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Department of Computer Engineering and Systems, Universitá di Napoli Federico II
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Abstract. In this work we present and evaluate different automated com-
bination techniques for traffic classification. We consider six intelligent
combination algorithms applied to both traditional and more recent traffic
classification techniques using either packet content or statistical proper-
ties of flows. Preliminary results show that, when selecting complementary
classifiers, some combination algorithms allow a further improvement –
in terms of classification accuracy – over already well-performing stand-
alone classification techniques. Moreover, our experiments show that the
positive impact of combination is particularly significant when there are
early-classification constraints, that is, when the classification of a flow
must be obtained in its early stage (e.g. first 1 – 4 packets) in order to
perform network operations online.

1 Introduction

Traffic Classification gained a lot of attention from both the industrial and
academic research communities because of its application in several contexts:
traffic/user profiling, network provisioning and resource allocation, QoS, enforce-
ment of security policies, etc. While significant progress has been made in this
field, with development in several research directions, literature clearly shows
that there is still no perfect technique achieving 100% accuracy when applied to
the entire traffic observed on a network link [20].

Deep Packet Inspection (DPI) is still considered the most accurate approach,
but because of (i) computational complexity, (ii) privacy issues, and (iii) lack
of robustness to the increasing usage of encryption and obfuscation techniques,
it is used today as a reference (ground-truth) in order to evaluate the accuracy
of new experimental algorithms that should overcome these limitations. Most of
these algorithms are based on the application of machine-learning classification
techniques to traffic properties and, even if their accuracy never reaches 100%,
it has been shown that they typically are more resistant to obfuscation attempts
and applicable when encryption is in place [5, 30].

In [13] we proposed the implementation in a single classification platform
of combination strategies able to collect the results of very different classifica-
tion techniques. Moreover, literature in the machine-learning field and pattern
recognition [22] has produced several combination algorithms for building multi-
classifier systems able to achieve better accuracy than each stand-alone classifier
composing them.
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In this work we apply several (6) of such algorithms to the problem of traffic
classification, attempting the combination of classifiers (8) based on techniques
known in the traffic classification field and we show preliminary results obtained
from a real traffic trace. We show that in some cases it is possible to improve
the overall classification accuracy over that of the best-performing classifier.
Moreover, based on the observation that when a very limited quantity of infor-
mation on each flow is available (which translates in less discriminating features)
the accuracies of each stand-alone classifier decrease, we evaluate the improve-
ment achieved by combining them under such conditions. Results show that the
improvement is quite significant. This is important because several real-world
applications of traffic classification as, for example, QoS, traffic shaping, and
security policy enforcement, require early-classification, that is, the ability to
generate a classification response when the flow is in its early stage (e.g. after 1
– 4 packets have been captured) [6] and thus could take real advantage from the
use of the combination approaches here analyzed.

2 Related Work

A large amount of research work on traffic classification has been published in the
past ten years, including several surveys and papers making comparisons among
different techniques [20] [29] [10] [24]. All of them show pros and cons of different
techniques and approaches as well as their inability to reach 100% classification
accuracy. On the other side, research in the fields of machine-learning and pat-
tern recognition has developed combination algorithms for classification prob-
lems that allow several improvements, included an increase in overall classifica-
tion accuracy [22]. In the field of network traffic classification, a first rudimental
combination approach to traffic classification was proposed in [26]: three different
classification techniques are run in parallel (DPI, well-known ports and heuristic
analysis), and a decision on the final classification response is taken only when
there is a match between the results of two of them (otherwise the multi-classifier
reports “unknown”). In [14] and [13], instead, we proposed the idea of combin-
ing multiple traffic classifiers using advanced combination strategies, inspired by
research in the machine-learning and pattern-recognition fields related to multi-
classification [22]. The approach of combining multiple classification techniques
through specific algorithms to build a more accurate “multi-classifier”, indeed,
has been already used with success in other networking reasearch areas as net-
work intrusion and anomaly detection [12]. As for traffic classification, concepts
like En-semble Learning and Co-training have been introduced in [18], where a
set of similar classifiers co-participate to learning, while an advanced combina-
tion of different traffic classification techniques has been shown in [9]. However,
in that work, only variants of the Dempster-Shafer algorithm and a majority
vote are taken into account, while in this paper we consider a more complete
set of combination algorithms representative of the state of the art in multi-
classification [22] – including those based on the Behavior Knowledge Space –
plus we experiment on varying the composition of the pool of traffic classifiers.
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Moreover, our contribution goes into a specific, and novel, direction by examin-
ing the impact of traffic classification under early-classification constraints. We
pursue this target by evaluating the behavior of both the stand-alone classifiers
and their combinations when trained and tested with discriminating features ex-
tracted only from a limited number of packets (from a single packet to the first
ten packets). Several works have been presented that tackle the problem of early
traffic classification [7] [11] [16], and they show the tradeoff between the amount
of packets considered for extracting flow features and classification accuracy. In
this work, for the first time we propose multi-classification as a way to improve
accuracy while keeping the amount of information used for classification low.

