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Abstract— Internet worms are gaining ever more attention by
the research community, representing one of the hot research top-
ics in the field of network security. Our knowledge of phenomena
related to Internet worms (from their intrinsic characteristics
to their impact and to possible countermeasures) is still in its
infancy. This is one of the main reasons for the existence of
different kinds of research approaches. In this paper we focus
on worm traffic analysis. We propose a general methodology,
we discuss issues involved, and we present a software platform
which can be used for this kind of study. Moreover, we show
some interesting preliminary results from our traffic analysis of
two of the most relevant worms that spread over the Internet:
Witty and Slammer. Our results provide interesting evidences of
(spatial and temporal) invariance and give some hints on worm
traffic fingerprinting.

I. INTRODUCTION

Computer worms have come to the public attention as small
software, usually written by a single individual, capable to take
down the Internet [1]. A small, self-replicating, portion of code
which can rapidly spread over hundred thousands systems,
generating an overwhelming amount of overall traffic and
consuming huge computational power. In 2001 the Code Red
I and II worms spread all over the world by exploiting a bug
in Microsoft web servers, causing denial of services, systems
and network compromise, and links overload, corresponding
to several billions damage [2]. In 2003, the Slammer worm,
the fastest worm ever, spread to 90% of all potential targets in
less than 10 minutes [3], reaching its full scanning rate - more
than 55 million scans per second - in approximately 3 minutes.
The Witty worm, the first to carry disruptive payload, spread in
March 2004. Ironically, it infected hosts proactive in securing
their networks [4]. Worms differ in scanning rate limitations
(by latency or bandwidth), infection vector typology, scanning
strategy, activity on the infected machine (damage, backdoor,
attacks), etc. There is a rich literature of worm studies aiming
at characterizing and modeling how the infections spread
across networks, and of research works on worm detection and
containment, based on many different approaches. On the other
side, there is not much work related to a detailed analysis of
the traffic generated by worms and comparing it to other traffic
categories. This is testified not only by the lack of literature,
but also by the lack of (i) methodologies and software tools
for worm traffic analysis and (ii) traffic traces which can be
considered useful for this purpose.

In this paper, we propose a first approach to the analysis
and characterization of worm traffic; discussing the difficulties
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currently present, and how they can be overcome. We present
our software platform to extract new data, sanitize traces, and
analyze traffic properties. Finally we show preliminary results
of this analysis made on Witty and Slammer worms, studying
and comparing traffic from three network links. Results show
some interesting properties (among them, time and space
invariance) and some peculiarities of worm traffic which make
it different from other categories of traffic commonly found
on the Internet. Besides representing the first steps into more
deeply understanding worm traffic and how it can affect links,
such results can be also considered for the design of new
fingerprinting and detection techniques.

II. MOTIVATION AND RELATED WORKS

Recently, computer worms have been subject to several
studies, and research efforts are made in different directions.
To better understand related literature and how our work
fits in, we can identify the following main areas: worm
behavioral characterization, spread modeling, detection, traffic
characterization.

As for the first point, a comprehensive classification of
computer worms is presented in [5]. Moreover, an analysis of
specific worms (Witty [4], Slammer [6] [3], Code-Red [2])
is presented in several works. However, the results related
to their traffic are basic: how and at which speed the worm
spread, the scanning strategy and rate achieved, the distribution
of IPs contacted, and how the packets are built. Sometimes
the aggregate packet rate of worm traffic on a link is shown.
Such information constitutes a valuable analysis of the worm
characteristics, which is a fundamental first step to understand
worms, how they work and their impact, and to build deeper
works on top of that. Another research field involves mod-
eling the spread of worms using analytical and simulative
approaches, also taking into account the effects of patching,
human countermeasures, and congestion caused by the worms
themselves (e.g. [7] [8]). Such studies can be used to design
worm containment strategies. As regards detection techniques,
they can be differentiated mainly in two approaches: content
based and traffic based. Content inspection approaches can
be based on signatures of known worms or on correlation of
common patterns found in packets to detect new worms during
their initial spread [9]. Content analysis, however, requires
heavy resource consumptions and can be made uneffective by
mutant worms. In contrast, detection methodologies based on
traffic observations are related to the probing behavior of scan-
ning worms. A common approach is to identify illegitimate
scans and the increase of activity due to worm propagation.
In [10] hypothesis testing is used to detect infected hosts
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by monitoring the number of failed connections they try to
initiate. A similar approach was previously proposed in [11].
Relying on failed connections is obviously not viable for
worms based on single UDP packets (e.g. Witty and Slammer).
In [12] infected hosts are detected by intercepting packets they
send to inactive addresses. Then, a change point detection
technique is applied to the rate of infected hosts. The works
[13] [14] can be partially ascribed both to the research areas
of detection and of worm traffic characterization. Because,
starting from the observation of statistical properties of worm
traffic - the exponential growth trend of infections at the early
propagation stage - they propose two detection techniques.

