
A Probabilistic Framework for Distributed
Localization of Attackers in MANETs

Alessandra De Benedictis2, Behzad Koosha1, Massimiliano Albanese1, and
Valentina Casola2

1 Center for Secure Information Systems
George Mason University, Fairfax, VA, USA

{malbanes,bkoosha}@gmu.edu
2 Department of Electrical Engineering and Information Technology

University of Naples “Federico II”, Naples, Italy
{alessandra.debenedictis,casolav}@unina.it

Abstract. Mobile Ad-hoc Networks (MANETs) are frequently exposed
to a wide range of cyber threats due to their unique characteristics. The
lack of a centralized monitoring and management entity and the dynamic
nature of their topology pose new and interesting challenges for the de-
sign of security mechanisms for MANETs. While conventional methods
primarily focus on detecting attacks, in this work we focus on estimating
the attackers’ physical location in the network, and propose a probabilis-
tic framework for aggregating information gathered from nodes reporting
malicious activities in their vicinity. In order to be consistent with the
decentralized nature of MANETs, we present a distributed approach to
attacker localization based on dynamically partitioning the network into
clusters. These self-organized clusters can (i) independently find the ap-
proximate location of the attackers in real time, and (ii) deploy trusted
resources to capture attackers. We show through experiments in a simu-
lated environment that our approach is effective and efficient.

Keywords: Attacker Localization, Mobile Ad-hoc Network, Distributed
Framework, Cluster

1 Introduction

Mobile Ad-hoc Networks (MANETs) consist of mobile nodes able to transmit
and receive data without the need for a fixed infrastructure. Due to their flexibil-
ity, they have been widely adopted in a variety of applications such as military
battlefield monitoring and control, civilian sensor networks, file sharing and hu-
manitarian disaster relief operations, etc.

MANETs are characterized by several features that uniquely differentiate
them from wireless devices, such as the lack of a centralized management, the
absence of rigid boundaries, power constraints, bandwidth limitations, dynamic
topology, scalability and cooperativeness. These features expose MANETs to a
wide range of cyber threats and pose new challenges for the design of security

2

Fig. 1: a MANET scenario where attackers are captured by trusted resources.

mechanisms. As Fig.1 illustrates, network nodes could be threatened by sev-
eral attackers physically located within their transmission range. It would be
desirable for the nodes to cooperate locally and locate the attacker as soon as
possible. Moreover, once localized, the attackers could be physically captured by
dispatching trusted resources so that they cannot cause further harm.

Extensive research efforts have been dedicated to the issue of detecting var-
ious types of attacks, while the problem of physically localizing attackers with
respect to specific types of attacks has been marginally studied. Existing ap-
proaches are mostly based on measuring and processing parameters related to
node communication, such as connections with neighboring nodes, time of ar-
rival (TOA), angle of arrival (AOA) and received signal strength (RSS), but they
could be easily manipulated by attackers, thus reducing the effectiveness of such
solutions.

In our previous work [1], we proposed a more general solution to the problem
of attackers’ localization, based on the processing of alerts generated in the
network on a probabilistic basis. Estimation of the attacker’s location was based
on information collected from the nodes raising alerts, assuming that malicious
nodes reside in the vicinity of those nodes. This assumption is reasonable and
has been adopted by several intrusion detection systems, such as [7],[5].

The main issue with our previous solution is the way alerts are processed,
as we assumed the existence of a centralized authority able to gather informa-
tion about all alerts generated in the network and deploy proper resources to
capture localized attackers. In this paper, we aim at overcoming such limitation
and propose a distributed localization framework, in which information about
raised alerts is processed locally within dynamically established clusters of nodes.
Moreover, unlike its centralized version, the proposed distributed framework ag-
gregates and processes alerts as soon as they emerge. This is vital to cease any
network malfunction during further communication between nodes.

The reminder of this paper is organized as follows. Section 2 discusses related
work about attacker localization and clustering strategies in mobile networks.
Section 3 clearly states the goals of this paper with respect to the state of the

3

art. In Section 4, we present a detailed description of the framework. Section 5
provides our clustering scheme adopted to run the localization algorithm in a
distributed fashion. Experimental results are presented in Section 6, and finally
Section 7 presents some concluding remarks.

