Bradlow, H.; and
Abbeel, P. 2013. Finding locally optimal, collision-free tra-
jectories with sequential convex optimization. In Robotics:
science and systems, volume 9, 1–10. Citeseer.
Schulman, J.; Duan, Y.; Ho, J.; Lee, A.; Awwal, I.; Bradlow,
H.; Pan, J.; Patil, S.; Goldberg, K.; and Abbeel, P. 2014.
Motion planning with sequential convex optimization and
convex collision checking. The International Journal of
Robotics Research 33(9):1251–1270.

113

Siméon, T.; Laumond, J.-P.; and Nissoux, C. 2000.
Visibility-based probabilistic roadmaps for motion planning.
Advanced Robotics 14(6):477–493.
Zucker, M.; Ratliff, N.; Dragan, A. D.; Pivtoraiko, M.; Klin-
gensmith, M.; Dellin, C. M.; Bagnell, J. A.; and Srinivasa,
S. S. 2013. Chomp: Covariant hamiltonian optimization
for motion planning. The International Journal of Robotics
Research 32(9-10):1164–1193.

114

An Anytime Algorithm for Task and Motion MDPs

Siddharth Srivastava∗‡, Nishant Desai†, Richard Freedman§, Shlomo Zilberstein§
‡Arizona State University, †University of California Berkeley, §University of Massachusetts

Abstract
Integrated task and motion planning has emerged
as a challenging problem in sequential decision
making, where a robot needs to compute high-
level strategy and low-level motion plans for solv-
ing complex tasks. While high-level strategies re-
quire decision making over longer time-horizons
and scales, their feasibility depends on low-level
constraints based upon the geometries and contin-
uous dynamics of the environment. The hybrid
nature of this problem makes it difficult to scale;
most existing approaches focus on deterministic,
fully observable scenarios. We present the first ap-
proach for computing task and motion policies for
settings where the high-level problem can be mod-
eled as a Markov decision process. In contrast to
prior efforts, we show that complete MDP policies,
or contingent behaviors, can be computed effec-
tively in an anytime fashion. Our algorithm contin-
uously improves the quality of the solution and is
probabilistically complete. We evaluate the perfor-
mance of our approach on a challenging, realistic
test problem: autonomous aircraft inspection. Our
results show that we can effectively compute con-
sistent task and motion policies for the most likely
execution-time outcomes using only a fraction of
the computation required to develop the complete
task and motion policy.

1 Introduction
In order to be truly helpful, robots will need to be able to
accept commands from humans at high-levels of abstraction,
and autonomously execute them. Consider the problem of in-
specting an aircraft (Fig. 1). In order to autonomously plan
and execute such a task, the robots (UAVs in this case) will
need to be able to make high-level inspection decisions on
their own, while satisfying low-level constraints that arise
from environment geometries and the limited capabilities of
the UAVs. High-level decisions can include selecting where
to go next, with whom to communicate, and what to inspect.
∗Work done while this author was at the United Technologies

Research Center

Figure 1: The aircraft inspection scenario

These decisions need to take into account the uncertainty in
the UAV’s actions.

For instance, at the start of an aircraft’s inspection, one may
know that the left wing has a structural problem, but the lo-
cation of the fault may not be known precisely. When a UAV
inspects the left wing, its sensors may succeed with probabil-
ity 0.9, and so on. In order to solve this task autonomously,
the UAV needs to select which pose to fly to next, which tra-
jectory to use in order to do so, and the order in which to carry
out inspections while making sure that it always has sufficient
battery to return to the docking station and that it does not
collide with any object in the environment. The feasibility
of a high-level strategy for inspection therefore depends on
the battery power required for each high-level operation such
as “move to left wing”; “inspect left wing”, etc., which in
turn depends on the low-level motion plan selected, which in
turn depends on the hangar’s geometric layout and the physi-
cal geometry of the UAV. Throughout this paper, we will use
the term “high-level” to represent a discrete MDP and “low-
level” to refer to a motion planning problem.

The framework of Markov decision processes (MDPs) can
express discrete sequential decision making (SDM) prob-
lems. Numerous advances have been made in solving
MDPs [Russell et al., 2015]. However, the scalability of
these approaches relies upon a few key properties, including a
bounded branching factor (or the set of possible actions) and
the ability to express a problem accurately using discrete state
variables. Both of these properties fail to hold in problems
such as those described above. Recent work on deterministic,
integrated task and motion planning [Kaelbling and Lozano-
Pérez, 2011; Erdem et al., 2011; Srivastava et al., 2014; Dan-
tam et al., 2016] shows that hierarchical approaches are use-
ful for such problems.

Computing task and motion policies for MDPs presents a

115

new set of challenges not encountered in computing task and
motion plans for deterministic scenarios. In particular, select-
ing an action for a state while ensuring a feasible refinement
requires knowing the history of actions used to reach that
state, since effects on properties that were abstracted away
(such as battery usage) cannot be modeled accurately at the
high level. A direct application of classical task and motion
planning techniques is further limited by the number of pos-
sible high-level action paths that can be taken during an exe-
cution. Indeed, the task and motion planning literature makes
it clear that computing a single high-level sequence of ac-
tions that is feasible with low-level constraints is a challenge;
the extension to MDPs expands the problem to computing
a feasible high-level sequence of actions for every possible
stochastic outcome of a high-level action.

In this paper, we present the first approach for computing
branching task and motion policies for MDPs and show that
principles of abstraction can be used to effectively model the
problem, as well as to solve it by dynamically refining the
abstraction used. We address the problem of computational
complexity by developing an anytime algorithm that rapidly
produces feasible policies for a high likelihood of scenarios
that may be encountered during execution. Our methods can
therefore be used to start the execution before the complete
problem is solved; computation could continue during execu-
tion. The continual policy computation reports the probabil-
ity of encountering situations which have not been resolved
yet. This can be used to select the point at which execu-
tion is started in a manner appropriate to the application. In
the worst case, if an unlikely event is encountered before the
ongoing policy computation resolves it, execution could be
brought to a safe state; in situations where this is not possi-
ble, one could wait for the entire policy to be computed with
motion plans. In this way our approach offers a trade-off be-
tween pre-execution guarantees and pre-computation time re-
quirements.

The rest of this paper is organized as follows. Sec. 2 in-
troduces the main concepts that we draw upon from prior
work. Sec. 3 presents our formalization of abstractions and
representations. This is followed by a description of our al-
gorithms (Sec. 4). Sec. 5 presents an empirical evaluation of
our approach in a test scenario that we created using open-
source 3D models of aircraft and various hangar components.
Sec. 6 discusses the relationship of the presented work and
contributions with prior work.

2 Background
A Markov decision process (MDP) 〈S,A, T,R, γ〉 is defined
by a set of states S, a set of actions A, a transition function
T : S × A → µS that gives the probability distribution over
result states upon the application of an action on a state; a re-
ward function R : S → R; and a discounting factor γ ≤ 1.
We will use T (s, a) as a function that maps a state to its prob-
ability. We will be particularly interested in MDPs with ab-
sorbing states and γ = 1, or, stochastic shortest path prob-
lems [Bertsekas and Tsitsiklis, 1991]. In this class of MDPs,
the reward function yields negative values (action costs) for
states except the absorbing states G. Absorbing states give

zero rewards; once the agent reaches an absorbing state, it
stays in it: ∀a ∈ A, g ∈ G,R(g) = 0;T (g, a)(g) = 1. We
will consider SSPs that have a known initial state s0 and a
finite time horizon, h, which represents an uppper bound on
the number of discrete decision making steps available to the
agent.

Solutions to MDPs are represented as policies. A policy
π : S × {1, . . . , h} → A maps a state and the timestep at
which it is encountered, to the action that the agent should ex-
ecute while following π. Given an MDP, the optimal “policy”
of the agent is defined as one that maximizes the expected
long-term reward

∑h
i=1 ri, where ri is the reward obtained

at timestep i following the function R. Our notion of poli-
cies includes non-stationary policies since the optimal policy
in a finite horizon MDP need not be stationary. In principle,
dynamic programming can be used to compute the optimal
policy in this setting just as in the infinite horizon setting:

V 0(s) = R(s) (1)

V i(s) = R(s) +maxa
∑

s′

T (s, a)(s′)V i−1(s′) (2)

Here V i is the i-step-to-go value function. Since we are
given the initial state s0, non-stationary policies can be ex-
pressed as finite state machines (FSMs). We will consider
policies that are represented as tree-structured FSMs, also
known as contingent plans. Several algorithms have been de-
veloped to solve SSPs. The LAO* algorithm [Hansen and Zil-
berstein, 2001] was developed to incorporate heuristics while
computing solution policies for SSPs. Kolobov et al. [2011]
developed general methods for solving SSPs in the presence
of dead-ends.

Specifying real-world sequential decision making prob-
lems as MDPs using explicitly enumerated state lists usu-
ally results in large, unweildy formulations that are difficult
to modify, maintain, or understand. Lifted, or parameter-
ized representations for MDPs such as FOMDPs [Sanner and
Boutilier, 2009], RDDL [Sanner, 2010] and PPDDL [Younes
and Littman, 2004] have been developed for overcoming
these limitations. Such languages separate an MDP domain,
constituting parameterized actions, functions and predicate
vocabularies, from an MDP problem, which expresses the
specific objects of each type and a reward function. We refer
to Helmert [2009] for a general introduction to the concepts
of problems and domains in this context. W.l.o.g, we consider
the vocabulary to consist of predicates alone, since functions
can be represented as special predicates. A grounded pred-
icate is a predicate whose parameters have been substituted
by the objects in an MDP problem. For instance, Boolean
valuations of the grounded predicate faultLocated(LeftWing)
express whether the LeftWing’s fault’s precise location was
identified. We use the symbolic formalization proposed by
Srivastava et al. [2014] and represent function-calls that re-
turn continuous values as symbols. Thus the function call
f(o), where o is a constant, will be represented by the con-
stant f o in the high level SDM solver. For readability how-
ever, in this paper we will depict such function calls using the
conventional syntax, as f(o).

116

Action: inspect(Structure s, Trajectory tr)
precond batterySufficient(tr)∧ inspects(tr, s)∧ collisionFree(tr)

effect faultLocated(s) 0.8
¬faultLocated(s) 0.2
decrease(batteryLevel, c(tr))

Figure 2: Specification of a stochastic action model

In our framework, states are defined as valuations of
grounded predicates in a given problem. Although this frame-
work usually expresses discrete properties, it can be extended
naturally to model actions that have continuous action argu-
ments and depend on and affect geometric properties of the
environment.

Example 1. Fig. 2 shows the specification for an in-
spect action in the aircraft inspection domain in a lan-
guage similar to PPDDL (some syntactic elements have
been simplified for readability). This action models the
act of inspecting a structure s while following the path
tr. We use batterySufficient(tr) as an abbreviation for
batteryLevel−batteryRequired(tr). Intuitively, the specifica-
tion states that if this action is executed in a state where the
battery is sufficient and the selected trajectory satisfies con-
straints for being an inspection trajectory (the precondition
is satisfied), it will result in locating the fault with the prob-
ability 0.8. In any case, the battery’s charge will be depleted
by an amount depending on the trajectory used for inspection
c(tr). The inspects(tr, s) predicate is true if the trajectory tr
“covers” the structure s. Different interpretations for such
predicates would result in different classes of coverage pat-
terns.

3 Formal Framework
Let X be a set of states and S a set of abstract states. We de-
fine a state abstraction as a surjective function α : X → S.
We focus on predicate abstractions, where the abstraction
function effectively projects the state space into a space with-
out a specified set of predicates. Given a set of predicates
P that are retained by a predicate abstraction, the states of
the abstract state space are equivalence classes defined by the
equivalence relation s1 ∼ s2 iff s1 and s2 agree on the valu-
ations of every predicate in P , grounded using the objects in
the problem.

For any s ∈ S, the concretization function γα(s) = {x ∈
X : α(x) = s} denotes the set of concrete states represented
by the abstract state s. For a set C ⊆ X , [C]α denotes the
smallest set of abstract states representing C. Generating the
complete concretization of an abstract state can be compu-
tationally intractable, especially in cases where the concrete
state space is continuous and the abstract state space is dis-
crete. In such situations, the concretization operation can be
implemented as a generator that incrementally computes or
samples elements from an abstract state’s concretization.

Action abstraction functions can be defined similarly.
The main form of an action abstraction function is to drop ac-
tion arguments, which leads to predicate abstractions to elim-
inate all predicates that used the dropped arguments in the ac-
tion’s description. This process can also model non-recursive

temporal abstractions since a macro or a high-level action
with multiple implementations [Marthi et al., 2007] can be
modeled as an action whose arguments include the arguments
of its possible implementations as well as an auxiliary argu-
ment for selecting the implementation. The concretization
of an action abstraction function is the set of actions cor-
responding to different instantiations of the dropped action
arguments. Concretization functions for action abstraction
functions can also be implemented as generators.

Formally, the concretization of each high-level action
corresponds to a set of motion planning problems. We
will use the notation a(x1 7→ o1) to denote a grounded
action, whose x1 argument has been instantiated with
the element o1 defined by the underlying MDP prob-
lem (Sec. 2). Let a(x̄, ȳ) be a concrete action where x̄
(ȳ) are ordered, typed discrete (continuous) arguments.
The concretization of the instantiated abstract action
γ([a](x̄ 7→ ō)) is the set of actions {a(x̄ 7→ ō, ȳ 7→ ō′) :
ō′ is a tuple of elements with types and arity specified by y}.
Predicates in action preconditions specify the constraints
that these arguments need to satisfy. Common examples for
continuous arguments include robot poses and motion plans;
predicates about them may include collisionFree(tr), which
is true exactly when the trajectory tr has no collisions as well
as inspects (Eg. 1).

Both state and action abstractions affect the transition func-
tion of the MDP. The actual transition probabilities of an ab-
stract MDP depend on the policy being used and are there-
fore difficult to estimate accurately [Bai et al., 2016; Li et
al., 2006; Singh et al., 1995]. In this paper, we will use an
optimistic estimate of the true transition probabilities when
expressing the abstract MDP. Such estimates are related to
upper bounds for reachability used in prior approaches for
reasoning in the presence of hierarchical abstractions (e.g.,
[Marthi et al., 2007; Ha and Haddawy, 1996]).

Example 2. Consider the action presented in Eg. 1 Such ac-
tions are difficult to plan with however, since the tr argument
is a high-dimensional real-valued vector. We can abstract
away this argument to construct the following abstraction:

Action: [inspect](Structure s)
precond batterySufficient

effect faultLocated(s) 0.8
¬faultLocated(s) 0.2
?©{batteryLevel, batterySufficient}

Dropping the tr argument from each predicate that results
in abstract predicates of lower arities. The zero-arity battery-
Sufficient becomes a Boolean state variable and batteryLevel
becomes a numeric variable. The symbol ?© indicates that
this action affects the predicates batteryLevel and battery-
Sufficient, but its effects on these predicates cannot be de-
termined due to abstraction.

An optimistic representation of this abstract action would
state that it does not reduce batteryLevel and consequently,
does not make batterySufficient false.

This approach for abstraction is computationally better
than a high-level representation that discretizes the contin-
uous variables, as it does not require the addition of constants
representing discrete pose or trajectory names to the vocab-

117

Algorithm 1: Anytime Task and Motion MDP (ATM-MDP)
Data: domain D, problem P , motionPlanner MP , SSP Solver

SSP
Input: threshold t
Result: Task and motion policy for 〈D,P〉

1 policyTree← SSP .getContingentPlan(P .~f0, D, P);
2 currentState←P .~f0; proportionRefined← 0.0; replanBias←

0.5;
3 partialTraj← None;
4 leafQueue← estimatePathCosts(policyTree,

partialTraj);
5 while resource limit not reached and leafQueue.size() 6= 0 and

proportionRefined < t do
6 pathToRefine← ancestors(leafQueue.pop());
7 while resource limit not reached and pathToRefine.length()

6= 0 do
8 (success, partialPathTraj, failureNode, failureReason)

← refinePath(pathToRefine, partialTraj,
policyTree, MP);

9 if not success and failureReason 6= None then
10 policyTree← SSP .replan(failureNode,

failureReason);
11 break;

else
12 for node ∈ partialPathTraj do
13 partialTraj[node]← partialPathTraj[node]

14 leafQueue← estimatePathCosts(policyTree,
partialTraj);

15 proportionRefined←
computeProportionRefined(policyTree,
partialTraj)

ulary. This is desirable because the size of the state space
would be exponential in the number of such discretized val-
ues that are included.

4 Overall Algorithmic Framework
The ATM-MDP algorithm (Alg. 1) presents the main outer
loop of our approach for computing a task and motion policy.
It assumes the availability of an SSP solver that can generate
tree-structured policies (starting at a given initial state) for
solving an SSP, a motion planner for refinement of actions
within the policy, and a module that determines the reason for
infeasibility of a given motion planning problem. The overall
algorithm operates on root-to-leaf paths in the SSP solution.

The main computational problem is that the number of pos-
sible paths to refine grows exponentially with the time hori-
zon. Waiting for a complete refinement would result in a lot
of wasted time as most paths may correspond to outcomes
that are unlikely to be encountered. Every path is associ-
ated with the probability p that an execution would follow
that path; and a cost c of refining that pat. Ideally, we would
like to compute an ordering of these paths so that at every
time instant, we compute as many of the most likely paths
as can be computed up to that time instant. Unfortunately,
achieving this would be infeasible as it would require solving
multiple knapsack problems. Instead, we order the paths by

the ratio p/c for refinement (lines 4-15).

Theorem 1. Let t be the time since the start of the algorithm
at which the refinement of any root-to-leaf path is completed.
If path costs are accurate and constant then the total prob-
ability of unrefined paths at time t is at most 1 − opt(t)/2,
where opt(t) is the best possible refinement (in terms of
the probability of outcomes covered) that could have been
achieved in time t.

The proof follows from the fact that the greedy algorithm
achieves a 2-approximation for the knapsack problem. In
practice, the true cost of refining a path cannot be determined
prior to refinement. We therefore estimate the cost as the
product of the parameter ranges covered by the generator of
each action in the path. This results in lower bounds on the
ratios p/c modulo constant factors, since a path could be re-
fined before all the generator ranges are exhausted. In this
way it doesn’t over-estimate the relative value of refining a
path. As we show in the empirical section, the resulting al-
gorithm yields the concave performance profiles desired of
anytime algorithms.

The while loop iterates over these paths while recomputing
the priority queue keys after each iteration. Within each iter-
ation, the algorithm tries to compute a full motion planning
refinement of the path. First, the entire path (pathToRefine) is
extracted from the leaf (line 6). The refinePath subroutine at-
tempts to find a motion planning refinement (concretization)
for pathToRefine. If it is unable to find a complete refine-
ment for this path, it either (a) returns with a reason for failure
along with a partial trajectory going up to the deepest node in
the path for which it was able to compute a feasible motion
plan, or (b) backtracks to return a partial trajectory that will
result in a future refinePath call for a parent node of a node
for which a motion planning refinement couldn’t be found.

For partial trajectories under (a) (line 9), Alg. 1 calls an
SSP solver after adjusting its initial state and domain defini-
tions to include the FailureReason. The policy computed by
the SSP solver is then merged with the existing policy and
the while loop continues. For partial trajectories along case
(b) (line 12), the path is added back to the queue with a par-
tial, successful trajectory that results in backtracking.

If refinePath is successful in computing a full refinement,
the while loop continues with an updated priority queue. In
each iteration of the while loop, we compute the total proba-
bility of refined paths – this probability gives us the likelihood
of being able to successfully execute the policy in its current
state of refinement.

The refinePath subroutine (Alg. 2) attempts to compute a
motion plan for each action in a given path. More precisely,
it uses a generator to sample the possible concretizations for
each action and test their feasibility. A feasible solution to
any one of these motion planning problems is considered a
feasible refinement of that abstract action. refinePath starts
by selecting the first node in the path that needs to be refined
in line 1 (Alg. 1 may result in situations where a prefix of a
path has already been refined by a prior call to refinePath, due
to line 14 in that algorithm).

It then iterates over possible target poses for the selected
action (lines 8 through 11). If a feasible motion plan is found,

118

Algorithm 2: Subroutine refinePath
Input: pathToRefine, partialTraj, policyTree, motionPlanner
Output: success: indicator of successful refinement;

partialPathTraj: refined path up to the first failure;
failureNode, failureReason: failure information

1 node← head(pathToRefine); partialPathTraj← None;
2 for node ∈ pathToRefine do
3 a← policyTree[node];
4 if partialTraj = None then
5 pose1← InitialPose;

else
6 pose1←

extractPose(partialTraj[parent(node)]);

7 while resource limit not reached and
partialPathTraj[node] = None do

8 pose2 = targetPoseGen(a);
9 if GetMotionPlan(pose1, pose2) succeeds then

10 partialPathTraj[node]← ComputePath;
11 break;

12 if partialPathTraj[node] = None then
13 if Bernoulli(replanBias).sample() then
14 return (False, partialPathTraj, node,

FailureReason);
else

15 partialPathTraj.remove(node.parent());
16 return (False, partialPathTraj, node.parent(),

None)

return (True, partialPathTraj, None, None);

then the algorithm refines the next action in the path. If not,
it stochastically chooses to either re-invoke the SSP by re-
turning a FailureReason, or to backtrack by invalidating the
current node’s path (line 15) by removing it from partialPath-
Traj and returning to follow lines 12-13 in Alg. 1.

Though a backtracking search through all possible motion
plans is required to guarantee the completeness of the algo-
rithm, we find in practice that replanning with a new initial
state and replacing the subtree rooted at a failed node with a
new SSP solution is often more time efficient. This is because
backtracking to an ancestor of the failed node invalidates the
motion plans associated with all paths passing through that
ancestor, often causing a large amount of previously com-
pleted work to be thrown out. This situation is illustrated in
Figure 3. For this reason, we stochastically choose between
backtracking and replanning and settle for probabilistic com-
pleteness of the search algorithm.

Properties of the Algorithm Our algorithm solves the dual
problems of synthesizing a strategy as well as computing mo-
tion plans while ensuring that the computed strategy has a
feasible motion plan. It factors a hybrid planning problem
into a succession of discrete SSPs and motion planning prob-
lems. The algorithm can compute solutions even when most
discrete strategies have no feasible refinements. A few addi-
tional salient features of the algorithm are:
• The representational mechanisms for encoding SSPs do

not require discretization, thus providing scalability.

Figure 3: Left: Backtracking from node B invalidates the subtree
rooted at A. In doing so, the work done in refining the node A’s left
child, in gray, is lost. Right: In some cases, replanning from node B
requires less work than re-refining the invalidated subtree.

• The SSP model dynamically improves as the motion
planning problems reveal errors in the high-level model
in terms of FailureReasons.
• Prioritizing paths of relative value gives the algorithm a

desirable anytime performance profile. This is further
evaluated in the empirical section.

