
TIE: a community-oriented traffic classification
platform

Alberto Dainotti, Walter de Donato, Antonio Pescapé, and Giorgio Ventre
University of Napoli “Federico II”, Italy

{alberto,walter.dedonato,pescape,giorgio}@unina.it

Abstract— During the last years the research on network traffic
classification has become very active. The research community,
moved by increasing difficulties in the automated identification of
network traffic and by concerns related to user privacy, started
to investigate and propose classification approaches alternative
to port-based and payload-based techniques. Despite the large
quantity of works published in the past few years on this topic,
very few implementations targeting alternative approaches were
made available to the community. Moreover, most approaches
proposed in literature suffer of problems related to the ability of
evaluating and comparing them.

In this paper we present a novel community-oriented software
for traffic classification called TIE, which aims at becoming
a common tool for the fair evaluation and comparison of
different techniques and at fostering the sharing of common
implementations and data. Moreover, TIE supports the combi-
nation of more classification plugins in order to build multi-
classifier systems, and its architecture is designed to allow
online traffic classification. In this paper, we also present the
implementation of two basic techniques as classification plugins,
which are already distributed with TIE. Finally we report on the
development of several classification plugins, implementing novel
classification techniques, carried out through collaborations with
other research groups.

I. I NTRODUCTION

The problem of traffic classification (i.e. associating traffic
flows to the applications that generated them) has attracted
increasing research efforts in recent years. This happenedbe-
cause, lately, the traditional approach of relying on transport-
level protocol ports has become largely unreliable [1], pushing
the search for alternative techniques. At first, research and
industry focused on approaches based on payload inspection.
However, such techniques present several drawbacks prevent-
ing their deployment under realistic scenarios, e.g.: (i) their
large computational cost makes difficult to use them on high-
bandwidth links; (ii) requiring full access to packet payload
poses concerns related to user privacy; (iii) they are typically
unable to cope with traffic encryption and protocol obfusca-
tion techniques. For these reasons, the research community
started investigating and proposing classification approaches
that consider other properties of traffic, typically adopting
statistical and machine-learning approaches [2] [3] [4]. Despite
the large quantity of works published in the past few years
on traffic classification, aside from port-based classifiers([5])
and those based on payload inspection ([6] [7] [8]), there
are few implementations made available to the community
that target alternative approaches. NetAI [9] is a tool ableto
extract a set of features both from live traffic and traffic traces.

However it does not directly perform traffic classification,but
relies on external tools to use the extracted features for such
purpose. To the best of our knowledge the only available
traffic classifier implementing a machine-learning technique
presented in literature is Tstat 2.0 [10] (released at the end
of October 2008). Besides supporting classification through
payload inspection, Tstat 2.0 is able to identify Skype traffic
by using the techniques described in [11]. However such tech-
niques have been specifically designed for a single application
and can not be extended to classify overall link traffic. The lack
of available implementations of novel approaches is in contrast
with two facts: (i) scientific papers seem to confirm that it is
possible to classify traffic by using properties different from
payload content; (ii) there are strong motivations for traffic
classification in general, and important reasons to perform
it without relying on packet content. It has been observed
that the novel approaches proposed in literature suffer of
problems related to the ability of evaluating and comparing
them [12]. A first reason for this difficulty is indeed the
lack of implementations allowing third parties to test the
techniques proposed with different traffic traces and under
different situations. However, there are also difficultiesrelated
to, e.g., differences in the objects to be classified (flows,
TCP connections, etc.), or in the considered classes (specific
applications, application categories, etc.), as well as regarding
the metrics used to evaluate classification performance.

To overcome these limitations, in this work we introduce
a novel software tool for traffic classification calledTraffic
Identification Engine(TIE). TIE has been designed as a
community-oriented tool, inspired by the above observations,
to provide researchers and practitioners a platform to easily
develop (and make available) implementations of traffic classi-
fication techniques and to allow fair comparisons among them.
In the following sections, when presenting TIE’s components
and functionalities, we detail some of the design choices
focused on: multi-classification, comparison of approaches,
and online traffic classification.

This paper is organized as follows. Section II illustrates the
main architecture of TIE. In Section III and IV we give some
definitions, and explain its main functionalities. SectionV de-
scribes two basic classification techniques we implementedas
TIE plugins: port-based classification and payload inspection
through pattern matching. Section VI describes the involve-
ment of TIE in several international collaborative projects.
Section VII ends the paper presenting future activities.

II. A RCHITECTUREOVERVIEW

TIE is written in C language and runs on Unix operating
systems, currently supporting Linux and FreeBSD platforms.
The software is made of a single executable and a series of
plugins that are dynamically loaded at run time. A collection
of utilities and scripts are distributed with the sources and are
part of the TIE framework.

TIE is made of several components, each of them respon-
sible for a specific task.

Fig. 1: TIE: main components involved in classification

Figure 1 shows the main blocks composing TIE. ThePacket
Filter is able to both capture live traffic or read from a
traffic trace, and it can filter packets depending on several
criteria. Packets are then aggregated into separate sessions
(as explained in the following, these can be flows, biflows,
etc.) by theSession Builder, which keeps updated the status
of each session. A set of feature extraction routines (e.g.
updating statistics on inter-packet times) are performed by
the Feature Extractor. The classification is performed by
the Decision Combiner, which coordinates the activities of
several classification plugins (each one executing a different
classification technique). TheOutput generates final output
files with modalities and in data formats that depend on
the operating mode (explained in the following). In the next
sections we describe in detail each component and related
tasks.