As regards the area of traffic characterization, there are not
much more works related to worms. Indeed, while in the past
years several insights on statistical properties of aggregate and
specific application (Web, network games, file transfers, mul-
timedia, ..) traffic have been gained, not much is known about
unwanted traffic, and worms in particular. However, it has been
demonstrated that understanding the statistical properties of
traffic at different levels (aggregate, flows, sessions, packets)
can bring important results. In [15] an active approach to
understand some properties of all unsolicited traffic is adopted.
However there is no specific characterization of worm traffic.
Whereas in [16] and [17], other kinds of anomalous traffic -
not worms - have been studied: Distributed Denial of Service
and Flashcrowds. The multi-resolution analysis of their traffic
shows that flash-crowds and DDoS have different properties in
terms of marginal distributions and of covariance. They show
that the properties found can affect link QoS, and apply the
analysis results for detection purposes.

The approach presented in this paper is a first attempt to
fill the lack of literature, complementing the other works by
focusing strictly on the characterization of worm traffic. This
means to analyze properties of marginal distributions, of time
dependence, of time-scale analysis etc. looking at traffic at
different levels. The characterization is done by comparing
results from different data sets, taken at different sites and at
different times, and possibly related to more worms. Moreover,
a comparison is made between worm and legitimate traffic, and
the impact of worms on traffic found in links under normal
conditions is investigated. This kind of approach permits to
better understand how the presence of worm traffic impacts
on network links and nodes, and the gained knowledge could
be exploited for fingerprinting and detection purposes.

III. APPROACH

The general approach proposed in this work consists in
analyzing statistical properties of traffic generated by worms,
looking at it from different points of views. That is, an-
alyzing properties of aggregate traffic, but also separating
it into streams - we will call them sessions - by source
hosts, or by flows, etc. and considering not only sessions-
related variables (as arrival times, size, duration, etc.) but also
packet-level variables inside sessions: inter-packet times (IPT)
and packet sizes (PS). We are also interested in comparing
findings with other categories of traffic (i.e. non-worms). The

proposed passive approach is based on the observation of
traffic both traversing backbone links and captured by network
telescopes (i.e. directed towards unused addresses). Because of
the novelty of this work, we also discuss issues involved in
performing such kind of analysis (see Section IV-D), as the
lack of useful traffic traces and the need for data sanitization.
Moreover, we present a software platform useful at various
stages of such kind of study.

To give a clearer idea, the general approach used can be
synthetically sketched into a number of sequential steps (with
possible feedback lines) depicted in Fig. 1. After the traffic
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Fig. 1. Life Cycle of Data Analysis.

trace acquisition (first block), human intervention is usually
necessary to inspect the trace. Understanding which kind of
traffic has been captured is a first fundamental step before
performing a detailed statistical analysis. To do this, we need
flexible tools to rapidly investigate several properties of traffic,
from looking into headers and payload (if present) to reporting
concise information on hosts, flows, etc. From this analysis it
is possible to choose on which aspect we want to focus the
characterization and to conceive strategies for automated trace
sanitization to remove spurious data (step 3). For example, as
Witty and Slammer worms send a single UDP packet to each
victim host: (i) by analyzing reports related to flows, we could
immediately spot non-worm behaviors looking for flows with
more than one packet; (ii) we learnt that, after isolating worm
traffic, flow-level analysis was not of interest to us. In the next
step, the software tool extracts measurements data from the
traffic trace and it may also be able to perform a preliminary
analysis. For example, we used threshold mechanisms, based
on packets parameters, to automatically mark hosts as infected
on the basis of some typical symptoms. Finally, the data sets
obtained can be loaded into statistical analysis software and
analyzed, looking at marginal distributions, time dependence,
correlations etc. Moreover, frequency/scale and time localiza-
tion analysis can be performed by means of the Fourier and
Wavelet transforms.