2 Related Work

Considerable research has been recently devoted to the problem of detecting
various types of attacks against wireless networks, and there is an increasing
interest in attacker localization, in both wireless sensor networks and ad-hoc
mobile networks.

The work presented by Zeng et al. [9] discusses and categorizes current so-
lutions in both secure localization and location verification fields for wireless
sensor networks. Indeed, in case of deployment in hostile environments, the at-
tackers might interfere with the localization process, so as to produce wrong
estimated locations. In addition, since sensor nodes might be compromised, the
base station may not rely on the locations disclosed by sensor nodes.

In this regard, the work by Zhan and Li [10] tackles the problem of locating
a static malicious source that deliberately conceals or forges its position with
the help of a directional antenna in sensor networks. The principal idea is to
use coordination of multiple sensors to locate the adversary and optimize the
process with a finite horizon discrete Markov decision process. In this work, a
localization mechanism called Active Cross Layer Location Identification (ACLI)
for sensor networks has been devised. Unlike existing localization schemes, this
mechanism is not influenced by an attacker that falsifies its location by methods
such as smart antennas and software defined radio equipments.

Yang et al. [8] proposed the use of spatial information to localize various
adversaries performing a spoofing attack. They analyzed the spatial correlation
of received signal strengths of the wireless nodes. The received signal strength-
based spatial correlation, as a physical property related to every wireless node,
is difficult to forge, and is independent of cryptography schemes. The proposed
approach can detect the existence of attacks in addition to determining the
number of adversaries.

Liu et al. [6] addressed the problem of localizing multiple jammers in wire-
less networks, by analyzing the network topology changes caused by jamming
activities. The proposed framework groups the network nodes into clusters, and
estimates the positions of jammers by analyzing situations where jamming areas
have common intersections.

Most of the existing approaches that provide ad-hoc solutions to the problem
of localizing attackers depend on the specific nature of attacks. Seeking for the
definition of a more general approach to attacker localization in MANETs, we
proposed in [1] a framework based on a probabilistic model of the attacker’s
location, and presented two polynomial time heuristic algorithms to estimate
the position of attackers in a MANET on a probabilistic basis. The proposed
framework relies on the capability of nodes to detect a malicious activity in

4

their vicinity. This can be accomplished by having proper IDSs running on each
node. The localization algorithm is run by a centralized authority, that collects
information about alerts that have been raised throughout the network during
an observation interval.

The main goal of the localization algorithm is to find the minimum set of
candidate locations that could explain, if containing attackers, all the alerts
generated in the network. After modeling the field of observation as a grid,
we assigned a probability value Pr(attacker(p)) to each point p of the grid,
representing the probability that p is an attacker, based on its proximity to
alerts. Pr(attacker(p)) is obtained as a combination (see [1]) of all the values
Pr(causes(p, a)), representing the probabilities that p has caused for each alert
a, that has been raised.

Unlike cellular networks where the nodes (users) can gather information
about other nodes via a control unit (base station), the ad-hoc network lacks the
mentioned feature due to its infrastructure-less architecture. It is observed that
communications in cellular networks are mainly executed point to point, while,
in ad-hoc networks, the communications are mostly between groups which are
likely to harmonize their movements in the network. In order to increase the
routes life cycle and reduce the routing control overhead, clustering of the nodes
into groups is considered.

Using the concept of clusters in an ad-hoc network has several benefits. Cur-
rent routing protocols can be immediately applied to the clusters. Also commu-
nication overhead can be reduced by lowering the sum of control and signalling
data needed to achieve a consistent transmission of data in the network. This
will have a substantial effect in reducing routing overhead particularly in large
dense networks where finding a solution to the scalability problem is of great
importance.