III. O PERATING MODES

TIE supports operation on various kinds of data and dif-
ferent operating modes. In this section we briefly introduce
the three available operating modes. Their operation will be
further defined in the next section.

• Offline Mode: information regarding the classification of
a session is generated only when the session ends or at the
end of TIE execution. This operating mode is typically
used by researchers evaluating classification techniques,
when there are no timing constraints regarding classi-
fication output and the user is interested in obtaining
information regarding the entire session lifetime.

• Realtime Mode: information regarding the classification
of a session is generated as soon as it is available.
This operating mode implementsonline classification.
The typical application is policy enforcement of classified
traffic (QoS, Admission Control, Billing, Firewalling,
etc.). Strict timing and memory constraints are assumed.

• Cyclic Mode: information regarding the classification is
generated at regular intervals (e.g. each5 minutes) and
stored into separate output files. Each output file contains
only data from the sessions that generated traffic during

the corresponding interval. An example usage is to build
live traffic reporting graphs and web pages.

All working modes can be applied to both live traffic and
traffic traces. Obviously,realtime mode is the one imposing
most constraints to the design of TIE’s components. We
highlight that TIE was designed since the beginning target-
ing online classification, and this affected several aspects,
described through the next section, of its architecture.

IV. TIE FUNCTIONALITIES

A. Packet Collection and Filtering

As regards packet capture, TIE is based on the Libpcap
library [13], which is an open source C library offering an
interface for capturing link-layer frames over a wide range
of system architectures. It defines a common standard format
for files in which captured frames are stored, also known as
tcpdump format, ade factostandard [13].

Modern kernel-level frameworks for traffic capture on Unix
operating systems are mostly based on the BSD (or Berkeley)
Packet Filter (BPF) [14], which allows to discard unwanted
packets specifying filtering rules. Libpcap, by supportingthe
BPF syntax, allows programmers to write applications that
transparently support a rich set of constructs to build detailed
filtering expressions for most network protocols. Moreover,
Libpcap allows to read packets from files intcpdump format
rather than from network interfaces without modifications to
the application’s code except for a different function callat
initialization time. This allows to easily write a single appli-
cation which can work both in realtime and offline conditions.

As regards packet filtering, besides supporting the powerful
BPF filters, which are called inside the capture driver, we
implemented in TIE additional filtering functionalities working
in user-space. Examples are: skipping the firsm packets,
stopping the analysis aftern packets, selecting traffic within a
specified time range, and checking for headers integrity (TCP
checksum, valid fields etc.).

B. Sessions

TIE decomposes network traffic into sessions, which are the
objects to be classified. In literature approaches that classify
different kinds of traffic objects have been presented: classify-
ing flows, TCP connections, hosts, etc. To make TIE support
multiple approaches and techniques, we have defined the
general concept of session, and specified different definitions
of it (selected using command line switches):

• flow: defined by the tuple{sourceIP , sourceport,
destinationIP , destinationport, transport-level proto-
col} and an inactivity timeout, with a default value of
60 seconds.

• biflow: defined by the tuple{sourceIP , sourceport,
destinationIP , destinationport, transport-level proto-
col}, where source and destination can be swapped,
and the inactivity timeout is referred to packets in any
direction (default value is 60 seconds).

• host: a host session contains all packets it generates or
receives. A timeout can be optionally set.

When the transport protocol is TCP, biflows typically ap-
proximate TCP connections. However no checks on connec-
tion handshake or termination are made, nor packet retrans-
missions are considered. This very simple heuristic has been
adopted on purpose, because it is computationally light and
therefore appropriate for online classification. This definition
simply requires a lookup on a hash table for each packet.
However, some approaches may require stricter rules to rec-
ognize TCP connections, able to identify the start and end of
the connections with more accuracy. This may be the case,
for example, of a classifier relying on features extracted from
the first few packets (as TCP options, or packet sizes) [15]
[16]. Moreover, explicitly detecting the expiration of a TCP
connection avoids its segmentation in several biflows when
there are long periods of silence. This behavior is typical for
interactive applications like Telnet and SSH.

For these reasons, we implemented also additional heuris-
tics, which can be optionally activated, to follow the stateof
TCP connections by looking at TCP flags:

• if the first packet of a TCP biflow does not contain a
SYN flag then it is skipped. This is especially useful to
filter out connections initiated before traffic capture was
started.

• The creation of a new biflow is forced if a TCP packet
containing only a SYN flag is received (i.e. if a TCP
biflow with the same tuple was active then it is forced to
expire and a new biflow is started).

• A biflow is forced to expire if a FIN flag has been
detected in both directions.

• The inactivity timeout is disabled on TCP biflows (they
expire only if FIN flags are detected).

These heuristics have been chosen in order to trade-off
between computational complexity and accuracy, keeping in
mind TIE’s ability to work inonlinemode. Some applications,
however, may require a more faithful reconstruction of TCP
connections. For example payload inspection techniques used
for security purposes, may require the correct reassembly of
TCP streams in order to not be vulnerable to evasion tech-
niques [17]. For these tasks, a user-space TCP reassembly state
machine may be adopted and integrated into TIE, however this
would significantly increase computational complexity.