When analyzing the data, we look for repeating behaviors
(the “search for invariants” [18]) and, by applying the same
analysis to worm and legitimate applications, we aim at sketch-
ing similarities and differences. Also comparing the overall
traffic before and during worm propagation may allow to infer
information about the impact of worms on links and nodes.
As anticipated, in this paper we present a preliminary analysis
of two worms: Witty and Slammer. The results here shown
are basically related to aggregate traffic and to the analysis
of host-based sessions, focusing on packet-level variables:
IPT and PS (for details see Sec. IV-C). We apply a packet-
level analysis already adopted for the traffic generated by
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legitimate applications [19] [20]. Packet-level analysis offers
indeed several advantages. One of the most important is that,
being independent of the application-level protocol, it can
be equally applied to different kinds of traffic. Furthermore,
characterizing statistical properties of traffic at packet-level can
help in building analytical and empirical models to be used
for traffic generation and simulation, which represent another
mean to better assess the impact of worm traffic on links and
nodes. Finally, traffic at packet level remains observable after
encryption made by, for example, end-to-end cryptographic
protocols such as SSL or IPSec, making packet-level traffic
modeling a robust approach to traffic profiling for anomaly
detection and traffic classification.

IV. TRAFFIC TRACES AND TOOLS

A. Considered worms: Witty and Slammer

Because of the poor availability of worm traffic traces useful
for traffic characterization (see Section IV-D), we limited our
study to the Witty and Slammer worms, which will be briefly
described here. Details on the traces and tools will be given in
the next subsections. The Witty worm [4] exploited a bug in
the ISS firewall software when decoding ICQ servers packets
[4]. It sends a single UDP packet with source port 4000 to
each scanned host. The payload varies from 768 to 1279 bytes,
because of a random padding which is done to make worm
identification (e.g. by firewalls) harder. After 20000 packets
have been sent to randomly chosen IP addresses, it overwrites
a small portion of the hard disk, and then it starts to send
packets again. The Slammer worm [6] [3] instead, exploits a
bug in Microsoft SQL Server. It sends a single UDP packet
of fixed size (404 bytes) with destination port 1413 to each
target. The scanning strategy is random. However, a bug in its
random number generator left a considerable portion of the
Internet hosts not scanned. Differently from other worms (that
are latency-limited because they issue a connect() call for each
host to be scanned), as for example Code Red, both Witty and
Slammer are bandwidth-limited worms. This is because they
send UDP packets and do not need to wait for any response
from the potential victim. So they are only limited by the
bandwidth of the infected machines.

B. Traffic Traces

In Tab. I the traffic traces that have been used in this
work are summarized. As for the Witty worm, we analyzed
several tens of gigabytes of data collected and made available
by CAIDA [21]. The traffic stored in such files has been
collected by a network telescope, that is, all the traffic directed
towards an unused address space has been captured. This way,
unsolicited traffic (e.g. automated scans) can be detected and
observed. The traces here used have been obtained by filtering
the traffic captured by the network telescope, in the days of the
spread of the Witty worm, considering only UDP packets with
source port 4000. Moreover, to obtain more traces related to
Witty and to overcome the poor availability of worm traces,
we looked into traffic traces of a trans-oceanic link during
the days of the worm spreading, verifying the presence of

packets which can be associated to the Witty worm (second
row of Tab. I). Indeed, the MAWI-WIDE project [22] makes
available 15 minutes traffic traces of this link for each day of
the year since 2000. An important benefit of such approach is
that, in this way, we also have the availability of data related to
legitimate traffic captured from the same link, and at the same
time, of the worm related traffic. This is good to compare their
properties. As explained in Section V-A, many results from the
analysis show that the Witty traffic selected from this trace has
consistent properties with that in the trace made available by
CAIDA (evidence of spatial invariance).

We also looked into MAWI traffic traces captured during the
spread of Slammer. But we could not find packets associated
to this worm. This is probably due to a filtering rule which was
set on the routers. Traffic traces related to Slammer have been
made available by MIT [6]. They were obtained by filtering
all the traffic traversing two unidirectional links, considering
only UDP packets with port 1413. These traces have been
collected on March 25th, 2004, which was one of the days
in which Slammer activity was highest. All the traces in this
work contain only packet headers until layer 4, that is, no
payload information is stored.