3 Combination Algorithms

In many pattern recognition applications, achieving acceptable recognition rates
is conditioned by the large pattern variability, whose distribution cannot be
simply modeled. This affects the results at each stage of the recognition system
so that, once it has been designed, its performance cannot be improved over
a certain bound, despite the efforts in refining either the classification or the
description method.

In the last years, some research groups concentrated the attention on a mul-
tiple classifier approach [8, 19, 21, 31]. The rationale of this approach lies in the
assumption that, by suitably combining the results of a set of base classifiers, the
obtained performance is better than that of any base classifier: it is claimed that
the consensus of a set of classifiers may compensate for the weakness of a single
classifier, while each classifier preserves its own strength [21]. The implementa-
tion of a multiple classifier system implies the definition of a combiner [22] for
determining the most likely class a sample should be attributed to, considering
the answers of the base classifiers.

Different combiners, independent of the adopted classification model, have
been proposed in the literature [8,22]. In the following we give a short introduc-
tion on the considered combiners. Since some traffic classifiers can be only seen
as a Type 1 classifier (i.e. a classifier that outputs just the most likely class),
we considered only criteria that can be applied to classifiers that provide a crisp
label as output. It is worth noting, in fact, that some well-known combination
schemes (such as the Decision Templates proposed in [23]) cannot be applied to
Type 1 classifiers, since they require class probability outputs (i.e., the so-called
Type 3 classifiers1).

Before entering in details, it is worth recalling that some combiners make
use of the so-called confusion matrix [31] for combining Type 1 classifiers. The
classification confusion matrix Ek is such that the generic element ek

ij (1 ≤
i, j ≤ m, where m is the number of the classes) represents the percentage of
samples belonging to the i-th class that the k-th classifier assigns to the j-th
1 For the sake of completeness let us recall that Type 2 classifiers operate at rank

level, providing as output a subset of all the possible classes, with the alternatives
ranked in order of plausibility of being the correct class.
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class. Therefore, the value ek
ii represents the percentage of samples belonging to

the i-th class which are correctly classified by the k-th classifier. The values of
the elements of Ek should be computed using a set of data (namely, a validation
set) different from both the training and the test set.
1) Majority Voting (MV ): each classifier votes for one class and the guess class
is the one voted by the majority. If more classes obtain the same number of
votes, the values ek

ii are used for tie breaking, i.e. the vote of each classifier
is weighted by the number representing the confidence degree of that classifier
when it assigns a sample to the class it is voting for.
2) Weighted Majority Voting (WMV ): in this case the confidence degree evalu-
ated by means of the confusion matrices was used for weighting the votes given
by each classifier. The combiner assigns each sample to the class C such that:

C = argmax
i

∑

k

ek
ii · V k

i (1)

where V k
i is 1 if the guess class of the k-th classifier is i and 0 otherwise.