Both biflow and host session types contain traffic flowing
in two opposite directions, which we callupstreamanddown-
stream. For both biflow and host session types, upstream and
downstream are defined by looking at the direction of the
first packet (upstream direction). Information regarding the
two directions must be kept separate, for example to allow
extraction of features (e.g. IPT, packet count, etc.) related
to a single direction. Therefore, within each session with
bidirectional traffic, counters and state information are also
kept for each direction.

In order to keep track of sessions status according to the
above definitions we use a chained hash table data structure,in
which information regarding each session can be dynamically
stored.

Each session type is identified by a key of a fixed number
of bits. For example, both keys of theflow andbiflow session
types contain two IP addresses, two port numbers, and the
protocol type.

Figure 2 shows the simple hash function used for biflows.
The function has been written so that source and destination
hosts’ IP addresses/ports can be swapped and still generatethe
same key.

/ * source ip * /
for (i = 12, j = 0; i != 16; i++) {

j = (j * 13) + packet[i];
}
/ * source port * /
for (i = 20; i != 22; i++) {

j = (j * 13) + packet[i];
}

/ * dest ip * /
for (i = 16, k = 0; i != 20; i++) {

k = (k * 13) + packet[i];
}
/ * dest port * /
for (i = 22; i != 24; i++) {

k = (k * 13) + packet[i];
}

return ((j + k + L4_PROTO(packet)) % BIFLOW_TABLE_SIZE);

Fig. 2: TIE: hash function used to identify and store biflow sessions.

For each session it is necessary to keep track of some
information and to update them whenever a new packet be-
longing to the same session is processed (e.g. status, counters,
features). Also, it is necessary to archive an expired session
and to allocate a new structure for a new session. We therefore
associate to each item stored in the hash table a linked list of
sessions structures. That is, each element of the hash table,
which represents a session key, contains a pointer to a linked
list of session structures, with the head associated to the
currently active session.

In order to properly work with high volumes of traffic, TIE
is also equipped with a Garbage Collector component that is
responsible of keeping clean the session table. At regular inter-
vals it scans the table looking for expired sessions. If necessary
it dumps expired sessions data (including classification results)
to the output files and it then frees the memory associated
to those sessions. Working in offline mode the Garbage
Collector is responsible of appending classification results to
the output file. In cyclic mode its work is synchronized with
the dumping process made at regular intervals. Under realtime
mode instead, it is only responsible to free memory of expired
sessions.

C. Feature Extraction

In order to classify sessions, TIE has to collect the features
needed by the specific classification plugins activated. For
instance, a technique may need to access the payload of the
first packet of a session in order to perform pattern matching.
The Feature Extractor is the component in charge of collect-
ing classification features and it is triggered by the Session
Builder for every incoming packet. To avoid unnecessary
computations and memory occupation, most features can be

collected on-demand by specifying command line options.
This is particularly relevant when we want to perform online
classification. The calculation of features is indeed a critical
element affecting the computational load of a classifier. In
[15] the computational complexity and memory overhead of
some features in the context of online classification are indeed
evaluated.

We started implementing basic features used by most clas-
sifiers, considering techniques of different categories: port-
based, flow-based, payload inspection. We plan to enlarge the
list of supported features by considering both new kinds of
features and sets published in literature [18].

Classification features extracted from each session are kept
in the same session structure stored in the hash table previously
described. In general, each session structure in the table
contains: (i) basic information (e.g. the session key, a session
identifier, partial or final classification results, status flags,
etc.); (ii) timing information (e.g. timestamps of the lastseen
packet for each direction); (iii) counters (e.g. number of bytes
and packets for each direction, number of packets without
payload, etc.); (iv) optional classification features (e.g. payload
size and inter-packet time vectors, a payload stream from the
first few packets, etc.). This structure can be easily extended
to collect additional features. Moreover the collection ofeach
on-demand feature is implemented as an inline function which
can be also enabled/disabled at compile time.

D. Classification

TIE provides a multi-decisional engine made of a Decision
Combiner and one or more Classification Plugins (or shortly
classifiers) implementing different classification techniques.
Each classifier is a standalone dynamically loadable software
module. At runtime, aPlugin Manager is responsible of
searching and loading classification plugins according to a
configuration file calledenabled plugins.

typedef struct classifier {
int (* disable) ();
int (* enable) ();
int (* load_signatures) (char *);
int (* train) (char *);
class_output * (* classify_session) (void * session);
int (* dump_statistics) (FILE *);
bool (* is_session_classifiable) (void * session);
int (* session_sign) (void * session, void * packet);

char * name;
char * version;
u_int32_t * flags;

} classifier;

Fig. 3: TIE: interface of classification plugins.

Classification plugins have a standard interface, shown
in Figure 3. To help plugin developers, adummy plugin
with detailed internal documentation is distributed with TIE.
Moreover the other classification plugins distributed withTIE
(e.g. the Port-based classifier) can serve as sample reference
code.