C. Tools for data capture and analysis

For the activities in the blocks 2-4 in Fig. 1, we extended
our software platform, called Plab [23]. Plab is an open-source
software we developed for analysis of live traffic and traces in
tcpdump format. It was employed in previous works on traffic
analysis and modeling [19] [20], but the features introduced in
the latest release have been specifically designed for this work.
Because of space constraints they can not be exhaustively
presented here, giving only a brief overview we refer the
reader to the software documentation for more information
[23]. Plab is capable to efficiently analyze very large traffic
traces and to separate traffic into different sessions. Depending
on user-specified parameters, a session is identified by: (i)
all packets sent and received by a host (host mode); (ii) all
packets identified by source and destination IP and ports with
a default timeout of 60 seconds (flow mode); (iii) all packets
exchanged by 2 hosts related to a specific service (e.g. TCP
port 80), with a user definable timeout (conversation mode).
Given one of the above modes, sessions are assigned an ID,
and for each session the IPT between packets flowing in the
same direction are calculated, along with PS. We call such
data packet-level data series. Moreover, the arrival time of each
session, its duration, and bytes transmitted for each direction
are calculated, allowing to perform an analysis at a higher level
(host/flow/conversation level). IPT and PS looking at the traffic
as a whole are also calculated. In this work we use host-based
sessions. We added also specific features which were used for
data sanitization (see Section IV-D). Data sets extracted by
Plab are then processed under the Matlab environment. We
developed a library of scripts, available at [23], which can be
used for statistical analysis of traffic data, together with other
tools made available by the research community (e.g. Wavelet
analysis [24]).
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TABLE I

TRACES DETAILS.
Worm Source Observation point Filter Date Duration Size Estimated Infected Hosts
Witty CAIDA Net Telescope udp src port 4000 March 20-22, 2004 15m per day 1.3GB 10725
Witty MAWI BIDIR Link ALL March 20-22, 2004 15m per day 2.1 GB 4728

Slammer MIT UNIDIR Link 0 udp dst port 1434 March 25, 2003 8h 44m 842 MB 2523
Slammer MIT UNIDIR Link 1 udp dst port 1434 March 25, 2003 8h 44m 431 MB 5321

D. On the data available to researchers

The approach we propose is about systematic characteriza-
tion of worm traffic. In this section we report on the issues
related to the poor availability of appropriate measurement
data which researchers must face to carry out such study.

First of all, we register the scarce availability of worm
traces in general. Moreover, even traffic traces used in research
papers (e.g. Slammer [3] and Code-red [2]) are sometimes
not made public. Another aspect is related to the character-
istics of the available traces: when too small or sampled,
they can be inappropriate to perform a careful traffic anal-
ysis/characterization. For example, the National Laboratory
for Applied Network Research (NLANR) collects each day
8 traces of 90 seconds each from several backbone links
in the USA. Among them, there are traces captured during
the days of worms spread (of Code-red I and II, Slammer,
MyDoom). However, traces of such a small length cannot be
used to characterize sessions; also they do not allow to perform
time/scale analysis on large time scales. In contrast, if larger
they would be of great value for our purposes. Other backbone
traces report only flow-level data: timestamp of flow start/end,
packets and bytes transmitted, etc. Such kind of information
does not allow to perform packet-level analysis. Furthermore,
most of the available traces, as for example those from CAIDA
and MIT used in this work, do not contain the rest of the
legitimate traffic flowing on the links. This is because the
observation point is a network telescope or because traces were
deliberately filtered before making them available. This does
not allow to do a fair comparison between the worm traffic
and the legitimate traffic flowing on the same link at the same
time. Also, it does not allow to study the effect of worm traffic
on the overall aggregate traffic.

Finally, to obtain reliable results, traces need sanitization
before analysis. Indeed, when traces are reported as containing
only worm traffic they are usually filtered by port numbers or
other simple indicators. Thus, it may happen to be also non-
worm traffic inside the trace, Sometimes captured packet traces
can contain spurious data due to hardware and software errors
during data acquisition (as replication of data). Both legitimate
traffic and spurious data were found in the MIT traces used
in this work, and we added fingerprinting functionalities in
Plab to aid the operator into identifying them. For example,
we found in the Link 0 MIT trace 13 hosts that generated only
legitimate traffic (probably DNS).We found similar results for
the Link 1 MIT trace. Even if this traffic represents only a small
fraction of the trace, finding such legitimate hosts and flows
is important (i) to make reliable worm traffic characterization,
and (ii) to compare worm traffic against legitimate traffic
flowing at the same time and on the same link.