3) Näıve Bayes (NB): the guess class is the one which maximizes the a posteriori
probability. The probability that a sample belongs to the i-th class when the k-th
classifier assigns it to the j-th class is assumed to be:

Mi · ek
ij

m∑

h=1

Mh · ek
hj

(2)

being Mi the number of samples belonging to the i-th class. Applying the Bayes’
formula and standing the assumption of the independence of the classifiers, it
can be simply shown, starting from the results presented in [22], that the class
C which maximizes the a posteriori probability is:

C = arg max
i

Mi ·
N∏

k=1

ek
ij (3)

where N is the number of classifiers and j is the guess class provided by the k-th
classifier.
4) Dempster-Shafer combiner (D-S ) [31]: this criterion is based on the Dempster-
Shafer theory [17]. According to it, we define for each classifier, the belief in
every possible subset A of the set Θ = {A1, A2, ... , Am}. In our context Ai is a
proposition representing the fact that a sample is assigned to the i-th class by the
considered classifier. The belief bel(.) is calculated from a function, called basic
probability assignment, which is denoted m(.), by using the following equation:

bel(A) =
∑

B⊆A

m(B) (4)

where B is any subset of A. Obviously, we have bel(Ai)=m(Ai) and bel(Θ)=1.
In our case, when the k-th expert votes for the i-th class, we consider m(Ai)=ek

ii
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and m(Θ) = 1 - ek
ii. The values m(A) supplied by each expert are combined via

the Dempster rule, and the values bel(Ai) are calculated using equation (4). The
estimated class is the one that maximizes the value of bel(Ai).
5) Behavior-Knowledge Space (BKS ) method: one of the main drawbacks of
the previously described approaches lies in the fact that they require (in a
more or less explicit way) the independent assumption of the combining clas-
sifiers. This assumption does not usually hold in real applications, especially
when the number of classifiers to be combined grows. More recently, a combiner
has been proposed in order to overcome such limitations. It derives the infor-
mation needed to combine the classifiers from a knowledge space, which can
concurrently record the decision of all the classifiers on a suitable set of sam-
ples. This means that this space records the behavior of all the classifiers on this
set, and then it is called the Behavior-Knowledge Space [19]. So, a Behavior-
Knowledge Space is a N -dimensional space where each dimension corresponds
to the decision of a classifier. Given a sample to be assigned to one of m pos-
sible classes, the ensemble of the classifiers can in theory provide mN different
decisions. Each one of these decisions constitutes one unit of the BKS. In the
learning phase each BKS unit can record m different values ci, one for each
class. Given a suitably chosen data set, each sample x of this set is classified
by all the classifiers and the unit that corresponds to the particular classi-
fiers’ decision (called focal unit) is activated. It records the actual class of x,
say j, by adding one to the value of cj . At the end of this phase, each unit
can calculate the best representative class associated to it, defined as the class
that exhibits the highest value of ci. It corresponds to the most likely class,
given a classifiers’ decision that activates that unit. In the operating mode,
the BKS acts as a look-up table. For each sample x to be classified, the N
decisions of the classifiers are collected and the corresponding focal unit is se-
lected. Then x is assigned to the best representative class associated to its focal
unit.
6) Wernecke’s (WER) method: it is similar to BKS and aims at reducing over-
training. The difference is that in constructing the BKS table, Wernecke [27]
considers the 95 percent confidence intervals of the frequencies in each unit.
If there is overlap between the intervals, the prevailing class is not considered
dominating enough for labeling the unit. In this case, the “least wrong” classifier
among the N members of the pool is identified, by using the confusion matrices.
This classifier is authorized to assign the class to that unit. To calculate the
95 percent confidence intervals (CI), we used the Normal approximation of the
Binomial distribution, as described in [22].
7) Oracle (ORA): when dealing with the evaluation of a MCS, it is useful to
consider the performance of the so-called “Oracle”. The Oracle is the theoretic
MCS that correctly classifies a sample if at least one of the base classifiers is
able to provide the correct classification. It is evident that for a defined set of
classifiers, the performance of the Oracle is an upper bound of all the MCS’s
obtainable from the same set of classifiers by using any combiner.
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Table 1. Combination Algorithms

Label Technique Category Training
NB Naive Bayes Bayesian Confusion Matrix
MV Majority Voting Vote Confusion Matrix

WMV Weighted Majority Voting Vote Confusion Matrix
D-S Dempster-Shafer Dempster-Shafer Confusion Matrix
BKS BKS Behavior Knowledge Space BKS
WER Wernecke Behavior Knowledge Space BKS&Confusion Matrix
ORA Oracle Oracle na