After loading a plugin, the Plugin Manager calls the corre-
spondingenable() function, which is in charge of verifying if

all the features needed are available (some features are enabled
by command line options). If some features are missing, then
the plugin is disabled by calling thedisable() function. After
enabling a plugin, theload signatures() function is called in
order to load classification fingerprints. If the loading process
encounters an error then the plugin disables itself.

TheDecision Combiner(DC in the following) is responsible
for the classification of sessions and it implements the strategy
used for the combination of multiple classifiers. Whenever a
new packet associated to an unclassified session arrives, after
updating session status information and extracting features,
TIE calls the Decision Combiner. For each session, the De-
cision Combiner must make four choices: if a classification
attempt is to be made, when (and if) each classifier must be
invoked (possibly multiple times), when the final classification
decision is taken, how to combine the classification outputs
from the classification plugins into the final decision. To take
these decisions and to coordinate the activity of multiple
classifiers, the Decision Combiner operates on a set of session
flags and invokes, for each classification plugin, two functions
in the classifier structure: is sessionclassifiable()and clas-
sify session(). The is session classifiable() function asks a
classifier if enough information is available for it to attempt a
classification of the current session. Theclassify session()
function performs the actual classification attempt, returning
the result in aclassoutput structure, shown in Figure 4.

typedef struct class_output {
u_int16_t id; / * Application id * /
u_int8_t subid; / * Application sub id * /
u_int8_t confidence; / * Confidence value * /
u_int32_t flags;

} class_output;

Fig. 4: TIE: the classoutput structure stores the output of a classification
attempt.

To highlight the central role of the DC, and how, thanks to
few functions and structures, it allows a flexible design of its
operating strategy, in the following we illustrate some sample
situations regarding the four main decision mentioned above.

• When to attempt classification. The DC could decide to
not evaluate the current session depending both on infor-
mation from the classification plugins or on a priori basis.
The latter may happen, for example, when the target of
classification is a restricted set of traffic categories. In the
first case, instead, the DC typically asks each of the active
classification plugins if it is able to attempt classification
on the current session. Depending on the replies from
the classifiers the DC can decide to make a classification
attempt. For instance, the DC may wait for all classifiers
to be ready before making an attempt.

• When each classifier must be invoked. Depending on
the classifiers that are available, the DC could decide
to invoke only some of them, and only at some time,
for a certain session. For example, there could be clas-
sification techniques that are applicable only to TCP
biflows or some classifiers may be invoked only when

certain information is present. This is the case of payload-
based classifiers. In general, we can design combination
strategies with more complicate algorithms, in which the
invocation of a specific classifier depends on several con-
ditions and on the output of other classifiers. For example,
a payload inspection technique is launched on a session
only after that another classification plugin has suggested
it is Peer-to-Peer traffic. Or, if a session is recognized
as carrying encrypted traffic by a classification plugin,
then the DC may start a specific classifier designed for
encrypted traffic. The algorithm chosing the sequence
of the classifiers to be invoked can be very simple or
much more complex depending on the nature of the
classification problem and on the classification techniques
available.

• When the final classification decision is taken. This
choice is usually connected to the previous one. The DC
must decide when TIE has to assign a class to a session.
This can happen at the arrival of any packet from the
considered session. Simple strategies are, e.g., when at
least one classifier has returned a result, or when all of
them have returned a classification result, etc. In more
complicate approaches, this choice can vary depending
on the features of the session (e.g. TCP, UDP, number of
packets, etc.) and the output of the classifiers. Moreover,
if working in online mode, a limit on the time elapsed
or the number of packets seen since the start of the
session is typically given. If such limit has been passed,
a final classification result (even if labeled asUnknown)
is assigned.

• How to combine the classification outputs from the
classification plugins into the final decision. The DC
receives aclassoutput structure (Figure 4) from each
of the classification plugins invoked. These must then
be fused into a single final decision. Theclassoutput
structure contains also a confidence value returned by
each of the classifiers, which can be helpful when com-
bining conflicting results from different classifiers, and it
determines the final confidence value returned by the DC.
The criteria used by each classification plugin to assign a
value to the confidence value is defined by the designer
of the classification plugin and must be clearly reported
in the plugin documenation, unless it is always set to
the maximum (default). Effectively combining conflicting
results from different classifiers is a crucial task. The
problem of combining classifiers actually represents a
research area in the machine-learning fieldper se. Simple
static approaches are based on majority and/or priority
criteria, whereas more complex strategies can be adopted
to take into account the nature of the classifiers and their
per-class metrics like accuracy [19].

We distribute TIE with a basic combination strategy as a
first sample implementation. For each session, the decisionis
taken only if all the classifiers that are enabled are ready to
classify it. To take its decision the combiner assigns priorities

to classifiers according to the order of their appearance in
the enabled plugins file. If all the plugins agree on the
result, or some of them classify the session asUnknown, the
combination is straightforward and the final confidence value
is computed as the sum of each confidence value divided
by the number of enabled plugins. Instead, if one or more
plugins disagree, the class is decided by the plugin with
highest priority. To take into account the conflicting results
of the classifiers, the confidence value is evaluated as before,
and then divided by2.

All the code implementing the decision combiner is in
separate source files that can be easily modified and extended
to write a new combination strategy. After future addition
of further classification plugins, we plan to add combination
strategies that are more sophisticated.