The scarce availability of usable data lead us into searching

for more traces. A minor contribution of this work is that we
found Witty traffic (along with common traffic) in the traces
captured from a MAWI backbone link (as explained in Section
IV-B). We used the fingerprinting techniques implemented in
Plab to complement and verify our filtering of Witty traffic
from the MAWI traces which was based on selecting UDP
packets originating from port 4000 and with PS > 768 bytes.

V. DATA ANALYSIS

A. Analysis of Witty Traffic

As for Witty, for each considered trace we built the list
of the hosts generating most of the traffic. By analyzing a
15 minutes trace of 20 March 2004 from CAIDA, we found
that on a total number of 7515 scanning hosts, the 26 hosts
sending more than 30000 packets are accountable for only the
9% of the total trace traffic. For the corresponding MAWI
trace we found that the 10 top hosts, on a total of 2881,
are accountable for 9% of the total traffic. First of all, it is
worth to note that we found two similar results from two
different kinds of observation points: a transoceanic link and a
network telescope (this represents an early evidence of spatial
invariance and it paves the way to further investigations).
Moreover, the corresponding analysis made for the Slammer
traces revealed very different outcomes (see Section V-B).
This is interesting because Witty and Slammer behaviors show
strong similarities [25], as for example the scanning strategy
and the sending of one single packet per victim.

1) Marginal distributions of IPT and PS: as stated earlier,
we consider IPT inside host-based sessions (i.e. an IPT rep-
resents the time between two consecutive packets sent by the
same host). We measure IPTs with a resolution of 1µs and
apply a logarithmic transformation because they range over
several orders of magnitude. For each trace the distribution of
IPTs is built by putting together all the IPTs calculated for
each host-based session. In the following, when necessary, we
will refer to the corresponding PDF as the average PDF, to
distinguish it from the PDF made by IPTs of a single session.

In Fig. 2 the diagrams of the IPTs CDFs and PDFs are
depicted. The distributions are quite regular, resembling a
gaussian distribution. This behavior is invariant with respect
to the site observed and to the time (again some properties
of invariance in both time and space). As for the first point,
the mean of the distribution is shifted when the link changes.
This can be probably connected to the number of IPs which
can be observed: the lower the number of victims per host,
the larger the average IPT. As for the invariance with respect
to time, we observe that the IPT distribution derived from
a specific observation point does not change in the different
epidemical stages. Indeed, as can be seen from Tab. II, while
the first day represents the explosion of the epidemic, in the
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subsequent days the infection level decreases dramatically,
probably because of patching (see infection models taking
patching into account [8]). Also, Tab. III shows that, for
each site, all the distribution statistics but the entropy1 keep
approximately the same values as the considered day changes.
In contrast, the entropy follows a descending trend as the
infection decreases, possibly because the number of infected
hosts decreases thus reducing the uncertainty associated to the
PDF. This finding suggests a possible application to identify
the evolution status of a worm spreading.
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Fig. 2. Witty Inter-packet times.

TABLE II

WITTY TRAFFIC STATISTICS.

CAIDA 20/3 CAIDA 21/3 CAIDA 22/3 MAWI 20/3 MAWI 21/3 MAWI 22/3
Pkts 9.261.414 2.986.325 701.314 226.034 102.727 33.941

Src Hosts 7.515 2.128 1.085 2.881 1.141 706
Dst Hosts 6.800.779 2.690.668 683.096 198.663 99.380 33.231

TABLE III

WITTY IPT (log10(x), [x] = 1E − 6s).