Several research works have been proposed to form clusters and elect clus-
terheads in ad-hoc networks. In the Lowest ID cluster algorithm (LIC) [3] every
node is assigned a unique id. At regular intervals, each node broadcasts a list of
nodes that it can hear in its vicinity. The node with the minimum id is selected
as a clusterhead. The downside to this algorithm is the fact that some selected
nodes are likely to operate as clusterheads for a longer interval and this causes
them to loose their battery power.

In the Highest Connectivity Clustering algorithm (HCC) [2], the selection of
the clusterheads is executed such that the node having the highest number of
neighbors (maximum degree) in its transmission range is elected as a cluster-
head. This network is very stable in terms of clusterhead change despite the low
throughput.

The main idea in Weighted Clustering algorithm (WCA) [4], is to assign a
weight to each node in the network according to its mobility, degree of freedom,
cumulative time of acting and the remaining battery level. In our framework, we
adopted an enhanced version of such algorithm, that we will present in section 5.

Although our previous solution is able to obtain good results in practice,
it raises some drawbacks that we aim to overcome in this paper: first, it relies

5

upon the existence of a centralized authority, that is usually not practical in a
MANET due to the lack of a fixed infrastructure and its typical self-organizing
nature. Second, it only processes alerts at the end of an observation interval
instead of trying to identify and capture attackers as soon as possible.

In the following, we introduce a distributed version of the probabilistic local-
ization framework, able to overcome the discussed issues.

3 Problem Statement

In this paper, we propose a framework for attackers’ localization, based on a
completely distributed localization algorithm, directly deriving from the cen-
tralized one presented in our previous work [1]. In this revised version of the
localization framework, we eliminate the need for a centralized authority and
distribute the localization process among nodes. Moreover, we perform an early
processing of alerts, in such a way that countermeasures can be taken to reduce
harm for the system. The main contributions of this paper are the following:

1. we introduce a distributed strategy to smartly process alerts as they emerge,
2. we define a protocol to exchange messages related to the localization strategy,

defining specific message types.
3. we evaluate the performance of the distributed framework compared to the

centralized version.

Before going into details about our proposal, we present some definitions that
will be used throughout this paper.

Definition 1 (Neighbors). Two nodes i and j are considered neighbors if they
are in the transmission range of each other. If considering a free space propaga-
tion model, it means that D (i,j) ≤ r, where D denotes the Euclidean distance
and r is the transmission range.

Definition 2 (k-Neighbors). Two nodes i and j are considered k-neighbors if
there exists a path between them of at most k hops.

Definition 3 (Cluster). Given a space S, and a node n ∈ S, a cluster C ∈ S is
composed of all nodes i ∈ S such that i and n are k-neighbors. The k parameter
will be referred as “cluster depth” later on in the experimental results section.

Definition 4 (Clusterheads). Given a cluster C ∈ S composed of N nodes,
the clusterhead is a node CH ∈ C such that it maximizes a quality function f
(e.g. battery level, degree, etc.). The clusterhead functions as a local coordinator
and supervises the cluster’s overall activity.

Definition 5 (Compatible Alerts). Alerts that are potentially raised by the
same attacker are said to be compatible. Two alerts a1 and a2 are compatible if
D(a1,a2) ≤ 2 · r.

6

The general idea behind the proposed framework is the following: when a
node detects an attack and raises an alert, it starts a clustering procedure that
involves its k-neighbors to elect a clusterhead based on significant parameters
such as the current battery level, computational power, average speed or the
number of neighbors. The clusterhead collects information about the new gen-
erated alert, along with information about other possible alerts known by nodes
belonging to the cluster, and runs the localization algorithm.

In this approach, the process of deploying resources to capture attackers,
introduced in [1] can still be applied, assuming that nodes can communicate
to a headquarter to signal the high risk locations. Even in this case, to increase
precision, deployment should be performed iteratively, by checking the suspected
areas and updating, step by step, the attackers’ probability distribution. As new
alerts could be raised later on, caused by attackers localized in areas that have
been checked in a previous run of the algorithm, the cleaning operation is limited
within a certain run.