5 Empirical Evaluation
We implemented the algorithms presented in Sec. 4 using an
implementation of LAO* [Hansen and Zilberstein, 2001] as
the SSP solver. We used the OpenRAVE [Diankov, 2010] sys-
tem for modeling and visualizing test environments and its
collision checkers and RRT [LaValle and Kuffner Jr, 2000]
implementation for motion planning. Since there has been
very little research on the task and motion planning problem
in stochastic settings, there are no standardized benchmarks.
We evaluated our algorithms by creating a hangar model in
OpenRAVE for the aircraft inspection problem (Fig. 1). UAV
actions in this domain include actions for moving to various
components of the aircraft, such as the left and right wings,
nacelles, fuselage, etc. Each such action could result in the
UAV reaching the specified component or a region around
the component. The inspection action for a component had
the stochastic effect of localizing a fault’s location. The envi-
ronment included docking stations that the UAV could reach
and recharge on reserve battery power. Generators for con-
cretizing all actions except the inspect action uniformly sam-
pled poses in the target regions. Some of these poses natu-
rally lead to shorter trajectories and therefore lower battery
usage, depending on the UAV’s current pose. However, we
used uniform-random samples to evaluate the performance of
the algorithm while avoiding domain-specific enhancements.
The generator for inspect(s) simulated an inspection pattern
by randomly sampling five waypoint poses in an envelope
around s and ordering them along the medial axis of the com-
ponent. We used a linear function of the trajectories to keep
track of battery usage at the low level and to report insufficient
battery as the failureReason when infeasibility was detected.
This function was used to provide failure reasons to the high-
level when the battery level was found to be insufficient.

Fig. 4 shows the performance of our approach for produc-
ing execution strategies with motion planning refinements as
a function of the time for which the algorithm is allowed to
run. The red lines show the number of nodes in the high-level
policy that have been evaluated, refined, and potentially re-
placed with updated policies that permit low-level plans. The

119

Figure 4: Performance of our anytime algorithm for solving MDPs using dynamic abstractions. The plots from left to right corresponds to
formulation of the problem with 5%, 10%, and 20% rates of failure of the abstract actions described in the text. The blue lines (red lines)
plot the probability mass of possible outcomes (proportion of nodes in the policy graph) that is covered by the partially computed policy as
computation time (x axis, in seconds) evolves.

blue lines show the probability with which the policy avail-
able at any time during the algorithm’s computation will be
able to handle all possible execution-time outcomes. The dif-
ferent plots show how these relations change as we increase
the level of uncertainty in the domain. The horizon is fixed at
ten high-level decision epochs (each of which can involve ar-
bitrarily long movements) and the number of parts with faults
is fixed at two. The policy generated by LAO* is unrolled
into a tree prior to the start of refinement. The reported times
include the time taken for unrolling.

Our main result is that that our anytime algorithm bal-
ances complexity of computing task and motion policies with
time very well and produces desirable concave anytime pe-
formance profiles. Fig. 4 shows that when noise in the agent’s
actuators and sensors is set at 5%, with 10% of computation
our algorithm computes an executable policy that misses only
the least likely 10% of the possible execution outcomes. This
policy is computed in less than 10 seconds. In the worst case,
with a 20% error rate in actuators and sensors (sensors used
in practice are much more reliable), we miss only about 20%
of the execution trajectories with 40% of the computation.

6 Other Related Work
There has been a renewed interest in integrated task and mo-
tion planning algorithms. Most research in this direction has
been focused on deterministic environments [Cambon et al.,
2009; Plaku and Hager, 2010; Hertle et al., 2012; Kaelbling
and Lozano-Pérez, 2011; Garrett et al., 2015; Dantam et al.,
2016]. Kaelbling and Lozano-Pérez [2013] consider a par-
tially observable formulation of the problem. Their approach
utilizes regression modules on belief fluents to develop a
regression-based solution algorithm. While they address the
more general class of partially observable problems, their ap-
proach follows a process of online, incremental discretization
and does not address the computation of branching policies,
which is the focus of this paper. Şucan and Kavraki [2012]
use an explicit multigraph to represent the plan or policy for
which motion planning refinements are desired. Hadfield-
Menell et al. [2015] address problems where the high-level
formulation is deterministic and the low-level is determinized
using most likely observations. In contrast, our approach em-

ploys abstraction to bridge MDP solvers and motion planners
to solve problems where the high-level model is stochastic.
In addition, the transitions in our MDP formulation depend
on properties of the refined motion planning trajectories (e.g.,
battery usage).

Principles of abstraction in MDPs have been well stud-
ied [Hostetler et al., 2014; Bai et al., 2016; Li et al., 2006;
Singh et al., 1995]. However, these directions of work as-
sume that the full, unabstracted MDP can be efficiently ex-
pressed as a discrete MDP. Marecki et al. [2006] consider
continuous time MDPs with finite sets of states and actions.
In contrast, our focus is on MDPs with high-dimensional,
uncountable state and action spaces. Recent work on deep
reinforcement learning (e.g., [Hausknecht and Stone, 2016;
Mnih et al., 2015]) presents approaches for using deep neural
networks in conjunction with reinforcement learning to solve
MDPs with continuous state spaces. We believe that these
approaches can be used in a complementary fashion with our
proposed approach. They could be used to learn maneuvers
spanning shorter-time horizons, while our approach could be
used to efficiently abstract their representations and to use
them as actions or macros in longer-horizon tasks.

Efforts towards improved representation languages are or-
thogonal to our contributions [Fox and Long, 2002]. The fun-
damental computational complexity results indicating growth
in complexity with increasing sizes of state spaces, branch-
ing factors, and time horizons remain true regardless of the
solution approach taken. It is unlikely that a uniformly pre-
cise model, a simulator at the level of precision of individ-
ual atoms, or even circuit diagrams of every component used
by the agent will help it solve the kind of complex tasks on
which humans would appreciate assistance. On the other
hand, not using any model at all would result in dangerous
agents that would not be able to safely evaluate the possible
outcomes of their actions. Our results show that these divides
can be bridged using hierarchical modeling and solution ap-
proaches that simplify the representational requirements and
offer computational advantages that could make autonomous
robots feasible in the real world.

120

7 Conclusions
Our experiments showed that starting with an imprecise
model, refining it based on the information required to eval-
uate different courses of action is an efficient approach for
the synthesis of high-level policies that are consistent with
constraints that may be imposed by aspects of the model that
are more abstract or imprecise. While full models of realistic
problems can overwhelm SDM solvers due to the uncount-
able branching factor and long time horizons, our hierarchi-
cal approach allows us to use SDM solvers while addressing
more realistic problems involving physical agents.

Acknowledgments
This material is based upon work supported by the Defense
Advanced Research Projects Agency (DARPA) and Space
and Naval Warfare Systems Center Pacific (SSC Pacific) un-
der Contract No. N66001-16-C-4050. Any opinions, findings
and conclusions or recommendations expressed in this mate-
rial are those of the authors and do not necessarily reflect the
views of the DARPA or SSC Pacific.

References
Aijun Bai, Siddharth Srivastava, and Stuart J Russell. Marko-

vian state and action abstractions for MDPs via hierarchi-
cal MCTS. In Proc. IJCAI, 2016.

Dimitri P Bertsekas and John N Tsitsiklis. An analysis of
stochastic shortest path problems. Mathematics of Opera-
tions Research, 16(3):580–595, 1991.

Stephane Cambon, Rachid Alami, and Fabien Gravot. A hy-
brid approach to intricate motion, manipulation and task
planning. IJRR, 28:104–126, 2009.

Neil T Dantam, Zachary K Kingston, Swarat Chaudhuri, and
Lydia E Kavraki. Incremental task and motion planning: A
constraint-based approach. In Proc. RSS, 2016.

Rosen Diankov. Automated Construction of Robotic Manipu-
lation Programs. PhD thesis, Carnegie Mellon University,
2010.

Esra Erdem, Kadir Haspalamutgil, Can Palaz, Volkan
Patoglu, and Tansel Uras. Combining high-level causal
reasoning with low-level geometric reasoning and motion
planning for robotic manipulation. In Proc. ICRA, 2011.

Maria Fox and Derek Long. PDDL+: Modeling continuous
time dependent effects. In Proceedings of the 3rd Inter-
national NASA Workshop on Planning and Scheduling for
Space, 2002.

Caelan Reed Garrett, Tomás Lozano-Pérez, and Leslie Pack
Kaelbling. FFrob: An efficient heuristic for task and mo-
tion planning. In Proc. WAFR. 2015.

Vu Ha and Peter Haddawy. Theoretical foundations for
abstraction-based probabilistic planning. In Proc. UAI,
1996.

Dylan Hadfield-Menell, Edward Groshev, Rohan Chitnis, and
Pieter Abbeel. Modular task and motion planning in belief
space. In Proc. IROS, 2015.

Eric A Hansen and Shlomo Zilberstein. LAO∗: A heuristic
search algorithm that finds solutions with loops. Artificial
Intelligence, 129(1-2):35–62, 2001.

Matthew Hausknecht and Peter Stone. Deep reinforcement
learning in parameterized action space. In Proc. ICLR,
2016.

Malte Helmert. Concise finite-domain representations for
pddl planning tasks. Artificial Intelligence, 173(5):503 –
535, 2009.

Andreas Hertle, Christian Dornhege, Thomas Keller, and
Bernhard Nebel. Planning with semantic attachments: An
object-oriented view. In Proc. ECAI, 2012.

Jesse Hostetler, Alan Fern, and Tom Dietterich. State aggre-
gation in monte carlo tree search. In Proc. AAAI, 2014.

Leslie Pack Kaelbling and Tomás Lozano-Pérez. Hierarchical
task and motion planning in the now. In Proc. ICRA, 2011.

Leslie Pack Kaelbling and Tomás Lozano-Pérez. Integrated
task and motion planning in belief space. The International
Journal of Robotics Research, 32(9-10):1194–1227, 2013.

A Kolobov, Mausam, DS Weld, and H Geffner. Heuristic
search for generalized stochastic shortest path mdps. In
Proceedings of the International Conference on Automated
Planning and Scheduling (ICAPS), 2011.

S.M. LaValle and J.J. Kuffner Jr. Rapidly-exploring random
trees: Progress and prospects. 2000.

Lihong Li, Thomas J Walsh, and Michael L Littman. Towards
a unified theory of state abstraction for mdps. In ISAIM,
2006.

Janusz Marecki, Zvi Topol, Milind Tambe, et al. A fast ana-
lytical algorithm for mdps with continuous state spaces. In
AAMAS-06 Proceedings of 8th Workshop on Game Theo-
retic and Decision Theoretic Agents, 2006.

Bhaskara Marthi, Stuart J Russell, and Jason Wolfe. Angelic
semantics for high-level actions. In Proc. ICAPS, 2007.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, An-
drei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves,
Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski,
et al. Human-level control through deep reinforcement
learning. Nature, 518(7540):529–533, 2015.

E. Plaku and G. D. Hager. Sampling-based motion and sym-
bolic action planning with geometric and differential con-
straints. In Proc. ICRA, 2010.

Stuart Russell, Daniel Dewey, and Max Tegmark. Research
priorities for robust and beneficial artificial intelligence. AI
Magazine, 36(4):105–114, 2015.

Scott Sanner and Craig Boutilier. Practical solution tech-
niques for first-order MDPs. Artificial Intelligence, 173(5-
6):748–788, 2009.

Scott Sanner. Relational dynamic influence diagram language
(rddl): Language description. http://users.cecs.
anu.edu.au/˜ssanner/IPPC_2011/RDDL.pdf,
2010.

121

Satinder P Singh, Tommi Jaakkola, and Michael I Jordan. Re-
inforcement learning with soft state aggregation. In Proc.
NIPS, pages 361–368, 1995.

Siddharth Srivastava, Eugene Fang, Lorenzo Riano, Rohan
Chitnis, Stuart Russell, and Pieter Abbeel. A modular
approach to task and motion planning with an extensible
planner-independent interface layer. In Proc. ICRA, 2014.

Ioan A Şucan and Lydia E Kavraki. Accounting for uncer-
tainty in simultaneous task and motion planning using task
motion multigraphs. In Proc. ICRA, 2012.

Håkan LS Younes and Michael L Littman. PPDDL 1.0: An
extension to pddl for expressing planning domains with
probabilistic effects. Technical Report CMU-CS-04-162,
2004.

122

A Unified Framework for Planning in
Adversarial and Cooperative Environments

Anagha Kulkarni, Siddharth Srivastava and Subbarao Kambhampati
School of Computing, Informatics, and Decision Systems Engineering

Arizona State University, Tempe, AZ 85281 USA
{anaghak, siddharths, rao}@ asu.edu

Abstract

Users of AI systems may rely upon them to produce plans
for achieving desired objectives. Such AI systems should be
able to compute obfuscated plans whose execution in ad-
versarial situations protects privacy, as well as legible plans
which are easy for team members to understand in coop-
erative situations. We develop a unified framework that ad-
dresses these dual problems by computing plans with a de-
sired level of comprehensibility from the point of view of a
partially informed observer. For adversarial settings, our ap-
proach produces obfuscated plans with observations that are
consistent with at least k goals from a set of decoy goals. By
slightly varying our framework, we present an approach for
goal legibility in cooperative settings which produces plans
that achieve a goal while being consistent with at most j goals
from a set of confounding goals. In addition, we show how
the observability of the observer can be controlled to either
obfuscate or clarify the next actions in a plan when the goal
is known to the observer. We present theoretical results on the
complexity analysis of our problems. We demonstrate the ex-
ecution of obfuscated and legible plans in a cooking domain
using a physical robot Fetch. We also provide an empirical
evaluation to show the feasibility and usefulness of our ap-
proaches using IPC domains.

1 Introduction
AI systems have become quite ubiquitous. As users, we
heavily rely on these systems to plan our day-to-day activi-
ties. Since all these systems have logging and tracking abil-
ities, an observer can get access to our data and our actions.
Such observers can be of two types: adversarial or coopera-
tive. In adversarial settings, like mission planning, military
intelligence, reconnaissance, counterintelligence, etc., pro-
tection of sensitive data can be of utmost importance to the
agent. In such situations, it is necessary for an AI system to
produce plans that reveal neither the intentions nor the activ-
ities of the agent. On the other hand, in case of a cooperative
observer, the AI system should be able to produce plans that
help clarify the intent of the agent. Therefore, it is desirable
for an AI system to be capable of computing both obfuscated
plans in adversarial settings and legible plans in cooperative
settings.

In this work, we propose a new unifying formalization
and algorithms for computing obfuscated plans as well as
legible plans. In our framework, we consider two agents:

Figure 1: A blocksworld example illustrating belief ex-
pansion due to observation equivalence induced by the ob-
servation model of the observer.

an acting agent and an observer. The acting agent has full
observability of its activities. The observer is aware of the
agent’s planning model but has partial observability of the
agent’s activities. The observations are emitted as a side ef-
fect of the agent’s activities and are received by the observer.
In the following example, we illustrate the influence of an
observation model on the belief space of the observer.

Example 1. Consider a blocksworld planning do-
main, where the actions unstack, stack, pickup and
putdown are available. The observer can only receive par-
tial observations using sensors on the table and on the grip-
per. An observation is emitted whenever the gripper is hold-
ing a block and indicates whether the block was lifted from
the table or from the top of another block. This allows our
observer to learn whether or not the current action has
the agent holding a block (for example in unstack and
pickup, it is holding a block) and whether or not the cur-
rent action involves a block that was on the table (for ex-
ample, in pickup and putdown, the blocks are picked up
from / putdown on the table). Thus, our observer can dis-
tinguish between types of actions that were performed but
is still unaware of which blocks were used. In Figure 1, we
illustrate the progression of belief states from the observer’s
point of view based on the observation model defined above.

An adversarial observer may be able to use the informa-
tion gleaned from observations to interfere with or hamper
the agent’s activities. For example, consider the keystroke
timing attack (Song, Wagner, and Tian 2001) where the
observer retrieves observations about keystroke timing by

123

studying an agent’s inter-keystroke timings. Through such
traffic analysis attacks, the observer can learn the passwords
typed by an agent while connecting to a remote machine. On
the other hand, in cooperative scenarios, an agent is required
to communicate its intentions to the observer as quickly and
clearly as possible. For example, consider a robot who is ca-
pable of assembling either chairs or tables. A chair has three
components: seat, back and legs; and a table has two com-
ponents: surface and legs. Whenever the robot is holding a
component, the observer receives an observation regarding
the type of component. In order to notify about a task of
say, assembling a chair, the robot can start with the seat or
the back components rather than with the legs to make its
objectives clearer to the observer.

In this work, we develop a coherent set of notions for goal
obfuscation and goal legibility. Our approach computes the
solutions for each of these problems using the variants of
a common underlying algorithm. Our approach assumes of-
fline settings, where the observer receives the observations
after the agent has finished executing a plan. In the case of
a goal obfuscation problem, there exist multiple decoy goals
and one true goal. The observer is unaware of the agent’s
true goal, and the objective is to generate a plan solution
without revealing it. Our solution ensures that at least k
goals are possible at the end of the observation sequence.
On the other hand, in the goal legibility problem, there exist
multiple confounding goals and a true goal. Here the objec-
tive is to reveal at most j goals to the observer. Our solution
ensures that at most j goals are possible at the end of the
observation sequence. We also consider a variant of obfus-
cation and legibility where the adversary knows the goal of
the agent and wants to obfuscate or reveal the next action
in the plan to achieve that goal, we call these problems plan
obfuscation and plan legibility respectively. For plan obfus-
cation, the objective is to generate a plan solution with an
observation sequence that is consistent with at least ` diverse
plans. On the other hand, for plan legibility, the objective is
to generate a plan solution that is consistent with at least m
similar plans.

In the following sections, we present a common frame-
work that encapsulates the planning problems discussed
above. And thereafter, we discuss each of the problems in
detail. We also provide a theoretical and empirical analysis
of the value and scope of our approaches.

2 Controlled Observability Planning
Problem

2.1 Classical Planning
A classical planning problem can be defined as a tuple
P = 〈F ,A, I, G〉, where F , is a set of fluents, A, is
a set of actions. A state s of the world is an instantia-
tion, F i of F . The initial state I is the instantiation of
all fluents in F and the goal G is a subset of instanti-
ated fluents in F . Each action a ∈ A is a tuple of the
form 〈pre(a), add(a), delete(a), c(a)〉 where c(a) denotes
the cost of an action, pre(a) ⊆ F is a set of preconditions
for the action a, add(a) ⊆ F is a set of positive effects and
delete(a) ⊆ F is a set of negative effects, i.e., Γ(s, a) |= ⊥

if s 6|= pre(a); else Γ(s, a) |= s∪ add(a) \ delete(a) where
Γ(·) is the transition function. The solution to P is a plan
or a sequence of actions π = 〈a1, a2, . . . , an〉, such that,
Γ(I, π) |= G, i.e., starting from the initial state sequentially
executing the actions lands the agent in a goal state. The cost
of the plan, c(π), is summation of the cost of all the actions
in the plan π, c(π) =

∑
ai∈π c(ai).

2.2 Problem Setting
We now introduce a general planning problem framework
that will be used to define adversarial and cooperative cases
in the following sections. The controlled observability prob-
lem involves an acting agent and an observer.

Definition 1. A controlled observability planning problem
is a tuple, PCO = 〈D,G,Ω,O〉, where,

• D = 〈F ,A, I〉 is the planning domain of the agent.
• G = {G1 ∪ G2 . . . ∪ Gn−1 ∪ GA} is a set of candidate

goal conditions, each defined by subsets of fluent instan-
tiations, where GA is the true goal of the agent.

• Ω = {oi|i = 1, . . . ,m} is a set of m observations that
can be emitted as a result of the action taken and the state
transition.

• O : (A× S)→ Ω is a many-to-one observation function
which maps the action taken and the next state reached to
an observation in Ω. That is to say, the observations are
deterministic, each 〈a, s′〉 pair is associated with a single
observation but multiple pairs can be mapped to the same
observation.

The observer has access toPCO, but is unaware of the true
goal of the agent. Also, the observer does not have access to
the actions performed by the agent, instead receives the ob-
servations corresponding to the plan executed by the agent.
The observation function can be seen as a sensor model, as
modeled in several prior works (Geffner and Bonet 2013;
Bonet and Geffner 2014; Keren, Gal, and Karpas 2016b).
For every action taken by the agent and an associated state
transition, the observer receives an observation. This obser-
vation might be consistent with multiple action-state pairs
because of the many-to-one formulation of O. Therefore,
the observer operates in the belief space. The agent takes
the belief space of the observer into account in its planning
process, so as to control the observability of the observer.
Our formulation defines an offline scenario where the ob-
server receives all the observations once the plan has been
executed by the agent.

2.3 Observer’s Belief Space
The observer may use its observations of the agent’s activity
to maintain a belief state, or the set of possible states consis-
tent with the observations.

Definition 2. A belief, bi, induced by observation, oi,
emitted by action, ai, and resulting state, si, is, bi =
{ŝi | ∃âi, O(âi, ŝi) = oi ∧ O(ai, si) = oi}.

Whenever a new action is taken by the agent, the ob-
server’s belief can be updated as follows:

124

Definition 3. A belief update, bi+1 for belief
bi is defined as, bi+1 = update(bi, oi+1) =
{ŝi+1 | ∃ŝi,∃âi+1, Γ(ŝi, âi+1) |= ŝi+1 ∧ ŝi ∈
bi ∧ O(âi+1, ŝi+1) = oi+1}.

A sequence of such belief updates gives us the observer’s
belief sequence that is consistent with a sequence of obser-
vations emitted by the agent.

Definition 4. A belief sequence induced by a plan p start-
ing at state s0, BS(p, s0), is defined as a sequence of beliefs
〈bo, b1, . . . , bn〉 such that there exist o0, o1, o2, . . . , on ∈ Ω
where,

• oi = O(ai, si)

• b0 = {ŝ0|O(∅, s0) = o0 ∧ O(∅, ŝ0) = o0}
• bi+1 = update(bi, oi+1)

The objective of the agent is to generate a desired belief
in the observer’s belief space, such that the last belief in the
induced belief sequence satisfies goal conditions from the
candidate goal set G including GA.

2.4 Variants of PCO
We now discuss the two major variants of PCO namely, goal
obfuscation and goal legibility planning problems.

Goal Obfuscation The adversary is aware of agent’s can-
didate goal set but is unaware of agent’s true goal. The aim
of goal obfuscation is to hide this true goal from the ob-
server. This is done by taking actions towards agent’s true
goal, such that, the corresponding observation sequence ex-
ploits the observer’s belief space in order to be consistent
with multiple goals.

Definition 5. A goal obfuscation planning problem, is a
PCO, where, G = {GA ∪ G1 ∪ . . . ∪ Gn−1}, is the set
of n goals where GA is the true goal of the agent, and
G1, . . . , Gn−1 are decoy goals.

A solution to a goal obfuscation planning problem is a
k-ambiguous plan. The objective here is to make the obser-
vation sequence consistent with at least k goals, out of which
k−1 are decoy goals, such that, k ≤ n. These k−1 goals can
be chosen by the robot so as to maximize the obfuscation.

Definition 6. A plan, πk, is a k-ambiguous plan, if
Γ(I, πk) |= GA and the last belief, bn ∈ BS(πk, I), sat-
isfies the following, |bn ∩ G| > k, where 1 > k > n.

Definition 7. An observation sequence Ok = 〈o1, . . . , on〉
is k-ambiguous observation sequence if it is an observation
sequence emitted by a k-ambiguous plan.

A k-ambiguous plan achieves at least k goals in the last
belief of the observation sequence.

Goal Legibility The aim of goal legibility is to take goal-
specific actions which help the observer in deducing the
robot’s goal. This can be useful in cooperative scenarios
where the robot wants to notify the observer about its goal
without explicit communication. This case is exactly oppo-
site of the obfuscation case.

