Identification of traffic flows hiding behind TCP port 80

Alberto Dainotti, Francesco Gargiulo
Department of Computer Science and Systems
University of Napoli “Federico II”
{alberto, francesco.grg}@unina.it

Ludmila I. Kuncheva
School of Computer Science
University of Bangor
l.i.kuncheva@bangor.ac.uk

Antonio Pescape, Carlo Sansone
Department of Computer Science and Systems
University of Napoli “Federico II”
{pescape, carlosan}@unina.it

Abstract—Beyond Quality of Service and billing, one of the most important applications of traffic identification is in the field of network security. Despite their simplicity, current approaches based on port numbers are highly unreliable. This paper proposes an identification approach, based on a cascade of decision trees. The approach uses the sign pattern and payload size of the first four packets in each flow, thus remaining applicable to encrypted traffic too. The effectiveness of the proposed approach is evaluated on five real traffic traces collected in different time periods and over four different networks. The obtained overall accuracy gives us grounds to consider the adoption of time periods and over four different networks. The obtained approach is still used for online monitoring. Its advantages are simplicity and speed, as it checks only a single packet-header field. Besides, in some real-world situations there are no effective alternatives. An immediate alternative proposed in the literature (and promptly adopted by the industry) are the payload-based approaches based on the inspection of the transport-level packet payload (the data produced by the application). These techniques usually compare packet contents against known signatures of application-level protocols. Such techniques were initially considered very reliable, and were used to build reference data in the evaluation of novel classification approaches [4]–[6]. Today, however, their reliability and applicability are undermined by a number of factors. First, undisclosed proprietary protocols and techniques of protocol obfuscation (e.g., eMule/eDonkey) are continuously arising. Second, several new-generation applications (e.g., instant messaging, file sharing) make use of traditional protocols (e.g. HTTP) to encapsulate their traffic, which deceives the payload-based classifiers into erroneously associating the traffic to the encapsulating protocol. Third, new-generation applications (e.g., Skype) use packet-payload encryption techniques. In addition, network-level (e.g., IPSEC) and application-level (e.g., ssh) encryption tunnels are being increasingly used in the Internet. Even when they are feasible, payload-based approaches face further difficulties: (i) payload inspection requires accessing all user-transmitted data, which may breach privacy laws in

I. INTRODUCTION

In the last few years, networking research has focused on network traffic classification, that is, associating traffic flows to the applications that generated them [1]. This research stream answers a problem unforeseen when the Internet protocols were first designed. Originally, all network applications used known protocols and transport-level ports that easily allowed their identification. This situation changed a few years back [2], [3]. The number of network applications using proprietary undisclosed protocols has grown at an incredible rate (Skype, P2P-IPTV); the typical association application/port is often forged; in some cases traffic is encrypted, whereas sometimes it is encapsulated into traditional protocols. Beyond the need to understand which kind of traffic is carried on Internet links, the identification of traffic hidden in flows using well-known ports represents a challenging task. To answer this challenge, new approaches to traffic identification are needed. By traffic identification here we mean identification of a particular (or a group of) applications of interest.

In this paper we propose a novel application of an identification technique based on packet-level information and exploiting behavioral characteristics of different applications. Specifically, we propose the use of both the sign pattern and the sizes of the first four packets of each flow to label the flow as accepted (identified) or rejected. The accepted class is the protocol/application conventionally associated with the respective port number. The rejected class is related to applications that try to hide their presence, usually with the purpose to circumvent network usage/security policies. The proposed approach is aimed at a high accuracy of identification, being at the same fast and universal. First, it uses the direction signs and the sizes of only the first four packets of each flow (targeted to work online), and second, it does not need to access the payload of the packets (does not affect privacy and works with encrypted packets).

The rest of the paper is organized as follows. Section II discusses briefly our motivation. Section III provides details about the techniques at the base of our identification approach. Section IV describes the dataset and the measurement approach used in the experimental validation. We show results of identification of “port 80” traffic in Section V. Section VI concludes the paper.

