
A Probabilistic Framework for Localization

of Attackers in MANETs�

Massimiliano Albanese1, Alessandra De Benedictis2,
Sushil Jajodia1, and Paulo Shakarian3

1 Center for Secure Information Systems
George Mason University, Fairfax, VA, USA

{malbanes,jajodia}@gmu.edu
2 Department of Computer Science

University of Naples “Federico II”, Naples, Italy
alessandra.debenedictis@unina.it

3 Department of Electrical Engineering and Computer Science
United States Military Academy, West Point, NY, USA

paulo@shakarian.net

Abstract. Mobile Ad Hoc Networks (MANETs) represent an attrac-
tive and cost effective solution for providing connectivity in areas where a
fixed infrastructure is not available or not a viable option. However, given
their wireless nature and the lack of a stable infrastructure, MANETs are
susceptible to a wide range of attacks waged by malicious nodes physi-
cally located within the transmission range of legitimate nodes. Whilst
most research has focused on methods for detecting attacks, we propose
a novel probabilistic framework for estimating – independently of the
type of attack – the physical location of attackers, based on the location
of nodes that have detected malicious activity in their neighborhood.
We assume that certain countermeasures can be deployed to capture or
isolate malicious nodes, and they can provide feedback on whether an
attacker is actually present in a target region. We are interested in (i)
estimating the minimum number of countermeasures that need to be
deployed to isolate all attackers, and (ii) finding the deployment that
maximizes either the expected number of attackers in the target regions
or the expected number of alerts explained by the solution, subject to a
constraint on the number of countermeasures. We show that these prob-
lems are NP-hard, and propose two polynomial time heuristic algorithms
to find approximate solutions. The feedback provided by deployed coun-
termeasures is taken into account to iteratively re-deploy them until all
attackers are captured. Experiments using the network simulator NS-2
show that our approach works well in practice, and both algorithms can
capture over 80% of the attackers within a few deployment cycles.

Keywords: Attacker localization, MANET, probabilistic framework.

� This research was funded in part by the US Army Research Office under MURI
grant W911NF-09-1-0525 and DURIP grant W911NF-11-1-0340. Part of the work
was performed while Sushil Jajodia was a Visiting Researcher at the US Army
Research Laboratory.

S. Foresti, M. Yung, and F. Martinelli (Eds.): ESORICS 2012, LNCS 7459, pp. 145–162, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

146 M. Albanese et al.

1 Introduction

Mobile Ad Hoc Networks (MANETs) connect mobile devices without an un-
derlying fixed infrastructure. The topology of the network keeps changing over
time as nodes move or leave, and new nodes join the network. These intrinsic
features make MANETs an attractive and cost effective solution for providing
connectivity in areas where a fixed infrastructure is not available or deploying
one is not a technically or financially viable alternative [4]. Current applications
of ad hoc networks cover a variety of areas, ranging from tactical networks for
military communications to smart sensor networks for environmental monitor-
ing. For instance, in the scenario depicted in Fig. 1(a), troops deployed on a
battlefield are equipped with mobile devices forming a tactical MANET that
enables them to communicate with commanders at the headquarters.

On the downside, their wireless nature and the lack of a stable infrastructure
make MANETs vulnerable to a wide range of attacks, both active and passive,
that can be waged by malicious nodes physically located within the transmission
range of one or more legitimate nodes. In the scenario of Fig. 1(a), enemies
equipped with wireless devices may be hiding in the field (e.g., attackers A1 and
A2), or they may have simply planted wireless sensors at certain locations.

In the last couple of decades, considerable research effort has been devoted
to the problem of detecting various types of attacks against wireless networks.
However, despite an increasing interest in attacker localization, in both wireless
sensor networks and ad-hoc mobile networks, no general solution has been de-
vised yet. Instead, ad-hoc solutions based on the specific nature of certain attacks
have been widely investigated. In particular, many different jammer localization
approaches have been proposed in recent years [3,9,10].

In order to address this important problem, we propose a novel and more
general approach to attacker localization in MANETs, based on a probabilistic
model of the attacker’s location. Specifically, we can estimate the location of

(a)

Attackers
(1,1)

(1,N) (M,N)

(M,1)

Legitimate Node

(b)

Fig. 1. Examples of (a) tactical MANETs, and (b) nodes in a discrete space

A Probabilistic Framework for Localization of Attackers in MANETs 147

malicious nodes based on the location of all attacks detected in the network,
or, more generally, the location of legitimate nodes that have detected malicious
activity in their neighborhood. For the purpose of our analysis, we assume that
alerts are given. Additionally, our model assumes that malicious nodes are in
the neighborhood of nodes generating an alert. This assumption is justified by
extensive work in the area of activity detection for MANETs. For instance,
Watchdog [11] is an intrusion detection system running on each node of the
network. By listening to its neighbors, each node can detect routing misbehavior.
In [12], Patwardhan et al. present a similar technique. The main difference is that
in Watchdog a node monitors the traffic it sends to its neighbors, whereas in [12]
a node monitors the traffic between neighbors which are in range of each other.