Definition 8. A goal legibility planning problem is a PCO,
where, G = {GA ∪ G1 ∪ . . . ∪ Gn−1} is the set of n goals
where GA is the true goal of the agent, and G1, . . . , Gn−1

are confounding goals.

The objective here is to generate legible plans so as to
reveal at most j goals. Here we ensure that the plans are
consistent with at most j goals so as to minimize the number
of goals in the observer’s belief space.

Definition 9. A plan, πj , is a j-legible plan, if Γ(I, πj) |=
GA and the last belief, bn ∈ BS(πj , I), satisfies the follow-
ing, |bn ∩ G| 6 j, where 1 > j > n.

The definition of j-legible observation sequence follows
that of k-ambiguous case.

2.5 Complexity Analysis
In this section, we discuss the complexity results for PCO.
Given the Definitions 6 and 9 of goal obfuscation and goal
legibility plan solutions, we prove that the plan existence
problem for PCO is EXPSPACE-complete.

Theorem 1. The plan existence problem for a controlled
observability planning problem is EXPSPACE-hard.

Proof. To show that the plan existence problem for PCO
is EXPSPACE-hard, we will show that the NOD (No-
Observability Deterministic) planning problem is reducible
to PCO. The plan existence problem for NOD has been
shown to be EXPSPACE-complete (Haslum and Jonsson
1999; Rintanen 2004).

Let PN = 〈FN ,AN , IN , GN ,V〉 be a NOD planning
problem, where, FN is the set of fluents (or Boolean state
variables), such that, state s is an instantiation of FN . AN
is a set of actions, such that, when an action a ∈ AN is
applied to a state, si, a deterministic transition to the next
state occurs, Γ(si, a) |= si+1. I and G are Boolean formu-
lae that represent sets of initial and goal states. V = ∅ is the
set of observable state variables. Since the underlying sys-
tem state is unknown, the deterministic transition function
does not reveal the hidden state. PN can be expressed as
a PCO problem, PC = 〈DC , GC ,ΩC ,OC〉, where, DC =
{FC ,AC , IC}, such that IC is a set of possible initial states,
GC is a subset of instantiations in FC , Ω = ∅ and O = ∅.

Suppose πPC
= 〈a1, . . . , ar〉 is a plan solution to PC ,

such that, Γ(IC , πPC
) |= GC and the last belief br ∈

BS(πPC
, IC) satisfies |br ∩ GC | = 1. Then according to

the definition of PN , the plan πPC
has a last belief, such

that, ∃sr ∈ br, sr |= GC and therefore solves PN .
Conversely, suppose πPN

= 〈a1, . . . , aq〉 is a plan solu-
tion to PN , such that, Γ(IN , πPN

) |= GN . LetBq be the be-
lief associated with the last action in πPN

. Since it achieves
the goal, we can say that |Bq ∩ G| = 1. According to Def-
initions 6, 9, for k = j = 1, Bq satisfies the condition.
Therefore πPN

is a solution to PC .

Theorem 2. The plan existence problem for a controlled
observability planning problem is EXPSPACE-complete.

125

Proof. In PCO, the planner operates in belief space and the
state space is bounded by 22|F| , where |F| is the cardinal-
ity of the fluents (or Boolean state variables). If there ex-
ists a plan solution for PCO, it must be bounded by 22|F|

in length. Any solution longer in length must have loops,
which can be removed. Therefore, by selecting actions non-
deterministically, the solution can be found in at most 22|F|

steps. Hence, the plan existence problem for PCO is in
NEXPSPACE. By Savitch’s theorem (Savitch 1970), NEX-
PSPACE = EXPSPACE. Therefore, the plan existence prob-
lem for PCO is EXPSPACE-complete.

2.6 Algorithm for Plan Computation
We present the details of a common algorithm template used
by our formulations in Algorithm 1. In Section 3, we show
how we customize the goal-test (line 24) and the heuristic
function (line 30) to suit the needs of each of our problem
variants. There are two loops in the algorithm: the outer loop
(line 3) runs for different values of ∆ = {1, 2, . . . , |S|};
while the inner loop (line 12) performs search over the state
space of size

(|S|
∆

)
. These loops ensure the complete explo-

ration of the belief space.
For each outer iteration, s∆ is augmented with elements

of the belief state until the cardinality of s∆ is equal to the
value of ∆. In the inner loop, we run GBFS over the state
space of s∆. For each successor node in the open list, the
belief induced by an observation is updated. The heuristic
value of a state is computed using a plan graph (Blum and
Furst 1997) level based heuristic, such as set-level heuris-
tic (Nguyen, Kambhampati, and Nigenda 2002). The plan
graph data structure contains information about the positive
and the negative interactions between the sets of proposi-
tions and actions. We use set-level plan graph heuristic to
guide the search. To get the set-level cost, the plan graph is
populated with a state, s (search node), and it is expanded
until one of the following holds (1) the goal is reachable,
that is, the goal propositions are present in a proposition
layer and are mutex-free pairs, or (2) the graph levels off,
that is, it cannot be expanded further. If the goal is not reach-
able before the graph levels off then it cannot be achieved
by any plan. In this case, the heuristic cost is∞. Else, when
the goal is reachable and the goal propositions are pairwise
mutex-free, the heuristic value is the index of the first plan
graph layer that contains it.

Proposition 1. Algorithm 1 necessarily terminates in finite
number of |S| iterations, such that, the following conditions
hold:

(Completeness) Algorithm 1 explores the complete solution
space of PCO, that is, if there exists a πPCO that correctly
solves PCO, it will be found.

(Soundness) The plan, πPCO , found by Algorithm 1 cor-
rectly solvesPCO as ensured by the corresponding goal-test.

Algorithm 1 terminates either when a plan is found or af-
ter running the outer loop for |S| iterations. The outer loop
ensures that the all the paths in the search space are explored.

Algorithm 1: Plan Computation
Input: PCO = 〈D,G,Ω,O〉
Output: plan solution πPCO , observation sequence,OPCO

1 ∆← 1 . Counter

2 ∆ limit← False . Delta cardinality flag

3 while ∆ 6 |S| do
4 s∆ ← {I} . Initial state

5 open← Priority Queue() . Open list

6 closed← {} . Closed list

7 b0 ← {O(∅, s∆)} . Initial belief

8 open.push(〈I, b0〉, priority = 0)

9 if |s∆| = ∆ then
10 ∆ limit← True

11 end
12 while open 6= ∅ do
13 〈s∆, b〉 ← open.pop()

14 if ¬∆ limit then
15 for ŝ ∈ b \ s∆ do
16 s∆ ← s∆ ∪ ŝ
17 if |s∆| = ∆ then
18 ∆ limit← True

19 break
20 end
21 end
22 end
23 closed← closed ∪ s∆
24 if 〈s∆, b〉 |= GOAL-TEST(G) then
25 return πPCO , OPCO
26 end
27 for s′∆ ∈ successors(s∆) do
28 o← O(a, s′∆)

29 b′ ← Belief-Generation(b, a, o)
30 h(s′∆)← HEURISTIC-FUNCTION(s′∆, b

′)

31 if s′∆ /∈ open and s′∆ /∈ closed then
32 open.push(〈s′∆, b′〉, h(s′∆))

33 else if h(s′∆) < hprev(s′∆) then
34 if s′∆ /∈ open then
35 closed← closed \ s′∆
36 open.push(〈s′∆, b′〉, h(s′∆))

37 else
38 update priority from hprev(s′∆) to h(s′∆)

39 end
40 end
41 end
42 end
43 ∆← ∆ + 1

44 ∆ limit← False

45 end
46 procedure Belief-Generation(b, a, o)
47 b′ ← {}
48 for ŝ ∈ b do
49 for â ∈ A do
50 if ŝ |= pre(â) andO(â,Γ(ŝ, â)) = o then
51 b′ ← b′ ∪ Γ(ŝ, â)

52 end
53 end
54 end
55 return b′

And the goal tests of both of the problem variants ensure that
the solutions are correct with respect to Definitions 6 and 9.

126

The increase in cardinality of s∆ can lead to increase in
the search overhead. In our implementation, we run only
the first iteration of the outer loop. Most of the problem in-
stances can be solved in the first iteration itself.

3 Plan Computation
In this section, we present instantiations of modules pre-
sented in Algorithm 1 for goal obfuscation and legibility.

3.1 Computing Goal Obfuscated Plans
Goal test We ensure that the solution plan does not end
unless all k goals occur in the belief state. In order to achieve
this, the goal condition checks whether the goal has been
achieved in the agent’s true state and also whether the k − 1
goals have been achieved in the belief state. If there doesn’t
exist a plan that can achieve the true goal with the given k−1
goals, we restart the search with next combination of k − 1
goals among the total n− 1 decoy goals.

Heuristic function We now propose a heuristic strategy
for generating a plan where the last belief state satisfies k
goals, making it a k-ambiguous plan. We use two heuristic
functions to estimate a node’s cost:

h(s) =
(
set-levelGA

(s) + set-levelGk−1
(b)
)

(1)

where the first heuristic computes the setLevel distance to
the true goal from the agent’s actual state, while the second
heuristic computes the setLevel distance to k− 1 goals from
the belief induced by the emitted observation. This is com-
puted by finding the max of the minimum set-level distance
from belief to each of the k − 1 goals. The heuristic value
of a state is computed as the total of these two values. The
heuristic ensures at least k goals occur in the last belief in-
duced by the plan.

Note on deterministic output and use of noop The k-
ambiguous algorithm maintains obfuscation assuming that
the adversarial observer does not have access to the process
of plan computation. If the observer has access to it then,
a simple variation like the addition of random noise to the
heuristic can thwart the attack.

Our formulation supports the use of noops for obfusca-
tion. A noop action can be compiled to multiple noop ac-
tions, noop = {pretendoi |i = 1, . . . , |Ω|} where each noop
corresponds to an observation of a prior action. This would
allow the agent to emit observations without doing any ac-
tion. This way the agent can increase the chances of obfus-
cation while using the same approaches.

3.2 Computing Goal Legible Plans
Goal test In this case, we have to ensure that the computed
plan is consistent with at most j true goals. To that end, we
change our goal condition to additionally check whether at
most j− 1 confounding goals have been achieved in the last
belief in BS, and whether at least n − j goals are absent in
the belief.

Heuristic function In this case, our objective is to avoid
at least n − j goals and at the same time be consistent with
at most j goals. We achieve this by minimizing the set-level
distance to true goal from the agent’s actual state and to the
j − 1 confounding goals from the agent’s belief state. How-
ever, we maximize the set-level distance to other n− j goals
in order to achieve at most j goals. This is written as,

h(s) =
(
set-levelGA

(s) + set-levelGj−1(b)− set-levelGn−j (b)
)

(2)

4 Plan Obfuscation and Plan Legibility
We also discuss two other problem variants called plan ob-
fuscation and plan legibility. These problems come into pic-
ture when the observer is aware of the agent’s goal. How-
ever, the objective here is to either obfuscate or reveal the
next steps in the plan.

4.1 Obfuscation
We achieve plan obfuscation by computing a plan whose ob-
servation sequence conforms to a set of diverse plans, mak-
ing it hard to predict the next action in that plan.
Definition 10. A plan obfuscation planning problem is a
tuple, PPO = 〈D,GPO,Ω,O〉, where, GPO = {GA}, and
GA is the true goal of the agent.

The solution to a plan obfuscation planning problem is
an `-diverse plan. An `-diverse plan has an observation se-
quence that is consistent with ` plans that are at least d dis-
tance away. In order to compute an `-diverse plan, we need
to keep track of the paths that are consistent with the belief
sequence of the given plan, we call the set of these paths as
belief plan set.
Definition 11. A belief plan set, BPS(p, s0) = {p1, . . . , pn},
induced by a plan p starting at s0, is a set of
plans that are formed by causally consistent chaining
of state sequences in BS(p, s0), i.e., BPS(p, s0) =
{〈ŝ0, â1, ŝ1, . . . , ŝn〉 | ∃ âj , ŝj−1 |= pre(âj) ∧ ŝj−1 ∈
bj−1 ∧ ŝj |= ŝj−1 ∪ add(âj) \ delete(âj) ∧ ŝj ∈ bj}.

Our aim is to compute the diversity between all the pairs
of plans in BPS(p, s0). The diversity between plans can be
enforced by using plan distance measures.

Plan Distance Measures We will utilize the three plan
distance measures introduced in Srivastava et al. (2007), and
refined in Nguyen et al. (2012), namely action, causal link
and state sequence distances. Our aim is to use these plan
distance measures to measure the diversity of plans in a be-
lief plan set.

Action distance We denote the set of unique actions in a
plan π as A(π) = {a | a ∈ π}. Given the action sets A(p1)
and A(p2) of two plans p1 and p2 respectively, the action
distance is, δA(p1, p2) = 1− |A(p1)∩A(p2)|

|A(p1)∪A(p2)| .

Causal link distance A causal link represents a tuple of
the form 〈ai, pi, ai+1〉, where pi is a predicate that is pro-
duced as an effect of action ai and used as a precondition

127

for ai+1. The causal link distance for the causal link sets
Cl(p1) and Cl(p2) of plans p1 and p2 is, δC(p1, p2) =

1− |Cl(p1)∩Cl(p2)|
|Cl(p1)∪Cl(p2)| .

State sequence distance This distance measure takes
the sequences of the states into consideration. Given two
state sequence sets S(p1) = (sp1

0 , . . . , s
p1
n) and S(p2) =

(sp2

0 , . . . , s
p3

n′) for p1 and p2 respectively, where n ≥ n′

are the lengths of the plans, the state sequence distance is,
δS(p1, p2) = 1

n

[∑n′

k=1 d(sp1

k , s
p2

k) + n − n′
]

, where

d(sp1

k , s
p2

k) = 1− |s
p1
k ∩s

p2
k |

|sp1
k ∪s

p2
k |

represents the distance between

two states (where sp1

k is overloaded to denote the set of flu-
ents in state sp1

k).
We now formally define `-diverse plan and other terms.

Definition 12. Two plans, p1, p2, are a d-distant pair with
respect to distance function δ if, δ(p1, p2) = d, where δ is a
diversity measure.

Definition 13. A BPS induced by plan p starting at
s0 is minimally d-distant, dmin(BPS(p, s0)), if d =

min
p1,p2∈BPS(p,s0)

δ(p1, p2).

Definition 14. A plan, πl, is an `-diverse plan, if for a given
value of d and distance function δ, dmin(BPS(πl, I)) ≥
d, |BPS(πl, I)| ≥ `, where ` ≥ 2 and every plan in
BPS(πl, I) achieves the goal in GPO.

Computing Obfuscated Plans Here we return a plan that
is at least `-diverse and that maximizes the plan distance
between BPS induced by a plan.

Goal test To ensure the plans in BPS induced by `-
diverse plan can achieve the goal in GPO, we change the
goal condition to additionally check whether at least ` plans
are reaching the goal or not. Also in order to ensure termi-
nation of the algorithm, there is a cost-bound given as input
to the algorithm.

Heuristic function We now present our heuristic strategy
to compute `-diverse observation sequence. Our heuristic is
a three-part function:

h(s) = (−dmin(BPS(p, s0)),−|BPS(p, s0)|, set-level(s))
(3)

where the primary heuristic maximizes the d of
dmin(BPS(p, s0)) induced by plan p starting at s0,
the second heuristic maximizes the cardinality of the set
BPS(p, s0), while the third heuristic gives the set-level
value of s. The cardinality of BPS(p, s0) is computed by
counting the number of plans that have the same set-level
value from their last states as that from the true state. The
distance is computed using either of the three plan distances.

4.2 Plan Legibility
The definition of plan legibility planning problem is similar
to that of plan obfuscation planning problem. Here the ob-
jective is to reveal the next action in the plan. We achieve this

by making the observation sequence consistent with plans
that are similar in terms of observation sequences. This case
is opposite to that of the plan obfuscation case. We use the
same three plan distance measures to define the similarity
of the plans. We call the solution to this problem as an m-
similar plan. For similar plans in BPS, we define the max-
imum distance between any two pairs of plans.
Definition 15. A BPS induced by plan p starting at
s0 is maximally d-distant, dmax(BPS(p, s0)), if d =

max
p1,p2∈BPS(p,s0)

δ(p1, p2).

Definition 16. A plan, πm, is a m-similar plan, if for a given
value of d and distance function δ, dmax(BPS(πm, I)) ≤
d, |BPS(πm, I)| ≥ m, where m ≥ 2 and every plan in
BPS(πm, I) achieves the goal in GPL.

Computing Legible Plans Here we return a plan that is
at least m-similar and that minimizes the plan distance be-
tween BPS induced by a plan. The goal test for this case is
similar to that of plan obfuscation case.

Heuristic function The heuristic function to compute m-
similar observation sequence is a three-part function:
h(s) = (dmax(BPS(p, s0)),−|BPS(p, s0)|, set-level(s))

(4)
where the primary heuristic minimizes the d value of
dmax(BPS(p, s0)) induced by plan p starting at s0, the re-
maining parts are same as those in plan obfuscation case.

5 Robot Demonstration
We now present a demonstration of k-ambiguity and j-
legibility using a physical Fetch robot in a cooking domain.
Here robot plays the role of an actor and a human plays the
role of an observer. The goal of the robot is to add necessary
ingredients to make a recipe. In the obfuscation setting, the
robot’s aim is to hide the ingredients from the human. This
can be of use, especially, in scenarios where there is a need
to preserve the secrecy of a recipe due to proprietary rea-
sons. In contrast, in the legibility setting, the robot’s aim is
to inform the human about the ingredients being added. This
could be seen from a household user’s perspective, where the
user needs to know what is being used in the recipe.

The domain consists of actions that allow the robot to
communicate with the human, as well as pick-up and pour
ingredients into a container. Each action can be performed
in either an obfuscated or a legible way with different ef-
fects and different observations. We provide the action de-
scriptions in Figures 3 and 4. From Figure 3, it can be seen
that the action ask-human-to-stir distracts the human
and allows the robot to obfuscate its goal. When the hu-
man is inattentive, the observation emitted for picking up
any ingredient is generic. On the other hand, in Figure 4 the
action ask-human-to-pass-sugar brings the human
to attention. When the human is attentive, the observation
emitted for picking up a container is specific for each ingre-
dient. As shown in Figure 2, the scenario consists of a salt
container and two sugar containers: one labeled as sugar, an-
other without a label. The human is not aware of the contents
of the unlabeled container.

128

Figure 2: An illustration of the cooking domain. Here the
robot is following a recipe and has to pick up and pour the
ingredients into a cup. The robot has two containers avail-
able on its table, an unlabeled green colored container that
contains sugar (unbeknownst to the human) and a labeled
salt container. A labeled sugar container is available on the
second table.

Table 1: Obfuscated and legible plans for cooking domain
True Goal contents-added cup1 sugar
Decoy / Confounding contents-added cup1 salt
Obfuscated Plan ask-human-to-stir sugar container1,

pickup-container-obfuscated sugar container1 table1,
pour-ingredient-and-place sugar container1 cup1 table1

Obfuscation observation human-inattentive, pickup-ingredient, pour-ingredient
Legible Plan ask-human-to-pass-sugar sugar container2 table1,

pickup-container-legible sugar container2 table1,
pour-ingredient-and-place sugar container2 cup1 table1

Legible observation human-attentive, pickup-sugar, pour-sugar

We used MoveIt (Sucan and Chitta 2013) software with
RRTConnectkConfigDefault planner to perform mo-
tion planning. RViz was used to visualize the objects in
the scene and the possible trajectories of the robot. AR
markers were used to localize the objects in the scene. The
candidate goal set along with k-ambiguous and j-legible
plans are given in Table 1. Here k = 2 and j = 1. The
videos for both obfuscation and legibility can be viewed
at https://youtu.be/mW7qCeggpUA and https:
//youtu.be/qzvTivKuszU.

6 Empirical Evaluation
We now present an empirical analysis of all four approaches
to demonstrate the performance and scope of our system. To
this end, we use the following three IPC domains for our
experiments: 15 problems from BlocksWorld, 10 from
Storage, 10 from Gripper. We use grounded domains
and problems in our experiments.

6.1 Observation Model Setup
We now discuss the design of O for the following domains:

BlocksWorld For blocksworld, the observation model is
same as the one defined in Example 1. For the 15 problems
used in this domain, the smallest problems had 26 fluents, 34
actions and the largest problems had 39 fluents, 74 actions.

(:action ask-human-to-stir
:parameters (?x - ingredient ?y - container)
:precondition (and

(in ?x ?y)
(not (obfuscated ?y))

)
:effect (and

(human-inattentive)
(increase (total-cost) 1)

)
)

(:action pickup-container-obfuscated
:parameters (?x - ingredient ?y - container
?z - table)
:precondition (and

(in ?x ?y)
(handempty)
(on ?y ?z)
(accessible ?z)
(human-inattentive)

)
:effect (and

(not (handempty))
(holding ?y)
(not (on ?y ?z))
(obfuscated ?y)
(increase (total-cost) 1)

)
)

Figure 3: Action description of obfuscating actions

Storage The storage domain has actions move, drop,
lift, go-out and go-in. The observer cannot distin-
guish between lift and drop actions but receives an observa-
tion saying whether the hoist was used to perform an action.
The observer can tell whether the agent is inside a particular
storage area or outside. However, once the agent is inside a
store area, the move actions do not reveal the agent’s area.
Therefore all move actions are of the same type. For the 10
test problems, the smallest problem had 12 fluents, 10 ac-
tions and the largest problem had 43 fluents, 78 actions.

Gripper The gripper domain has actions move, drop
and pickup. The observer gets observation when the agent
moves from one room to another. Also, the observer gets an
observation regarding whether the gripper is holding some-
thing or not. Therefore in this domain, the observer can dis-
tinguish between all types of actions. However, the observer
is not aware of the exact location of the agent. For the 10
problems used in this domain, the smallest problem had 21
fluents, 30 actions and the largest problem had 40 fluents, 96
actions after grounding.

6.2 Results
We provide evaluation of our approaches in Table 2 and 3.
We wrote new planners from scratch for each of the the
algorithms presented. We ran our experiments on Intel(R)

129

(:action ask-human-to-pass-sugar
:parameters (?x - ingredient ?y - container
?z - table)
:precondition (and

(in ?x ?y)
(is-type-labeled ?y)
(accessible ?z)
(not (legible ?y))

)
:effect (and

(on ?y ?z)
(human-attentive)
(increase (total-cost) 1)

)
)

(:action pickup-container-legible
:parameters (?x - ingredient ?y - container
?z - table)
:precondition (and

(in ?x ?y)
(handempty)
(on ?y ?z)
(accessible ?z)
(is-type-labeled ?y)
(human-attentive)

)
:effect (and

(not (handempty))
(holding ?y)
(not (on ?y ?z))
(legible ?y)
(increase (total-cost) 1)

)
)

Figure 4: Action description of legible actions

Domain Metrics k-amb `-div `-div `-div
(action) (causal) (state)

Blocksworld
avg time 32.20 123.41 174.06 571.03
sd time 82.15 155.72 210.49 169.37
|O| 9.33 7.71 6.85 7.11

Storage
avg time 37.72 88.11 212.49 227.58
sd time 35.80 90.38 374.14 250.79
|O| 7.83 6.75 5.83 5.66

Gripper
avg time 56.49 175.56 592.94 149.63
sd time 118.64 52.41 197.61 48.87
|O| 6.88 4.3 5.12 4.55

Table 2: Empirical evaluation for goal obfuscation and plan
obfuscation. We report average, standard deviation of time
taken in seconds and the average observation sequence
length of the obfuscated plans.