In the next section, a detailed description of the localization framework is
presented, followed by a graphical overview of its behavior. In addition, we illus-
trate the clustering strategy adopted by our framework for the actual execution
of the localization algorithm.

4 Distributed Framework For Attackers’ Localization

The core of our approach is the strategy adopted to group and process alerts
as soon as possible, to perform an early localization of attackers, in order to
stop them before they can cause further problems in the network. The adopted
strategy is characterized by:

– the events that activate the localization process,
– the information used by the localization process, and
– the actual executor of the localization algorithm.

The precision of the localization algorithm proposed in [1] depends on the
distribution of alerts: the closer the alerts to process, the more the suspected
areas related to different alerts will overlap; identifying high risk areas where
the attacker probability is higher than elsewhere. These regions are candidates
to contain attackers, and can be checked and possibly cleaned by proper de-
ployed resources. This suggests that the localization algorithm should be run on
a significant subset of alerts, while on the other side trying to process them as
soon as possible. Therefore, the algorithm should not be run for each alert that
is raised, but after when the information about a group of compatible alerts has
been acquired, in order to obtain more precise results.

These considerations led us to define a trigger for the localization process,
depending on the availability of other alerts previously raised in the same area.
In this way, the set of candidate locations that could contain attackers, resulting
from the localization algorithm, can be reduced. At the detection of an attack,
the victim node advertises the local alert to its neighbors, that in turn sends

7

Fig. 2: FSM representation of the behavior of a node at the detection of an attack

information about stored alerts. If there exist two or more compatible alerts, the
node will launch the localization process on this set of alerts.

In order to maximize the dissemination of information about alerts that are
physically localized in different areas, nodes periodically broadcast information
about known alerts while moving. Such information is stored by their neighbors
and used later when needed. To limit the overhead, alert information is not
disseminated over the whole network, but only sent to a subset of nodes that
physically reside in the vicinity of the attacked node.

As stated, the localization process involves not only the node raising the alert,
but also all the nodes residing in its vicinity at that moment, forming a cluster.
The execution of the localization algorithm requires a certain computational
capability and could influence the node’s normal operation. For this reason, we
devised the election of a clusterhead, that actually runs the algorithm on behalf
of all the nodes belonging to the cluster.

By the described strategy, an alert can be processed many times by different
clusters, as the related information is carried by different nodes moving through
the network, helping increase the localization precision.

The behavior of the framework is illustrated by means of the state machine
diagrams depicted in Fig.2 and Fig.3. More specifically, Fig.2 reports the behav-
ior of a node when it detects a malicious activity: information about the physical
location of the node at the time of detection and the timestamp itself is inserted
into a packet, and sent to its k-neighbors.

The node then waits for a certain amount of time for possible reply packets,
containing information about other alerts. Upon reception of those replies, the

8

Fig. 3: FSM representation of the behavior of a node at reception of protocol
messages

node will update its local list of stored alerts and check if the clustering proce-
dure can be launched, based on the existence of a sufficient number of compatible
alerts. In this case, the node sends a packet containing information about its cur-
rent status to its k -neighbors, in order to participate in the clustering procedure.

Fig.3 shows the behavior of a node at the reception of a packet related to
the localization protocol. The protocol adopts 3 different types of packets:

– NEW ALERT ADV : contains information about new alerts raised in the
network. Nodes receiving such packet must respond with their storedAlerts
list.

– ALERT ADV : contains information about stored old alerts that are being
re-advertised by mobile nodes.

– CLUSTER INFO: contains information on the current status of a node,
useful to elect the clusterhead that will compute the localization algorithm.
Such information is related to a specific alert event, as clustering is launched
by a node raising an alert. Actually, a single node could be involved in differ-
ent clustering procedures at the same time, launched by different nodes. For
this reason, as shown in Fig.3, a node receiving such kind of packet will first
check whether it is a duplicate of a previous packet, and then will add this
request to a local list of pending alerts. Afterwards, it will send information
about its current status to its k-neighbors, in order to participate to the clus-
tering procedure for the involved alert. For each received CLUSTER INFO
packet, the node will run a comparison routine to compare its own status to
the received ones, in order to determine whether it should be elected as the
clusterhead or not. After a predefined amount of time, if the variable itsMe
for that alert is set to 1, the node will assume it is the clusterhead and will
run the localization algorithm on alerts in its storedAlert list.