Trace Mean Median Max StdDev Entropy (bit)
CAIDA 20/3 4,593 4,459 8,870 0,750 7,825
CAIDA 21/3 4,454 4,415 8,845 0,873 7,247
CAIDA 22/3 4,592 4,513 8,717 0,885 6,570
MAWI 20/3 5,762 5,750 8,898 0,720 6,112
MAWI 21/3 5,413 5,410 8,904 0,902 5,710
MAWI 22/3 5,802 5,670 8,921 0,902 5,118

Another interesting aspect that came out from the study of
Witty traffic is related to the payload size. As anticipated, this
worm is designed to pad the packet payload with a random
number of bytes. In Fig. 3 the CDF and PDF diagrams of
the PS of packets sent by Witty hosts from both CAIDA
and MAWI traces of three different days are depicted and
compared. The figures show that in all cases the distributions
can be well approximated by a uniform distribution from 768
to 1279 bytes, which is totally different from typical payload
size distributions commonly found on Internet links [26].
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A bivariate PDF diagram puts together information related
to the PS and IPT marginal distributions, taking into account

1The entropy is calculated as −∑
i P (xi)·log2 P (xi) where P (xi) is the

probability associated to each bin (of width 0.05) of the samples histogram.

also mutual dependencies between the two variables. In Fig. 4
the bivariate PDF diagrams of Witty traffic, related to MAWI
and CAIDA are shown. They are very similar, confirming a
typical behavior, from a traffic characterization point of view,
of the infected hosts. This is an interesting invariant, which
makes such diagrams (or the information contained) to be
considered for fingerprinting and detection techniques.

1 2 3 4 5 6 7 8 9
600

800

1000

1200

1400

0

0.5

1

1.5

2

2.5

3
x 10

−3

IPT log10(x) [x]=1E 6 s (bin w=0 1)

IPT log10(x)
[x]=1E−6 s  (bin w=0.1)

PS bytes
(bin
width=10)

0 2 4 6 8 10 600

800

1000

1200

1400

0

0.2

0.4

0.6

0.8

1

    PS bytes 
bin width=10

IPT log10(x)                
[x]=1E−6 s (bin w=0.05)
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To understand how much the traffic properties we found are
really peculiar to Witty, we made some comparisons against
legitimate traffic. In this process, in order to make comparisons
more meaningful, we tried to remove all possible differences
due to side-effects. For this reason, we chose DNS traffic as an
example, because it runs on the same transport protocol - UDP
- of Witty (in contrast, TCP end-to-end flow control could
somehow affect packet-level variables) and a DNS server, like
a worm-infected host, talks to several different hosts in a short
time. Moreover, the DNS traffic analyzed is from the same
MAWI trace of Witty, therefore there are no link-dependent or
time-dependent aspects which could be differently influenced.
In Fig. 5, the bivariate PDF of PS and IPTs calculated for the
4593 DNS servers (hosts sending packets only from source
port UDP 53) found in the MAWI trace of 20th of March
shows a totally different profile. The DNS packet payloads
are rarely larger than 250 bytes, with an heavier concentration
around three byte-lengths, and IPTs are spread but with the
main peaks in the first decade and in the region between
the fourth and seventh. To stress the concept of the possible
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application of such findings in the field of fingerprinting and
classification, we show in Fig. 6 the bivariate PDFs obtained
for two single hosts. On the left, one of the Witty-infected
hosts, chosen among those generating more traffic, is shown.
Whereas the diagram on the right is related to the most
active DNS server. The choice of a larger binning and the
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less smoothness of surfaces are due to a reduced number of
samples compared to the PDFs obtained by averaging data
from all hosts. However we can see that: (i) the average
bivariate PDFs reflect well the properties of the single hosts,
and (ii) the bivariate PDFs of the two considered hosts are
totally different.
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2) Autocorrelation: besides looking at marginal distribu-
tions, we studied PS from a time dependence perspective. For
several hosts infected by Witty, we plotted the sequence of PS
(Fig. 7) and its autocorrelation function from lag 0 to 100 (Fig.
8), and compared them to the corresponding ones generated by
DNS servers found in the MAWI trace. Both kinds of graphs
can clearly highlight the different behavior of a Witty-infected
host from a legitimate host (a DNS server). The sequence
of Witty PS is totally uncorrelated, whereas there are strong
indications of correlation in DNS traffic. The uncorrelation
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Fig. 7. PS Sequence Graph: a Witty host (left) and a DNS server (right).
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Fig. 8. PS Autocorrelation: a Witty host (left) and a DNS server (right).

of Witty payloads is obviously a consequence of the random
padding, whereas the presence of correlation in DNS traffic
might be explained by the application-protocol structure and
by the content of the DNS reply. It is also interesting, however,
that we found a similar distinction as regards packets IPTs.
Those observed from Witty hosts are uncorrelated at all lags
(both for CAIDA and MAWI traces), whereas for DNS hosts
IPTs are correlated at several lags (Fig. 9).