The proposed framework does not rely on attack-specific assumptions, such
as those typically used in the literature on jammer localization, namely, static
wireless nodes and single attacker scenario [3]. For ease of presentation, we as-
sume that attackers are static, but extending our framework to take mobility of
malicious nodes into account is quite straightforward, and it is part of our furure
plans. Additionally, we assume that a number of countermeasures are available to
capture or isolate malicious nodes. Such countermeasures might include sending
a patrol to physically capture malicious nodes, or running a specialized algorithm
to identify and isolate malicious nodes in the regions selected by our framework.
We are interested in optimally deploying available countermeasures. Specifically,
we are interested in addressing the following classes of problems:

(i) Estimating the minimum number of countermeasures that need to be de-
ployed to capture all attackers.

(ii) Finding the deployment that maximizes either the expected number of at-
tackers in the target regions or the expected number of alerts explained by
the solution, subject to a constraint on the number of countermeasures.

We show that these problems are NP-hard, and propose two polynomial time
heuristic algorithms to find approximate solutions. Experiments show that our
approach works well in practice, and both algorithms can capture over 80% of
the attackers within 10-12 deployment cycles, in most scenarios.

The remainder of the paper is organized as follows. Section 2 discusses re-
lated work. Section 3 introduces the proposed framework, and provides a formal
statement of the problems addressed in our work. Heuristic algorithms are pre-
sented in Section 4, and experimental results are reported in Section 5. Finally,
Section 6 gives concluding remarks, and indicates future research directions.

2 Related Work

In recent years, there has been increasing interest in the localization of attackers
in both wireless sensor networks and ad-hoc mobile networks. The vast majority
of current approaches focus on specific types of attacks, most notably jamming
attacks [3,9,10]. Cheng et al. [3] offer a comprehensive study of the jammer lo-
calization problem, and propose a simple yet effective algorithm called Double

148 M. Albanese et al.

Circle Localization (DCL). They assume all nodes in the network (i) are de-
ployed randomly; (ii) are static; (iii) have the same capability (e.g. transmission
power); (iv) know their own location; and (v) can recognize whether they are
jammed. They consider a single-jammer scenario, and apply the free-space prop-
agation model, according to which jamming signals attenuate with distance. The
proposed algorithm calculates the minimum bounding circle and the maximum
inscribed circle of the convex hull of the set of jammed nodes, and combines
their centers to estimate the location of the jammer. They show that their algo-
rithm outperforms three existing geometry-based algorithms, namely, Centroid
Localization (CL), Weighted Centroid Localization (WCL), Virtual Force Iter-
ative Localization (VFIL) [10]. The CL algorithm estimates the position of the
jammer by simply averaging the coordinates of all jammed nodes. The WCL
algorithm [2] weights the contribution of each jammed node when computing
the centroid. One way of assigning weights is based on the distance between
the jammer and the affected node, which can be estimated by measuring the
strength of the incoming radio signal. VFIL tries to improve CL by adjusting its
estimation based on the distribution of jammed nodes.

Other approaches focus on identifying nodes or subnetworks that are affected
by attacks, but they provide a very coarse grained estimate of the attacker’s
position. Kim and Song [8] present a simple approach for fast detection of attacks
using CCA (Clear Channel Assessment) values – a measure of the availability
of a communication medium. If a node tries to send a message and finds the
channel busy, its CCA value is increased and the node will retry to retransmit
later. If the CCA value of a node exceeds a given threshold, this mechanism
judges that the node is attacked, or otherwise affected by nearby attacks.

Han et al. [6] address the problem of attackers intentionally hiding or falsifying
their position in order to decrease the accuracy of the localization process, which
is traditionally executed by multiple observers (usually Access Points) which can
simultaneously observe the intruder’s transmissions and use time delays, angle
of arrival, or signal strength information to localize the intruder. They propose
a proactive technique, named Access Point Coordinated Localization (APCL),
that forces the attacker to reveal undistorted signal features unintentionally, in
order to subsequently use traditional localization techniques.

Our approach significantly differs from existing literature, in that it seeks
a more general solution to the problem of attacker localization in MANETs.
Research in this area has mostly focused on specific types of attacks, requiring
several simplifying assumptions. We drop most such assumptions, and show that
our framework can deal with different types of attacks, including jamming.

3 Probabilistic Framework

In this section, we present our probabilistic framework for attacker localization
in MANETs. We first provide some technical preliminaries in Section 3.1, and
then present the framework in detail (Section 3.2). We conclude in Section 3.3
by providing a formal statement of the problems addressed in this paper.

A Probabilistic Framework for Localization of Attackers in MANETs 149

Legitimate Node Security Alert
(1,1)

(1,N) (M,N)

(M,1)

(a)

0 0 0 0 0 0 0 0

0 0 0 0 0.2 0 0 0

0 0 0 0 0 0.2 0 0

0 0 0 0 0 0 0 0

0 0 0 0.2 0.2 0.36 0 0

0 0 0 0 0.36 0.2 0.2 0

(1,1)

(1,N) (M,N)

(M,1)

Legitimate Node Security Alert

(b)

Fig. 2. Examples of (a) security alerts, and (b) computation of Pr(attacker(p))

3.1 Technical Preliminaries

Without loss of generality we assume a discrete notion of space, as formalized
by Definition 1, and assume that, at any time, both legitimate and malicious
nodes are at one of a finite number of discrete locations.

Definition 1 (Space). Given two integers M,N ∈ N, a space S = {1, . . . ,M}×
{1, . . . , N} is a finite subset of points of N2.