9

The behavior of the proposed framework can be graphically visualized by
means of Fig.4. Fig.4(a) illustrates the initial arrangement of 8 nodes in space
S. These nodes with identical transmission ranges are capable of broadcasting
signals to their neighbors and transmit or receive data within their pre-defined
transmission radius.

In the network configuration depicted in Fig.4, P3 raises the alert a1 at time
t1, and sends a NEW ALERT ADV packet to its neighbor, setting a Time-
To-Live (k) equal to 2. Node P1 first receives the packet and after updating
its storedAlerts list, broadcasts it to node P4, without sending anything to P3

as its initial list was empty. The packet reaches P4 with a TTL=0; node P4’s
storedAlert list is empty too, therefore, it simply updates it by adding alert a1.
From this moment on, nodes P1, P4 and P3 will have the information about alert
a1 stored in their local lists; this condition is denoted with P1(a1), P4(a1) and
P3(a1) respectively in the figure. No clustering is launched, as there exists no
compatible alert related to a1.

Fig. 4: A simple example of execution of the distributed localization algorithm:
a)alert a1 is raised in P3, no clustering launched; b) alert a2 is raised in P6, that
starts clustering; c)the cluster is formed and P7 is elected as the cluster-head;
d)P6 runs the localization algorithm on the set of alerts {a1,a2}

Fig.4(b) shows a new alert a2 raised by P6 at time t2. Assume that in the
meantime, node P3 moved in the neighborhood of node P2 and re-advertised

10

information about alert a1: this condition is depicted by denoting P2(a1) in
Fig.4(b). At time t2, node P6 sends a NEW ALERT ADV packet with TTL=2
to its neighbors; the packet is first received by P1, P7 and P8 : node P7 only
updates its storedAlerts list and then broadcasts the packet. The packet reaches
P8, that acts similarly. As for node P1, it knows about alert a1, therefore, it sends
an ALERT ADV packet to P6 to inform the node. At this point, node P6 will
run the checkCompatibility() routine on the set {a1,a2}, to find that they are
compatible.

As the following step, node P6 launches the clustering procedure by broad-
casting the CLUSTER INFO packet for alert a2; nodes P1, P6, P7 and P8

participate to the clustering as shown in Fig.4(c), and node P7 is elected as the
cluster head. Finally, node P7 runs the localization algorithm on the set {a1,a2},
delivering the shaded area in Fig.4(d) as its output.

5 Proposed Clustering Scheme

In this section, we present the clustering scheme adopted by the proposed dis-
tributed framework. In order to efficiently assemble the nodes which have raised
a security alert, we have proposed to form the clusters based on the node’s
geographical location, its neighbors and the pre-defined transmission radius.

Each node can hear activities from its neighbors in distance r. If there is
any malicious activity in distance r from a node, this information is taken into
consideration and will be processed when forming a cluster. The main focus
for clustering is to group the nodes which have detected some sort of malicious
activity in the same area. As previously pointed out, in order to make the best use
of alert information, a cluster is built, starting from a raised alert and including
all the k -neighbors of such alert.

Thus, the nodes which have formed a cluster might not be all neighbors with
one another straightforwardly, but there are nodes in between which can form a
chain (through direct neighbors). In this established cluster there exists a chain
of neighbors such that at least two nodes are neighbors pairwise. In other words,
the following property holds (for clusters with more than two nodes):

(∀C ∈ C) (∀ ni, nj ∈ C)

D(ni, nj) ≤ 2 · r ∨ ∃ n1, ..., nk : D(ni, n1) ≤ 2 · r ∧
∀l ∈ (2, k − 1) D(nl, nl+1) ≤ 2 · r ∧ D(nk, nj) ≤ 2 · r

(1)

Intuitively, for clusters with one or two nodes there exists no constrain as the
actual definition of the neighboring nodes clarifies the description.