Xeon(R) CPU E5-2643v3, with a time out of 30 minutes.
We created the planning problems in a randomized fashion.
We report the performance of our approaches in terms of av-

Domain Metrics j-leg m-sim m-sim m-sim
(action) (causal) (state)

Blocksworld
avg time 204.12 59.63 73.56 81.07
sd time 155.04 73.21 88.03 127.62
|O| 6.9 6.93 7.14 6.85

Storage
avg time 14.21 36.34 31.97 38.79
sd time 15.65 41.52 27.50 52.09
|O| 5.27 9.8 9.66 10.12

Gripper
avg time 383.17 329.37 314.62 349.66
sd time 178.14 131.70 112.64 159.65
|O| 6.75 7.34 8.62 8.33

Table 3: Empirical evaluation for goal legibility and plan leg-
ibility. We report average, standard deviation of time taken
in seconds and the average observation sequence length of
the legible plans.

erage and standard deviation for the time taken to run the
problems in the given domain, and the average length of
the observation sequence. For all the problems, the values
used were k = 5, ` = 3, j = 3 with n − j = 2, m = 3,
dmin = 0.25 and dmax = 0.50.

For all the domains, we note that the average length of
k-ambiguous observation sequences is longer than that of j-
legible observation sequences as obfuscated plans involve
incorporating “time-wasting” actions. The computation of
legible plans, in general, is a challenging task, as it is diffi-
cult to inform an observer about an agent’s goals without any
explicit communication. Moreover, the j-legible case limits
the number of conforming goals to at most j. For j-legible
case, 3/15 problems in blocksworld and 1/10 problems in
gripper were unsolvable. We also note that the average ob-
servation length for all three distance measures is different,
thus showing that they produce different plans. For `-diverse
and m-similar case, 2/10 problems in storage domain, were
unsolvable for all three distance measures.

6.3 Example
We illustrate the plans generated by our algorithms along
with a default optimal plan generated by FD for two dif-
ferent observation models of BlocksWorld. O1 is same
as the one discussed above with |Ω| = 4. For O2, let’s
assume the agent can identify the block in its hand, then
|Ω| = 16. The initial state is, on-B-C, on-C-A, on-A-D,
ontable-D, clear-B, handempty. The true goal is on-A-B and
the decoy/confounding goals are on-B-C, on-D-C. We com-
pute plans for k = 3, ` = 2 with action distance and j = 2
in both the observation models. These plans along with ac-
companying observation sequences are given in Table 4. For
the j-legible case, j consists of on-B-C and true goal on-A-B,
while n− j consists of on-D-C. We note that the obfuscated
plans consist of “time-wasting” actions as can be seen in
k-amb and `-div examples. We can see that the k-amb and
m-sim plans are affected by the observation model differ-
ence. However, the other two are not affected, this is mostly
because this is a small problem for illustrative purposes. In
general, plan computation particularly depends on the obser-
vation model.

130

Algo, O Plan Observation Sequence
FD,{O1,O2} unstack-B-C, putdown-B, unstack-C-A, putdown-C, unstack-A-D, stack-A-B unstack, putdown, unstack, putdown, unstack, stack

k-amb, O1
unstack-B-C, putdown-B, unstack-C-A, putdown-C, unstack-A-D, stack-A-B, unstack, putdown, unstack, putdown, unstack, stack, pickup, putdown,
pickup-C, putdown-C, pickup-D, putdown-D, pickup-C, stack-C-D pickup, putdown, pickup, stack

k-amb, O2
unstack-B-C, putdown-B, unstack-C-A, putdown-C, unstack-A-D, stack-A-B, unstack-B, putdown-B, unstack-C, putdown-C, unstack-A, stack-A,
unstack-A-B, putdown-A, pickup-B, stack-B-C, pickup-A, stack-A-B unstack-A, putdown-A, pickup-B, stack-B, pickup-A, stack-A

`-div, O1
unstack-B-C, putdown-B, unstack-C-A, stack-C-B, unstack-C-B, putdown-C, unstack, putdown, unstack, stack, unstack, putdown, unstack, stack
unstack-A-D, stack-A-B

`-div, O2
unstack-B-C, putdown-B, unstack-C-A, stack-C-B, unstack-C-B, putdown-C, unstack-B, putdown-B, unstack-C, stack-C, unstack-C, putdown-C,
unstack-A-D, stack-A-B unstack-A, stack-A

j-leg, O1
unstack-B-C, putdown-B, unstack-C-A, putdown-C, pickup-B, stack-B-C, unstack, putdown, unstack, putdown, pickup, stack, unstack, stack
unstack-A-D, stack-A-B

j-leg, O2
unstack-B-C, putdown-B, unstack-C-A, putdown-C, pickup-B, stack-B-C, unstack-B, putdown-B, unstack-C, putdown-C, pickup-B, stack-B,
unstack-A-D, stack-A-B unstack-A, stack-A

m-sim, O1
unstack-B-C, putdown-B, unstack-C-A, putdown-C, unstack-A-D, unstack, putdown, unstack, putdown, unstack, stack
stack-A-B

m-sim, O2
unstack-B-C, putdown-B, unstack-C-A, putdown-C, unstack-A-D, putdown-A unstack-B, putdown-B, unstack-C, putdown-C, unstack-A, putdown-A,
pickup-A, stack-A-B pickup-A, stack-A

Table 4: Examples of plans generated for two different observation models

7 Related Work
There are prior works which discuss the problem of pri-
vacy preservation in distributed multi-agent systems (Braf-
man 2015; Luis and Borrajo 2014; Bonisoli et al. 2014). A
recent work on privacy for multi-agents of Maliah, Shani,
and Stern (2016) is complementary to our approach, as they
consider problems where the model needs to be protected
from the team members but goals and behavior are coordi-
nated. In contrast, we consider problems where the models
are public but goals and behavior need to be protected.

The problem of goal obfuscation is also related to plan
recognition literature (Ramırez and Geffner 2009; 2010;
E-Martin, R-Moreno, and Smith 2015; Sohrabi, Riabov, and
Udrea 2016; Keren, Gal, and Karpas 2016a). Traditional
plan recognition systems have focused on scenarios where
actions being executed can be observed directly. In our case,
observational equivalence due to the many-to-one formula-
tion of O introduces, in effect, noisy action-state observa-
tions. This, in turn, complicates plan recognition. More cru-
cially, the agent uses the observational equivalence to ac-
tively help or hinder the ease of plan recognition.

There are a few recent works which have explored the idea
of obfuscation in adversarial settings from the goal recog-
nition aspect (Keren, Gal, and Karpas 2016b; Masters and
Sardina 2017). One of the closely related work is that of
Keren, Gal, and Karpas (2016b) on privacy preservation, in
which the authors propose a solution that obfuscates a goal
by choosing one of the candidate goals that has the maxi-
mum non-distinct path in common with the true goal, which
obfuscates part of the plan. In contrast, our plans are ob-
fuscated for the entire length such that, at least k goals are
consistent with the observations. Also, our framework sup-
ports the case of plan obfuscation which prevents the next
step from being deciphered by making it consistent with `
diverse plans, and the case of a cooperative observer which
make the agent’s intentions legible to the observer by being
consistent with at most j goals.

The notions of k-anonymity (Sweeney 2002) and l-
diversity (Machanavajjhala et al. 2006) were originally de-
veloped in the literature on privacy and security for rela-

tional databases. In motion planning and robotics commu-
nity, legibility (Dragan and Srinivasa 2013; Knepper et al.
2017) has been a well-studied topic. However, this has been
mostly looked at from the motion planning perspective, and
therefore the focus has been on optimizing the motion trajec-
tories such that the goal is revealed. We borrow these notions
and generalize it in a unified framework to provide obfus-
cated and legible plans from a task planning perspective.

7.1 Compilation to Model Uncertainty
In recent years, there has been some interesting research
in the field of human aware planning. Especially the work
on explainable AI and explanations (Fox, Long, and Mag-
azzeni 2017; Zhang et al. 2017; Chakraborti et al. 2017)
proposes modeling the human’s understanding of a plan-
ning agent and introduces the notion of human-aware multi-
model planning. Their framework consists of two models
representing the planner’s domain model and the observing
or interacting human’s understanding of the planning model.
This setting captures the uncertainty of the observer in the
form of human’s partial or incorrect model of the agent. On
the other hand, our setting also explores uncertainty of the
observer’s understanding of the plans computed by the plan-
ner. However, we capture the uncertainty in form of a partial
observation model. We hypothesize that the two settings can
be compiled from one formulation to another, and can be
perceived as primal and dual problems. We intend to inves-
tigate this direction in future work.

8 Conclusion
We introduced a unified framework that gives a planner the
capability of addressing both adversarial and cooperative sit-
uations. Our setting assumes that the observer has partial
visibility of the agent’s actions, but is aware of agent’s plan-
ning capabilities. We define four problems: goal obfuscation
and goal legibility when the agent’s true goal is unknown
and, plan obfuscation and plan legibility when the agent’s
true goal is known. We propose the following solutions to
these problems: k-ambiguous plan which obfuscates the true
goal with respect to at least k goals, j-legible plan which

131

enables an observer to quickly understand the j true goals
of the agent, `-diverse plan which obfuscates the next ac-
tions in a plan and, m-similar plan which reveals the next
actions in the plan. We present different search techniques
to achieve these solutions and evaluate the performance of
our approaches using three IPC domains: BlocksWorld,
Storage and Gripper. We also demonstrate the goal ob-
fuscation and goal legibility problems using the Fetch robot
in a cooking domain.

Acknowledgments
This research is supported in part by the AFOSR
grant FA9550-18-1-0067, the ONR grants N00014-16-1-
2892, N00014-13-1-0176, N00014-13- 1-0519, N00014-
15-1-2027, N00014-18-1-2442 and the NASA grant
NNX17AD06G.

References
Blum, A. L., and Furst, M. L. 1997. Fast planning through
planning graph analysis. Artificial intelligence 90(1):281–
300.
Bonet, B., and Geffner, H. 2014. Belief tracking for plan-
ning with sensing: Width, complexity and approximations.
Journal of Artificial Intelligence Research 50:923–970.
Bonisoli, A.; Gerevini, A. E.; Saetti, A.; and Serina, I. 2014.
A privacy-preserving model for the multi-agent proposi-
tional planning problem. In Proceedings of the Twenty-first
European Conference on Artificial Intelligence, 973–974.
Brafman, R. I. 2015. A privacy preserving algorithm for
multi-agent planning and search. In IJCAI, 1530–1536.
Chakraborti, T.; Sreedharan, S.; Zhang, Y.; and Kambham-
pati, S. 2017. Plan explanations as model reconciliation:
Moving beyond explanation as soliloquy. In IJCAI.
Dragan, A., and Srinivasa, S. 2013. Generating legible mo-
tion. In Proceedings of Robotics: Science and Systems.
E-Martin, Y.; R-Moreno, M. D.; and Smith, D. E. 2015.
A fast goal recognition technique based on interaction esti-
mates. In Twenty-Fourth International Joint Conference on
Artificial Intelligence.
Fox, M.; Long, D.; and Magazzeni, D. 2017. Explainable
planning. arXiv preprint arXiv:1709.10256.
Geffner, H., and Bonet, B. 2013. A concise introduction
to models and methods for automated planning. Synthe-
sis Lectures on Artificial Intelligence and Machine Learning
8(1):1–141.
Haslum, P., and Jonsson, P. 1999. Some results on the com-
plexity of planning with incomplete information. In Euro-
pean Conference on Planning, 308–318. Springer.
Keren, S.; Gal, A.; and Karpas, E. 2016a. Goal recognition
design with non-observable actions. In AAAI, 3152–3158.
Keren, S.; Gal, A.; and Karpas, E. 2016b. Privacy preserving
plans in partially observable environments. In IJCAI, 3170–
3176.
Knepper, R. A.; Mavrogiannis, C. I.; Proft, J.; and Liang,
C. 2017. Implicit communication in a joint action. In Pro-

ceedings of the 2017 ACM/IEEE International Conference
on Human-Robot Interaction, 283–292. ACM.
Luis, N., and Borrajo, D. 2014. Plan merging by reuse for
multi-agent planning. Distributed and Multi-Agent Planning
38.
Machanavajjhala, A.; Gehrke, J.; Kifer, D.; and Venkita-
subramaniam, M. 2006. l-diversity: Privacy beyond k-
anonymity. In Data Engineering, 2006. ICDE’06. Proceed-
ings of the 22nd International Conference on, 24–24. IEEE.
Maliah, S.; Shani, G.; and Stern, R. 2016. Stronger privacy
preserving projections for multi-agent planning. In ICAPS,
221–229.
Masters, P., and Sardina, S. 2017. Deceptive path-planning.
In Proceedings of the Twenty-Sixth International Joint Con-
ference on Artificial Intelligence, IJCAI-17, 4368–4375.
Nguyen, T. A.; Do, M.; Gerevini, A. E.; Serina, I.; Srivas-
tava, B.; and Kambhampati, S. 2012. Generating diverse
plans to handle unknown and partially known user prefer-
ences. Artificial Intelligence 190(0):1 – 31.
Nguyen, X.; Kambhampati, S.; and Nigenda, R. S. 2002.
Planning graph as the basis for deriving heuristics for plan
synthesis by state space and csp search. Artificial Intelli-
gence 135(1-2):73–123.
Ramırez, M., and Geffner, H. 2009. Plan recognition as
planning. In Proceedings of the 21st international joint con-
ference on Artifical intelligence. Morgan Kaufmann Pub-
lishers Inc, 1778–1783.
Ramırez, M., and Geffner, H. 2010. Probabilistic plan recog-
nition using off-the-shelf classical planners. In Proceedings
of the Conference of the Association for the Advancement of
Artificial Intelligence (AAAI 2010).
Rintanen, J. 2004. Complexity of planning with partial ob-
servability. In ICAPS, 345–354.
Savitch, W. J. 1970. Relationships between nondeterminis-
tic and deterministic tape complexities. Journal of computer
and system sciences 4(2):177–192.
Sohrabi, S.; Riabov, A. V.; and Udrea, O. 2016. Plan recog-
nition as planning revisited. In IJCAI, 3258–3264.
Song, D. X.; Wagner, D.; and Tian, X. 2001. Timing analysis
of keystrokes and timing attacks on ssh. In USENIX Security
Symposium, volume 2001.
Srivastava, B.; Nguyen, T. A.; Gerevini, A.; Kambhampati,
S.; Do, M. B.; and Serina, I. 2007. Domain independent
approaches for finding diverse plans. In IJCAI, 2016–2022.
Sucan, I. A., and Chitta, S. 2013. Moveit! Online at
http://moveit. ros. org.
Sweeney, L. 2002. k-anonymity: A model for protecting
privacy. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems 10(05):557–570.
Zhang, Y.; Sreedharan, S.; Kulkarni, A.; Chakraborti, T.;
Zhuo, H. H.; and Kambhampati, S. 2017. Plan explica-
bility and predictability for robot task planning. In Robotics
and Automation (ICRA), 2017 IEEE International Confer-
ence on.

132

Representing and Reasoning with Intentional Actions on a Robot

Rocio Gomez
Electrical and Computer Engineering

The University of Auckland, NZ
m.gomez@auckland.ac.nz

Mohan Sridharan
School of Computer Science

University of Birmingham, UK
m.sridharan@bham.ac.uk

Heather Riley
Electrical and Computer Engineering

The University of Auckland, NZ
hril230@aucklanduni.ac.nz

Abstract

This paper describes a general architecture for robots to rep-
resent and reason with intentional actions. The architecture
reasons with tightly-coupled transition diagrams of the do-
main at two different resolutions. Non-monotonic logical
reasoning with a coarse-resolution transition diagram is used
to compute a plan comprising intentional abstract actions for
any given goal. Each such abstract action is implemented as
a sequence of concrete actions by automatically zooming to
and reasoning with the relevant part of a fine-resolution tran-
sition diagram that is defined as a refinement of the coarse-
resolution transition diagram. The execution of each concrete
action uses probabilistic models of uncertainty in sensing and
actuation, and the outcomes of executing the sequence of con-
crete actions are added to the coarse-resolution history. The
capabilities of this architecture are illustrated in the context
of a simulated robot assisting humans in an office domain, on
a physical robot (Baxter) manipulating tabletop objects, and
on a wheeled robot (Turtlebot) moving objects to particular
places or people in an office. We show that this architecture
improves reliability and efficiency in comparison with a plan-
ning architecture that does not include intentional actions.

1 Introduction
Consider robots assisting humans in dynamic domains, e.g.,
a robot helping a human arrange objects in different con-
figurations on a tabletop in Figure 1a, or a robot delivering
objects to particular places or people in Figure 1b. These
robots often have to reason with different descriptions of un-
certainty and incomplete domain knowledge. This informa-
tion about the domain often includes commonsense knowl-
edge, especially default knowledge that holds in all but a
few exceptional circumstances, e.g., “books are usually in
the library but cookbooks may be in the kitchen”. The robot
also receives a lot more sensor data than it can process, and
it is equipped with many algorithms that compute and use a
probabilistic quantification of the uncertainty in sensing and
actuation, e.g., “I am 90% certain the robotics book is on the
table”. Furthermore, while it is difficult to provide robots
comprehensive domain knowledge or elaborate supervision,
reasoning with incomplete or incorrect information can pro-
vide incorrect or suboptimal outcomes. This loss in perfor-
mance is more pronounced in scenarios corresponding to un-
expected success or failure, which are common in dynamic
domains. For instance, consider a robot trying to move two

books from an office to a library. After moving the first book
to the library, if the robot observes the second book in the li-
brary, or if it observes the second book in the kitchen on
the way back to the office, it should stop executing its plan,
reason about what may have happened, and compute a new
plan if necessary. One way to achieve this behavior is to
augment a traditional planning approach with the ability to
reason about observations of all domain objects and events
during plan execution, but this approach is computationally
intractable in complex domains. Instead, the architecture
described in this paper seeks to enable a robot pursuing a
particular goal to automatically reason about the underly-
ing intention and related observations of its domain during
planning and execution. It does so by building on an archi-
tecture that uses declarative programming to reason about
intended actions to achieve a given goal (Blount, Gelfond,
and Balduccini 2015), and on an architecture that reasons
with tightly-coupled transition diagrams at different levels
of abstraction (Sridharan et al. 2017). We describe the fol-
lowing characteristics of the architecture:

• An action language is used to describe the tightly-coupled
transition diagrams of the domain at two different reso-
lutions. At the coarse resolution, non-monotonic logical
reasoning with commonsense knowledge, including de-
fault knowledge, produces a sequence of intentional ab-
stract actions for any given goal.

• Each intended abstract action is implemented as a se-
quence of concrete actions by automatically zooming to
and reasoning with the relevant part of the fine-resolution
system description defined as a refinement of the coarse-
resolution system description. The outcomes of executing
the concrete actions using probabilistic models or uncer-
tainty are added to the coarse-resolution history.

In this paper, the coarse-resolution and fine-resolution ac-
tion language descriptions are translated to programs in CR-
Prolog, an extension of Answer Set Prolog (ASP) (Gelfond
and Kahl 2014), for commonsense reasoning. The execution
of each concrete action using probabilistic models of uncer-
tainty in sensing and actuation is achieved using existing
algorithms. The architecture thus reasons about intentions
and beliefs at different levels of resolution. We demonstrate
the general applicability of our architecture in the context
of (i) a simulated robot assisting humans in an office do-

133

(a) Baxter robot. (b) Turtlebot.

Figure 1: (a) Baxter robot manipulating objects on a tabletop; and
(b) Turtlebot moving objects to particular locations in a lab.

main; (ii) a physical robot (Baxter) manipulating objects on
a tabletop; and (iii) a wheeled robot (Turtlebot) moving ob-
jects to desired locations in an office domain. We show that
the proposed architecture improves reliability and computa-
tional efficiency of planning and execution in dynamic do-
mains in comparison with a planning architecture that does
not support reasoning about intentional actions.

2 Related Work
There is much work in the modeling and recognition
of intentions. Belief-desire-intention (BDI) architectures
model the intentions of reasoning agents and guide reason-
ing by eliminating choices inconsistent with current inten-
tions (Bratman 1987; Rao and Georgeff 1995). However,
such architectures do not learn from past behavior, adapt to
new situations, or include an explicit representation of (or
reasoning about) goals. Other work has reasoned with do-
main knowledge or used models learned from training sam-
ples to recognize intentions (Kelley et al. 2008).

An architecture formalizing intentions based on declar-
ative programming was described in (Baral and Gelfond
2005). It introduced an action language that can represent
intentions based on two principles: (i) non-procrastination,
i.e., intended actions are executed as soon as possible; and
(ii) persistence, i.e., unfulfilled intentions persist. This ar-
chitecture was also used to enable an external observer to
recognize the activity of an observed agent, i.e., for deter-
mining what has happened and what the agent intends to
do (Gabaldon 2009). However, this architecture did not sup-
port the modeling of agents that desire to achieve specific
goals. The Theory of Intentions (T I) (Blount, Gelfond, and
Balduccini 2015; 2014) builds on (Baral and Gelfond 2005)
to model the intentions of goal-driven agents. T I expanded
transition diagrams that have physical states and physically
executable actions to include mental fluents and mental ac-
tions. It associated a sequence of agent actions (called an
“activity”) with the goal it intended to achieve, and intro-
duced an intentional agent that only performs actions that
are intended to achieve a desired goal and does so without
delay. This theory has been used to create a methodology
for understanding of narratives of typical and exceptional
restaurant scenarios (Zhang and Inclezan 2017), and goal-
driven agents in dynamic domains have been modeled using

such activities (Saribatur, Baral, and Eiter 2017). A com-
mon requirement of such theories and their use is that all the
domain knowledge, including the preconditions and effects
of actions and potential goals, be known and encoded in the
knowledge base, which is difficult to do in robot domains.
Also, the set of states (and actions, observations) to be con-
sidered can be large in robot domains, which makes efficient
reasoning a challenging task. In recent work (Zhang and In-
clezan 2017), the authors attempt to address this problem by
clustering indistinguishable states (Saribatur and Eiter 2016)
but these clusters need to be encoded in advance. Further-
more, these approaches do not consider the uncertainty in
sensing and actuation.

Many logic-based methods have been used in robotics, in-
cluding those that also support probabilistic reasoning (Han-
heide et al. 2017; Zhang, Sridharan, and Wyatt 2015). Meth-
ods based on first-order logic do not support non-monotonic
logical reasoning or the desired expressiveness for capabil-
ities such as default reasoning, e.g., it is not always mean-
ingful to express degrees of belief by attaching probabili-
ties to logic statements. Non-monotonic logics such as ASP
address these limitations and have been used in cognitive
robotics applications (Erdem and Patoglu 2012), but classi-
cal ASP formulations do not support the probabilistic mod-
els of uncertainty that are used by algorithms for sensing and
actuation. Approaches based on logic programming also do
not support one or more of the capabilities such as incre-
mental addition of probabilistic information or variables to
reason about open worlds. Our prior refinement-based archi-
tecture reasoned with tightly-coupled transition diagrams at
two resolutions; each abstract action in a coarse-resolution
plan computed using ASP was executed as a sequence of
concrete actions computed by probabilistic reasoning over
the relevant part of the fine-resolution diagram (Sridharan et
al. 2017; Sridharan and Gelfond 2016). This paper explores
the combination of these ideas with those drawn from T I;
specific differences from prior work are described below.