Finally, it is possible to run TIE with the purpose to train
one or more classification plugins implementing machine-
learning techniques with data extracted from a traffic trace.
To do this, we first need pre-classified data (ground truth).
These can be obtained by running TIE on the same traffic
trace using a ground-truth classification plugin (e.g. the l7-
filter classification plugin illustrated in Section V-B). The same
output file generated by TIE is then used as pre-classified data
and given as input to TIE configured to perform a training
phase. For each activated classification plugin, two kinds of
training functions can be invoked: the first one can be called
each time the status of a session changes, the second is called
after the entire traffic trace has been analyzed and all available
features have been collected.

E. Data definitions and Output format

One of the design goals of TIE, was to allow comparison of
multiple approaches. For this purpose a unified representation
of classification output is needed. More precisely we defined
IDs for application classes (we simply call themapplications)
and propose such IDs as a reference. Moreover, several ap-
proaches presented in literature classify sessions into classes
that are categories grouping applications that offer similar
services. We therefore added definitions ofgroup classes and
assigned each application to a group. This allows to compare
a classification technique that classifies traffic into application
classes with another that classifies traffic into group classes.
Moreover, it allows to perform a higher-level comparison
between two classifiers that both use application classes, by
looking at differences only in terms of groups.

To build a valid application database inside TIE, we started
by analyzing those used by the CoralReef suite [5], and
by the L7-filter project [7], because they represent the most
complete sets that are publicly available and because such tools
represent the state of the art in the field of traffic analysis
and classification tools. By comparing such to application
databases, we then decided to create a more complete one by
including information from both sources and trying to preserve
most of the definitions in there.

To each application class, TIE associates the following
information:

• An application identifier that univocally identifies the
application.

• A human readable label to be used for readable output.
• A group identifier that associates the application to a

category.

Moreover, to introduce a further level of granularity, in-
side each application class we allow the definition of sub-
application identifiers in order to discriminate among sessions
of the same application generating traffic with different prop-
erties (e.g. signaling vs. data, or Skype voice vs. Skype chat,
etc.). To each sub-application the following information is
associated:

• A sub-application ID.
• A human readable label to be used for readable output.
• A long description.

Each application class has at least the default generic sub-
application ID “0”. To obtain an easily manageable and
portable application database we adopted an ASCII file format.
Figure 5 shows portions of thetie apps.txtfile. Each line de-
fines one application identified by the pair(AppID, SubID).
To properly define the application groups we started from the

#AppID SubID GroupID Label SubLabel Description
0, 0, 0, "UNKNOWN", "UNKNOWN", "Unknown application"
#
1, 0, 1, "HTTP", "HTTP", "World Wide Web"
1, 1, 1, "HTTP", "DAP", "Download Accelerator Plus"
1, 2, 1, "HTTP", "FRESHDOWNLOAD", "Fresh Download"
1, 7, 1, "HTTP", "QUICKTIME", "Quicktime HTTP"
[...]
10, 0, 3, "FTP", "FTP", "File Transfer Protocol"
10, 1, 3, "FTP", "FTP_DATA", "FTP data stream"
10, 2, 3, "FTP", "FTP_CONTROL", "FTP control"
[...]
4, 0, 1, "HTTPS", "HTTPS", "Secure Web"
5, 0, 9, "DNS", "DNS", "Domain Name Service"

Fig. 5: TIE: definitions of application classes from the filetie apps.txt.

categories proposed by [20] and then we extended them by
looking at those proposed by CoralReef [5] and L7-filter [7].
The resulting database, as shown in Figure 6, uses the same
format adopted for the applications database file and contains
a label and a description for each group.

#GID Label Description
0, "UNKNOWN", "Unknown group"
1, "WEB", "World wide web"
2, "MAIL", "Mail"
3, "BULK", "File transfer"
4, "MALICIOUS", "Malicious applications"
5, "CONFERENCING", "Conferencing and chat"
6, "DATABASE", "Database"
7, "MULTIMEDIA", "Multimedia (streaming)"
8, "VOIP", "Voice over IP"
9, "SERVICES", "Generic services"
10, "INTERACTIVE", "Interactive (login)"
11, "GAMES", "Games"
12, "P2P", "Peer-to-peer"
13, "GRID", "Grid"
14, "NETWORK_MANAGEMENT", "Network management"
15, "NEWS", "News"
16, "FILE_SYSTEM", "File system"
17, "ENCRYPTION", "Encryption"
18, "TUNNELING", "Tunneling"

Fig. 6: TIE: file format for definitions of group classes.

The main output file generated by TIE contains infor-
mation about the sessions processed and their classification.

The output file is composed by a header and a body. The
header contains details about the whole traffic results, the
plugins activated, and the options chosen. The body is a
column-separated table whose fields contain the following
session related information: an unique identifier, the 5-tuple,
the start/end timestamps, the packets/bytes count for both
upstream and downstream directions, a(AppID, SubID) pair
and a confidence value as resulting from classification process.
The output format is unique but counters and timestamps
semantics depend on (i) the operating mode in which TIE
was run and (ii) the session type.

In offline mode those fields refer to the entire session. In
realtimemode they refer only to the period between the start
of the session and the time the classification of the session
has been made. This is done in order to reduce computations
to the minimum after a session has been classified. Finally, in
cyclic mode an output file with a different name is generated
for each time interval, and the above-mentioned fields refer
only to the current interval.