11

Fig. 5: Chain of nodes forming a cluster

The established clusters can individually and independently perform and
execute the localization algorithms proposed in [1] without any exchange of
information between clusters. The reason behind this is that we consider the
transmission range of the attackers to be the same as the nodes and they are
stationary. In other words, the approximate location of an attacker could be de-
termined by processing alert information belonging to a particular cluster. The
nodes which have raised an alert gather the information listed below to exchange
them with their k -neighbors:

-Node Degree (Deg(n)): in graph theory, the order (degree) of a node is
the number of attached nodes. In our scenario, nodes within the transmission
range are counted as a node’s degree. Intuitively, hub nodes have a higher order
compared to ordinary nodes. The difference between in-degree and out-degree in
a directed graph could be calculated at unique depths: adjacent nodes (depth 1),
adjacent nodes of adjacent nodes (depth 2), etc. The following equation holds
for adjacent nodes (depth 1):

Deg(ni) = | Neighbors(ni) | =
∑

ni,nj∈N
(D(ni, nj) ≤ r) (2)

This parameter could determine the number of inter-connected nodes which
are in the transmission range (depth 1) and it could be used later on as an
weighting factor to determine the priority for the node to become a clusterhead.

-Mobility(Mn) : for each node, the average speed of the node until time T
is calculated. The formula below determines the relative mobility:

M =
1

T
·

T∑
t=1

√
(Xt −Xt−1)2 + (Yt − Yt−1)2 (3)

In the equation above, (Xt, Yt) and (Xt−1, Yt−1) are the Cartesian coordinates
for the node at time t and t-1, respectively. The nodes with less mobility are more
likely to be selected as clusterheads as they will be potentially more immune to
sudden changes, assuring more stability.

-Residual power (Pn): each transmitted packet includes a value that stores
the residual power of each transmitting node. This estimate might not be precise
as nodes consume power while receiving packets. Nevertheless, it can be used as
an acceptable evaluation standard for the purpose of clusterhead election. This
vital information aids in determining if a node has enough power to perform the

12

tasks related to a clusterhead. Nodes with superior energy have a better chance
to be selected as clusterheads, as they have the required resources to operate for
a sufficient amount of time.

In summary, an ideal clusterhead should maintain high node degree and
residual power in addition to low mobility, compared to other candidates. This
ensures best performance as a dominant node which supervises the cluster ac-
tivities during the network operation.

The above mentioned parameters represent quality factors assigned to each
node over time. In order to select the clusterhead, they must be combined ac-
cording to a quality function to achieve a final weight. As shown in [4], the weight
to be assigned to each node n (which has raised an alert) can be computed using
the following formula:

Wn = k1 ·Deg(n) + k2 ·Mn + k3 · Pn (4)

Parameters k1, k2 and k3 are selected as corresponding weighting factors
which all add up to a constant value. When a node receives a CLUSTER INFO
message, the included weight is compared with its own weight. The node which
has the smallest weight factor of all the neighboring nodes is selected as the
clusterhead.

In addition, when the process of selecting a clusterhead begins, depending on
the geographical location of legitimate nodes and the nodes raising an alert, it
might be prudent to elect a legitimate node in the close vicinity as a clusterhead
to avoid any future possible failure of the clusterhead. Nevertheless, the proposed
attributes need to be evaluated for this election.

Once the clusters have been established and the clusterheads are elected,
we can execute the heuristic algorithms to search for the attackers approximate
location as it has been proposed in [1]. Using the local information obtained by
the nodes (which have raised an alert), the MIN-K and MULT-UPD algorithms
could be run locally to find the approximate location of the attackers.