3 Cognitive Architecture
Figure 2 presents a block diagram of the overall architecture.
Similar to prior work (Sridharan et al. 2017), this architec-
ture may be viewed as consisting of three components: con-
troller, logician, and executor. In this paper, the controller is
responsible for holding the overall beliefs regarding domain
state, and for the transfer of control and information between
all components. For any given goal, the logician performs
non-monotonic logical reasoning with the coarse-resolution
representation of commonsense knowledge to generate an
activity, i.e., a sequence of intentional abstract actions. Each
abstract action is implemented as a sequence of concrete ac-
tions by zooming to and reasoning with a fine-resolution rep-
resentation defined as a refinement of the coarse-resolution
representation. The executor uses probabilistic models of
the uncertainty in sensing and actuation to execute each
concrete action, with the outcomes being communicated to
the controller and added to the coarse-resolution history of
the logician. These components of the architecture are de-
scribed below, along with differences from prior work, using
variants of the following illustrative domain.

134

Controller Executor
fine-resolution transition

Logician

coarse-resolution description,
history and goal.

sequence of abstract actions

zoomed system description
observations

sequence of fine-resolution actions

Figure 2: Architecture represents intentions and beliefs as tightly coupled transition diagrams at two different resolutions. It combines the
complementary strengths of declarative programming and probabilistic reasoning, and may be viewed as interactions between a controller,
logician, and executor.

Example 1 [Robot Assistant (RA) Domain] Consider a
robot assisting humans in moving particular objects to de-
sired locations in an indoor office domain with:
• Sorts such as place, thing, robot, object, and book,

arranged hierarchically, e.g., object and robot are sub-
sorts of thing. Sort names and constants are in lower-
case, and variable names are in uppercase.

• Places: {office1, office2, kitchen, library} with a
door between neighboring places; only door between
kitchen and library can be locked—Figure 3.

• Instances of sorts, e.g., rob1, book1, book2.
• Static attributes such as color, size and different parts

(e.g., base and handle) associated with objects.
• Other agents that may influence the domain, e.g., move a

book or lock a door. These agents are not modeled.

Office 1 Office 2 Kitchen Library

Figure 3: Four rooms considered in Example 1, with a human in
the kitchen and two books in office1. Only the library’s door can
be locked; all other rooms are open at all times.

3.1 Action Language and Domain Representation
We first describe the action language encoding of domain
dynamics, and its translation to CR-Prolog programs for
knowledge representation and reasoning.

Action Language Action languages are formal models
of parts of natural language used for describing transition
diagrams of dynamic systems. We use action language
ALd (Gelfond and Inclezan 2013) to describe the transi-
tion diagrams at different resolutions. ALd has a sorted sig-
nature with statics, fluents and actions. Statics are domain
attributes whose truth values cannot be changed by actions,
whereas fluents are domain attributes whose truth values can
be changed by actions. Fluents can be basic or defined. Ba-
sic fluents obey the laws of inertia and can be changed by
actions. Defined fluents do not obey the laws of inertia and
are not changed directly by actions—their values depend on

other fluents. Actions are defined as a set of elementary op-
erations. A domain attribute p or its negation ¬p is a literal.
ALd allows three types of statements:

a causes lb if p0, . . . , pm (Causal law)
l if p0, . . . , pm (State constraint)
impossible a0, . . . , ak if p0, . . . , pm (Executability condition)

where a is an action, l is a literal, lb is a basic literal, and
p0, . . . , pm are domain literals.

Knowledge Representation The domain representation
consists of system description D, a collection of state-
ments of ALd, and history H. System description D has
a sorted signature Σ and axioms that describe the tran-
sition diagram τ. Σ defines the basic sorts, domain at-
tributes and actions. Example 1 introduced some basic
sorts and ground instances of the RA domain. Σ also in-
cludes the sort step for temporal reasoning. Domain at-
tributes (i.e., statics and fluents) and actions are described
in terms of their arguments’ sorts. In the RA domain,
statics include relations such as next to(place, place),
which describes the relative location of places in the do-
main; and relations representing object attributes such as
color and size, e.g., obj color(object, color). Flu-
ents include loc(thing, place), the location of the robot
or domain objects; in hand(robot, object), which de-
notes a particular object is in the robot’s hand; and
locked(place), which implies a particular place is
locked. The locations of other agents, if any, are
not changed by the robot’s actions; these locations
are inferred from observations obtained from other sen-
sors. The domain’s actions include move(robot, place),
pickup(robot, object), putdown(robot, object), and
unlock(robot, place); we also consider exogenous ac-
tions exo move(object, place) and exo lock(place),
which are used for diagnostic reasoning. Σ also includes
the relation holds(fluent, step) to imply that a particular
fluent holds true at a particular time step.

Axioms for the RA domain include causal laws, state con-
straints and executability conditions such as:

move(rob1, P) causes loc(rob1, P)
pickup(rob1, O) causes in hand(rob1, O)
¬loc(Th, L2) if loc(Th, L1), L1 6= L2
loc(O,P) if loc(rob1, P), in hand(rob1, O)

135

impossible pickup(rob1, O) if loc(rob1, L1),
loc(O, L2), L1 6= L2

The history H of a dynamic domain is usually a record of
fluents observed to be true or false at a particular time step,
i.e., obs(fluent, boolean, step), and the occurrence of an
action at a particular time step, i.e., occurs(action, step).
In (Sridharan et al. 2017) this notion was expanded to rep-
resent defaults describing the values of fluents in the initial
state, e.g., “books are usually in the library and if it not there,
they are normally in the office” is encoded as:

initial default loc(X, library) if book(X)
initial default loc(X, office1) if book(X),

¬loc(X, library)

We can also encode exceptions to these defaults, e.g., “cook-
books are in the kitchen”. Such a representation, which does
not use numerical values to model degrees of belief in these
defaults, supports elegant reasoning with generic defaults
and their specific exceptions.

Reasoning The domain representation is translated into a
program Π(D,H) in CR-Prolog1, a variant of ASP that in-
corporates consistency restoring (CR) rules (Balduccini and
Gelfond 2003). ASP is based on stable model semantics
and supports concepts such as default negation and epis-
temic disjunction, e.g., unlike “¬a” that states a is believed
to be false, “not a” only implies a is not believed to be true.
ASP can represent recursive definitions and constructs that
are difficult to express in classical logic formalisms, and it
supports non-monotonic logical reasoning, i.e., it is able to
revise previously held conclusions based on new evidence.
An ASP program Π includes the signature and axioms of
D, inertia axioms, reality checks, and observations, actions,
and defaults from H. Every default also has a CR rule that
allows the robot to assume the default’s conclusion is false
to restore consistency under exceptional circumstances. For
instance, the following statement in the ASP program:

¬loc(X, library)
+← book(X)

is triggered under exceptional circumstances to consider the
rare event of a book not being in the library, as a potential ex-
planation of an unexpected observation. Each answer set of
an ASP program represents the set of beliefs of an agent as-
sociated with the program. Algorithms for computing entail-
ment, and for planning and diagnostics, reduce these tasks
to computing answer sets of CR-Prolog programs. We com-
pute answer sets of CR-Prolog programs using the system
called SPARC (Balai, Gelfond, and Zhang 2013).

3.2 Adapted Theory of Intention
For any given goal, a robot using ASP-based reasoning will
compute a plan and execute it until the goal is achieved or
an action in the plan has an unexpected outcome; in the lat-
ter case, the robot will attempt to explain the outcome (i.e.,
perform diagnostics) and compute a new plan if necessary.

1We use the terms “ASP” and “CR-Prolog” interchangeably.

To motivate the need for a different approach in dynamic
domains, consider the following scenarios in which the goal
is to move book1 and book2 to the library; these sce-
narios have been adapted from scenarios considered in prior
work (Blount, Gelfond, and Balduccini 2015):

• Scenario 1 (planning): Robot rob1 is in the kitchen
holding book1, and believes book2 is in the kitchen
and that the library is unlocked. The computed plan is:
move(rob1, library), put down(rob1, book1),
move(rob1, kitchen), pickup(rob1, book2),
move(rob1, library), put down(rob1, book2).

• Scenario 2 (unexpected success): Assume that rob1
in Scenario-1 has moved to the library and put book1
down, and observes book2 there. The robot should be
able to explain this observation (e.g., book2 was moved
there) and realize the goal has been achieved.

• Scenario 3 (not expected to achieve goal, diagnose and
replan, case 1): Assume rob1 in Scenario-1 starts mov-
ing book1 to library, but observes book2 is not in the
kitchen. The robot should realize the plan will fail to
achieve the overall goal, explain the unexpected observa-
tion, and compute a new plan.

• Scenario 4 (not expected to achieve goal, diagnose
and replan, case 2): Assume rob1 is in the kitchen
holding book1, and believes book2 is in office2 and
library is unlocked. The robot plans to put book1 in
the library before fetching book2 from office2. Before
rob1 moves to the library, it suddenly observes book2
in the kitchen. The robot should realize the plan will
fail, explain the observation, and compute a new plan.

• Scenario 5 (failure to achieve the goal, diagnose and
replan): Assume rob1 in Scenario-1 is putting book2
in the library, after having put book1 in the library
earlier, and observes that book1 is no longer there. The
robot’s intention should persist; it should explain the un-
expected observation, replan if necessary, and execute ac-
tions until the goal is achieved.

One way to support the desired behavior in such scenarios
is to reason with all possible observations of domain ob-
jects and events (e.g., observations of all objects in the sen-
sor’s field of view) during plan execution. However, such
an approach would be computationally intractable in com-
plex domains. Instead, we build on the principles of non-
procrastination and persistence and the ideas from T I. Our
architecture enables the robot to compute actions that are in-
tended for any given goal and current beliefs. As the robot
attempts to implement each such action, it obtains all obser-
vations relevant to this action and the intended goal, and
adds these observations to the recorded history. We will
henceforth use AT I to refer to this adapted theory of in-
tention that expands both the system description D and his-
toryH in the original program Π(D,H). First, the signature
Σ is expanded to represent an activity, a triplet of a goal, a
plan to achieve the goal, and a specific name, by introducing

136

relations such as:

activity(name), activity goal(name, goal)

activity length(name, length)

activity component(name,number, action)

These relations represent each named activity, the goal and
length of each activity, and the actions that are the com-
ponents of the activity. Note that when these relations are
ground, they are statics.

Next, the existing fluents of Σ are considered to be physi-
cal fluents and the set of fluents is expanded to include men-
tal fluents such as:

active activity(activity), in progress goal(goal)

next action(activity, action),

in progress activity(activity),

active goal(goal), next activity name(name)

current action index(activity, index)

where the relations in the first three lines are defined flu-
ents, whereas the other relations correspond to basic fluents.
These fluents represent the robot’s belief about a particular
activity, action or goal being active or in progress. None of
these fluents’ values are changed directly by executing any
physical action. The value of current action index changes
if the robot has completed an intended action or if a change
in the domain makes it impossible for an activity to succeed.
The values of the other mental fluents are changed directly
or indirectly by expanding the set of existing physical ac-
tions of Σ to include mental actions such as:

start(name), stop(name)

select(goal), abandon(goal)

where the first two mental actions are used by the controller
to start or stop a particular activity, and the other two action
are exogenous actions used (e.g., by a human) to select or
abandon a goal.

We also define new axioms in ALd, e.g., to represent the
effects of actions, prevent certain outcomes, and generate
intentional actions—we do not describe these here due to
space constraints. The notion of history is also expanded to
include statements such as:

attempt(action, step) ¬ hpd(action, step)

which denote that a particular action was attempted at a par-
ticular time step, and that a particular action did not happen
(i.e., was not executed successfully) at a particular time step.
The revised system description D ′ and historyH ′ are trans-
lated automatically to CR-Prolog program Π(D ′,H ′) that is
solved for planning or diagnostics. The complete program
for the RA domain is available online (Software 2018).

Key differences between AT I and prior work on T I are:

• T I becomes computationally expensive, especially as the
size of the plan or history increases. It also performs
diagnostics and planning jointly, which allows it to con-
sider different explanations during planning but increases

computational cost in complex domains. AT I, on the
other hand, first builds a consistent model of history by
considering different explanations, and uses this model to
guide planning, significantly reducing computational cost
in complex domains.

• T I assumes complete knowledge of the state of other
agents (e.g., humans or other robots) that perform exoge-
nous actions. In many robotics domains, this assumption
is rather unrealistic. AT I instead makes the more real-
istic assumption that the robot can only infer exogenous
actions by reasoning with the observations that it obtains
from sensors.

• AT I does not include the notion of sub-goals and sub-
activities (and associated relations) from T I, as they were
not necessary. Also, the sub-activities and sub-goals will
need to be encoded in advance, and reasoning with these
relations will also increase computational complexity in
many situations. The inclusion of sub-activities and sub-
goals will be explored in future work.

Any architecture with AT I, T I, or a different reasoning
component based on logic-programming or classical first-
order logic, has two key limitations. First, reasoning does
not scale well to the finer resolution required for many tasks
to be performed by the robot. For instance, the coarse-
resolution representation discussed so far is not sufficient if
the robot has to grasp and pickup a particular object from
a particular location, and reasoning logically over a suffi-
ciently fine-grained domain representation will be compu-
tationally expensive. Second, we have not yet modeled the
actual sensor-level observations of the robot or the uncer-
tainty in sensing and actuation. Section 2 further discusses
the limitations of other approaches based on logical and/or
probabilistic reasoning for robotics domains. Our architec-
ture seeks to address these limitations by combining AT I
with ideas drawn from work on a refinement-based architec-
ture (Sridharan et al. 2017).

3.3 Refinement, Zooming and Execution

Consider a coarse-resolution system description Dc of tran-
sition diagram τc that includes AT I. For any given goal,
reasoning with Π(Dc,Hc) will provide an activity, i.e., a
sequence of abstract intentional actions. In our architecture,
the execution of the coarse-resolution transition correspond-
ing to each such abstract action is based on a fine-resolution
system description Df of transition diagram τf, which is a
refinement of, and is tightly coupled to, Dc. We can imag-
ine refinement as taking a closer look at the domain through
a magnifying lens, potentially leading to the discovery of
structures that were previously abstracted away by the de-
signer (Sridharan et al. 2017). Df is constructed automati-
cally as a step in the design methodology usingDc and some
domain-specific information provided by the designer.

First, the signature Σf of Df includes each basic sort of
Dc whose elements have not been magnified by the increase
in resolution, or both the coarse-resolution copy and its fine-
resolution counterparts for sorts with magnified elements.

137

For instance, sorts in the RA domain include:

place∗ = {office1, office2, kitchen, library}

place = {c1, . . . , cm}

cup∗ = {cup1}

cup = {cup1 base, cup1 handle}

book = {book1, book2}

where {c1, . . . , cm} are the cells that are the components
of the original set of places, and any cup has a base and
handle as components; any book, on the other hand, is not
magnified and has no components. We also include domain-
dependent statics relating the magnified objects and their
counterparts, e.g., component(cup base, cup). Next,
domain attributes of Σf include the coarse-resolution ver-
sion and fine-resolution counterparts (if any) of each domain
attribute of Σc. For instance, in the RA domain, Σf will in-
clude domain attributes such as:

loc∗(thing∗, place∗), next to∗(place∗, place∗)

loc(thing, place), next to(place, place)

where relations with and without the “*” represent the
coarse-resolution counterparts and fine-resolution counter-
parts respectively. The specific relations listed above de-
scribe the location of each thing at two different resolutions,
and describe two places or cells that are next to each other.
Actions of Σf include (a) every action in Σc with its mag-
nified parameters replaced by fine-resolution counterparts;
and (b) knowledge-producing action test(robot, fluent)
that checks the value of a fluent in a given state. Finally,
Σf includes knowledge fluents to describe observations of
the environment and the axioms governing them, e.g., basic
fluents to describe the direct (sensor-based) observation of
the values of the fine-resolution fluents, and defined domain-
dependent fluents that determine when the value of a partic-
ular fluent can be tested. The test actions only change the
values of knowledge fluents.

The axioms of Df include (a) coarse-resolution and fine-
resolution counterparts of all state constraints of Dc, and
fine-resolution counterparts of all other axioms of Dc, with
variables ranging over appropriate sorts from Σf; (b) gen-
eral and domain-specific axioms for observing the domain
through sensor inputs; and (c) axioms relating coarse-
resolution domain attributes with their fine-resolution coun-
terparts. For example:

test(rob1, F) causes dir obs(rob1, F) if F = true
impossible test(rob1, F) if ¬can test(rob1, F)

in hand∗(rob1, O) if component(O base,O),

in hand(rob1, O base)

If certain conditions are met, e.g., each coarse-resolution do-
main attribute can be defined in terms of the fine-resolution
attributes of the corresponding components, there is a path
in τf for each transition in τc—see (Sridharan et al. 2017)
for formal definitions and proofs.

Reasoning at fine resolution using Df does not address
the uncertainty in sensing and actuation, and becomes com-
putationally intractable for complex domains. We address

this problem by drawing on the principle of zooming intro-
duced in (Sridharan et al. 2017). Specifically, for each ab-
stract transition T to be implemented (i.e., executed) at fine
resolution, we automatically determine the system descrip-
tion Df(T) relevant to this transition; we do so by determin-
ing the relevant object constants and restricting Df to these
object constants. To implement T , we then use ASP-based
reasoning withΠ(Df(T),Hf) to plan a sequence of concrete
(i.e., fine-resolution) actions. In what follows, we use “re-
finement and zooming” to refer to the use of both refinement
and zooming as described above. Note that fine-resolution
reasoning does not (need to) reason with activities or inten-
tional actions.

The actual execution of the plan of concrete action is
based on existing implementations of algorithms for com-
mon robotics tasks such as motion planning, object recogni-
tion, grasping and localization. These algorithms use proba-
bilistic models of uncertainty in sensing and actuation. The
high-probability outcomes of each action’s execution are el-
evated to statements associated with complete certainty in
Hf and used for subsequent reasoning. The outcomes from
fine-resolution execution of each abstract transition, along
with relevant observations, are added to Hc for subsequent
reasoning using AT I. The CR-Prolog programs for fine-
resolution reasoning and the program for the overall control
loop of the architecture are available online (Software 2018).

Key differences between the current representation and
use of fine-resolution information, and the prior work on the
refinement-based architecture (Sridharan et al. 2017) are:
• Prior work used a partially observable Markov decision

process (POMDP) to reason probabilistically over the
zoomed fine-resolution system description Df(T) for any
coarse-resolution transition T ; this can be computation-
ally expensive, especially when domain changes prevent
reuse of POMDP policies (Sridharan et al. 2017). In this
paper, CR-Prolog is used to compute a plan of concrete
actions from Df(T); each concrete action is executed
using algorithms that incorporate probabilistic models
of uncertainty, significantly reducing the computational
costs of fine-resolution planning and execution. The dis-
advantage is that the uncertainty associated with each al-
gorithm is not considered explicitly during planning at the
fine-resolution.

• Prior work did not (a) reason about intentional actions;
(b) maintain any fine-resolution history; or (c) extract and
exploit all the information from fine-resolution observa-
tions. The architecture described in this paper keeps track
of the relevant fine-resolution observations and adds ap-
propriate statements to the coarse-resolution history to use
all the relevant information. It also explicitly builds a con-
sistent model of history at the finer resolution.

4 Experimental Setup and Results
This section reports the results of experimentally evaluating
the capabilities of our architecture in different scenarios. We
evaluated the following hypotheses:
• H1: usingAT I improves the computational efficiency in

comparison with not using it, especially in scenarios with

138

unexpected success.
• H2: using AT I improves the accuracy in comparison

with not using it, especially in scenarios with unexpected
goal-relevant observations.

• H3: the architecture that combines AT I with refinement
and zooming supports reliable and efficient operation in
complex robot domains.

We report results of evaluating these hypotheses experimen-
tally: (a) in a simulated domain based on Example 1; (b) on
a Baxter robot manipulating objects on a tabletop; and (c)
on a Turtlebot finding and moving objects in an indoor do-
main. We also provide some execution traces as illustrative
examples of the working of the architecture. In each trial, the
robot’s goal was to find and move one or more objects to par-
ticular locations. As a baseline for comparison, we used an
ASP-based reasoner that does not include AT I—we refer
to this as the “traditional planning” (T P) approach in which
only the outcome of the action currently being executed is
monitored. Note that this baseline still uses refinement and
zoom, and probabilistic models of the uncertainty in sensing
and actuation. Also, we do not use T I as the baseline be-
cause it includes components that make it much more com-
putationally expensive thanAT I—see Section 3.2 for more
details. To evaluate the hypotheses, we used one or more of
the following performance measures: (i) total planning and
execution time; (ii) number of plans computed; (iii) planning
time; (iv) execution time; (v) number of actions executed;
and (vi) accuracy.

4.1 Experimental Results (Simulation)
We first evaluated hypotheses H1 and H2 extensively in a
simulated world that mimics Example 1, with four places
and different objects. Please also note the following:
• To fully explore the effects ofAT I, the simulation-based

trials did not include refinement, i.e., the robot only rea-
sons with the coarse-resolution domain representation.
We also temporarily abstracted away uncertainty in per-
ception and actuation.

• We conducted paired trials and compared the results ob-
tained with T P and AT I for the same initial conditions
and for the same dynamic domain changes (when appro-
priate), e.g., a book is moved unknown to the robot and
the robot obtains an unexpected observation.

• To measure execution time, we assumed a fixed execution
time for each concrete action, e.g., 15 units for moving
from a room to the neighboring room, 5 units to pick up an
object or put it down; and 5 units to open a door. Ground
truth is provided by a component that reasons with com-
plete domain knowledge.

Table 1 summarizes the results of ≈ 800 paired trials in
each scenario described in Section 3.2; all claims made be-
low were tested for statistical significance. The initial con-
ditions, e.g., starting location of the robot and objects’ loca-
tions, and the goal were set randomly in each paired trial; the
simulation ensures that the goal is reachable from the chosen
initial conditions. Also, in suitable scenarios, a randomly-
chosen, valid (unexpected) domain change is introduced in

each paired trial. Given the differences between paired tri-
als, it does not make sense to average the measured time or
plan length across different trials. In each paired trial, the
value of each performance measure (except accuracy) ob-
tained with T P is thus expressed as a fraction of the value
of the same performance measure obtained withAT I; each
value reported in Table 1 is the average of these computed
ratios. We highlight some key results below.

Scenario-1 represents a standard planning task with no
unexpected domain changes. Both T P and AT I provide
the same accuracy (100%) and compute essentially the same
plan, but computing plans comprising intentional actions
takes longer. This explains the reported average values of
0.45 and 0.81 for planning time and total time (for T P) in
Table 1.

In Scenario-2 (unexpected success), both T P and AT I
achieve 100% accuracy. Here, AT I stops reasoning and
execution once it realizes the desired goal has been achieved
unexpectedly. However, T P does not realize this because
it does not consider observations not directly related to the
action being executed; it keeps trying to find the objects of
interest in different places. This explains why T P has a
higher planning time and execution time, computes many
more plans, and executes more plan steps than AT I.