For ease of modeling, the above definition assumes that a space is a rectangular
region within N

2. Fig. 1(b) shows a discrete space for M = 8 and N = 6. In this
example, legitimate nodes are located at points (2, 2), (2, 5), (3, 4), (4, 3), (5, 3),
(6, 5), and (7, 4), and an attacker is located at point (4, 4).

Associated with the space is a distance function dist : S×S → R that satisfies
the normal distance axioms:

– Positive definiteness: ∀p1, p2 dist(p1, p2) ≥ 0 and dist(p1, p2) = 0 ⇔ p1 = p2
– Symmetry: ∀p1, p2 dist(p1, p2) = dist(p2, p1)
– Triangle inequality: ∀p1, p2, p3 dist(p1, p2) + dist(p2, p3) ≥ dist(p1, p3)

Given the above notion of space, a MANET M at time t can be represented,
for the purpose of our analysis, as a subset of S including all the points where a
mobile node is deployed at time t. A set A of alerts can be represented as a set
of pairs a = (p, t), where t is the time at which an alert a was generated and p
is the location at time t of the node triggering the alert.

3.2 Framework

Given an alert, we first need to define the probability that an attacker located
within range of the alert’s location is responsible for causing the alert. We use
the binary predicate causes : S × A → {true, false} to specify if there is an
attacker at point p ∈ S causing an alert a ∈ A. We assume that the transmission
range r ∈ R is fixed and equal for all legitimate nodes and attackers.

150 M. Albanese et al.

Definition 2 (Attacker’s Probability Distribution). Let a ∈ A be an alert.
The attacker’s probability distribution for a, denoted θa, is a probability distri-
bution over S defined as follows:

θa(p) = Pr(causes(p, a)) (1)

s.t.

θa(p)

{≥ 0, if dist(p, a) <= r
= 0, if dist(p, a) > r

(2)

where dist : S × S → R is the distance associated with the space S.
Note that, for all a ∈ A,

∑
p∈S θa(p) = 1, i.e., the attacker who caused a must

be in S. Intuitively, if a node in the MANET has been attacked, this node must
be within an attacker’s transmission range r. Given an alert a ∈ A, we use Sa to
denote the set of points Sa = {p ∈ S | θa(p) ≥ 0}. In other words, the attacker
who caused a must in Sa. We do not assume a specific distribution θa(p). Any
distribution can be used in our framework, as long as the properties described
by Equation 2 are satisfied. The choice of a specific distribution depends on a
number of factors, including the radio propagation model, and the information
available to nodes triggering an alert. In the simplest case, we can assume that
the attacker’s probability is uniformly distributed in a circular region of radius
r centered at the alert’s location. If more information is available, we can add
constraints to possible attacker locations. For instance, when signals propagate
according to the free space model and receivers can measure the received signal
power the attacker’s probability is uniformly distributed in an annulus of radius
d ± ε, where d is the estimated distance of the attacker and ε is a tolerance
parameter. The free space propagation model assumes the ideal propagation
condition that there is only one clear line-of-sight path between the transmitter
and receiver. In [5], H. T. Friis presented the following equation to calculate the
received signal power in free space at distance d from the transmitter.

Pr(d) =
Pt ·Gt ·Gr · λ2

(4 · π)2 · d2 · L (3)

Where Pt is the transmitted signal power, Gt and Gr are the antenna gains of
transmitter and receiver respectively, L is the system loss, and λ is the wave-
length. The free space model basically represents the communication range as a
circle around the transmitter.

We now introduce the notion of an explanation. Intuitively, an explanation
is a set of points such that the presence of an attacker at each of these points
would explain all the alerts that were generated.

Definition 3 (Explanation). Let S be a space, and let A be a set of alerts
triggered by nodes of a MANET M deployed over S. An explanation E for A is a
subset of S s.t. for all a ∈ A, E∩Sa �= ∅. We use E to denote the set of all possible
explanations. An explanation is said to be minimal iff �E

′ ∈ E s.t. |E′| < |E|.

A Probabilistic Framework for Localization of Attackers in MANETs 151

In Definition 2, we introduced the probability θa(p) that an attacker in p is
responsible for a single alert a. Given a set of alerts, we are interested in finding
the probability that any given point p ∈ S hosts an attacker. We use the unary
predicate attacker : S → {true, false} to specify if there is an attacker at a point
p ∈ S. If we assume that, given any two points p1, p2 ∈ S and any two alerts
a1, a2 ∈ A, causes(p1, a1) and causes(p2, a2) are independent, then the following
result can be proved. We refer to this assumption as causality independence.

Proposition 1. Given a space S, and a set of alerts A, the following property
holds under causality independence:

(∀p ∈ S)
(
Pr(attacker(p)) = 1−

∏
a∈A

(1− θa(p))

)
(4)

Example 1. Consider the scenario of Fig. 2(a), and assume that r = 1.1 and θa
is uniformly distributed over Sa = {p ∈ S | dist(p, a) ≤ r}. By computing the
value of Pr(attacker(p)) according to Equation 4, we obtain the result shown in
Fig. 2(b). The light-shaded region comprises all points p ∈ S s.t. Pr(attacker(p))
is greater than 0. In other words, the attacker(s) must be in that region. The
dark-shaded region only contains points with Pr(attacker(p)) > 0.3.

Definition 4 (Expected Number of Attackers). Given a set of points D ⊆
S, the number of attackers in D is a random variable ND

a which can assume
value |E ∩D| for any E ∈ E. The expected number of attackers in D is

Ex
[
ND

a

]
=

∑
E∈E

Pr(E) · |E ∩D| (5)

where Pr(E) is the probability of explanation E.