II. MOTIVATION AND RELATED WORK

Even if commonly considered unreliable, the classification/identification approach known as port-based is still used today for online monitoring. Its advantages are simplicity and speed, as it checks only a single packet-header field. Besides, in some real-world situations there are no effective alternatives. An immediate alternative proposed in the literature (and promptly adopted by the industry) are the payload-based approaches based on the inspection of the transport-level packet payload (the data produced by the application). These techniques usually compare packet contents against known signatures of application-level protocols. Such techniques were initially considered very reliable, and were used to build reference data in the evaluation of novel classification approaches [4]–[6]. Today, however, their reliability and applicability are undermined by a number of factors. First, undisclosed proprietary protocols and techniques of protocol obfuscation (e.g., eMule/eDonkey) are continuously arising. Second, several new-generation applications (e.g., instant messaging, file sharing) make use of traditional protocols (e.g. HTTP) to encapsulate their traffic, which deceives the payload-based classifiers into erroneously associating the traffic to the encapsulating protocol. Third, new-generation applications (e.g., Skype) use packet-payload encryption techniques. In addition, network-level (e.g., IPSEC) and application-level (e.g., ssh) encryption tunnels are being increasingly used in the Internet. Even when they are feasible, payload-based approaches face further difficulties: (i) payload inspection requires accessing all user-transmitted data, which may breach privacy laws in...
some countries; (ii) the computational resources required to inspect the entire content of the packets is usually quite high, making it difficult to deploy such techniques when the traffic volume is large. Because of the growing problems with the payload-based approaches, new statistical-based classification approaches have been proposed that do not need access to packet content. These approaches use flow characteristics as features to train classifiers from the state-of-the-art machine learning. The explosion of high-quality scientific literature in this field [7]–[18] testifies the great interest in researching novel and accurate techniques for traffic classification. It has been demonstrated that the statistical-based approaches can achieve high accuracy, and that they appear to be the most promising approaches against protocol obfuscation, encapsulation, and encryption [14], [19]. In this paper we consider the traffic classification technique presented in [20] and we build a novel approach for the problem of identifying traffic flows that use well-known ports (in this case TCP port 80) while not being generated by the officially associated application protocol (in this case HTTP).

To demonstrate the feasibility and applicability on the field of such approach we extend the datasets used in [20] by adding recent traffic traces in order to perform temporal cross-testing.

III. The Identification Approach

The requirement for operational speed brings in the idea of a classifier selection ensemble where only one of a set of experts has to make a decision [20], [23]. The ensemble consists of member classifiers (experts) and an oracle that authorises one of the classifiers to pass its decision as the ensemble decision. Generally speaking, the oracle may have pre-defined regions of competence for the classifiers [24] or dynamically allocated regions [25]. Gargiulo et al. [20] propose to use the port number as the oracle determining the regions of competence.

The directions and sizes of the first four packets of the TCP flow are then used as the features in a further 2-stage classifier (Figure 1). The features and the modular architecture were chosen so that the classification is both fast and accurate, and new modules can be trained and added to the system without re-training any already trained part.

A. The Features

According to well established results present in literature [10], [11], [26], [27], we propose to use only the payload sizes and directions of the first few packets. For example, in [11] it is shown that the payload sizes of only the first 4 packets are discriminant features allowing to classify different applications, also including Peer-to-Peer applications. More precisely, we use the following features (see Section IV for details on feature extraction):

- x_0, the port number;
- x_1, x_2, x_3, x_4, the directions of the first four packets, $x_i \in \{0, 1\}$, where 0 means that the packet is transferred from server to client, and 1, from client to server;
- s_1, s_2, s_3, s_4, the payload sizes of the first four packets, where s_i are positive integers. As in [26], we do not consider packets without payload because they are related to connections state information.

B. Stage 1: Sign Pattern Filter

To illustrate the system we use a data set consisting of network traffic traces at the University of Brescia, Italy (UNIBS) [26]. The known protocols in the training data are: POP3, SMTP, HTTP, msn, FTP and BitTorrent. Table I shows a summary of the training data as distributed across the 16 possible patterns of size $\{x_1, x_2, x_3, x_4\}$, from 0000 to 1111.

The table shows that groups of protocols can be distinguished by the sign patterns. For example, protocols msn (1863), BitTorrent (6881) and HTTP (80) hardly ever begin with a packet from server to client ($x_1 = 0$). The table suggests that the sign patterns can be used to filter out very quickly flows that do not match the pattern of the class they are supposed to be a part of. In Figure 1, this is labeled as the sign pattern filter. In this paper we focus on the TCP traffic on port 80, so flows with patterns beginning with $x_1 = 0$ will be rejected by the filter. Next, using the training data, we can choose a rejection threshold, of say, 2%, and filter out all sign patterns where the number of flows is below the threshold. With this filter in place, the “allowed” combinations of signs for the HTTP protocol (80) are 1000, 1001, 1010, and 1100. All other protocols will be rejected by the sign pattern filter.