3) Wavelet Analysis: in this sub-section we show results
of a wavelet-based analysis aimed at understanding if Witty
traffic affects aggregate traffic temporal structures from a
multi-resolution point of view. Studying this aspect is im-
portant because it has been shown in literature that scaling
properties like Long Range Dependence (LRD) are frequent in
network traffic and they can have a negative impact on network
performance. We adopt the estimation technique exposed in
[24], based on the Discrete Wavelet Transform of a random
process X of size N . A dyadic decomposition is applied, so
that the number of considered scales is J ≈ log2(N). The so-
called Logscale Diagram (LD) shows the trend followed by
(the logarithm of) the energy of the wavelet coefficients at each
scale, allowing to estimate the scaling behavior of the process
X and the Hurst parameter (which is an indicator of LRD
and self-similarity). We considered the time series of packet
rate sampled with a period of 1ms. That is, the i-th sample
corresponds to the number of packets sent between the i-th and
the (i+1)-th milliseconds from the start of the trace. To make
comparisons of the Wavelet spectrum easier, the packet rates
of the whole link traffic, or related only to Witty, have been
normalized so that their energy was equal to 1. For each time

series X , we divided each sample by Xrms =
√∑

xi∈X(x2
i ).

In the left diagram of Fig. 10 we show the LD of MAWI
traffic from the days 6/3 13/3 20/3 and 3/4 (all Saturdays).
It is easy to notice that while the other LDs approximately
follow the same trend, the LD corresponding to 20/3 (the day
in which the Witty worm was spreading) departs from the
other ones from scale 15 to scale 17. The right diagram of
Fig. 10 shows the LD of the only Witty traffic extracted from
the trace of day 20/3. It is interesting to note that the trend is
flat until scale 15. Thus, such results suggest that there could
be an influence of worm traffic on the scaling behavior of the
aggregate traffic on the link.
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Fig. 9. IPTs Autocorrelation: a Witty host (left) and a DNS server (right).
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Fig. 10. Wavelet Analysis: MAWI total traffic (left), MAWI Witty (right).
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B. Analysis of Slammer Traffic

In Slammer MIT traces from Link 0, the 8 most active hosts
are responsible for about 80% of all the traffic (on a total
of 2523), wheareas on Link 1 12 hosts (on a total of 5321)
generate 75% of the whole. As said before, this behavior is
different from what we found in the Witty traces captured from
both MAWI and CAIDA. It seems that the rate at which the
infected hosts send packets can vary largely, and that there
are few hosts able to achieve much higher rates than all the
others. Obviously, this can be due to the specific conditions
of their access links and hardware involved, but it could be
also influenced by the random scanning strategy adopted in
Slammer, which makes some hosts to select more victims
whose routes traverse the observed link. At this stage we limit
to note this difference with Witty, in which we found more
homogeneity among hosts also in other aspects of the analysis.
Moreover, we observed that some Slammer-infected hosts had
sudden changes in the average scan rate during the 8 hours
traces. We will return on this subject later.

The Slammer traces availability does not allow to compare
worm traffic of two totally different links/observation sites,
neither offers the possibility to observe and compare it against
large quantities of legitimate traffic flowing in the same links.
However, they offer another interesting insight: the 2 MIT
links belong to the same backbone and the anonymization
algorithm applied to both traffic traces is the same. Therefore
we were able to recognize the presence of some infected hosts
in both traces, allowing to compare their behavior in both links.

1) Marginal Distributions of PS and IPT: as reported
earlier, PS is fixed in Slammer. Therefore, from a packet-level
point of view, we limited to the analysis of IPTs. Even from
this aspect, Slammer hosts behave more etherogeneously than
the Witty ones. The IPT PDFs calculated for the single hosts
show more differences, however the average PDF is able to
represents them. In all cases the profiles found were quite
different from those of DNS traffic shown earlier, and from
those of the small portion of legitimate traffic found on the
original MIT traces. Moreover, thanks to the subnet member-
ship preserving property of the anonymization algorithm used
in the MIT traces, we were able to find in the same trace two
infected hosts coming from the same network (moreover they
belong to the list of the 12 top hosts). Fig. 11(a) shows that
their IPT PDF profiles are very similar. This seems to confirm
that parameters related to the access link (location, bandwidth,
latency, etc.) have a significant influence.