Intuitively, the expected number of attackers is the weighted average, over all
possible explanations, of the number of attackers in an explanation, where the
weight of an explanation is its probability. The expected numbers of attackers
in S is Ex

[
NS

a

]
=

∑
E∈E Pr(E) · |E|. In the example of Fig. 2(b), E

[
NS

a

]
=1.92,

meaning that, although most explanations include two attackers, single-attacker
explanations also exist (e.g., E1={3, 3}). The following result shows that, under
causality independence, calculating Ex

[
ND

a

]
is computable in polynomial time.

Proposition 2. Let D ⊆ S be a set of points in S and let ND
a denote the

number of attackers in D. The following property holds.

Ex
[
ND

a

]
=

∑
E∈E

Pr(E) · |E ∩D| =
∑
p∈D

Pr(attacker(p)) (6)

3.3 Problem Statement

Given an ad-hoc network deployed over a space S, and a set of alerts A, we
are interested in optimally deploying a limited number of resources in order

152 M. Albanese et al.

to capture the attackers responsible for the alerts. We assume that a deployed
resource can capture all malicious nodes within a capture range defined as a
circle of radius l – with l � r – centered at the location of the resource. We
use the term deployment to refer to a set of points in S where resources are
deployed. We can define the following three optimization problems.

Problem 1 (Minimize deployment size). Given a space S, a set of alerts A over
S, and a probability threshold τ ∈ [0, 1], find a deployment D ⊆ S of minimum
size that sufficiently explains all the alerts in A.

minimizeD∈2S |D|
subject to

(∀a ∈ A)
∑

p∈D θa(p) ≥ τ
(7)

In this optimization problem, the constraints require that D be an explanation
(see Definition 3), and each alert be explained with probability equal to or greater
than a threshold τ . We wish to minimize the number of resources deployed.

Problem 2 (Maximize expected number of attackers). Given a space S, a set of
alerts A over S, a positive integer k ∈ N

+, and a probability threshold τ ∈ [0, 1],
find a deployment D ⊆ S of size k or less that sufficiently explains all the alerts
in A, and maximizes the expected number of attackers in D under causality
independence.

maximizeD∈2S
∑

p∈D Pr(attacker(p))

subject to
|D| ≤ k
(∀a ∈ A)

∑
p∈D θa(p) ≥ τ

(8)

In this problem, the first constraint limits the number of resources that can be
deployed, whereas the second set of constraints, similarly to Problem 1, require
that D be an explanation (see Definition 3), and each alert be explained with
probability equal to or greater than a threshold τ . The objective function is
the expected number of attackers in D, which, based on Proposition 2, can be
computed as the sum over p ∈ D of Pr(attacker(p)).

Problem 3 (Maximize expected number of explained alerts). Given a space S, a
set of alerts A over S, a positive integer k ∈ N

+, and a probability threshold
τ ∈ [0, 1], find a deployment D ⊆ S of size k or less that sufficiently explains
all the alerts in A, and maximizes the expected number of alerts that would be
explained by attackers located at each point in D.

maximizeD∈2S
∑

a∈A
∑

p∈D θa(p)

subject to
|D| ≤ k
(∀a ∈ A)

∑
p∈D θa(p) ≥ τ

(9)

In this problem, the constraints are the same as in the previous problem, but
the objective is to maximize the expected number of alerts that the presence
of an attacker in each point of D would explain. Note that, unlike Problem 2,
Problem 3 does not use any independence assumptions.

A Probabilistic Framework for Localization of Attackers in MANETs 153

Algorithm 1. MIN-K(S,A, τ, l)

Input: set of points S, set of alerts A, threshold τ , and capture radius l
Output: deployment D ⊆ S
1: D ← ∅
2: A∗ ← ∅ // Alerts covered
3: while A∗ �= A ∧ S �= ∅ do
4: S

′ ← {pi ∈ S \D | |A∗
i \ A∗| is maximum} // A∗

i : set of alerts covered by pi

5: S
′′ ← {pj ∈ S

′ | Pr(attacker(pj)) is maximum}
6: p← randomly selected point from S

′′

7: D ← D ∪ {p}
8: S ← S \ {pk ∈ S | dist(pk, p) ≤ l}
9: A∗ ← A∗ ∪ {ak ∈ A |

∑
q∈D Pr(causes(q, ak)) ≥ τ}

10: end while
11: return D

4 Algorithms

In this section, we first show that all the three problems defined in the previous
section are NP-Hard, and then presents two polynomial heuristic algorithms that
offer good approximation guarantees. The first of these two algorithm solves
Problem 1, whereas the second algorithm solves both Problem 2 and Problem 3.

Theorem 1. Problems 1, 2, and 3 are NP-Hard.

Proof. Problem 1 can be shown to be NP-Hard by reduction from the set cover
problem, which is known to be NP-Hard. Specifically, the universe in the set
cover problem can be treated as the set of alerts A to be covered (explained)
and the several subsets of the universe can be treated as the candidate locations
explaining subsets of A. As Problem 1 is NP-Hard, the corresponding decision
problem, where there is some cardinality constraint of k on the solution, is also
NP-Hard (and easily shown to be NP-Complete). Therefore, finding any solution
that meets the constraints of Problems 2 and 3 is NP-Hard as well.