6 Experimental Results

We implemented a prototype of the proposed framework in the NS-2 network
simulator, and developed a Java application for the processing of alerts in the
clusterheads. As previously illustrated, nodes exchange information on alerts
raised in the network, and nodes that have detected an attack autonomously
decide whether or not to launch the clustering procedure in order to process
known alerts. We used NS-2 to simulate different scenarios in which nodes move
according to a Random Way Point model3 and attackers randomly choose their
neighbor(s) as targets. We recorded the time of each attack, along with the
position of the victim at the time of the attack, and run the localization algorithm

3 However, our approach allows us to use any mobility model as well as any radio
propagation model in the simulation.

13

on the set of alerts known by each cluster at the time when localization was
launched.

For our experiments, we adopted the MIN-K deployment algorithm presented
in [1], and analyzed the behavior of the distributed localization framework in
different scenarios and operative conditions.

In the first set of experiments, we considered a 1km×1km field, and deployed
40 network nodes and 6 attackers, both uniformly distributed. We considered an
observation interval of 60 ms, enabling attacks in the first 50 ms of simulation,
and set the cluster depth to 2. All nodes are assumed to be compatible with
the free space radio propagation model and to have a transmission range of 100
meters. To calculate the attacker probability distribution, we assumed that, given
an alert a, the attacker probability distribution for a is uniformly distributed in
the circle having its center in a and radius equal to the transmission range.

We considered several random scenarios and run both framework versions
on each scenario to compare the number of attackers that they were able to
capture within a single deployment cycle. Contrarily to what might be believed,
the centralized version of the localization framework does not always perform
better than the distributed one, even if the knowledge about existing alerts is
more complete. This is due to the way alerts are combined by the localization
algorithm, that aims at minimizing the number of expected attackers in the
network, trying to combine as many compatible alerts as possible. Fig. 6 shows
the fraction of attackers “captured” within the first and only deployment cycle
(also referred to as a recall parameter) in two different cases: in the case shown
in (a), the distributed framework is able to capture more attackers than its
counterpart before the end of the observation interval, while in (b) the centralized
framework works better.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0 10 20 30 40 50 60

R
e

ca
ll

(%
)

Time

distr centr

(a)

0%

10%

20%

30%

40%

50%

60%

70%

80%

0 10 20 30 40 50 60

R
e

ca
ll

(%
)

Time

distr centr

(b)

Fig. 6: Centralized Vs. Distributed Localization in different scenarios

14

In order to analyze the impact of the number of alerts on the localization ac-
curacy, we considered a particular attack scenario, composed of a single attacker
that launches an attack against all the nodes in its transmission range (e.g. a
jammer). In this scenario, the above discussed influence of the alert distribution
on localization accuracy is reduced, as the goal of minimizing the number of
attackers responsible for all alerts is consistent with the existence of a single
attacker. In [1], we already showed that our approach is able to localize jammers
with an higher precision than other existing approaches based on geometrical
considerations, and is less dependent on the network density. With the intro-
duction of the distributed version of the framework, we are able to obtain even
better results, as the attacker can be localized earlier, by processing a limited
number of alerts. Fig. 7 illustrates the average localization error as the number
of alerts increases, showing that it sensibly reduces even with small increments
in the alerts’ number.

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40

A
ve

ra
ge

 lo
ca

liz
at

io
n

 e
rr

o
r

(m
)

Number of alerts

Fig. 7: Impact of the number of alerts on the localization accuracy

As discussed in Section 4, in order to cope with mobility and temporary net-
work partitioning, nodes advertise both locally generated alerts and old stored
alerts to their k-hop neighbors. The choice of the k parameter, also called cluster
depth, impacts both on the protocol overhead and on localization precision: as
the size of the set of alerts to process in a localization step increases, the proba-
bility that such set contains overlapping alerts which are useful for a successful
localization, grows. Fig. 8 shows the recall parameter when choosing two differ-
ent values of cluster depth, namely 1 and 3, for the same simulation scenario. As
shown, the framework achieves better results when the depth is set to 3, even if
in this case the total number of alert advertisement packets sent by nodes during
the simulation time is much higher compared to the other case (139 to 57).