In Fig. 12 the average PDFs and CDFs of Slammer hosts on
both links are compared. The very similar shape of the curves
is an interesting invariant. Whereas, the shift of the curves
of Link 1 when compared to those of Link 0 is explained by
the fact that the first link routes less traffic. This difference
is testified by the mean and median values reported in Tab.
IV, while the other parameters (e.g. entropy) show a general
accordance.

As regards comparing results from the two links, we also
observed the behavior of the same infected hosts present in
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(a) IPT PDFs: 2 hosts from the same
subnet.
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Fig. 11. Slammer IPT.
TABLE IV

SLAMMER IPT (log10(x), [x] = 1E − 6s).

Source Mean Median Max StdDev Entropy (bit)
Link 0 4,046 3,918 10,47 0,953 8,00
Link 1 4,710 4,455 10,46 1,123 7,70

both traces. In general we noticed a very close behavior. An
example, related to one of the hosts generating most traffic in
both links, is shown in Fig. 11(b).

2) Autocorrelation: like the results found for Witty (and
differently from DNS traffic), IPTs are basically uncorrelated
for all the Slammer-infected hosts we analyzed. However most
of them present a very small correlation which oscillates
around 0 from lag 0 to lag 100. This can be observed from Fig.
13, where two different hosts from the two links are analyzed.

An interesting aspect came out during autocorrelation anal-
ysis. From the observation of the MIT traces, the infected
hosts keep approximately the same packet rate all the time
(when active). However, some of them suddenly change the
packet rate to a different average for periods which can last
from several minutes to hours, which can be explained e.g.
with a change in the amount of available bandwidth on their
access links. An example is reported in the left diagram of
Fig. 14 for an host on Link 0. We observed that the analysis
of the autocorrelation of IPTs is heavily affected by such
behavior, bringing to large autocorrelation values. This can
be observed by comparing the autocorrelation plot obtained
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Fig. 12. CDFs (left) and PDFs (right) of Slammer IPTs.
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Fig. 13. IPT autocorr. of two Slammer hosts, on Link 0 (left) and Link 1
(right).
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for the complete trace of the considered host (right diagram
in Fig. 14) with the one obtained from the analysis of only the
first 3 hours of data (left diagram in Fig. 13). Therefore, this
must be taken into account when characterizing traffic of an
infected host, and specifically if such results need to be used
in the context of traffic classification and anomaly detection.
On the other side, PDFs are not significantly affected by such
behavior, probably because of the transformation of the IPT
samples in the logarithmic domain.
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Fig. 14. A Slammer host: packet rate (left), IPT autocorrelation (right).

3) Wavelet analysis: as regards, multiscaling properties of
Slammer traffic, we could not study how it affect overall link
traffic because of the lack of data in the trace. However, from
the LD applied to Slammer-only traffic shown in Fig. 15 we
can notice that: the LDs of both links are very close. Moreover
their trend is similar to the one of Witty traffic: a flat trend
until a scale from which a clear scaling behavior starts. Also,
the estimate of the slope in that region, given by the parameter
α which determines the estimation of the Hurst parameter, is
almost the same (about 2) for both links and for witty traffic.
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Fig. 15. Slammer Wavelet Analysis: Link 0 (left) and Link 1 (right).

VI. CONCLUSIONS AND FUTURE RESEARCH

The contribution of this paper is twofold. First, we propose
an approach to the study of worm traffic, discussing a general
methodology and current issues, and also presenting a software
tool which can be used for this research. Second, we show
preliminary results from the application of this methodology to
two well-known worms. Such findings have shown that worm
traffic presents interesting properties of (spatial and temporal)
invariance, and looks very different from other kinds of traffic.
This aspect is reflected by: (i) joint characterization of the
marginal distributions of PS and IPT shown by means of
bivariate PDFs; and (ii) lack of temporal (auto-)correlation
in the PS and IPT time series. Moreover, some preliminary
results on the entropy of packet-level statistics have been

found, and the Wavelet analysis seems to show that worm
traffic has an impact on the statistical properties of aggregate
traffic at multiple time scales. Therefore, this study represents
a first step to understand more deeply the impact of worms
on network traffic, giving insights which we plan to use for
classification and detection purposes.
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