4 The Tools Used

TIE2 is a software platform for experimenting with and comparing traffic clas-
sification techniques. TIE allows the development of algorithms implementing
different classification techniques as classification plugins (see Fig. 1) that are
plugged into a unified framework, allowing their comparison and combination.
We refer the reader to [13] as regards the TIE platform as well as the TIE-L7
classification plugin, which implements a DPI classifier using the techniques and
signatures from the Linux L7-filter project [1] and that we used here to produce
the ground truth. In the following, instead, we describe the new features we
introduced in TIE in order to develop this work.

First of all, the above-mentioned combination strategies have been imple-
mented in TIE’s decision combiner (Fig. 1) and a set of support scripts have
been developed in order to extract from the ground-truth (generated by TIE-
L7) the confusion matrix and the BKS matrix needed for training the combiners.
This information is reported into configuration files that are read at run time by
the combiner selected by a command-line flag.

Moreover, in order to be able to rapidly test different machine-learning ap-
proaches to traffic classification we used the WEKA tool3 that already imple-
ments a large number of machine-learning classification techniques. We plan to
implement some of such techniques as TIE classification plugins, but in order
to study and test a relevant number of machine-learning approaches we imple-
mented a “bypass” mechanism in TIE which is structured in three phases:

– A new option allows, for each flow, to dump the corresponding classification
features extracted by TIE (e.g. first ten packet sizes, flow duration, etc.)
along with the ground truth label assigned by TIE-L7. Such information is
dumped in a file in the arff format used by WEKA.

– The arff file is split in the training and test sets that are used to train and test
various WEKA classifiers, whose classification output is in arff format too.

– A new TIE classification plugin is able to read the output of a WEKA
classifier and use it to take the same classification decision for each flow.
Multiple instances of such plugin can be loaded in order to support the
output of several “WEKA” classifiers at the same time.

2 http://tie.comics.unina.it
3 http://www.cs.waikato.ac.nz/ml/weka

http://tie.comics.unina.it
http://www.cs.waikato.ac.nz/ml/weka
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Fig. 1. TIE overall architecture

In this way TIE has a common view of both WEKA classifiers and TIE classifi-
cation plugins: all these classifiers are seen as TIE plugins. This approach allowed
us to easily test several classification approaches and to combine several of them
plus pre-existing TIE classification plugins not based on machine-learning tech-
niques (e.g. port-based and a novel lightweight payload inspection technique). In
addition, based on the results of our studies on multi-classification we can later
implement in TIE only the best performing classifiers.

Finally, in order to study the behavior of the classifiers and of the multi-
classifier systems built on them, we introduced the option in TIE to generate
a different file of features (in arff format) depending on the number of packets
for each flow that can be used for extracting features. This option affects also
the native TIE classification plugins that acquire the features directly by TIE’s
feature extractor (Fig. 1).

5 Data Set and Stand-Alone Classifiers

For the experimental results shown in this paper we used the traffic trace de-
scribed in Table 2, in which we considered flows bidirectionally (biflows in the
following) [13]. Each biflow has been labeled by running TIE with the TIE-L7
plugin in its default configuration, i.e. for each biflow a maximum of 10 packets
and of 4096 bytes are examined.

Table 2. Details of the observed traffic trace

Site Date Size Pkts Biflows
Campus Network of the University of Napoli Oct 3rd 2009 59 GB 80M 1M

From such dataset we then removed all the biflows labeled as UNKNOWN
(about 167,000) and all the biflows that summed to less than 500 for their
corresponding application label. Table 3 shows the traffic breakdown obtained4.
This set was then split in three subsets in the following percentages:

– 20% classifiers training set
– 40% classifiers & combiners validation set
– 40% classifiers & combiners test set

4 QQ is an instant messaging application.
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Table 3. Traffic breakdown of the observed trace (after filtering out unknown biflows
and applications with less than 500 biflows)