4.1 Algorithm MIN-K

Algorithm MIN-K (Algorithm 1) approximates Problem 1, and it is inspired by
the heuristic algorithm for solving the set covering problem [7]. Given a set of
elements, called the universe, and n sets whose union comprises the universe,
the set cover problem is to identify the smallest number of sets whose union still
contains all elements in the universe. In our case, given a set of alerts, we are
interested in identifying the smallest number of locations that can explain all
the alerts, where each location explains one or more alerts.

The algorithm takes as input a set S ⊆ S of candidate points, a set of alerts
A, a threshold τ , and a capture radius l, and returns a deployment D ⊆ S.
Lines 4-9 are iterated until either all the alerts are covered (A∗ = A) or there

154 M. Albanese et al.

Algorithm 2. MULT-UPD(S,A, k, τ, l)

Input: set of points S, set of alerts A, integer k, threshold τ , and capture radius l
Output: deployment D ⊆ S
1: D ← ∅
2: λ← ek−τ · (1 + |A|)
3: A∗ ← ∅ // Alerts covered
4: for all ai ∈ A do
5: wi ← 1

(k−τ)

6: end for
7: while |D| < k ∧ A∗ �= A ∧ S �= ∅ do
8: S

′ ← {pi ∈ S \D |
∑

ai∈A(wi−wi·θai
(pj))

f(D∪{pj})−f(D)
is minimum}

9: p← randomly selected point from S
′

10: D ← D ∪ {p}
11: S ← S \ {pk ∈ S | dist(pk, p) ≤ l}
12: A∗ ← A∗ ∪ {ak ∈ A | Pr(causes(p, ak)) ≥ τ}
13: for all ai ∈ A do
14: wi ← wi · λ(1−θai

(pj))/(k−τ)

15: end for
16: end while
17: return D

are no more candidate points to examine (S = ∅). The algorithm first considers
the set S

′ ⊆ S such that the number of additional alerts covered by each point
pi ∈ S

′
– w.r.t. the set A∗ of alerts covered so far – is maximum (Line 4). Then, a

point p is randomly selected from the set S
′′
of points pj in S

′
having maximum

value of Pr(attacker(pj)) (Lines 5-6). Finally, p is added to the solution and all
points with a radius l from p are excluded from further consideration (Lines 7-8).
All the alerts ak that are sufficiently explained by D are added to A∗ (Line 9).

Proposition 3. MIN-K runs in O(r2 · |A|2) time.

Proof. The outer loop of the algorithm takes no more than |A| steps. The bound
on the inner loop is O(r2 · |A|) iterations, as the number of points to consider at
each step is proportional to a node’s transmission area, that is π · r2.

4.2 Algorithm MULT-UPD

Algorithm MULT-UPD (Algorithm 2) is a multiplicative-updates algorithm that
can be used to approximate solutions to Problems 2 and 3. It is based on the
multiplicative-updates algorithm of [1], which is designed to find approximate
solutions to the maximization of a submodular function with respect to packing
constraints. We show in Proposition 5 that this algorithm runs in polynomial
time, though we do not guarantee it provides optimal solutions (Theorem 1
suggests that an efficient polynomial algorithm that provides optimal solutions
is unlikely). We apply the algorithm of [1] by embedding Problem 2 or 3 into a
packing problem. As this algorithm is used for both problems, we will use the

A Probabilistic Framework for Localization of Attackers in MANETs 155

notation f : 2S → R to denote a generic objective function. The definition of f
depends on which problem is being solved. For Problem 2, it is:

f(D) =
∑
p∈D

Pr(attacker(p)) (10)

For Problem 3, it is defined as follows:

f(D) =
∑
a∈A

∑
p∈D

θa(p) (11)

As stated earlier, the algorithm of [1] is designed to find a solution to maximize a
submodular function. As f above is additive under either problem, submodularity
follows trivially.1 What remains to be shown is that our problems can be re-
written as packing problems. We prove this in the following proposition.

Proposition 4. The constraints of Problems 2 and 3 can be re-written as:

|D| = k
(∀a ∈ A)

∑
p∈D(1− θa(p)) ≤ k − τ

(12)

Proof. For any a ∈ A, we can re-write the original constraint as k−∑
p∈D θa(p) ≤

k − τ . We also note that the size of D must be k (except in a degenerate case).
Therefore, we can re-write the constraint again as

∑
p∈D(1− θa(p)) ≤ k − τ .

With this embedding in mind, the algorithm functions by associating a weight
with each alert (corresponding to the constraint that the alert must be explained
with probability τ). The algorithm then proceeds in a generally greedy fashion –
but every time an element is added to D, the weights for all constraints that are
not met increase. When the algorithm makes a greedy selection, these weights
are considered in addition to the increase experienced by the objective function.
Though the algorithm of [1] provides an approximation ratio, this ratio does
not apply to our embedding as the original algorithm allows solutions of less
than size k (this is because Proposition 4 does not necessarily hold for approxi-
mate solutions). As a consequence, some of the alerts are not explained within
probability τ . These alerts can be thought of as “difficult to explain” given the
resource constraint (k). However, this is acceptable for our application as we
look to provide iterative deployments of the resources (see algorithm ITER-DEP
in the next section) so unexplained alerts will likely be covered in a subsequent
deployment. We show that this algorithm runs in polynomial time.