C. Stage 2: Decision Tree classifier using payload sizes

A separate classifier is then trained for each sign combination that passes through the sign filter. Here, each classifier has to solve a two-class problem: match versus mismatch of the protocol/application conventionally associated with the respective port number. We chose the Decision Tree [29] classifier, since its classification speed makes it very effective for an online implementation [28] and it does not assume any type of probability distribution of the data [20]. In addition, since the training of the decision trees is made offline, learning times are not significant. Moreover, for the binary decision trees we used, the training time complexity is $O(4N^2 \cdot \log N)$ [29], where N is the size of the training set.

The decision process of a Decision Tree classifier is intuitive, since it can be traced as a sequence of simple decisions.

Table I

<table>
<thead>
<tr>
<th>Signs</th>
<th>POP3</th>
<th>FTP</th>
<th>SMTP</th>
<th>min</th>
<th>BitTorrent</th>
<th>HTTP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1111</td>
<td>0</td>
<td>23</td>
<td>9</td>
<td>0</td>
<td>108</td>
<td>826</td>
</tr>
<tr>
<td>1110</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>42</td>
<td>827</td>
</tr>
<tr>
<td>1101</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>76</td>
<td>108</td>
</tr>
<tr>
<td>1100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>1111</td>
</tr>
<tr>
<td>1110</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1111</td>
<td>23</td>
</tr>
</tbody>
</table>
The first decision is made at the root; depending on the answer, a branch is selected and the child node is visited. Another decision is made at this node, and so on, until a leaf is reached. The leaf contains a single class label, which is assigned to the object being classified. In our case the C4.5 algorithm was employed for constructing the Decision Tree classifiers. We used the Weka implementation, called J48.

The choice of a Decision Tree classifier can be justified by the following example. Figure 2 shows the scatterplot of a dataset of traffic traces taken from the University of Brescia, Italy (see Section IV for the dataset description). The data is filtered so that only flows with sign pattern \([x_1, x_2, x_3, x_4] = 1010\) are displayed. The \((x, y)\) coordinate axes are the first two size features, \(s_1\) and \(s_2\), respectively. The figure shows three protocol classes: BitTorrent (3609 flows), HTTP (826) and msn (660). Class HTTP seems the predominant class in Figure 2, however, this is not the case. Classes BitTorrent and msn are extremely dense, and are located towards the bottom left corner of the scatterplot. The distribution of the classes suggests that the classification regions will be best delineated using borders parallel to the coordinate axes. This is exactly the type of regions constructed by the Decision Tree classifier.

Figure 2. Scatterplot of the UNIBS training data in the plane of the first two size features, \(s_1\) and \(s_2\).

IV. DATASET AND FEATURE EXTRACTION

To validate the proposed approach we used training datasets from three different institutions: *University of Brescia in Italy (UNIBS)* [32], *Lawrence Berkeley National Laboratory (LBNL)* [33] and *Cooperative Association for Internet Data Analysis (CAIDA)* [31]. A summary of the content of the three data sets used to train our system is given in Table II. As testing set we used traces from *University of Napoli in Italy (UNINA)* [34]. From this network we collected and used traffic traces related to two different time periods, 2004 (hereinafter denoted as UNINA2004) and 2009 (hereinafter denoted as UNINA2009). Details about the flows composing these traces are reported in Table III.

TABLE II

<table>
<thead>
<tr>
<th>Protocol</th>
<th>UNIBS</th>
<th>CAIDA</th>
<th>LBNL</th>
</tr>
</thead>
<tbody>
<tr>
<td>POP3</td>
<td>110</td>
<td>19441</td>
<td>9591</td>
</tr>
<tr>
<td>SMTP</td>
<td>25</td>
<td>19427</td>
<td>11831</td>
</tr>
<tr>
<td>HTTP</td>
<td>80</td>
<td>7063</td>
<td>9390</td>
</tr>
<tr>
<td>FTP</td>
<td>21</td>
<td>6296</td>
<td>1652</td>
</tr>
<tr>
<td>BitTorrent</td>
<td>6881</td>
<td>5057</td>
<td>–</td>
</tr>
<tr>
<td>msn</td>
<td>1863</td>
<td>1024</td>
<td>–</td>
</tr>
<tr>
<td>netbios-ssn</td>
<td>139</td>
<td>–</td>
<td>4575</td>
</tr>
<tr>
<td>HTTPS</td>
<td>443</td>
<td>–</td>
<td>25427</td>
</tr>
<tr>
<td>IMAP4</td>
<td>4662</td>
<td>–</td>
<td>1716</td>
</tr>
<tr>
<td>oms</td>
<td>993</td>
<td>–</td>
<td>7677</td>
</tr>
</tbody>
</table>