Application Percentage of biflows
BITTORRENT 12.76

SMTP 0.78
SKYPE2SKYPE 43.86

POP 0.24
HTTP 16.3

SOULSEEK 1.06
NBNS 0.14
QQ 0.2
DNS 4.08
SSL 0.21
RTP 1.16

EDONKEY 19.21

Table 4. Stand-alone classifiers

Label Technique Category Features
J48 J48 Decision Tree Machine Learning PS, IPT

K-NN K-Nearest Neighbor Machine Learning PS, IPT
R-TR Random Tree Machine Learning L4 Protocol, Biflow duration & size, PS & IPT statistics
RIP Ripper Machine Learning L4 Protocol, Biflow duration & size, PS & IPT statistics
MLP Multi Layer Perceptron Machine Learning PS
NBAY Naive Bayes Machine Learning PS

PL PortLoad Payload Inspection Payload
PORT Port Port Ports

We considered eight different traffic classifiers, summarized in Table 4. The
first five are based on Machine-Learning approaches common in literature both
in terms of algorithms and discriminating features [28, 3, 25, 4]. As regards the
features, in the same table PS stands for Payload Size, while IPT means Inter-
Packet Time [15]. The J-48, K-NN, MLP, and NBAY classifiers consider the
vectors of the first 10 PS and IPT, whereas the R-TR and RIP classifiers use
statistics of PS and IPT as their average and standard deviation. The latter
classifiers also take into account the transport-level protocol of the biflow, the
biflow duration (in milliseconds) and size (in bytes). The PortLoad classifier,
instead, is a light-weight payload inspection approach, recently presented in [2],
that overcomes some of the problems of DPI, as computational complexity and
invasiveness, at the expense of a reduced accuracy. PortLoad only uses the first 32
bytes of transport-level payload from the first packet (carrying payload) seen in
each direction. Finally, we also considered the traditional traffic classifier based
on transport-level protocol ports.

Table 5 shows the classification accuracy (i.e. percentage of correctly classified
biflows) of every stand-alone classifier for each application and over the entire
test set. The different performance of the classifiers for every application, and
in particular the best accuracy score for each of them (printed in bold font),
show that they have some complementarities. Moreover, the Port classifier has
a very low overall score, which in general would suggest to avoid its use in a
multi-classifier system, but we considered it because it reaches very high ac-
curacy values for some specific applications. Finally, the last column contains
the accuracies that would be obtained by the oracle, that is, by selecting for
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Table 5. Classification accuracy – per-application and overall – of stand-alone classi-
fiers (best values are in bold font) and oracle

Classifier
J48 K-NN R-TR RIP MLP NBAY PL PORT ORACLE

Class
Bittorrent 98.8 97.4 98.9 98.6 55.1 79.9 7.7 21.0 99.9

SMTP 95.1 92.9 93.8 96.0 90.6 69.2 8.2 96.3 99.4
Skype2Skype 98.8 97.2 96.5 99.2 94.6 31.8 98.7 0 99.7

POP 96.0 95.0 98.7 93.9 0 79.6 29.2 100 100
HTTP 99.5 98.9 99.6 99.3 94.3 63.3 99.1 47.7 100

Soulseek 98.6 96.8 98.3 98.1 93 97.7 0 0 99.9
NBNS 78.4 75.9 79.9 80.4 9 0 0 0 85.4
QQ 0 0.7 2.5 0 0 0 0 0 3.2
DNS 93.6 92.6 95.3 94.4 51.1 86.2 100 99.7 100
SSL 96.1 93.1 95.2 93.7 69.5 68.2 99.1 0 99.6
RTP 84.0 74.1 64.5 77.3 0 41.5 0 0 92.2

EDonkey 93.0 91.7 93.3 91.5 72 16.1 92.9 0.1 95.7
overall 97.2 95.9 96.3 97.0 82.3 43.7 83.7 15.6 98.8

each biflow the correct response when this is given by at least one of the stand-
alone classifiers. The overall accuracy obtained by the oracle (98.8%) shows that
the combination of these classifiers can theoretically bring an improvement with
respect to the best standalone classifier (97.2%).