V. CLASSIFICATION PLUGINS

We distribute the first beta version of TIE along with two
basic classification plugins, implementing a port-based classi-
fier and a deep payload inspection classifier. We implemented
them for first because they represent the state of art of more
traditional approaches, therefore such classification plugins
can be used for comparison and evaluation purposes. As briefly
illustrated in Section VI, we are currently developing more
classification plugins, also through collaborations with other
research groups, implementing techniques based on machine-
learning and statistical approaches.

A. Port-based classification plugin

The Port-based classification plugin relies on source and
destination port numbers as features. Several tools performing
port based classification were available. In our search the
CoralReef suite [5], developed by CAIDA, was the one with
the largest and up-to-date port-based application database.
To “not reinvent the wheel”, the classification plugin we
implemented from scratch relies on the CoralReef signature
file.

To import signatures from this file we implemented a simple
parser that retrieves only needed information and stores itinto
a hash table, in which the generic element has the structure
shown in figure 7. Being that TIE determines the direction of a
session differently compared to CoralReef (i.e. we consider the
source port the one from the host generating the first packet),
our parser swaps source and destination ports. Moreover,
because TIE manages applications using an integer identifier,
the parser does the mapping of each application by looking at
its label.

When a signature contains port ranges or more source-
destination combinations, the parser creates an entry in the
hash table for each of them. This approach speeds up the
classification process at the expense of few additional bytes
of memory.

The algorithm implemented by the classifier on each session
is very simple. It performs three lookups into the hash table
by specifying the following information combinations:

• transport protocol and both source and destination ports
• transport protocol and destination port only
• transport protocol and source port only

The lookup, if successful, will return the corresponding
entry containing the application identifier. The confidence
value is always set to100 when a hit occurs or set to0
otherwise.

B. L7-filter classification plugin

Another classification plugin distributed with TIE is based
on a deep payload inspection technique. We chose to im-
plement the same technique used by L7-filter [7] inside a
TIE classification plugin for the following reasons: (i) we
wanted to support at least one payload-inspection technique
to compare it against completely different approaches; (ii)
among the publicly available tools, L7-filter is one of the
most popular; (iii) we needed to implement at least one
ground-truth technique in TIE, and L7-filter routines are often
used in literature to build ground truth [21] [22]; (iv) the
current version of L7-filter is not easy to use on traffic traces.
Indeed, because of its nature, L7-filter natively works onlyon
Linux platforms and can only analyze traffic from a network
interface. The only way to run it on previously-captured traffic
is to replay that traffic (e.g. using tcpreplay [23]) on a network
interface. Unfortunately such trick does not allow to work at
high traffic rates (∼ 1 Mbps), thus practically limiting its
application to small traffic traces. By supporting the same
technique under TIE we do not have these limitations anymore
and we can run it both under Linux and FreeBSD.

L7-filter is an open-source project for Linux and it is
available in two different versions: kernel and user-space.
The original project was born in kernel space, where many
functionalities are implemented by the Netfilter [24] frame-
work, the same used byiptables to provide firewalling, NAT
(Network Address Translation) and packet mangling under
Linux. The user-space version, currently in a early stage of
development, gets data through Netfilter’s queues and imple-
ments connection tracking from scratch.

The L7-filter classification technique uses regular expres-
sions. A regular expression (or regexp, or pattern) is a rule, in
the form of a text string, describing set of strings. In general
a regexpr matches a strings if s is in the set of strings
described byr.

For instance, the regex:

typedef struct port_info {
u_int16_t sport; / * source port (key) * /
u_int16_t dport; / * destination port (key) * /
u_int8_t proto; / * protocol type (key) * /
u_int16_t app_id; / * application ID * /
u_int8_t app_subid; / * application sub ID * /

} port_info;

Fig. 7: TIE: element of the port information hash table.

ˆssh-[12]\.[0-9]

matches the first characters of a SSH connection, where the
initial “ ssh-” string is followed by the version number. As
specified in the pattern it could be1.x or 2.x, wherex is a
digit from 0 to 9.

L7-filter during its startup loads the application patterns
from several text files with “pat” extension.

After loading signatures, L7-filter processes packets by col-
lecting the payload of each session into an array, independently
of its direction, and removing the null bytes. Removing null
bytes is necessary to pattern matching, because the regular
expression engine uses null-terminated strings. The matching
process is triggered by the reception of a packet carrying pay-
load and if no match is found the session is left unclassified.If
after 10 packets the session can not be classified, then it will
be set asUnknownand its subsequent packets are ignored.

To develop a TIE classification plugin implementing the
same technique used by L7-filter (TIE-L7) we started from
the latest code-repository checkout of the user-space version.
It was necessary to adapt some aspects of the TIE platform
to work with this plugin. First, we had to add to TIE an
option to make several classification attempts for the same
session, by modifying the Decision Combiner. Moreover, to
let TIE work with the same definition of session, it was
necessary to implement some heuristics to follow the state
of TCP connections. We analyzed the heuristics implemented
in the user-space version of L7-filter, that simply assume that
a packet carrying the FIN flag determines the expiration of a
TCP session, and added them as optional. During this study we
also identified few bugs in the user-space version of the code
that we reported to the developers. Moreover, as explained in
Section IV-B, we added more heuristics for TCP connections
that can be optionally activated.