TABLE III

<table>
<thead>
<tr>
<th>Protocol</th>
<th>UNINA2004</th>
<th>UNINA2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTP</td>
<td>50679</td>
<td>50679</td>
</tr>
<tr>
<td>non-HTTP</td>
<td>2245</td>
<td>2245</td>
</tr>
</tbody>
</table>

In this work we focus our experiments on the identification of HTTP traffic flowing through port TCP 80. Thus, during the training phase, for each sign pattern we train the corresponding payload size classifier (a Decision Tree) assigning all the HTTP flows to one class (the one corresponding to traffic to be accepted), and all the other flows (e.g. from msn, BitTorrent, etc.) that match the considered sign pattern as the other class (traffic to be rejected). For example, in the case of the 1010 combination for the UNIBS dataset we train the classifier with HTTP against msn and BitTorrent (see Table I).

To extract the nine features we used TIE (Traffic Identification Engine) [21] [22], an open-source multi-classifier system whose architecture is shown in Figure 3.

For this work we used TIE for (i) processing and filtering traffic traces, (ii) aggregating packets into sessions, and (iii)
extracting features. The features produced by TIE have been fed to a prototype implementation of the identification approach described in Section III. Moreover, we used TIE with a classification plugin based on a payload-inspection technique in order to establish the “ground-truth” of the given traces. This allowed us to label each flow and to evaluate the accuracy of our approach (see Section V). We looked at the payload content using the TIE-L7 plugin module, which implements the Linux L7-filter classification technique [30].

In the experiments presented we focused on traffic on TCP port 80. The Packet Capture TIE module filters out all traffic not pertaining to the port, whereas the TIE module named Session Builder is responsible for aggregating the remaining packets into bidirectional flows (biflows). That is, we consider the common definition of flow tuple while taking into account traffic in both directions: upstream and downstream. The upstream direction is the one of the first packet observed. Moreover, because we are examining TCP traffic, instead of a timeout value we use simple heuristics based on SYN, FIN, RST flags in TCP headers, in order to approximate TCP connections (as described in [21]).

The Feature Extraction module is responsible for extracting classification features from each biflow. In order to take into account only properties related to the application, we record the sizes of the transport-level payload, excluding pure TCP packets that do not carry application-level data (e.g., empty ACK packets). The payload sizes are stored in the order they are observed. A sign is added depending on the packet direction, plus for upstream and minus for downstream. Each biflow is assigned a session_id, which can later be used to manually examine the biflow, or to process again the same traffic trace using TIE classifiers and checking the results (as in Section V).

V. EXPERIMENTAL RESULTS

In this section we show the results obtained with the proposed identification architecture. In particular, we want to demonstrate that if we train the system with traffic traces taken from different sites (spatial invariance) and in a different time (temporal invariance) we can correctly accept HTTP traffic and reject non-HTTP traffic.

To show the results we choose the following metrics:

- **Overall Accuracy**: The percentage of correctly classified flows.

- **HTTP Accuracy**: The percentage of the correctly classified HTTP flows out of all true HTTP flows (sensitivity).

- **non-HTTP Accuracy**: The percentage of the correctly classified non-HTTP flows out of all non-HTTP flows (specificity).

For assessing the effectiveness of the proposed approach in different time periods (temporal invariance), we carried out cross-testing using UNINA2004 and UNINA2009 traces. In order to verify the spatial invariance of the approach, we train the system with LBNL, CAIDA and UNIBS traces, and then test the system with both UNINA2004 and UNINA2009 traces.

Table IV is obtained by training and testing the system by using a 10-fold cross validation protocol. That is, the whole dataset is divided into 10 folds; 9 of them are used to train the classifiers and the last fold is used for testing. This is carried out for all 10 folds and results are reported as average accuracies. The table shows high accuracy for UNINA2004, and hints about the diversity of non-HTTP traces that might have caused the low specificity for UNINA2009.