6 Experimental Evaluation of Combiners

We experimented the combination of the stand-alone classifiers from the previ-
ous section using the algorithms explained in Section 4. When combining the
classifiers we experimented with different pools of them, as shown in Table 6,
where the overall accuracies for each pool and combiner are reported. The val-
ues show that in general it is indeed possible to gather an improvement through
combination, as suggested theoretically by the oracle, but this improvement de-
pends not only on the combiner adopted, but also on the choice of the classifiers.
The port-based classifier has in general a negative impact on the performance of
the multi-classifier system, the same happens for the Naive Bayes classifier. This
behavior can be easily explained by looking at their rather low performance as
stand-alone classifiers (Table 5). In particular, the performance of the MV and
the WMV combiners dramatically depend on the weak performance of the Naive
Bayes classifier, since the worst pools for these combiners are those in which this
classifier is present. This can be explained by considering that the worst per-
formance of the Naive Bayes classifier happen on the classes in which also the
MLP classifier performs quite bad, so lowering the performance of voting-based
combiners. On the contrary, the D-S combiner and the multinomial approach
followed the BKS methods and are able to cope with such a situation. Finally,
since the independent assumption of the base classifier does not always hold, the
Naive Bayes combiner does not perform very well on the average.

The pool of classifiers achieving the best results is reported in Table 6 in bold
fonts, using 6 classifiers out of the 8 tested, and closely followed by the second
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Table 6. Classification accuracy of each combiner for different pools of classifiers com-
bined (best or close to the best values are reported in bold font)

Pool of classifiers Combiner
J48 K-NN R-TR RIP MLP NBAY PL PORT NB MV WMV D-S BKS WER
X X X 54.1 96.3 96.3 96.2 97.7 97.7
X X X X 55.2 96.4 96.2 96.6 97.8 97.8
X X X X X 53.5 90.7 90.7 96.7 96.0 96.1
X X X X X X 80.1 72.0 72.2 96.7 97.3 97.3
X X X X X X 93.5 90.8 91.0 97.0 97.9 97.9
X X X X X X X 80.9 72.0 72.2 97.0 97.7 97.7
X X X X X X X 93.6 90.5 90.8 97.1 97.7 97.7
X X X X X X X X 54.6 72.8 71.2 97.1 97.4 97.4

pool in the table that includes only 4 classifiers. As for the combiners, the same
table shows that the best accuracies (percentages in bold fonts) are achieved by
the combiners based on the Behavior Knowledge Space (BKS and Wernecke),
with the highest score of 97.9% overall accuracy. This value should be interpreted
by considering the highest overall accuracy achieved by a stand-alone classifier
(97.2%) and the maximum theoretically possible combination improvement set
by the oracle (98.8%): an improvement equal to 43% of the maximum achievable.

We then focused our experiments on the context of early classification. This
subject has been previously investigated in literature because of its important
applicative characteristics, being early classification indispensable to perform on-
line classification of traffic flows: a new traffic flow is observed on a link and the
system must identify as soon as possible the application associated to it (e.g. in
order to apply a security policy to the flow). In such case, therefore, classification
cannot be performed with all the flow information available, and literature [6,2]
has shown that there is indeed a trade-off between the ability of classifying a
flow using only its first packets and the classification accuracy. In our experimen-
tal analysis we investigated the benefits of multi-classification in this context.
We therefore repeated all the training and testing of the stand-alone classifiers
previously considered with a variable amount of information available, that is
by varying the number of packets for each flow from which the discriminant
features were extracted. We also repeated the combination experiments varying
the number of packets and considering the J48,R-TR,RIP,PL pool of classifiers.
We chose this pool because its overall accuracy values are very close to those
of the best pool but a reduced number of classifiers is used. Moreover, all the
classifiers from this pool use algorithms with a small computational complexity.
This is particularly relevant in the context of online classification.