Scenarios 3–5 correspond to different kinds of unexpected
failures. In all trials corresponding to these scenarios, AT I
leads to successful achievement of the goal, but there are
many instances in which T P is unable to recover from the
unexpected observations and achieve the goal. For instance,
if the goal is to move two books to the library, and one of
the books is moved to an unexpected location when it is
no longer part of an action in the robot’s plan, the robot
may not reason about this unexpected occurrence and thus
not achieve the goal. This phenomenon is especially pro-
nounced in Scenario-5 that represents an extreme case in
which the robot using T P is never able to achieve the as-
signed goal because it never realizes that it has failed to
achieve the goal. Notice that in the trials corresponding to
all three scenarios, AT I takes more time than T P to plan
and execute the plans for any given goal, but this increase
in time is more than justified given the high accuracy and
the desired behavior that the robot is able to achieve in these
scenarios using AT I.

The row labeled “All” in Table 1 shows the average of
the results obtained in the different scenarios. The following
three rows in Table 1 summarize results after removing from
consideration all trials in which T P fails to achieve the as-
signed goal. We then notice that AT I is at least as fast as
T P and is often faster, i.e., takes less time (overall) to plan
and execute actions to achieve the desired goal. In summary,
T P results in faster planning but results in lower accuracy
and higher execution time than AT I in dynamic domains,
especially in the presence of unexpected successes and fail-
ures that are common in dynamic domains. All these results
provide evidence in support of hypotheses H1 and H2.

4.2 Execution traces
The following execution traces illustrate the differences in
the decisions made by a robot using AT I in comparison

139

Scenarios Average Ratios Accuracy
Total Time Number Plans Planning Time Exec. Time Exec.Steps T P AT I

1 0.81 1.00 0.45 1.00 1.00 100% 100%
2 3.06 2.63 1.08 5.10 3.61 100% 100%
3 0.81 0.92 0.34 1.07 1.12 72% 100%
4 1.00 1.09 0.40 1.32 1.26 73% 100%
5 0.18 0.35 0.09 0.21 0.28 0% 100%

All 1.00 1.08 0.41 1.39 1.30 74% 100%
3 - no failures 1.00 1.11 0.42 1.32 1.39 100% 100%
4 - no failures 1.22 1.31 0.49 1.61 1.53 100% 100%

All - no failures 1.23 1.30 0.5 1.72 1.60 100% 100%

Table 1: Experimental results comparingAT I with T P in different scenarios. Values of all performance measures (except accuracy) for T P
are expressed as a fraction of the values of the same measures forAT I. AT I improves accuracy and computational efficiency, especially in
dynamic domains.

with a robot using T P . These traces correspond to scenarios
in which the robot has to respond to the observed effects of
an exogenous action.

Execution Example 1 [Example of Scenario-2]
Assume that robot rob1 is in the kitchen initially, holding
book1 in its hand, and believes that book2 is in office2
and the library is unlocked.
• The goal is to have book1 and book2 in the library.

The computed plan is the same for AT I and T P , and
consists of actions:

move(rob1, library), put down(rob1, book1),

move(rob1, kitchen), move(rob1, office2),

pickup(rob1, book2), move(rob1, kitchen)

move(rob1, library), putdown(rob1, book2)

• Assume that as the robot is putting book1 down in the
library, someone has moved book2 to the library.

• WithAT I, the robot observes book2 in the library, rea-
sons and explains the observation as the result of an ex-
ogenous action, realizes the goal has been achieved and
stops further planning and execution.

• With T P , the robot does not observe or does not use the
information encoded in the observation of book2. It will
thus waste time executing subsequent steps of the plan
until it is unable to find or pickup book2 in the library.
It will then replan (potentially including prior observation
of book2) and eventually achieve the desired goal. It may
also compute and pursue plans assuming book2 is in dif-
ferent places, and take more time to achieve the goal.

Execution Example 2 [Example of Scenario-5]
Assume that robot rob1 is in the kitchen initially, holding
book1 in its hand, and believes that book2 is in kitchen
and the library is unlocked.
• The goal is to have book1 and book2 in the library.

The computed plan is the same for AT I and T P , and
consists of the actions:

move(rob1, library), put down(rob1, book1),

move(rob1, kitchen), pickup(rob1, book2),

move(rob1, library), putdown(rob1, book2)

• Assume the robot is in the act of putting book2 in the
library, after having already put down book1 in the
library earlier. However, someone has moved book1
to the kitchen while the robot was moving book2.

• With AT I, the robot observes book1 in not in the
library, realizes the goal has not been achieved, and con-
tinues to replan until it finds book1 and moves it to the
library.

• With T P , the robot puts book2 in the library and stops
execution because it believes it has achieved the desired
goal. In other words, it does not even realize that the goal
has not been achieved.

4.3 Robot Experiments
We also ran experimental trials with the combined architec-
ture, i.e., AT I with refinement and zoom, on two different
robot platforms. These trials represented instances of the
different scenarios (in Section 3.2) in domains that are vari-
ants of the domain in Example 1.

First, consider the experiments with the Baxter robot ma-
nipulating objects on a tabletop as shown in Figure 1a. Some
other details of the domain include:
• The goal is to move particular objects between different

“zones” (instead of places) or particular cell locations on
a tabletop.

• After refinement, each zone is magnified to obtain grid
cells. Also, each object is magnified into parts such as
base and handle after refinement.

• Objects are characterized by color and size.
• The robot cannot move its body but it can use its arm to

move objects between cells or zones.
Next, consider the experiments with the Turtlebot robot

operating in an indoor domain as shown in Figure 1b. Some
other details of the domain include:
• The goal is to find and move particular objects between

places in an indoor domain.
• The robot does not have a manipulator arm; it solicits help

from a human to pickup the desired object when it has
reached the desired source location and found the object,
and to put the object down when it has reached the desired
target location.

140

• Objects are characterized by color and type.
• After refinement, each place or zone was magnified to ob-

tain grid cells. Also, each object is magnified into parts
such as base and handle after refinement.

Although the two domains differ significantly, e.g., in the
domain attributes, actions and complexity, no change is re-
quired in the architecture or the underlying methodology.
Other than providing the domain-specific information, no
human supervision is necessary; most of the other steps are
automated. In ≈ 50 experimental trials in each domain, the
robot using the combined architecture is able to successfully
achieve the assigned goal. The performance is similar to
that observed in the simulation trials. For instance, if we
do not include AT I, the robot has lower accuracy or takes
more time to achieve the goal in the presence of unexpected
success or failure; in other scenarios, the performance with
AT I and T P is comparable. Also, if we do not include
zooming, the robot takes a significantly longer to plan and
execute concrete, i.e., fine-resolution actions. In fact, as the
domain becomes more complex, i.e., there are many objects
and achieving the desired goal requires plans with multiple
steps, there are instances when the planning starts becoming
computationally intractable. All these results provide evi-
dence in support of hypothesis H3.

Videos of the trials on the Baxter robot and Turtlebot cor-
responding to different scenarios can be viewed online2. For
instance, in one trial involving the Turtlebot, the goal is to
have both a cup and a bottle in the library, and these ob-
jects and the robot are initially in office2. The computed
plan has the robot pick up the bottle, move to the kitchen,
move to the library, put the bottle down, move back to the
kitchen and then to office2, pick up the cup, move to the
library through the kitchen, and put the cup down. When
the Turtlebot is moving to the library holding the bottle,
someone moves the cup to the library. With AT I, the
robot uses the observation of the cup, once it has put the
bottle in the library, to infer the goal has been achieved
and thus stops planning and execution. With just T P , the
robot continued with its initial plan and realized that there
was a problem (unexpected position of the cup) only when
it went back to office2 and did not find the cup.

Similarly, in one trial with the Baxter, the goal is to have
blue and green blocks in zone Y (right side of the screen) and
these blocks are initially in zone R (left side of the screen).
The computed plan has the Baxter move its arm to zone R,
pick up a block, move to zone G (center) then to zone Y
to put the block down, and repeat this process until it has
moved all blocks. When the Baxter has moved one block
and is moving back to pick up the second block from zone
R, an exogenous action puts the first block in zone G (cen-
ter). WithAT I, as the Baxter is moving over zone G on the
way to zone R, it observes the block (it had previously put
in zone Y), performs diagnostics and realizes his current ac-
tivity will not achieve the goal. It then re-plans and manages
to move all blocks to zone Y. With T P , the robot is not able
to use the observation of the first block in zone G, continues

2https://drive.google.com/drive/u/1/
folders/1cWXVib82K7qVSIP5i_cT7HEBfE5cGB4G

with the initial plan and never realizes that the goal has not
been achieved.

5 Discussion and Future Work
In this paper we presented a general architecture that rea-
sons with intentions and beliefs using transition diagrams
at two different resolutions. Non-monotonic logical reason-
ing with a coarse-resolution domain representation contain-
ing commonsense knowledge is used to provide a plan of
abstract intentional actions for any given goal. Each such
abstract intentional action is implemented as a sequence of
concrete actions by reasoning with the relevant part of a fine-
resolution representation that is a refinement of the coarse-
resolution representation. Also, the architecture allows the
robot to automatically and elegantly consider the observa-
tions that are relevant to any given goal and the underlying
intention. Experimental results in simulation and on differ-
ent robot platforms indicate that this architecture improves
the accuracy and computational efficiency of decision mak-
ing in comparison with an architecture that does not reason
with intentional actions and/or does not include refinement
and zooming.

This architecture opens up directions for future research.
First, we will explore and formally establish the relationship
between the different transition diagrams in this architec-
ture, along the lines of the analysis provided in (Sridharan
et al. 2017). This will enable us to prove correctness and
provide other guarantees about the robot’s performance. We
will also instantiate the architecture in different domains and
to further demonstrate the applicability of the architecture.
The long-term goal will be enable robots to represent and
reason reliably and efficiently with different descriptions of
knowledge and uncertainty.

Acknowledgments
The authors thank Michael Gelfond for discussions related
to the T I architecture (Blount, Gelfond, and Balduccini
2015). The authors also thank Evgenii Balai for providing
support with the SPARC software. This work was supported
in part by the US Office of Naval Research Science of Au-
tonomy award N00014-17-1-2434, and the Asian Office of
Aerospace Research and Development award FA2386-16-1-
4071. All opinions and conclusions described in this paper
are those of the authors.

References
Balai, E.; Gelfond, M.; and Zhang, Y. 2013. Towards An-
swer Set Programming with Sorts. In International Confer-
ence on Logic Programming and Nonmonotonic Reasoning.
Balduccini, M., and Gelfond, M. 2003. Logic Programs with
Consistency-Restoring Rules. In AAAI Spring Symposium
on Logical Formalization of Commonsense Reasoning, 9–
18.
Baral, C., and Gelfond, M. 2005. Reasoning about intended
actions. In Proceedings of the National Conference on Arti-
ficial Intelligence, volume 20, 689.

141

Blount, J.; Gelfond, M.; and Balduccini, M. 2014. Towards
a theory of intentional agents. In Knowledge Representation
and Reasoning in Robotics. AAAI Spring Symp. Series, 10–
17.
Blount, J.; Gelfond, M.; and Balduccini, M. 2015. A theory
of intentions for intelligent agents. In International Confer-
ence on Logic Programming and Nonmonotonic Reasoning,
134–142. Springer.
Bratman, M. 1987. Intention, Plans, and Practical Reason.
Center for the Study of Language and Information.
Erdem, E., and Patoglu, V. 2012. Applications of ac-
tion languages in cognitive robotics. In Correct Reasoning.
Springer. 229–246.
Gabaldon, A. 2009. Activity Recognition with Intended
Actions. In International Joint Conference on Artificial In-
telligence (IJCAI).
Gelfond, M., and Inclezan, D. 2013. Some Properties
of System Descriptions of ALd. Journal of Applied Non-
Classical Logics, Special Issue on Equilibrium Logic and
Answer Set Programming 23(1-2):105–120.
Gelfond, M., and Kahl, Y. 2014. Knowledge Representa-
tion, Reasoning, and the Design of Intelligent Agents: The
Answer-Set Programming Approach. Cambridge University
Press.
Hanheide, M.; Gobelbecker, M.; Horn, G.; Pronobis, A.;
Sjoo, K.; Jensfelt, P.; Gretton, C.; Dearden, R.; Janicek, M.;
Zender, H.; Kruijff, G.-J.; Hawes, N.; and Wyatt, J. 2017.
Robot Task Planning and Explanation in Open and Uncer-
tain Worlds. Artificial Intelligence 247:119–150.
Kelley, R.; Tavakkoli, A.; King, C.; Nicolescu, M.; Nico-
lescu, M.; and Bebis, G. 2008. Understanding Human In-
tentions via Hidden Markov Models in Autonomous Mobile
Robots. In International Conference on Human-Robot In-
teraction (HRI).
Rao, A. S., and Georgeff, M. P. 1995. BDI Agents: From
Theory to Practice. In First International Conference on
Multiagent Systems, 312–319.
Saribatur, Z. G., and Eiter, T. 2016. Reactive policies with
planning for action languages. In Michael, L., and Kakas,
A., eds., Logics in Artificial Intelligence, 463–480. Springer
International Publishing.
Saribatur, Z. G.; Baral, C.; and Eiter, T. 2017. Reactive
maintenance policies over equalized states in dynamic envi-
ronments. In Oliveira, E.; Gama, J.; Vale, Z.; and Lopes Car-
doso, H., eds., Progress in Artificial Intelligence, 709–723.
Cham: Springer International Publishing.
2018. Software and Results for Architecture com-
bining Theory of Intentions and Refinement. Re-
trieved March 2018 from https://github.com/
hril230/theoryofintentions/tree/master/
simmulation.
Sridharan, M., and Gelfond, M. 2016. Using knowledge
representation and reasoning tools in the design of robots.
In IJCAI.
Sridharan, M.; Gelfond, M.; Zhang, S.; and Wyatt, J. L.

2017. A refinement-based architecture for knowledge repre-
sentation and reasoning in robotics. CoRR abs/1508.03891.
Zhang, Q., and Inclezan, D. 2017. An application of asp
theories of intentions to understanding restaurant scenarios.
International Workshop on Practical Aspects of Answer Set
Programming.
Zhang, S.; Sridharan, M.; and Wyatt, J. 2015. Mixed Log-
ical Inference and Probabilistic Planning for Robots in Un-
reliable Worlds. IEEE Transactions on Robotics 31(3):699–
713.

142

Sound and Complete Reactive UAV Behavior using Constraint Programming

Hoang Tung Dinh, Mario Henrique Cruz Torres, Tom Holvoet
imec-DistriNet, KU Leuven, 3001 Leuven, Belgium

{hoangtung.dinh, mariohenrique.cruztorres, tom.holvoet}@cs.kuleuven.be

Abstract

Realizing autonomous behavior of UAVs is a complex en-
deavor. The behavior needs to be goal-directed (1), while
adhering to safety constraints (2), and while dealing with
contingency situations (3). A purely imperative approach is
unsuitable for this purpose, since such approach is unable
to manage the sheer complexity of the behavior, leading to
erroneous reactions to unforeseen situations in the environ-
ment, or situations that are simply not covered. In this pa-
per, we present an innovative declarative approach to specify
the autonomous behavior of UAVs. The approach combines
a planning-based approach with constraint-programming for
specifying safety and behavior constraints. The formal spec-
ification can be verified to be realizable. From the specifica-
tion, we generate an execution policy, which can be proven
to be sound and complete by construction if the specification
is realizable. If the specification is not realizable, e.g., due to
conflicting constraints, the generator indicates the source of
the problem.
We illustrate our approach on a case study that uses a UAV
for air quality monitoring and show how the approach assists
the developer to specify correct autonomous behavior. The
resulting behavior is deployed on an on-board computer of a
UAV and tested on the field.

1 Introduction
Recent advances in both hardware and software for UAVs
open the door to several applications. As UAV missions
become more and more complicated, the demand for au-
tonomous behavior is increasing. However, defining the au-
tonomous behavior for UAVs is complex. First, this behav-
ior needs to be goal-directed, i.e., given a set of actions that
a UAV can perform (such as take-off, navigate to a way-
point, hover, capture images, etc.), the system must come
up with a sound plan to achieve the mission goals, taking
into account the situation in the environment. Second, safety
requirements must be adhered to. Examples are collision
avoidance, respecting no-fly zones, only fly if the battery
level is sufficient, only land in safe spots, etc. Complex as the
combination of both already is, the environment in which a
UAV operates is typically dynamic and often unpredictable.
The UAV must account for contingencies and adapt its be-
havior accordingly, always adhering to the stipulated safety
constraints. This reaction must be fast and correct in terms
of mission goals and safety requirements.

To accomplish this, developers must be able to specify
and verify the behavior of an autonomous UAV. At run-time,
the autonomous behavior must be sound and complete. The
behavior is sound if the UAV behaves correctly according to
the given specification. The behavior is complete if there is
no situation where there are no actions the UAV can take to
satisfy the specification. If there exists no sound and com-
plete behavior that can satisfy a specification, we call the
specification unrealizable.

Defining the autonomous behavior of UAVs imperatively,
by specifying how the UAV should behave (e.g., by con-
structing Finite State Machines (Bohren et al. 2011; Nguyen
et al. 2013)) is hard, not manageable or maintainable, and
not verifiable, due to the explosion of possible states to be
taken into account. In this paper we propose an approach to
specify and generate the autonomous behavior of UAVs. In
this approach, the actions, goals and constraints are speci-
fied in a declarative way, i.e., by defining rules about what
the expected behavior of the UAV should accomplish. Such
specification represents the minimal requirements. The ac-
tual behavior, i.e., the actions that are selected in a particular
situation, is generated based on the specification.

In concrete, the behavior of a UAV is specified by a set
of logical rules. The rules take into account mission goals,
the actions a UAV is able to perform and the safety re-
quirements that the UAV must conform to. This specifica-
tion combines concepts from a classical planning approach -
such as states, actions, goals - with constraint programming -
imposing additional limitations on acceptable behavior. The
behavior specification is then automatically translated to a
set of constraint satisfaction problems (CSPs) (Tsang 1993)
which are solved off-line. The solutions of the CSPs form an
execution policy that maps each possible state of the world,
that concerns the behavior specification, to a set of actions
to be executed, which represents the reactive behavior of the
UAV. The generated policy is sound because it satisfies the
behavior specification, i.e., all the specified rules, by con-
struction. On the one hand, if the specification is realizable,
all the CSPs are feasible and the achieved policy is complete.
On the other hand, if the specification is unrealizable, some
CSPs are infeasible which indicates the situations leading to
the unrealizability of the behavior specification.

The generated policy is used at runtime to achieve the au-
tonomous behavior of the UAV. Whenever the state of the

143

world changes, the generated policy decides upon which ac-
tions to execute.

This paper brings two contributions to the autonomous ve-
hicle research:

• We present a new formal way to specify the behavior of a
UAV and its mission

• We present a technique to generate sound and complete
execution policies from our behavior specifications.

This paper is organized as follows. Section 2 discusses
related work. Section 3 presents our approach to formally
specify the behavior of a UAV. Section 4 details our ap-
proach to generate an execution policy from the behavior
specification. Section 5 describes a case study where the pro-
posed behavior specification and generation approach is ap-
plied to an air quality monitoring mission. Finally, Section 6
draws conclusions and details possible future work.

2 Related work
Traditionally, robot behaviors are constructed manually by
specifying how a robot should behave. Finite State Ma-
chines (FSMs) (Bohren et al. 2011; Nguyen et al. 2013)
are the most commonly used model to represent robot be-
haviors. A well-known limitation of FSMs is that the num-
ber of states and transitions of a FSM exponentially grows
as the complexity of the behavior arises. Recently, Behav-
ior Trees (BTs) (Marzinotto et al. 2014; Colledanchise and
Ögren 2016) received attention in the robotics community as
an alternative to FSMs thanks to their modularity. However,
different from FSMs, Behavior Trees are not event-driven,
which may not be suitable for safety critical behaviors.

Hand-coding robot behaviors is hard and one has to rely
on simulation to check if the constructed behavior meets
the specified requirements. To address this problem, ap-
proaches to automatically generate robot behaviors from
formal mathematical-based representations of requirements
have been proposed.

Doherty et al. (Doherty, Heintz, and Kvarnström 2013)
use Temporal Action Logic (TAL) (Doherty and Kvarn-
ström 2008) as a specification language. Several planners
have been developed to generate plans from specifications
written in TAL (Doherty and Kvarnstram 2001; Kvarnström
2011). However, those planners assume that the environment
is fully controllable and do not take into account contingen-
cies. At runtime, if failures are detected during the plan ex-
ecution, replanning is triggered (Doherty et al. 2014). This
approach is similar to the use of the Planning Domain Defi-
nition Language (PDDL) (Gerevini et al. 2009) in the plan-
ning community, where generic planners are developed to
solve planning problems described in PDDL. Since these
planning approaches rely on replanning at runtime to deal
with contingencies, they do not guarantee the completeness
of the behavior. The replanning may fail due to an unreal-
izable specification and this failure can only be detected at
runtime. Besides that, replanning can be computationally ex-
pensive and take too long to execute at runtime.

Linear Temporal Logic (LTL) (Emerson and others 1990)
is another specification language often used in robotics.

Behavior
specification

Execution policyMonitors Actions

Off-line

On-line

Generate

Figure 1: From a behavior specification, an execution policy
is automatically generated off-line. At runtime, the execu-
tion policy maps the state vector value given by the monitors
to a set of actions to execute.

There exists synthesis techniques to generate FSMs (Wong-
piromsarn, Topcu, and Murray 2013; Maniatopoulos et al.
2016) or BTs (Colledanchise, Murray, and Ogren 2017)
from specifications written in some fragments of LTL. Us-
ing these synthesis approaches, the behavior is guaranteed
to be sound and complete since all contingencies are taken
into account in the generated behavior. The main limitation
of the LTL approaches is their computational complexity.

3 Behavior specification

In this section we present a new approach for specifying
the behavior of an autonomous UAV in a mission. In our
approach, a behavior specification is a formal representa-
tion of all the concerns relevant to the UAV’s behavior in
the mission. The specification aggregates information about
how the UAV perceives the world, the actions it can perform,
the safety aspects of a mission and its goals. Fig. 1 shows
how the behavior specification fits in the whole system, be-
ing used off-line to generate an execution policy that maps
each possible state of the world to a set of actions to execute.
The execution policy is used at runtime by the UAV, so that
it knows which actions have to be executed in the occurrence
of any changes in the environment.

A behavior specification consists of four elements: (1)
state vector, (2) actions, (3) reaction rules and (4) goals.

The state vector abstracts the world representation. It con-
tains state variables about the environment and the system
itself, which one is interested in.

An action represents a primitive behavior that the UAV
can perform, e.g., take-off. An action is durative, i.e., it takes
time. The specification of an action includes the precondi-
tions for the activation and execution of the action, the de-
sired effects the action will have and the controlled resources
that the action requires exclusive control.

The reaction rules specify the reaction that the UAV has
to guarantee during a mission.

The final element, goals represent the desired goals of the
UAV’s mission.

Each one of the above-mentioned elements is further ex-
plained in the following sub-sections.

144

State vector
A state vector S represents which states of the world and the
UAV-system that the UAV is concerned with. Formally, a
state vector is a set of measurable discrete state variables
{S0, S1, ..., Sn}. Each state variable Si represents a state
that the UAV can measure. At runtime, the value of a state
variable is updated by a monitor, which measures a specific
aspect of the world or of the system. A monitor translates a
measurement to a particular discrete value in a state variable.