Table IV

<table>
<thead>
<tr>
<th></th>
<th>Overall Accuracy</th>
<th>HTTP Accuracy</th>
<th>non-HTTP Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNINA2004</td>
<td>99.97%</td>
<td>99.99%</td>
<td>99.08%</td>
</tr>
<tr>
<td>UNINA2009</td>
<td>99.97%</td>
<td>99.99%</td>
<td>86.23%</td>
</tr>
</tbody>
</table>

Tables V and VI report the results obtained by training the system with LBNL, CAIDA and UNIBS traces, and testing it with the other two traces. Both tables indicate that the recognition rate of the non-HTTP protocol depends on the training set. The worst results in rejecting non-HTTP flows are obtained when LBNL traces are used for training and the system is tested on UNINA2009 (85.45%). This is due to the fact that class non-HTTP is not very well represented in the LBNL data. Figure 4 shows a scatterplot of the UNINA2009 data for the four “allowed” sign patterns for port 80. The non-HTTP protocols are marked with green triangles. The misclassified protocols are circled. The figure demonstrates a degree of mismatch between the training (LBNL) and the testing (UNINA2009) data. It should be noted however, that the representation in the figure may be misleading because it does not reflect the density of the data. The plot for sign 1000, (a), for example, contain 47616 traces, of which 11 non-HTTP. There is only one mistake in the non-HTTP class (accepting a non-HTTP protocol), which amounts to 91% specificity. The highlighted mistakes are only a fraction of the true HTTP class that were wrongly accepted (185 biflows in subplot (a), equivalent to 0.39%).

As with Table IV, there is a decline in the correct recognition rate of non-HTTP traffic from 2004 to 2009. Again, this may be explained with the hypothesis that some of the new non-HTTP traffic biflows are more similar to normal HTTP compared to the ones in the 2004 data. This notwithstanding, the obtained results remain very good since in the worst case over 85% of non-HTTP flows are rejected. In order to
improve the performance, the Decision Tree classifiers may be re-trained with new counterexamples. An advantage of the chosen architecture is that it allows us to do that for any of the classifiers without changing the rest of them.

TABLE V
RESULTS OBTAINED BY TESTING THE SYSTEM WITH UNINA2004.

<table>
<thead>
<tr>
<th>Training Dataset</th>
<th>Overall Accuracy</th>
<th>HTTP Accuracy</th>
<th>non-HTTP Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>LBNL</td>
<td>99.69%</td>
<td>99.73%</td>
<td>88.96%</td>
</tr>
<tr>
<td>CAIDA</td>
<td>99.25%</td>
<td>99.25%</td>
<td>97.84%</td>
</tr>
<tr>
<td>BRESCIA</td>
<td>96.45%</td>
<td>96.44%</td>
<td>99.64%</td>
</tr>
</tbody>
</table>

TABLE VI
RESULTS OBTAINED BY TESTING THE SYSTEM WITH UNINA2009.

<table>
<thead>
<tr>
<th>Training Dataset</th>
<th>Overall Accuracy</th>
<th>HTTP Accuracy</th>
<th>non-HTTP Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>LBNL</td>
<td>99.26%</td>
<td>99.26%</td>
<td>85.45%</td>
</tr>
<tr>
<td>CAIDA</td>
<td>98.82%</td>
<td>98.83%</td>
<td>92.73%</td>
</tr>
<tr>
<td>BRESCIA</td>
<td>99.21%</td>
<td>99.22%</td>
<td>94.55%</td>
</tr>
</tbody>
</table>

In order to better assess the approach here presented and to further investigate the results obtained, we analyzed traffic flowing through port TCP 80 that was labeled by our identification system as ‘rejected’. Firstly, we added a feature in TIE to examine the first few bytes of payload carrying TCP payload exchanged in each biflow. This allowed us to perform a preliminary automated examination of all the biflows and to verify the results of the identification by easily checking application-level packet content. In addition, we manually inspected the biflows, mainly focusing on what was recognized as non-HTTP by the classifier. First of all, such analysis confirmed that all the correctly accepted biflows were actually related to HTTP traffic. For example we observed that almost 94% of the biflows in UNINA2004 started with a standard HTTP GET request, 4% with a POST request, etc. On the other side, we discovered that several ‘rejected’ biflows we generated by peer-to-peer application-level protocols as eDonkey, Bittorrent, and WinMX. Some of them started with a byte not corresponding to an alphabetic character. Inside this category, most of them started with the byte 0xe3. As reported by Karagiannis et al. in [6], this is the first byte exchanged by peers opening a communication session based on the eDonkey2000 protocol (used by the eDonkey and eMule file-sharing applications). Moreover, in both UNINA2004 and UNINA2009 traces, up to 50% of the non-HTTP biflows could not be ascribed to a specific application using either automated or manual payload inspection. However, we manually verified that these biflows did not exchange any HTTP traffic; we therefore conclude that such traffic is generated by applications.
using undisclosed proprietary protocols.

http://tie.comics.unina.it

http://l7-filter.sourceforge.net/

http://www.caida.org/data/

http://ec.lbl.gov/anonymized-traces.html

http://www.grid.unina.it/TrafficTraces