The pattern matching routines did not need any change to
be ported to TIE’s classification plugin. However, in order to
support the FreeBSD operating system we included the GNU
pattern matching libraries into the plugin package, because the
implementation of such libraries under several versions ofthis
operating system is extremely slow.

Furthermore, in order to integrate into TIE the pattern files
containing signatures used by L7-filter, it was necessary to
port the L7-filter parser into the plugin and to associate each
application to the corresponding TIE identifiers. To set such
association, at start-up, TIE-L7 loads the signatures reading
the list from a configuration file, which also contains associ-
ations between each application name and the corresponding
(AppID, SubID) pair.

Finally, to state the equivalence of TIE-L7 with the original
L7-filter (the user-space version) we added to both software
few routines to output debug information. Such output reports
the list of the sessions detected and the corresponding classifi-
cation result. We performed tests on several traffic traces,and
after fixing problems related to small differences, we verified
that TIE-L7 and L7-filter produced the same output.

VI. TIE AND THE RESEARCHCOMMUNITY

TIE is a community-oriented tool, that has been designed
to allow the scientific community to easily develop real
implementations of classification techniques to be evaluated by
anyone on real (and live) traffic and fairly compared. However,
besides community needs and deficient aspects of the state of
art, during the design of TIE and its development, we have
constantly payed attention to what the scientific community
had already produced, both in terms of functionalities and data
definitions/formats. Few examples follow:

• TIE uses the Libpcap library for live traffic capture and
trace management, which is ade factostandard supported
by most common operating systems. The vast majority
of the traces made publicly available by the scientific
community are in Libpcap (tcpdump) format, this makes
them immediately usable by TIE.

• TIE supports different definitions ofsessionsaccording
to those produced in literature.

• In the definition of classes and class IDs, we have
carefully considered definitions already used by the most
popular tools (e.g. CoralReef from CAIDA [5] and the
Linux project L7-filter [7]). Moreover we have created a
class hierarchy made of application groups, applications,
and application sub-IDs, in order to represent the different
types of classes considered in literature and to allow com-
parison even when they differ (e.g. approaches classifying
applications against approaches classifying categories of
applications).

• In the implementation of the first classification plugins we
adopted definitions and algorithms widely used and ac-
cepted, as the CoralReef file of rules for port-application
associations in the case of the Port-based classifier, and
L7-filter algorithm and signatures in the case of the TIE-
L7 classifier.

Furthermore, TIE was involved since its prototype stage into
collaborative projects with other research groups. In particular,
we cite: (i) an Italian research project, PRINRECIPE, specifi-
cally focused on traffic classification and involving researchers
from seven Italian universities. (ii) NETQOS, a European
Specific Targeted Research Project (STREP) from the 5th call
of IST FP6 framework, developing an autonomous policy-
based QoS management approach for heterogeneous networks,
in order to provide enhanced end-to-end QoS and efficient
resource utilization. TIE has been successfully used in this
project as an online traffic classifier interacting with other
components of the NETQOS framework. (iii) TIE has been
recognized as reference tool in the European COST Action
IC0703 “Data Traffic Monitoring and Analysis (TMA): theory,
techniques, tools and applications for the future networks”
(shortly COST-TMA) [27] regarding all joint activities on
traffic classification.

Finally, Table I summarizes TIE classification plugins that
are both available or under development and highlights con-
nections with the research community.

VII. C ONCLUSION

In this paper we introduced a novel community-oriented
software tool for traffic classification called TIE, supporting
the fair evaluation and comparison of different techniquesand
fostering the sharing of common implementations and data.
Moreover, TIE is thought as a multi-classifier system and its
architecture is designed to allow online traffic classification.
TIE will allow the experimental study of a number of hot
topics in traffic classification, such as:

• multi-classification: we are working on the combination
of multiple classification techniques with pluggable fu-
sion strategies.

• sharable data: we are implementing algorithms to pro-
duce pre-labeled and anonymized traffic traces, which
will allow the sharing of reference data for comparison
and evaluation purposes.

• privacy: we are working on the design of lightweight
approaches to payload inspection that are privacy-friendly
and more suitable for online classification.

• ground truth: we are working on developing more accu-
rate approaches for the creation of ground-truth reference
data through the combination of multiple and novel
techniques.

• performance analysis: disposing of multiple implemen-
tations of classification techniques on the same platform
allows to fairly compare different techniqueson the field.
TIE will support the measurement of operating variable
such as classification time, computational load, as well
as memory footprint.

REFERENCES

[1] Thomas Karagiannis, Andre Broido, Nevil Brownlee, KC Claffy, and
Michalis Faloutsos. Is p2p dying or just hiding? InIEEE Globecom,
2004.

[2] Thomas Karagiannis, Konstantina Papagiannaki, and Michalis Faloutsos.
Blinc: Multilevel traffic classification in the dark. InACM SIGCOMM,
August 2005.

[3] Tom Auld, Andrew W. Moore, and Stephen F. Gull. Bayesian neural
networks for internet traffic classification.IEEE Transactions on Neural
Networks, 18(1):223–239, January 2007.