Clearly, as the introduced alert advertisement protocol adopts a controlled-
flooding strategy, the localization framework is subject to a communication over-
head due to the forwarding of packets containing information about generated
alerts. Nevertheless, such overhead is limited and has a linear trend, as shown

15

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 10 20 30 40 50 60

R
e

ca
ll

(%
)

Time

depth=1 depth=3

Fig. 8: Recall values for different cluster depths

0

50

100

150

200

250

300

350

0 20 40 60 80 100 120 140

N
u

m
b

e
r

o
f

al
e

rt
 a

d
ve

rt
is

e
m

e
n

t
p

ac
ke

ts

Number of alerts

Fig. 9: Communication overhead

in Fig. 9, which depicts the number of NEW ALERT ADV packets generated
and forwarded to k-hop neighbors (with k=2).

7 Conclusions

In this paper, we addressed the problem of localizing attackers present in MANETs.
In particular, we developed a distributed framework based on the dynamic parti-
tioning of the network. The proposed distributed framework assembles the alerts
as soon as they are reported. The protocol can independently localize the ap-
proximate position of attackers in a distributive mode through cooperation of
neighboring nodes.

In order to improve the efficiency of the computation, we implemented two
tasks. First we grouped the alerts to form clusters for local processing and sec-
ondly we introduced a startegy to elect a clusterhead for the actual execution of
the localization algorithm. Polynomial heuristic algorithms have been iteratively
implemented to precisely detain all the attackers in the network.

We evaluated the performance of our distributed framework in NS-2 network
simulator and experiments indicated that our scheme achieves better results

16

compared to the centralized localization algorithm. Further, based on the amount
of attackers defined by our mechanism, our distributed localization framework
can dispatch trusted resources to capture the attackers in the effected regions
of the network. In our future work, we will extend our distributed localization
scheme with the assumption that attackers are dynamic so they can be chased
and captured.

References

1. Massimiliano Albanese, Alessandra De Benedictis, Sushil Jajodia, and Paulo
Shakarian. A probabilistic framework for localization of attackers in manets. In
Computer Security–ESORICS 2012, pages 145–162. Springer, 2012.

2. Dennis Baker and Anthony Ephremides. The architectural organization of a mobile
radio network via a distributed algorithm. Communications, IEEE Transactions
on, 29(11):1694–1701, 1981.

3. Dennis J Baker and Anthony Ephremides. A distributed algorithm for organizing
mobile radio telecommunication networks. In Proceedings of the 2nd International
Conference on Distributed Computer Systems, pages 476–483, 1981.

4. Mainak Chatterjee, Sajal K Das, and Damla Turgut. Wca: A weighted clustering
algorithm for mobile ad hoc networks. Cluster Computing, 5(2):193–204, 2002.

5. Yih-Chun Hu, Adrian Perrig, and David B Johnson. Ariadne: A secure on-demand
routing protocol for ad hoc networks. Wireless Networks, 11(1-2):21–38, 2005.

6. Hongbo Liu, Zhenhua Liu, Yingying Chen, and Wenyuan Xu. Localizing multi-
ple jamming attackers in wireless networks. In Distributed Computing Systems
(ICDCS), 2011 31st International Conference on, pages 517–528, 2011.

7. Sergio Marti, T. J. Giuli, Kevin Lai, and Mary Baker. Mitigating routing misbe-
havior in mobile ad hoc networks. In Proceedings of the 6th annual international
conference on Mobile computing and networking, MobiCom ’00, pages 255–265,
New York, NY, USA, 2000. ACM.

8. Jie Yang, Yingying Chen, Wade Trappe, and Jerry Cheng. Detection and local-
ization of multiple spoofing attackers in wireless networks. 2013.

9. Yingpei Zeng, Jiannong Cao, Jue Hong, and Li Xie. Secure localization and location
verification inwireless sensor networks. In Mobile Adhoc and Sensor Systems, 2009.
MASS ’09. IEEE 6th International Conference on, pages 864–869, 2009.

10. Siyu Zhan and Jianping Li. Active cross-layer location identification of attackers
in wireless sensor networks. In Computer Engineering and Technology (ICCET),
2010 2nd International Conference on, volume 3, pages V3–240–V3–244, 2010.