Proposition 5. MULT-UPD runs in O(k · r2 · |A|2) time.

Proof. The outer loop of the algorithm takes no more than k steps. The bound
on the inner loop is O(r2 · |A|) iterations, as the number of points to consider for
each alert is proportional to the a node’s transmission area, that is π · r2, and
the calculation at Line 8 requires O(|A|) time.

1 As does some other requirements such as monotonicity and that f(∅) = 0.

156 M. Albanese et al.

Algorithm 3. ITER-DEP(S,A,M, τ, l)

Input: space S , set of alerts A, max number of deployment cycles M , threshold τ ,
and capture radius l

1: A′ ← A // Alerts to explain
2: count← 0 // Iteration counter
3: for all p ∈ S do
4: compute Pr(attacker(p))
5: end for
6: S ← {p ∈ S | Pr(attacker(p)) > 0} = ⋃

a∈A Sa

7: while S �= ∅ ∧ count < M ∧ A′ �= ∅ do
8: D ← computeDeployment(S,A′

, k, τ, l)
9: for all p ∈ D s.t. p is a hit do
10: for all q ∈ S s.t. dist(p, q) < l and q is an attacker do

11: for all a ∈ A′
s.t. Pr(causes(q, a)) ≥ τ do

12: S ← S \ {s ∈ S | Pr(causes(s, a)) ≥ 0}
13: end for
14: A′ ← A′ \ {a ∈ A′ | Pr(causes(q, a)) ≥ τ}
15: end for
16: end for
17: for all p ∈ S do
18: compute Pr(attacker(p))
19: end for
20: end while

4.3 Algorithm ITER-DEP

Algorithms MIN-K and MULT-UPD both compute a single deployment of coun-
termeasures. As the number of countermeasures deployable at each step may be
limited (Problems 2 and 3), and some of the deployed countermeasures may re-
sult in false positives, it may not be possible in practice to capture all malicious
nodes in a single deployment.

Algorithm ITER-DEP (Algorithm 3) takes as input a space S, a set of alerts
A, the maximum number of deployment cycles M , a threshold τ , and a capture
radius l, and iteratively redeploys countermeasures taking into account feedback
from countermeasures deployed in the previous cycle. The algorithm first com-
putes the initial values of Pr(attacker(p)) under causality independence (Lines 3-
5), and, based on those, a set S of candidate locations (Line 6). It then iterates
until there are no more locations to consider, or all the alerts have been ex-
plained, or the maximum number of iterations has been reached (Lines 7-20).
During each iteration, a deployment is computed using any of the algorithms
presented earlier (Line 8). For each true positive, the set of alerts is updated by
removing those that are sufficiently explained by the captured attacker, and the
set of candidate points is updated accordingly (Lines 9-16). Lastly, the values
of Pr(attacker(p)) are updated.

Proposition 6. ITER-DEP runs in O(M · r2 · |A|2) time when MIN-K is used,
and O(M · k · r2 · |A|2) time when MULT-UPD is used.

A Probabilistic Framework for Localization of Attackers in MANETs 157

Proof. The outer loop of the algorithm (Lines 7-20) takes no more than M steps.
The complexity of Lines 8-19 is dominated by the complexity of Line 8, that is
the complexity of the deployment algorithm – O(r2 · |A|2) and O(k · r2 · |A|2) for
MIN-K and MULT-UPD respectively. In fact, the bound on the loop at Lines 9-16
is O(r2 · |A|2), as Line 13 is executed |A| · π · r2 · |A| times, in the worst case.

5 Experiments

This section reports on the experiments we conducted to validate our framework.
Additional experiments, showing how our approach can be used to localize jam-
mers, are reported in Appendix A. We used NS-2 to simulate different network
scenarios, with nodes moving according to a Random Way Point model2, and
attackers randomly choosing one or more of their neighbors as their targets.

We implemented a prototype of the proposed framework as a Java application
that takes as input log files generated by NS-2 and containing detailed informa-
tion about all the alerts. We studied algorithms MIN-K and MULT-UPD in terms
of (i) number of deployment cycles needed to capture all the attackers, and (ii)
time to compute a deployment as the number of alerts increases.

5.1 Experimental Setup

In our experiments, we considered a 20km× 20km field, using a 10-meter gran-
ularity, and deployed 4,000 network nodes and about 600 attackers, both uni-
formly distributed in this area. Overall, attackers triggered more than 1,000
alerts. For the purpose of these experiments, we assumed that deployable coun-
termeasures are physical resources, such as patrols, that can capture attackers
within a 30-meter radius l. After a resource has been deployed, points within
a radius l are assumed to be free of malicious nodes. With this assumption, all
resources can be reused in the next deployment cycle.

As discussed in Section 3.2, several models can be use to compute the at-
tacker’s probability distribution of Definition 2. In our experiments, we assume
all nodes are compatible with the free space radio propagation model and have
a transmission range of 250 meters. Assuming that we can link an alert to a
specific communication attempt from the attacker node, and that attackers are
not able to falsify their beam direction and radio parameters to distort signal
features, we can use the received signal power to estimate the distance d between
the attacker and the victim, based on the selected radio propagation model. In
this case, the probability distribution θa for an alert a can be assumed to be
uniform in a annulus of radius d ± ε centered at the alert’s location (we set
ε = 0.1 · r, where r is the transmission range). Fig. 3 shows the result of com-
puting Pr(attacker(p)) for a simple scenario, based on assumptions discussed
above. Different colors denote different levels of probability values, with darkest
areas being more likely to contain attackers. Points in high probability areas
may explain multiple alerts.