[4] Nigel Williams, Sebastian Zander, and Grenville Armitage. A prelim-
inary performance comparison of five machine learning algorithms for
practical ip traffic flow classification.ACM SIGCOMM CCR, 36(5):7–
15, October 2006.

[5] CoralReef. http://www.caida.org/tools/measurement/coralreef/.
[6] Vern Paxson. Bro: A system for detecting network intruders in real-time.

In Computer Networks, pages 23–24, 1999.
[7] L7-filter, Application Layer Packet Classifier for Linux.

http://l7-filter.sourceforge.net.
[8] Cisco Systems. Blocking Peer-to-Peer File

Sharing Programs with the PIX Firewall.
http://www.cisco.com/application/pdf/paws/42700/block p2p pix.pdf.

[9] netAI: Network Traffic based Application Identification.
http://caia.swin.edu.au/urp/dstc/netai.

[10] Tstat. http://tstat.tlc.polito.it [November 2008].
[11] Dario Bonfiglio, Marco Mellia, Michela Meo, Dario Rossi, and Paolo

Tofanelli. Revealing skype traffic: when randomness plays with you. In
SIGCOMM ’07: Proceedings of the 2007 conference on Applications,
technologies, architectures, and protocols for computer communications,
pages 37–48, New York, NY, USA, 2007. ACM.

[12] Luca Salgarelli, Francesco Gringoli, and Thomas Karagiannis. Compar-
ing traffic classifiers.SIGCOMM Comput. Commun. Rev., 37(3):65–68,
2007.

http://www.caida.org/tools/measurement/coralreef/
http://l7-filter.sourceforge.net
http://www.cisco.com/application/pdf/paws/42700/block_p2p_pix.pdf
http://caia.swin.edu.au/urp/dstc/netai
http://tstat.tlc.polito.it

TABLE I: TIE classification plugins available and under development. The table highlights input from the community and joint activities.
Classification Plugin Features based on Classification approach Status Collaborations and contributions from the community

Port Protocol ports Port-based Available Developed by UNINA, signatures from CAIDA [5]
L7 Payload Deep payload inspec-

tion
Available Developed by UNINA, code and signatures from Linux L7-filter

[7]
NBC Payload Lightweight Payload

Inspection
To be released Developed by UNINA

GMM-PS First few packet sizes Gaussian Mixture Mod-
els [16]

Under test Developed by UNINA

HMM Packet size and inter-packet time Hidden Markov Models
[25]

Under devel. Development by UNINA

FPT Packet size and inter-packet time Statistical [21] Under devel. Joint work between UNINA and University of Brescia in the
context of the RECIPE research project [26]

Joint Packet size and inter-packet time Nearest Neighbour Under devel. Joint work: UNINA, CAIDA, Seoul National University
GT Information from Hosts Ground-Truth In early devel. Joint work: University of Brescia, CAIDA, UNINA

[13] Tcpdump and the Libpcap library. http://www.tcpdump.org [November
2008].

[14] V. Jacobson S. McCanne. The bsd packet filter: A new architecture
for userlevel packet capture.Winter 1993 USENIX Conference, pages
259–269, January 1993.

[15] Wei Li and Andrew W. Moore. A machine learning approach for efficient
traffic classification. IEEE International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS), October 2007.

[16] Laurent Bernaille, Renata Teixeira, and Kave Salamatian. Early appli-
cation identification. InACM CoNEXT, December 2006.

[17] Thomas H. Ptacek, Timothy N. Newsham, and Homer J. Simpson.
Insertion, evasion, and denial of service: Eluding networkintrusion
detection. Technical report, 1998.

[18] Andrew Moore, Denis Zuev, and Michael Crogan. Discriminators for use
in flow-based classification. Technical Report RR-05-13, Department of
Computer Science, Queen Mary, University of London, 2005.

[19] Ludmila I. Kuncheva. Combining Pattern Classifiers: Methods and
Algorithms. Wiley-Interscience, 2004.

[20] Andrew Moore and Konstantina Papagiannaki. Toward theaccurate
identification of network applications. InPAM, April 2005.

[21] Manuel Crotti, Maurizio Dusi, Francesco Gringoli, andLuca Salgarelli.
Traffic classification through simple statistical fingerprinting. ACM
SIGCOMM CCR, 37(1):7–16, January 2007.

[22] Zhu Li, Ruixi Yuan, and Xiaohong Guan. Accurate classification of the
internet traffic based on the svm method. InICC, June 2007.

[23] Tcpreplay. http://tcpreplay.sourceforge.net [November 2008].
[24] Netfilter/IPTables. http://www.netfilter.org [November 2008].
[25] A. Pescaṕe P. Salvo Rossi A. Dainotti, W. de Donato. Classification

of network traffic via packet-level hidden markov models. InIEEE
GLOBECOM 2008, December 2008.

[26] RECIPE (Robust and Efficient traffic Classification in IP nEtworks).
http://recipe.dis.unina.it.

[27] COST Action IC0703: Data Traffic Monitoring and Analysis (TMA):
theory, techniques, tools and applications for the future networks.
http://www.cost-tma.eu.

http://www.tcpdump.org
http://tcpreplay.sourceforge.net
http://www.netfilter.org
http://recipe.dis.unina.it
http://www.cost-tma.eu