It is the responsibility of developers to decide which as-
pects of the world and the UAV-system should be repre-
sented in the state vector and how they are discretized and
monitored. E.g., to represent whether the battery level is
below 5%, one can create the state variable Sbattery =
{bellow 5, between 5 100} and a monitor that constantly
measures the battery level and updates the state variable to
the corresponding value at runtime. A state variable could
also represent aspects related to history. E.g., one can define
the state variable Sa executed = {true, false} to represent
whether action a has ever been executed and finished.

Actions
In our approach, the behavior of autonomous UAVs is
about deciding which actions to execute based on run-
time feedback information. Given a set of actions A =
{a0,a1, ...,an}, the semantic meaning of each action a is
defined by three properties: preconditions, desired effects
and controlled resources. An action’s preconditions and de-
sired effects define when the action can be executed and
what is the expected state after such action’s execution. We
also formally specify the controlled resources, so that it is
possible to guarantee that there are no conflicts in the sys-
tem regarding multiple actions trying to control the same
resources simultaneously.

Preconditions: Pre(a,S) are predicates on the state vector
S that must hold on the activation and during the execution
of the action a. An action can only be started if its precondi-
tions hold. During the execution, if the preconditions of an
action change from “hold” to “not hold”, the action will be
stopped.

Desired effects: Eff(a,S) are predicates on the state vec-
tor S that will hold if the action a is executed successfully.
Currently, our approach only allows desired effects to be
represented as equality and conjunctive predicates. An ac-
tion can still be executed after its desired effects have been
achieved, as long as its preconditions still hold. If the desired
effects have been achieved and the action is still executing,
the desired effects will be maintained.

Controlled resources: R(a) is a set of resources over
which the action a requires exclusive control during its exe-
cution. If two actions have at least one controlled resource in
common, they cannot be executed in parallel. Examples of
controlled resources are the rotors, or an air quality sensor.
We currently assume that an action has at most one con-
trolled resource. This assumption may be relaxed in future
studies.

The preconditions of an action are a set of necessary
requirements for the action to achieve its desired effects.

If the action cannot achieve the desired effects, we call
the action infeasible. In that case, the observable condi-
tion for an action to be infeasible is represented by a pred-
icate Infeasible(a,S) and the predicate ¬Infeasible(a,S)
is added to the preconditions of the action. By doing so,
we guarantee that an infeasible action will not be activated
or if the action is already executing, it will be stopped.
E.g., action navigate to A is infeasible if there exists
no path from the current position of the UAV to point
A, i.e., Spath to A = not exist. Therefore, the predicate
¬(Spath to A = not exist) is included in the preconditions
of the action. Note that, it is up to the developer to decide
how Spath to A should be monitored (e.g., by executing a
path planner at a fixed frequency).

Given the assumption above, a developer must model all
possible infeasible conditions of actions in their precondi-
tions. If a contingency event leading to the infeasibility of
an action is not modeled, the behavior of the UAV is not
guaranteed to be correct. However, it is possible to define
a high-level infeasible condition that can capture different
unknown contingency events. E.g., an action that navigates
the UAV to a checkpoint can be considered as infeasible if
the UAV cannot reach the checkpoint in 5 minutes after the
activation of the action or when a path planner cannot find
a feasible path from the current position of the UAV to the
checkpoint.

Compositions of actions can be defined by logical rules to
constrain or enforce the parallel execution of actions. Log-
ical rules about action compositions involve the predicate
Exec(a) which represents whether an action is executing.
E.g., the rule in Eq. (1) requires action a0 and a1 to always
be executing in parallel. Note that, actions executed in par-
allel must have no conflict in their preconditions and desired
effects as well as no controlled resource in common. If there
is a conflict, the behavior specification is unrealizable and
the conflict situation will be detected during the policy gen-
eration (Section 4).

Exec(a0)⇔ Exec(a1) (1)

Reaction rules

Safety requirements related to the reaction of a UAV are
represented as logical rules on the state vector and the ex-
ecuted actions as in Eq. (2). The predicate Cond(S) repre-
sents whether a logical condition holds on the state vector.
The rule in Eq. (2) states that if a condition on the state vec-
tor holds, action a must be executing.

Cond(S)⇒ Exec(a) (2)

This rule allows developers to specify the UAV’s reac-
tions to contingency events in a declarative way. E.g., one
can require the UAV to go home or land if its battery level
is low. At runtime, the UAV is guaranteed to handle contin-
gency events correctly according to the reaction rules. Con-
flicts among reaction rules will be reported during the policy
generation so that the developer can fine-tune the specifica-
tion.

145

Goals
We represent the goals of the UAV’s mission as rules con-
cerning the values on the state vector SG, i.e., the state vec-
tor value after the UAV completed its mission. There are two
typical types of goal rules.

Goal(SG) (3)

Cond(S)⇒ Goal(SG) (4)

The first type of goal rules (Eq. (3)) states that a condi-
tion must hold at the end of the mission. E.g., one may want
the UAV to always be landed at the end of the mission. The
second type of goal rules (Eq. (4)) represents conditional
goals which only need to be achieved if the goals are fea-
sible. The condition for a goal to be feasible is represented
by the predicate Cond(S) in Eq. (4). E.g., one may want the
UAV to visit a checkpoint only if there exists a feasible path
from the current position of the UAV to the checkpoint. At
runtime, the UAV continually assesses the feasibility of the
conditional goals to decide whether to pursue them or not.

Given the state vector, actions, reaction rules and goal
rules, we generate an execution policy π(S) = {ai} map-
ping each state vector value to a set of actions to execute
(Section 4). At runtime, whenever there is a change to a state
variable in the state vector, the UAV looks up at the gener-
ated policy to select the actions to execute (as shown in Fig.
1).

Example
We present a simple example of a behavior specification.
Assuming that a UAV needs to fly to a checkpoint and land
there. However, we only allow the UAV to fly if the battery
level is above a predefined threshold. If the battery level of
the UAV is below the threshold, the UAV must stop flying
and land immediately. We define the state vector as follows.

S = {Sflying, Sdest, Sbattery}
Sflying = {flying, landed}
Sdest = {not reached, reached}
Sbattery = {below, above}

(5)

The following actions are defined for the mission.

• TakeOff :

– Preconditions: Sflying = landed

– Desired effects: Sflying = flying

– Controlled resource: rotors

• NavigateToPoint:

– Preconditions: Sflying = flying

– Desired effects: Sdest = reached

– Controlled resource: rotors

• Land:

– Preconditions: Sflying = flying

– Desired effects: Sflying = landed

– Controlled resource: rotors

The following reaction rule states that if the battery level
of the UAV is below a threshold, the UAV must land.

(Sflying = flying) ∧ (Sbattery = below)⇒ Exec(Land)
(6)

The goals are specified in Eq. (7) and (8). The rule in Eq.
(7) states that if the battery level is above the threshold, the
UAV must try to reach the destination. The rule in Eq. (8)
requires the UAV to land at the end of the mission.

Sbattery = above⇒ SG
dest = reached (7)

SG
flying = landed (8)

Table 1 shows a sound and complete execution policy
generated from the specification. The notation no-op indi-
cates that no action needs to be executed.

Table 1: A sound and complete execution policy
Sflying Sdest Sbattery Actions
landed not reached above TakeOff
landed not reached below no-op
flying not reached above NavigateToPoint
flying not reached below Land
flying reached above Land
flying reached below Land
landed reached above no-op
landed reached below no-op

4 Execution policy generation using
constraint programming

In this section we present how to generate an execution pol-
icy from a behavior specification described in the previous
section. The process of generating an execution policy from
a behavior specification is illustrated in Fig. 2. Recall that
an execution policy is a function mapping each state vector
value to a set of actions. We calculate the mapping result
of a state vector value by solving a classical planning prob-
lem. The solution of the planning problem is a sequence of
execution steps that transform the given state vector value
to a state vector value that satisfies all the goal rules (see
Section 3). Each execution step is a set of actions to be ex-
ecuted in parallel. The first execution step of the solution is
used as the mapping result from the given state vector value.
The complete execution policy is generated by calculating
the mapping results of all possible state vector values.

We model each classical planning problem mentioned
above as a constraint satisfaction problem (CSP). In (Barták
and Toropila 2008), Bartak et al. summarize several con-
straint satisfaction models for sequential planning problems,
i.e., problems where only one action is allowed to execute at
the same time. In this paper, we extend the constraint model
described in (Barták and Toropila 2008) to support multiple
actions to be executed in parallel.

Given a state vector value S0, we find a plan of length
n, corresponding to n execution steps, transforming S0 to
the goal state vector Sn which satisfies all the goal rules. To
find the plan with the shortest length, we start solving the

146

Behavior specification

State vector Actions

Reaction rules Goals

Constraint satisfaction problems

Model

Execution policy

Solve

Figure 2: To generate an execution policy, a set of constraint
satisfaction problems (CSPs) are constructed from the be-
havior specification. Each CSP models a mapping result of a
state vector value. All the CSPs are solved off-line to achieve
the complete execution policy.

CSP with n = 1 and then gradually increase n by 1, until a
feasible plan is found or a maximal value of n is reached.

Fig. 3 shows the decision variables of a CSP. Since each
action has either one or no controlled resource and actions
with the same controlled resource cannot be executed to-
gether (see Section 3), maximally k = k0 + k1 actions can
be executed in parallel , where k0 is the total number of con-
trolled resources and k1 is the number of actions having no
controlled resource. Therefore, we represent a plan by k×n
action variables with k action variables at each execution
step. Since the plan has length n, there are n+1 state vectors.
Each state vector is represented by a set of state variables.

It is possible to define the domain D of each action vari-
able as all the specified actions in A and add constraints stat-
ing that two actions having the same control resource cannot
be in the same execution step. However, doing so leads to a
big model which is computationally expensive to solve. We
therefore reduce the computational complexity of the con-
straint model by narrowing down the domain of each action
variable as follows.

For the first k0 rows of action variables (different rows of
action variables are represented by different colors in Fig. 3),
the domain of action variables in each row consists of only
actions having the same controlled resource. For the next
k1 rows of action variables, the domain of action variables
in each row consists of a single action having no controlled
resource. In other words, each row of action variables cor-
responds to one controlled resource or a single action with
no controlled resource. Since it could be the case that not
all execution steps have exactly k actions to execute in par-
allel, we define a null action with empty preconditions and
desired effects to fill in the empty position at each execution
step. The null action is added to the domain of each action
variable. This way of modeling reduces the domains of the
action variables while ensuring that actions controlling the
same resource are not executed in parallel since they are rep-
resented by a single action variable at each execution step.

For each action variable Ai
r connecting the state vector

S0
0

A0
0

A0
k�1

S0
l�1

An�1
0

Sn
0

preconditions

desired effects

Figure 3: Decision variables in a planning problem modeled
as a CSP. The preconditions and desired effects of an action
(represented by a square) show the connection between two
instances of the state vector (represented by circles). This
figure is partly based on Figure 1 in (Barták and Toropila
2008).

Si and Si+1, the following constraints are added to impose
the preconditions and desired effects (Barták and Toropila
2008). The constraints are repeated for each action a in the
domain of Ai

r.

Ai
r = a⇒ Pre(a,Si)

Ai
r = a⇒ Eff(a,Si+1)

(9)

We assume that at each plan step, state variables which
are not in the desired effects of Ai stay the same. This as-
sumption, which is called the frame assumption (Barták and
Toropila 2008), is necessary to formulate a classical plan-
ning problem. We deal with exogenous events and the unde-
sired effects of actions by creating a plan for each possible
value of the state vector. At runtime, every time the value
of the state vector changes, the actions corresponding to the
plan of the new state vector value will be executed.

Since in (Barták and Toropila 2008), at each execution
step only one action is executed, the frame axioms can sim-
ply be defined as follows.

Ai
r = a⇒ Si

j = Si+1
j ,∀Sj 6∈ Eff(a,S) (10)

However in our problem, k actions are executed in parallel
at each step. Therefore, to represent the frame axioms, for
each state vector Si, we define k boolean vectors Br, r ∈
〈0, k− 1〉 having the same length v as the state vector. Each
boolean vector Br represents which state variables in the
state vector Si+1 action Ai

r has effect on. Then, the frame
axioms are defined as follows.

Ai
r = a⇒ Br = B(a)(∨

r

Br
j

)
= false⇒ Si

j = Si+1
j

(11)

where B(a) is a precomputed boolean vector. An element in
B(a) is true if a has effect and is false if a does not have
effect on the corresponding state variable. Eq. (11) states that
a state variable must stay unchanged after an execution step
if it does not belong to the desired effect of any action exe-
cuted in that step.

147

Reaction rules (Section 3) are added to the state and action
variables at each execution step. The predicate Exec(a) is
translated to the predicate Ai

r = a in the CSP, where r is the
row where the action variable domain containing a. E.g., the
rule in Eq. (2) is added to the CSP as follows.

∧

i

(
Cond(Si)⇒ Ai

r = a
)

(12)

Rules representing goals (Section 3) are applied on the
first state vector S0 and the final state vector Sn. The rules
in Eq. (3) and (4) are translated to the following constraints.

Goal(Sn) (13)

Cond(S0)⇒ Goal(Sn) (14)
The resulting execution policy generated by solving all

the CSPs is sound by construction, i.e., the policy is cor-
rect according to the behavior specification. It is because the
policy satisfies all the constraints translated from the reac-
tion rules and goal rules. The generated policy is complete
if there exists a mapping result for each state vector value,
i.e., all CSPs are feasible. The unrealizability of the specifi-
cation can be detected when a CSP is infeasible. In that case,
the corresponding state vector value will be reported so that
one can refine the specification. Examples of an unrealizable
behavior specification will be presented in Section 5.

At runtime, the following properties will be guaranteed
by the generated policy. (1) An action is not executed if its
preconditions do not hold. (2) The UAV never violates any
reaction rules. (3) The UAV always actively tries its best,
according to its belief, to pursue the goals.

Note that, the policy does not guarantee that the goals can
always be reached. It is because the belief of the UAV con-
tains the frame assumption. Depending on the degree of the
assumption’s violation in reality, the UAV may achieve the
goals or not. Our future work will focus on revealing the ex-
act situations where the UAV may fail to achieve the goals
so that we can provide hard guarantees on goal achievement.

5 Case study - Air quality monitoring
We present a case study where our behavior specification
and generation approach is applied to a mission taken from
the SafeDroneWare1 project. In the mission, the UAV has to
monitor the air quality at three checkpointsA,B and C (can
be in arbitrary order). The UAV takes off at home location.
To monitor the air quality at a checkpoint, the UAV needs to
fly to the checkpoint and activate its air quality sensor. The
UAV must hover while the air quality sensor is collecting
data. If the UAV cannot reach a checkpoint (e.g., because
the path planner cannot find a feasible path), it can ignore
that checkpoint. After finishing taking samples at all possi-
ble checkpoints, the UAV should return to home. However,
if the battery level of the UAV is below 20%, the UAV should
abort the mission and return to home. In addition, if the bat-
tery level is below 5%, the UAV needs to land immediately,

1https://www.imec-int.com/en/
what-we-offer/research-portfolio/
safedroneware

no matter whether it reached home or not. The UAV also
needs to support manual control mode if the boolean vari-
able manualcontrol is set to true.

In our notation in the following subsections, state
variables and actions represented with a parameter, like
Ssample(x), x ∈ {A,B,C}, represent multiple occurrences
of such entities. E.g., the above state variable notation is a
short version of three state variables Ssample A, Ssample B

and Ssample C .

State vector
We define the following state variables for the mission with
their corresponding meanings.

S = {Sflying, Slocation, Sbattery, Ssample(x), Spath(y),

Smanualcontrol}, x ∈ {A,B,C}, y ∈ {A,B,C, home}
Sflying = {flying, landed}
Slocation = {home,A,B,C, other}
Sbattery = {above 20%, from 5 to 20%, below 5%}
Ssample(x) = {not collected, collected}, x ∈ {A,B,C}
Spath(x) = {not exist, exist}, x ∈ {A,B,C, home}
Smanualcontrol = {false, true} (15)

Actions
We define the following actions for the mission.
• TakeOff

– Preconditions: Sflying = landed

– Desired effects: Sflying = flying

– Controlled resources: rotors

• Land

– Preconditions: Sflying = flying

– Desired effects: Sflying = landed

– Controlled resources: rotors

• Navigate(x), x ∈ {home,A,B,C}
– Preconditions: Sflying = flying,

Spath(x) = exist

– Desired effects: Slocation = x

– Controlled resources: rotors

• Hover(x), x ∈ {A,B,C}
– Preconditions: Sflying = flying, Slocation = x

– Desired effects: Sflying = flying, Slocation = x

– Controlled resources: rotors

• CollectSample(x), x ∈ {A,B,C}
– Preconditions: Sflying = flying, Slocation = x,

Ssample(x) = not collected

– Desired effects: Ssample(x) = collected

– Controlled resources: air quality sensor

• ManuallyFly

– Preconditions: Sflying = flying,
Smanualcontrol = true

– Desired effects: Smanualcontrol = false

148

– Controlled resources: rotors

The following composition action rule is added to enforce
the UAV to hover while collecting air samples.

Exec(CollectSample(x))⇒ Exec(Hover(x)) (16)

Reaction rules and goals
We now translate the description of the mission to reaction
rules and goals. Note that, the current specification is unreal-
izable. We will show how the unrealizability can be detected
during the generation of the execution policy.

The first rule states that whenever the user wants to
take control of the UAV and the UAV is flying, the action
ManuallyFly must be executed.

(Smanualcontrol = true) ∧ (Sflying = flying)⇒
Exec(ManuallyFly)

(17)

The second rule states that if the battery level is between
5% and 20%, the UAV must navigate to home.

(Sbattery = from 5% to 20%) ∧ (S flying = flying)∧
¬(S location = home)⇒ Exec(Navigate(home))

(18)

The last rule requires the UAV to land if the battery level
is below 5%.

(Sbattery = below 5%) ∧ (S flying = flying)⇒
Exec(Land)

(19)

The goals of the mission are to collect air samples atA,B
and C if there exists feasible paths to those checkpoints and
then return to home and land. The goals are represented by
the three following rules.

(Spath(x) = exist)⇒ SG
sample(x) = collected (20)

SG
location = home (21)

SG
flying = landed (22)

Unrealizability detection
The behavior specification described in the previous section
is translated to a set of CSPs. While solving the CSPs, the
situation in Fig. 4 is reported to be infeasible.

We can see that the there is no solution for the situation
where the battery level of the UAV is below 5% and the UAV
has not collected all the air samples yet. In this case, the rule
requiring the UAV to land conflicts with the rule requiring

Sflying = flying

Slocation = other

Sbattery = below 5%

Ssample(A) = collected

Ssample(B) = collected

Ssample(C) = not collected

Spath(A) = exist

Spath(B) = exist

Spath(C) = exist

Spath(home) = exist

Smanualcontrol = false

Figure 4: First infeasible situation.

the UAV to collect the air samples. We also realize that the
same will happen when the battery level of the UAV is be-
tween 5% and 20%. The question to the developer is: What
should the UAV do in these situations? Since in this mission
the safety rules are more important than the goal to collect
air samples, we relax the rule in Eq. (20) by replacing it with
the following rule.

(Spath(x) = exist) ∧ (Sbattery = above 20%)⇒
SG
sample(x) = collected

(23)

However, after updating the rule, the above situation is
still reported to be infeasible. It is because the rule of being
home at the end of the mission conflicts with the rule stating
that the UAV must land immediately if the battery level is
below 5%. If the battery level is below 5% and the UAV is
not at home yet, there is no solution that can satisfy both
rules. In this case, we want the UAV to land instead of still
trying to go home. We therefore replace the rule in Eq. (21)
by the rule below. The new rule states that the UAV should
only try to be at home if its battery level is more than or
equal to 5%.

¬(SI
battery = below 5%)⇒ SG

location = home (24)

The situation in Fig. 4 is now feasible. However, the spec-
ification is still not realizable yet. Another situation reported
to be infeasible is shown in Fig. 5.

From this situation, we realize that we did not specify
what the UAV should do if there exists no path to go home.
The first situation where the UAV needs to go home is after
it collected air samples at all checkpoints. If there is no path,
we allow the UAV not to go home anymore, which means
that the UAV can land at its current location. Therefore, we
replace the rule in Eq. (24) by the rule below.

(Spath(home) = exist) ∧ ¬(SI
battery = below 5%)⇒

SG
location = home (25)

Note that, depending on the missions, one may define ex-
tra actions to deal with such situations. In this paper, for the
ease of presentation, we simply allow the UAV to land at its
current position.

The second situation where the UAV needs to go home
is when its battery level is between 5% and 20%. We again
allow the UAV to land at its current location if there exists
no path to go home. Thus, we replace the rule in Eq. (18) by
the following rules which explicitly expresses what the UAV

Sflying = flying

Slocation = other

Sbattery = from 5 to 20%

Ssample(A) = collected

Ssample(B) = collected

Ssample(C) = collected

Spath(A) = exist

Spath(B) = exist

Spath(C) = exist

Spath(home) = not exist

Smanualcontrol = false

Figure 5: Second infeasible situation.

149

Sflying = flying

Slocation = other

Sbattery = from 5 to 20%

Ssample(A) = collected

Ssample(B) = collected

Ssample(C) = collected

Spath(A) = exist

Spath(B) = exist

Spath(C) = exist

Spath(home) = exist

Smanualcontrol = true

Figure 6: Third infeasible situation.

must do if there exists a path to go home and if there exists
no path to go home.
(Sbattery = from 5% to 20%) ∧ (S flying = flying)∧
¬(S location = home) ∧ (Spath(home) = exist)⇒
Exec(Navigate(home)) (26)

(Sbattery = from 5% to 20%) ∧ (S flying = flying)∧
¬(S location = home) ∧ (Spath(home) = not exist)⇒
Exec(Land) (27)

The last conflict being detected is about the manual con-
trol mode. Thanks to the reported situation in Fig. 6, we re-
alize that the rule about executing the ManuallyFly action
in Eq. (17) conflicts with the rules requiring the UAV to re-
turn to home or land when the battery level is low. For exam-
ple, if the UAV is requested to switch to the manual control
mode while its battery level is below 5%, the UAV does not
know what to do. Since in our scenario we prefer the UAV
to land, we refine the rule about the manual control mode by
only allowing the UAV to execute the ManuallyFly action
if the battery level is above 20% as in Eq. (28).
(Smanualcontrol = true) ∧ (Sflying = flying)∧
(Sbattery = above 20%)⇒ Exec(ManuallyFly)

(28)

The examples above show the capability of our approach
to detect the unrealizability of a behavior specification. This
is especially useful since it is not trivial for humans to think
about all situations while designing the UAV’s behavior. Us-
ing our approach, one could gradually refine the behavior
specification until it becomes realizable.

Policy generation
There are 7680 possible values for the state vector in the
air quality monitoring mission, corresponding to 7680 CSPs.
We used Choco (Prud’homme, Fages, and Lorca 2016), an
open source constraint programming solver, to solve the
CSPs. It took 94.7 seconds in total to solve all the CSPs and
generate the execution policy on an Ubuntu computer with
Intel i7- 7700K 4.20GHz processors.