2 However, any mobility and radio propagation model can be used in our framework.

158 M. Albanese et al.

Very high probability
High probability
Medium probability
Low probability

Alerts
Attackers

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

Fig. 3. Values of Pr(attacker(p)) for a simple scenario

In order to compare the two algorithms, we first run MIN-K and found the
minimum number of resources needed to cover all the alerts in a single deploy-
ment cycle, and then used this number as the value of k in MULT-UPD. To cover
all the alerts in the scenario described above, we need about 500 resources.

5.2 Experimental Results

We analyzed the convergence of the proposed approach with respect to recall3,
which we measured as the fraction of attackers captured in each deployment
cycle. Specifically, we use a notion of cumulative recall, as for each deployment
cycle we count the total number of attackers captured since start.

Fig. 4 shows the cumulative recall function for the algorithms proposed:
MIN-K, and the two versions of MULT-UPD maximizing expected number of
attackers (MULT-UPD v1 in figure) and expected number of explained alerts
(MULT-UPD v2) respectively. As shown, all the algorithms can capture 80% of
the attackers in a very few deployment cycles, even in unfavorable scenarios,
such as low network density. Indeed, convergence is influenced by network con-
figuration and density: if an attacker triggers more alerts, it will be localized in
a higher probability area and will be captured faster.

We also studied how the time for computing a single deployment varies when
the number of alerts increases. As shown in Fig. 5, MIN-K performs significantly
better than the two versions of MULT-UPD: it takes about 200 seconds to pro-
cess around 1,000 alerts, while both versions of MULT-UPD take more then 700
seconds (about 12 minutes). However, both algorithms run in time quadratic in
the number of alerts, as shown by the trend lines in Fig. 5. This confirms the
theoretical results presented earlier in Section 4.

3 Recall is a widely adopted measure in the information retrieval and pattern recog-
nition fields, indicating the fraction of relevant instances retrieved by an algorithm.

A Probabilistic Framework for Localization of Attackers in MANETs 159

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

Cu
m

ul
at

iv
e

re
ca

ll

Deployment cycles

MIN-K MULT-UPD v1 MULT-UPD v2

Fig. 4. Cumulative recall over subsequent deployment cycles

R² = 0.9942

R² = 0.9943

R² = 0.9921

0
100
200
300
400
500
600
700
800
900

1000

0 200 400 600 800 1000 1200

De
pl

oy
m

en
t p

ro
ce

ss
in

g
tim

e
(s

)

Number of alerts

MIN-K MULT-UPD v1 MULT-UPD v2

Fig. 5. Deployment processing time vs. number of alerts

6 Conclusions

In this paper, we have presented a probabilistic framework for the localization of
attackers in Mobile Ad Hoc Networks (MANETs). Prior to our work, no general
solution was devised to address this important problem, and most proposed ap-
proaches focused on specific types of attacks, most notably jammer attacks. The
proposed framework can estimate the physical location of attackers, based on the
location of nodes that have detected malicious activity in their neighborhood.

We assume that certain countermeasures can be deployed to capture or isolate
malicious nodes, and they can provide feedback about the actual presence of an
attacker in the target regions. We presented different variants of the localiza-
tion problem, and we showed that all of them are NP-hard. We then proposed
two polynomial heuristic algorithms that can compute approximate solutions.
The feedback provided by deployed countermeasures is taken into account to

160 M. Albanese et al.

iteratively re-deploy countermeasures until all attackers are captured. Experi-
ments showed that our approach works well in practice, and both algorithms
can capture over 80% of the attackers within a few deployment cycles.

Our future plans include removing the assumption that attackers are static,
and extending our framework to be able to track moving attackers.

References

1. Azar, Y., Gamzu, I.: Efficient submodular function maximization under linear pack-
ing constraints. The Computing Research Repository (CoRR) (July 2010)

2. Blumenthal, J., Grossmann, R., Golatowski, F., Timmermann, D.: Weighted cen-
troid localization in zigbee-based sensor networks. In: Proceedings of the IEEE
International Symposium on Intelligent Signal Processing (WISP 2007) (October
2007)

3. Cheng, T., Li, P., Zhu, S.: An algorithm for jammer localization in wireless sensor
networks. In: Proceedings of the 26th IEEE International Conference on Advanced
Information Networking and Applications (AINA), Fukuoka, Japan (March 2012)

4. Datta, R., Marchang, N.: Security for Mobile Ad Hoc Networks. In: Handbook on
Securing Cyber-Physical Critical Infrastructure, pp. 147–190. Morgan Kaufmann
(January 2012)

5. Friis, H.T.: A note on a simple transmission formula. Proceedings of the IRE 34(5),
254–256 (1946)

6. Han, C., Zhan, S., Yang, Y.: Proactive attacker localization in wireless LAN. SIG-
COMM Computer Communication Review 39(2), 27–33 (2009)

7. Johnson, D.S.: Approximation algorithms for combinatorial problems. Journal of
Computer and System Sciences 9, 256–278 (1974)

8. Kim, Y.-J., Song, S.: The Feasibility Study of Attacker Localization in Wireless
Sensor Networks. In: Kim, T.-h., Adeli, H., Robles, R.J., Balitanas, M. (eds.)
UCMA 2011, Part II. CCIS, vol. 151, pp. 180–190. Springer, Heidelberg (2011)