Table 7 shows the performance of the stand-alone classifiers when 1 to 10
packets are used to extract classification features. The PortLoad classifier is
based on a technique that uses at most 2 packets, therefore accuracies related
to more than 2 packets are all equal, whereas the port-based classifier needs a
single packet to perform classification. The best accuracy value for each number
of available packets is reported in bold font. The results in the table confirm
the impact of reducing the amount of available information on classification
accuracy, as suggested by the literature. Moreover, the values in this table can
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Table 7. Classification accuracy of each stand-alone classifier depending on the number
of packets used for the feature extraction (the highest accuracy for each column is
reported in bold font)

Number of packets observed for each biflow
Classifier 1 2 3 4 5 6 7 8 9 10

J48 62.1 94.6 95.9 96.0 96.8 97.1 97.2 97.2 97.2 97.2
K-NN 62.4 91.5 92.8 95.0 94.9 94.9 95.4 95.7 95.6 95.9
R-TR 72.7 93.4 93.6 94.9 95.3 96.8 96.0 96.0 96.1 96.2
RIP 69.5 93.7 94.7 96.2 96.1 96.5 96.7 96.9 96.9 96.9
MLP 43.5 71.7 81.0 82.3 82.3 82.3 82.3 82.3 82.3 82.3
NBAY 31.5 39.9 42.6 43.7 43.7 43.7 43.7 43.7 43.7 43.7

PL 76.2 83.7 83.7 83.7 83.7 83.7 83.7 83.7 83.7 83.7
PORT 15.6 15.6 15.6 15.6 15.6 15.6 15.6 15.6 15.6 15.6

Table 8. Classification accuracy when varying the number of available packets. Pool
of combined classifiers: J48,R-TR,RIP,PL.

Number of packets observed for each biflow
Combination 1 2 3 4 5 6 7 8 9 10

MV 57.8 93.9 94.4 95.6 95.9 96.2 96.3 96.3 96.4 96.4
D-S 83.1 96.0 96.9 97.0 97.4 97.4 96.4 96.5 96.5 96.5
BKS 97.0 98.4 98.3 98.4 98.4 98.4 98.4 98.4 98.4 98.4
WER 97.0 98.3 98.2 98.4 98.4 98.4 98.4 98.4 98.4 98.4

Fig. 2. Classification accuracy of the best-performing stand-alone classifier (blue line)
vs the multi-classifier (red line)

be compared with the results of multi-classification reported in Table 8. Here,
to reduce the large amount of experiments, we limited our tests to only four
combiners (including the best two methods). The overall accuracy values show
that in the case of early-classification the impact of multi-classification is rather
significant, this is also visible in Figure 2 where we plotted for each number of
available packets both the highest accuracy achieved by stand-alone classifiers
(blue line) and the highest accuracy achieved by the combiners (red line): for 1
packet the combination brings an improvement of about +21% overall accuracy,
while for 2 packets it is of about +4%. Such large improvements suggest that



Early Classification of Network Traffic through Multi-classification 133

multi-classification may be an effective strategy for the implementation of more
accurate traffic classifiers able to work online in the context of early classification.

7 Conclusion

In this work we have presented and evaluated different combination techniques
for traffic classification, including the BKS-based algorithms, which were not
previously proposed in the traffic classification field. Moreover, for the first
time we proposed the use of multi-classification in the context of early traffic
classification. The preliminary experimental results here presented show several
findings:

– The combination of stand-alone classifiers that present complementarities
can improve the overall classification accuracy.

– The combiners based on the Behavior Knowledge Space look more promising
than the others with respect to traffic classification. This behavior can be
due to the fact that in our case the independent assumption of the combining
classifiers does not hold. Moreover, the availability of a significant amount
of training data does not cause BKS overtraining (which is one of the main
drawbacks of this method).

– Even if literature has shown that the transport-level port is still a useful
classification feature, combiners cannot effectively exploit the (small) dis-
criminating power of a port-based traffic classifier. On the contrary, classi-
fiers based on (light-weight) payload inspection complement very well with
machine-learning classifiers.

– The positive impact on overall accuracy of combination is particularly sig-
nificant in the context of early classification. With very strict requirements
(e.g. 1 or maximum 2 packets per biflow) the performance decrease in terms
of classification accuracy of the stand-alone classifiers can be almost entirely
compensated by their combination.

As future work, we plan to extend this investigation to traffic traces from dif-
ferent links. Moreover we will focus furthermore on the exploitation of multi-
classification in the context of early-classification, investigating in detail also
computational complexity and timing-related issues. For this purpose we will
also implement the machine-learning classifiers that were best performing as
TIE plugins.
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