Validation
The generated execution policy is validated on a DJI Matrice
100 UAV2. The execution policy is run on the DJI Manifold
on-board computer3 with a NVIDIA Tegra K1 processor. A
video of the flight test is included in the submission4. Three

2https://www.dji.com/matrice100
3https://store.dji.com/product/manifold
4https://youtu.be/S146DP1th0U

scenarios are demonstrated in the flight test. The first sce-
nario shows a normal flight where the UAV took off, visited
three checkpoints and collected samples, then went home
and landed. In the second scenario, while the UAV was nav-
igating to the third checkpoint, a no-fly zone that covers
the third checkpoint was added. The UAV then realized that
there is no path to the last checkpoint and decided to go
home. While the UAV was navigating to home, the human
pilot requested for the manual control mode. The UAV there-
fore activated the ManuallyFly action. The human pilot
kept controlling the UAV. When the battery level was be-
low 20%, the UAV decided to terminate the ManuallyFly
action, then went home and landed. The third scenario il-
lustrates a situation where the battery level of the UAV de-
creases faster than normal. While the UAV was collecting
samples at the second checkpoint, the battery level dropped
below 20%. The UAV decided to stop collecting samples and
go home. However, when the UAV was halfway to home, the
battery level became less than 5%. Thus, it decided to land
immediately.

6 Conclusions
In this paper we present an approach to specify and generate
reactive UAV behavior. The behavior is specified formally as
a set of declarative logical rules. An execution policy is gen-
erated from the behavior specification by creating and solv-
ing a set of CSPs (Constraint Satisfaction Problems). Using
constraint programming, reaction rules and goals can be eas-
ily taken into account by being translated to constraints of
the CSPs. The CSPs can be solved efficiently using an exist-
ing open source solver. Any unrealizability in the behavior
specification can be detected while solving the CSPs. This
way, it is possible to guarantee that the generated policy is
sound and complete by construction. During execution, our
approach guarantees that the reactions rules are always sat-
isfied and the UAV always actively pursues the goals.

While the potential of our behavior specification and pol-
icy generation approach has been demonstrated and vali-
dated on a real UAV, a number of problems remain open.
While we guarantee that the UAV always actively pursues
the goals, it is not clear to what extend the goals can be
achieved in a non-deterministic environment. Future studies
will concentrate on revealing the situations where the goals
cannot be achieved and providing hard guarantees on goal
achievement. Our future studies will also aim at developing
software toolboxes and domain specific languages to ease
the usage of our behavior specification and generation ap-
proach.

Acknowledgment
This research is partially funded by the Research Fund KU
Leuven, and by the imec-ICON project SafeDroneWare.

References
Barták, R., and Toropila, D. 2008. Reformulating Constraint
Models for Classical Planning. In International Florida Ar-
tificial Intelligence Research Society Conference, 525–530.

150

Bohren, J.; Rusu, R. B.; Jones, E. G.; Marder-Eppstein, E.;
Pantofaru, C.; Wise, M.; Mösenlechner, L.; Meeussen, W.;
and Holzer, S. 2011. Towards autonomous robotic butlers:
Lessons learned with the pr2. In International Conference
on Robotics and Automation, 5568–5575. IEEE.
Colledanchise, M., and Ögren, P. 2016. How Behavior Trees
Generalize the Teleo-Reactive Paradigm and And-Or-Trees.
In International Conference on Intelligent Robots and Sys-
tems, 424–429. IEEE.
Colledanchise, M.; Murray, R. M.; and Ogren, P. 2017. Syn-
thesis of Correct-by-Construction Behavior Trees. In Inter-
national Conference on Intelligent Robots and Systems.
Doherty, P., and Kvarnstram, J. 2001. TALplanner: A tem-
poral logic-based planner. AI Magazine 22:95.
Doherty, P., and Kvarnström, J. 2008. Temporal action log-
ics. Foundations of Artificial Intelligence 3:709–757.
Doherty, P.; Kvarnstrom, J.; Wzorek, M.; Heintz, F.; and
Conte, G. 2014. HDRC3: A Distributed HybridDelibera-
tive/Reactive Architecture for Unmanned Aircraft Systems.
In Handbook of Unmanned Aerial Vehicles. Springer. 849–
952.
Doherty, P.; Heintz, F.; and Kvarnström, J. 2013. High-
level mission specification and planning for collaborative
unmanned aircraft systems using delegation. Unmanned
Systems 1:75–119.
Emerson, E. A., and others. 1990. Temporal and modal
logic. Handbook of Theoretical Computer Science, Volume
B: Formal Models and Sematics (B) 995:5.
Gerevini, A. E.; Haslum, P.; Long, D.; Saetti, A.; and Di-
mopoulos, Y. 2009. Deterministic planning in the fifth in-
ternational planning competition: PDDL3 and experimental
evaluation of the planners. Artificial Intelligence 173:619–
668.
Kvarnström, J. 2011. Planning for Loosely Coupled Agents
Using Partial Order Forward-Chaining. In International
Conference on Automated Planning and Scheduling, 138–
145.
Maniatopoulos, S.; Schillinger, P.; Pong, V.; Conner, D. C.;
and Kress-Gazit, H. 2016. Reactive high-level behavior syn-
thesis for an atlas humanoid robot. In International Confer-
ence on Robotics and Automation, 4192–4199. IEEE.
Marzinotto, A.; Colledanchise, M.; Smith, C.; and Ögren,
P. 2014. Towards a unified behavior trees framework for
robot control. In International Conference on Robotics and
Automation, 5420–5427. IEEE.
Nguyen, H.; Ciocarlie, M.; Hsiao, K.; and Kemp, C. C.
2013. Ros commander (rosco): Behavior creation for home
robots. In International Conference on Robotics and Au-
tomation, 467–474. IEEE.
Prud’homme, C.; Fages, J.-G.; and Lorca, X. 2016. Choco
Documentation.
Tsang, E. 1993. Foundations of Constraint Satisfaction.
Academic Press.
Wongpiromsarn, T.; Topcu, U.; and Murray, R. M. 2013.
Synthesis of control protocols for autonomous systems. Un-
manned Systems 1:21–39.

151

Combining Planning and Model Checking to Get Guarantees on the Behavior of
Safety-Critical UAV Systems

Hoang Tung Dinh, Mario Henrique Cruz Torres, Tom Holvoet
imec-DistriNet, KU Leuven, 3001 Leuven, Belgium

{hoangtung.dinh, mariohenrique.cruztorres, tom.holvoet}@cs.kuleuven.be

Abstract

Until now, the application of planning on safety-critical UAV
systems is limited. That is because planning techniques make
unrealistic assumptions, such as the frame assumption or fair-
ness assumption. It is not clear whether the desired proper-
ties of UAVs’ behavior still hold during execution if these as-
sumptions are violated. To overcome this issue, we promote
the combination of planning and model checking techniques
in developing the behavior of safety-critical UAV systems.
We present an iterative approach where the behavior of a UAV
is generated by planning and then verified by model check-
ing. Constraint programming is used to solve both planning
and model checking problems in our approach. The use of
planning with constraint programming in specifying and gen-
erating UAV’s behavior has been presented in our previous
research (Dinh, Torres, and Holvoet 2018). In this paper, we
focus on describing the use of model checking with constraint
programming and its integration with planning. We also dis-
cuss the potential advantages of this approach over other tra-
ditional planning approaches.

1 Introduction
Since autonomous UAVs often operate in an open environ-
ment, they must continually observe and react to changes,
exogenous events and failures. Besides that, the behavior of
an autonomous UAV needs to be goal-directed. Given that,
constructing the behavior of autonomous UAVs manually,
for example, using Finite State Machine (FSM) (Nguyen et
al. 2013), is not trivial.

Planning techniques can be used to automatically gen-
erate the behavior of a UAV (Dinh, Torres, and Holvoet
2018). However, this approach does not attract much at-
tention in safety-critical applications since existing plan-
ning techniques make assumptions that often do not hold
in reality (Ghallab, Nau, and Traverso 2014) such as the
frame assumption and the fairness assumption (Sardina and
D’Ippolito 2015). It is not clear whether the desired prop-
erties of the generated behavior still hold at execution time
if the assumptions made by the planning techniques are vi-
olated. While it is always necessary to make assumptions
about the environment to provide guarantees on the prop-
erties of the behavior, such assumptions can often be less
restricted and more realistic than the assumptions made by
planning techniques. To distinguish the assumptions made

Behavior specification

Behavior generation

Behavior verification

Figure 1: An iterative approach to specify, generate and ver-
ify the behavior of an autonomous UAV.

by planning techniques and the necessary environment as-
sumptions to provide guarantees on the properties of the be-
havior, we call the former planning assumptions and the lat-
ter environment assumptions.

To advocate the use of planning in safety-critical UAV
systems, we believe that it is necessary to combine planning
with model checking in an iterative approach. In this paper,
we introduce an innovative approach to develop the behav-
ior of safety-critical UAV systems that uses techniques from
both planning and model checking studies to complement
each other. We find that both planning and model checking
problems in our approach can be specified and solved effi-
ciently by constraint programming technology.

In our approach, one develops the behavior of a UAV in
three phases as illustrated in Figure 1. In the first phase, the
behavior of the UAV is specified as a set of logical rules,
which is then translated to a set of planning problems. In
the second phase, a policy which represents the behavior
of the UAV is generated by solving the planning problems.
The first two phases are described in our previous research
(Dinh, Torres, and Holvoet 2018). In the third phase, we use
a technique inspired by Bounded Model Checking (Biere et
al. 2003) to verify the desired properties of the generated
policy with a set of environment assumptions. The assump-
tions and the properties are modeled in a Constraint Satisfac-
tion Problem (CSP). Then, a constraint solver searches for a
counter-example of maximum length k that falsifies the de-
sired properties. If a counter-example is found, one can go
back to the first phase to modify the behavior specification
and generate another policy. If no counter-example is found,
depending on the properties, we can guarantee that the prop-
erties hold either infinitely (for achievement properties) or

152

up to the given bound k (for safety properties).
Note that, our approach requires human in the loop to in-

terpret counter-examples and modify the behavior specifica-
tion. In the literature, controller synthesis (Wongpiromsarn,
Topcu, and Murray 2013) studies techniques to automati-
cally generate reactive behavior from a specification with as-
sumptions written in formal languages such as Linear Tem-
poral Logic (LTL). This approach is not pragmatic due to
three reasons. First, it is computationally expensive and can
only be used for small problems (while planning techniques
are much more efficient). Second, it only works with a re-
stricted set of LTL language which limits the expressibility.
Third, this approach only generates a feasible behavior and
does not try to generate the most compact one, leading to
complex behavior which is difficult to understand.

This paper is organized as follows. Section 2 discusses
the issues of planning techniques. Section 3 explains our ap-
proach to verify the behavior of a UAV using model check-
ing and constraint satisfaction. Section 4 describes an ex-
ample where the proposed approach is applied to verify the
behavior of a UAV in a simplified scenario. Section 5 draws
conclusions and details possible future work.

2 Issues with planning
Planning requires actions to be represented with precondi-
tions and effects. While modeling preconditions is an easy
problem, modeling effects is non-trivial. First, most of the
time, it is impossible for one to think about all the possi-
ble effects of an action. Second, even when it is possible to
model all possible effects, it is costly to reason over all the
potential effects.

To overcome this problem, planning techniques make
some assumptions on the effects of actions. Classical plan-
ning requires each action to have only one deterministic ef-
fect. Nondeterministic planning (Muise, Belle, and McIl-
raith 2014) allows an action to have nondeterministic effects.
However, they make the fairness assumption (Sardina and
D’Ippolito 2015) which states that if an action is executed
infinitely, all effects will eventually occur. This assumption
clearly does not hold in many situations. For example, the
open-door action of a robot could result in two different ef-
fects: door-open or door-closed. We cannot expect that if the
robot tries to open the door infinitely, the door will eventu-
ally open because someone may have locked the door.

Similar to nondeterministic planning, probabilistic plan-
ning such as MDPs and POMDPs also assumes the fairness
in action’s effects. Moreover, they require to model the prob-
ability that each effect happens. In many cases, it is difficult
to know such probability. For example, it is not clear which
probability one should assign to the effect door-open when
the robot executes the open-door action.

In addition, all planning techniques rely on the closed-
world assumption (CWA) which states that all information
about the planning problem is explicitly stated. The CWA
leads to the frame assumption, that is, if a state variable is
not changed by the effects of the action(s) executed in the
previous time step, it will remain unchanged. It also means
that planning techniques do not allow exogenous events to
be modeled. A state variable can only be changed by the

execution of actions. In reality, since UAVs operate in an
open environment, the occurrence of exogenous events is
unavoidable.

Note that, a workaround to model exogenous events in
nondeterministic and probabilistic planning is to replace the
effects of each action by the joint effects of the action and
exogenous events (Ghallab, Nau, and Traverso 2016). How-
ever, even with only a few exogenous events, the joint ef-
fects can be complex. In addition, it is error-prone and not
intuitive for one to think about all exogenous events while
modeling an action.

While the assumptions described above often do not hold
in reality, they have advantages. First, they reduce the com-
putational complexity of planning techniques. Thanks to
that, planning problems can be solved efficiently by many
existing algorithms. Controller synthesis techniques, in con-
trast, do not have these assumptions but their computational
complexity is too high to be useful. Second, it is easy for
one to describe a planning problem. This advantage does
not hold for probabilistic planning because it is not easy to
model correctly the probability. Third, one could easily in-
terpret planning solutions.

3 Verify planning solutions
Thanks to the advantages of planning described in Section
2, an approach to specify and generate UAV’s behavior has
been proposed based on planning techniques (Dinh, Torres,
and Holvoet 2018). In that approach, one specifies the be-
havior of a UAV as a set of logical rules, which is then trans-
lated to a set of planning problems. Then, an execution pol-
icy is generated by solving the planning problems using con-
straint satisfaction technology. The approach corresponds to
the behavior specification and behavior generation phases in
Figure 1.

While the generated policy guarantees some desired prop-
erties by construction (e.g., properties related to precondi-
tions and reaction rules), it is not clear whether desired prop-
erties related to the effects of actions, such as whether the
UAV will achieve a goal, will hold during the execution.
More specifically, we want to verify that if the generated
policy is executed in an open environment, given a set of
environment assumptions which are less restricted than the
planning assumptions, a set of desired properties hold. This
corresponds to the behavior verification phase in Figure 1.

Constraint programming is a powerful technology thanks
to its ease of modeling and efficiency. In (Dinh, Torres, and
Holvoet 2018), constraint programming has been used to
specify and solve planning problems to generate execution
policies. Interestingly, constraint programming can also be
used to solve the behavior verification problem.

Our proposed verification approach is inspired by
Bounded Model Checking (Biere et al. 2003). We define a
bounded number of steps k that the policy will be executing.
The system, that is, the execution policy, the environment
assumptions and the negations of the desired properties are
modeled as constraints in a constraint satisfaction problem
(CSP). Then, a constraint solver searches for a feasible so-
lution for the CSP. The main idea is that if there exists a
solution for the CSP, at least one of the desired properties is

153

falsified. The details of the approach are demonstrated via
an example in Section 4.

If the CSP can falsify at least one of the desired properties,
a counter-example leading to the invalidation of the property
is generated. Based on the counter-example, one could go
back to the behavior specification phase to modify the speci-
fication and then generate a new policy. The iterative process
stops once no counter-example is found. For properties re-
lated to goal achievement, that is, a state has been visited, if
there exists no counter-example within k steps, a hard guar-
antee can be provided since there will be no counter-example
in k′ steps, where k′ > k. For other properties, depending
on the application domains and the scenarios, a large enough
k may be acceptable to provide hard guarantees.

4 Example
In this section, we describe a simple example to demonstrate
the process illustrated in Figure 1.

Behavior specification and generation
Assuming a UAV moves in an environment containing four
regions labeled A,B,C and D. All the regions are con-
nected, that is, it is always possible to move from one region
to another region. However, the structure of the environment
is unknown. Figure 2 shows three examples of the environ-
ment structure. The goal of the UAV is to take one picture in
region A and one in region B for inspection purposes. The
UAV can observe the region it is currently in and it knows
whether the pictures at A and B have been taken. Given that,
we specify the following state variables.

S = {Sloc, Spic(x)}, x ∈ {A,B}
Sloc = {A,B,C,D}
Spic(x) = {not taken, taken}, x ∈ {A,B}

(1)

The following actions are defined with their correspond-
ing meanings. For simplicity, we assume that actions can
only be executed sequentially.

• TakePic(x), x ∈ {A,B}
– Preconditions: Sloc = x

– Desired effects: Spic(x) = taken

• GoTo(x), x ∈ {A,B}
– Preconditions: none
– Desired effects: Sloc = x

The goal of the UAV is specified as follows.

SG
pic(A) = taken ∧ SG

pic(B) = taken (2)

Note that, at runtime, the UAV executes the GoTo(x) ac-
tion by continuously moving from its current position to the
x region. Figure 2 illustrates the execution of the GoTo(B)
action in different environment structures. To go to B, the
UAV may have to pass by other regions. Since the structure
of the environment is unknown, it is not possible to model
precisely the effects of the GoTo(x) actions. Therefore, we
only model the desired effects of the actions, that is, the UAV
will reach region x. Due to this incorrectness in modeling,

A

B

CD

A B C D

B A

D C

Figure 2: Three example structures of the environment and
example executions of the GoTo(B) action.

it is not clear whether the UAV is always able to achieve the
goal in Eq. (2).

An execution policy is then generated by creating and
solving a planning problem from each possible state value
(Dinh, Torres, and Holvoet 2018).

Behavior verification
Given the generated policy, we construct a CSP to verify
whether the UAV is always able to achieve the goal in (2)
given a set of environment assumptions. We define the num-
ber bounded steps k = 10. The policy is represented by the
following constraints.

Si = s⇒ Ai = a, i ∈ {0, . . . , k − 1} (3)

where Si and Ai represent the state variables and the action
to be executed at step i. The values s and a are given by the
generated policy.

We represent the environment assumptions by the follow-
ing constraints.

Ai = TakePic(x) ∧ Si
loc = x⇒ Si+1

pic (x) = taken (4)

Si
pic(x) = taken⇒ Si+1

pic (x) = taken (5)

Ai = GoTo(x) ∧ Si
loc 6= x⇒ Si+1

loc 6= Si
loc (6)

Ai = GoTo(x) ∧Ai+1 = GoTo(x) ∧Ai+2 = GoTo(x)

⇒ Si+3
loc = x

(7)

S0
loc = D ∧ S0

pic(A) = not taken ∧ S0
pic(B) = not taken

(8)
Assumptions (4) and (5) state the following. If the UAV

executes the action TakePic(x) at location x, it will always
get the picture. In other words, this action cannot result in
an unexpected effect. If the picture has been taken at x, the
picture will never be lost.

Assumptions (6) and (7) represent the effects of the
GoTo(x) actions and are less restricted than the plan-
ning assumptions. Assumption (6) states that if the action
GoTo(x) is executed and the UAV is not at x, it will move
to another region. However, the exact next region is un-
known. Because there are four different regions, if the UAV

154

Table 1: A counter example
Step Action Slocation Spicture(A) Spicture(B)

0 GoTo(B) D not taken not taken
1 GoTo(A) C not taken not taken
2 GoTo(B) D not taken not taken
3 GoTo(A) C not taken not taken
4 GoTo(B) D not taken not taken
.

keep executing the action GoTo(x) in three consecutive
steps, it will arrive at x. It is represented by assumption (7).

For simplicity, we also assume that at the beginning, the
UAV is at region D and both the pictures at A and B have
not been taken (assumption (8)). Note that, this assumption
is not compulsory since without it, the CSP will search for a
counter-example from all possible initial states.

We want to verify that the pictures at A and B will al-
ways be eventually taken given the set of environment as-
sumptions above. To do so, we represent the negation of this
property as constraints of the CSP. Constraint (9) enforces
that there will never be a state where the pictures at A and B
have been both taken.

¬(Si
picture(A) = taken ∧ Si

picture(B) = taken)

∀i ∈ {0, . . . , k}
(9)

Our CSP model is written in the FO(·) language and is
solved by the knowledge base system IDP (De Cat et al.
2014). The full model is available online1. The solver re-
turned a counter-example presented in Table 1.

From the counter-example, we realize that the situation in
Figure 4 may arise. Given that both pictures at A and B have
not been taken, if the UAV is at D, the policy tells the UAV
to go to B. To move to B, the UAV must pass by C. As soon
as the UAV arrives at C, the policy tells it to go to A and
then the UAV arrives at D again.

We fix this issue by adapting the goal in Eq. (2) to the
following goals which state that the UAV should try to take
a picture at B only after the picture at A has been taken.

SG
picture(A) = taken (10)

Spicture(A) = taken⇒ SG
picture(B) = taken (11)

After the modification, we generate a new policy and
search for a counter-example again using the same CSP de-
scribed above. This time, no counter-example is found.

Note that, for achievement property (the UAV will eventu-
ally reach a state) such as the one demonstrated in this exam-
ple, if there is no counter example with the length less than k
steps, there will be no counter example with the length more
than k steps. However, for safety property (e.g., the UAV
will never arrive at a state), we cannot guarantee that after
k steps, the UAV will not arrive at a to-be-avoided state.
Depending on the concrete domains and scenarios, a large
enough k may be acceptable.

1https://github.com/hoangtungdinh/idp-model-checking-
example

A D C B

Figure 3: A situation preventing the UAV from achieving the
goals.

5 Conclusions
We presented our view on how to advocate the use of plan-
ning in safety-critical UAV systems. Combining planning
with model checking in an iterative approach is necessary
to overcome the limitations in the assumptions of planning
techniques. We also show that constraint programming can
be used as an effective tool for modeling and solving both
planning and model checking problems in our approach.

Several problems remain open. First, it is important to un-
derstand which kinds of desired properties we can verify us-
ing our model checking approach. Second, the scalability
of the approach needs to be studied in depth. Finally, the
approach needs to be tested with more scenarios from real-
world applications.

Acknowledgment
This research is partially funded by the Research Fund KU
Leuven, and by the imec-ICON project SafeDroneWare.

References
Biere, A.; Cimatti, A.; Clarke, E. M.; Strichman, O.; and
Zhu, Y. 2003. Bounded model checking. Advances in com-
puters 58:117–148.
De Cat, B.; Bogaerts, B.; Bruynooghe, M.; Janssens, G.; and
Denecker, M. 2014. Predicate Logic as a Modelling Lan-
guage: The IDP System.
Dinh, H. T.; Torres, M. H. C.; and Holvoet, T. 2018. Sound
and Complete Reactive UAV Behavior using Constraint Pro-
gramming. In ICAPS Workshop on Planning and Robotics.
Ghallab, M.; Nau, D.; and Traverso, P. 2014. The actor’s
view of automated planning and acting: A position paper.
Artificial Intelligence 208:1–17.
Ghallab, M.; Nau, D.; and Traverso, P. 2016. Automated
Planning and Acting. Cambridge University Press.
Muise, C. J.; Belle, V.; and McIlraith, S. A. 2014.
Computing Contingent Plans via Fully Observable Non-
Deterministic Planning. In AAAI, 2322–2329.
Nguyen, H.; Ciocarlie, M.; Hsiao, K.; and Kemp, C. C.
2013. Ros commander (rosco): Behavior creation for home
robots. In International Conference on Robotics and Au-
tomation, 467–474. IEEE.
Sardina, S., and D’Ippolito, N. 2015. Towards Fully Ob-
servable Non-Deterministic Planning as Assumption-based
Automatic Synthesis. In IJCAI, 3200–3206.
Wongpiromsarn, T.; Topcu, U.; and Murray, R. M. 2013.
Synthesis of control protocols for autonomous systems. Un-
manned Systems 1:21–39.

155