9. Liu, H., Liu, Z., Chen, Y., Xu, W.: Determining the position of a jammer using a
virtual-force iterative approach. Wireless Networks 17(2), 531–547 (2011)

10. Liu, H., Xu, W., Chen, Y., Liu, Z.: Localizing jammers in wireless networks. In:
Proceedings of the IEEE International Conference on Pervasive Computing and
Communications (PerCom 2009), Galveston, TX, USA (March 2009)

11. Marti, S., Giuli, T.J., Lai, K., Baker, M.: Mitigating routing misbehavior in mobile
ad hoc networks. In: Proceedings of the 6th Annual International Conference on
Mobile Computing and Networking (MobiCom 2000), Boston, MA, USA, pp. 255–
265 (August 2000)

12. Patwardhan, A., Parker, J., Iorga, M., Karygiannis, T.: Secure routing and intru-
sion detection in ad hoc networks. In: Proceedings of the Third IEEE International
Conference on Pervasive Computing and Communications (PerCom 2005), Kauai
Island, HI, USA, pp. 191–199 (March 2005)

A Localizing Jammers

In this appendix, we study the performance of our framework with respect to
jamming attacks. Although many countermeasures have been proposed against

A Probabilistic Framework for Localization of Attackers in MANETs 161

jamming attacks, mostly based on frequency manipulation, it would be desirable
to capture and deactivate jammers upon detection, as their activity heavily
affects power consumption.

In the following, we first compare MIN-K and MULT-UPD w.r.t. localization
error for a complex scenario involving multiple jammers, and show that MIN-K
guarantees lower error. We then compare MIN-K with the Double Circle Local-
ization (DCL) algorithm [3], and show that MIN-K offers better performance and
lower sensitiveness to network density.

We considered a 20km×20km field and randomly placed 185 jammers, which
jammed 445 nodes; we run MIN-K and MULT-UPD 100 times and recorded,
for each jammer, the minimum distance from a deployed resource in the first
deployment cycle. The cumulative distribution function of the error is shown
in Fig. 6. As expected, the localization error of MIN-K is much smaller than
MULT-UPD. In fact, the mechanism used byMIN-K to choose deployment points,
unlike MULT-UPD, is aimed at covering all the alerts: this means that each
resource will be deployed within distance r from an alert. As the attacker is also
be within distance r from the alert, the maximum possible error is twice the
transmission range. When running MULT-UPD, an alert might not be covered
in the first deployment cycle, so the responsible jammer could be very far from
any deployed resource.

We now compareMIN-K with the Double Circle Localization (DCL) algorithm
[3]. The authors of DCL considered a square field of 100m2 with uniformly dis-
tributed nodes having a transmission range of 10 meters; they placed the jammer
at the center of the field and evaluated the accuracy of jammer localization for
two different network densities, 1 and 3 nodes per m2 respectively, showing that
the algorithm is able to achieve a very small error. In fact, 100% of the re-
sults were computed with an error smaller than 10 meters for the lowest density

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 100 200 300 400 500 600 700

Cu
m

ul
at

iv
e

di
st

rib
ut

io
n

fu
nc

tio
n

Error (m)

MIN-K MULT-UPD

Fig. 6. CDF of the localization error for MIN-K and MULT-UPD

162 M. Albanese et al.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 10 20 30 40 50 60

Cu
m

ul
at

iv
e

di
st

rib
ut

io
n

fu
nc

tio
n

Error (m)

n=1 n=2 n=5 n=10 n=100

Fig. 7. CDF of the localization error for MIN-K for several node densities

and smaller than 5 meters for the highest density. It should be noted that this
algorithm – similarly to other algorithms based on geometric considerations –
achieves good accuracy only when network density is sufficiently high. Moreover,
DCL, in its current form, can be applied only to one-jammer scenarios. Not only
our framework is able to deal with multiple jammers, but it is also less sensitive
to network density, as we show next.

We first considered the same network scenario used in [3], and run both MIN-K
and MULT-UPD. Due to the high node density of this scenario and the resulting
values of Pr(attacker(p)), our framework – using a 1-meter resolution – was al-
ways able to find the correct position of the jammer in the first deployment cycle.
To evaluate our framework’s performance for jamming attacks in more general
scenarios, we considered a 100m × 100m field, with the jammer placed at the
center of the field, and deployed networks having different densities. Specifically,
we deployed 1, 2, 5, 10, and 100 nodes respectively, with a 71 meter transmission
range (the whole field is jammed), and evaluated the accuracy for MIN-K over
1,000 independent runs. Fig. 7 shows the cumulative distribution function of the
error. When considering a single node in the jammed area, the maximum error is
high. As network density slightly increases, performance dramatically increases:
it takes only a few nodes in the jammed area to bound the error within 10% of
the transmission range. At this point, further increasing node density has a very
small impact on localization error.

	A Probabilistic Framework for Localization of Attackers in MANETs
	Introduction
	Related Work
	Probabilistic Framework
	Technical Preliminaries
	Framework
	Problem Statement

	Algorithms
	Algorithm MIN-K
	Algorithm MULT-UPD
	Algorithm ITER-DEP

	Experiments
	Experimental Setup
	Experimental Results

	Conclusions
	Localizing Jammers

