
A Moving Target Defense Approach for Protecting Resource-Constrained
Distributed Devices∗

Valentina Casola and Alessandra De Benedictis
Department of Electrical Engineering and Information Technology

University of Naples Federico II
Naples, Italy

{casolav,alessandra.debenedictis}@unina.it

Massimiliano Albanese
Center for Secure Information Systems

George Mason University
Fairfax, VA, USA

malbanes@gmu.edu

Abstract

Techniques aimed at continuously changing a system’s
attack surface, usually referred to as Moving Target De-
fense (MTD), are emerging as powerful tools for thwart-
ing cyber attacks. Such mechanisms increase the uncer-
tainty, complexity, and cost for attackers, limit the expo-
sure of vulnerabilities, and ultimately increase overall re-
siliency. In this paper, we propose an MTD approach for
protecting resource-constrained distributed devices through
fine-grained reconfiguration at different architectural lay-
ers. In order to show the feasibility of our approach in real-
world scenarios, we study its application to Wireless Sensor
Networks (WSNs), introducing two different reconfiguration
mechanisms. Finally, we show how the proposed mecha-
nisms are effective in reducing the probability of successful
attacks.

1 Introduction

In recent years, we have witnessed a growing interest in

techniques aimed at continuously changing a system’s at-

tack surface in order to prevent or thwart attacks. This ap-

proach to cyber defense is generally referred to as Moving

Target Defense (MTD), and it is currently considered one of

the game-changing themes in cyber security by the Execu-

tive Office of the President, National Science and Technol-

∗The work presented in this paper is supported in part by the Army Re-

search Office under award number W911NF-12-1-0448, and by the Office

of Naval Research under award number N00014-12-1-0461.

ogy Council [9, 13, 14]. As stated in [9], Moving Target De-

fense “enables us to create, analyze, evaluate, and deploy
mechanisms and strategies that are diverse and that contin-
ually shift and change over time to increase complexity and
cost for attackers, limit the exposure of vulnerabilities and
opportunities for attack, and increase system resiliency”.

The MTD paradigm can be successfully adopted to en-

force security requirements in networks composed of dis-

tributed and mobile devices, that are typically character-

ized by limited hardware and software resources. Achieving

high levels of security in such constrained environments is

not a straightforward task, and innovative approaches must

be devised. In this paper we propose an MTD strategy

based on fine-grained reconfiguration to protect resource-

constrained distributed devices, which are characterized by

limited processing and storage capabilities, limited battery

life, mobility, highly dynamic topology, and frequent fail-

ures. In order to show the feasibility of our approach in

real applications, we consider Wireless Sensor Networks

(WSNs) as a case study.

Different mechanisms have been proposed to secure

WSNs, but most such efforts have primarily aimed at lim-

iting power consumption by reducing the computational

and storage requirements. Because of these constraints,

the level of security provided by such mechanisms is quite

limited, and more complex solutions are not feasible in

practice. In this scenario, an MTD approach would make

it possible to achieve better security, without requiring

computation-intensive solutions, by periodically switching

between multiple lightweight cryptosystems. Several re-

configuration mechanisms have been proposed for WSNs

22IEEE IRI 2013, August 14-16, 2013, San Francisco, California, USA
978-1-4799-1050-2/13/$31.00 ©2013 IEEE

[18], mainly based on network reprogramming. They oper-

ate at different architectural levels but present similar limita-

tions, as they are battery consuming, introduce a significant

overhead, and are potentially not secure.

In order to address these limitations, we introduce two

novel mechanisms for reconfiguring sensors that provide

better performance from several points of view. We carried

out a number of experiments by simulating attack scenarios

where an attacker is able to gather partial information on the

adopted cryptosystem and attempts a brute force attack. We

evaluate the effectiveness of the proposed MTD approach

by measuring the probability of successfully completing an

attack and show how reconfiguration dramatically decreases

such probability.

The paper is organized as follows. Section 2 discusses

the benefits of an MTD approach to reconfiguration in em-

bedded networks, and introduces the main reconfigurable

architectural layers. Section 3 illustrates two innovative

reconfiguration mechanisms for WSNs, wheras Section 4

reports experimental results. Finally, some concluding re-

marks are given in Section 5.

2 MTD Approach to Node Security

Moving Target Defense (MTD) [13, 14] provides a way

to make more difficult for an attacker to exploit a vulnera-

ble system. The idea is to change one or more properties of

a system in order to present attackers with a varying attack
surface, so that, by the time the attacker gains enough in-

formation about the system for planning an attack, the sys-

tem’s attack surface will be different enough to disrupt it.

According to the definition in [16], a system’s attack sur-

face is “the subset of the system’s resources (methods, chan-
nels, and data) that can be potentially used by an attacker
to launch an attack”. It depends on the system’s hardware

and software features, and can be changed by dynamically

reconfiguring such features at different levels of granularity.

As suggested in [8], MTD approaches (also referred to as

diversity techniques) may be applied both at the application

level or at a lower level (e.g., code location in memory). The

advantage of low-level diversity is that it does not require an

understanding of the application’s behavior and can be done

automatically. However, it is only capable of thwarting spe-

cific classes of attacks, such as code injection and memory

corruption attacks. Several low-level MTD techniques have

been proposed in the literature, based on the idea of auto-

matically generating diverse variants of a program to disrupt

vulnerability exploits [10, 12].

Several higher-level MTD approaches have also been

proposed, and most of them are aimed at thwarting the at-

tacker’s reconnaissance effort [2, 3, 15]. Reconnaissance

enables adversaries to gather information about the tar-

get system including network topology, configurations, net-

work dynamics. This information can be used to identify

system vulnerabilities, and to design and execute specific

exploits. The MTD defense mechanism proposed in [1] is

designed to protect the identity of nodes in Mobile Ad Hoc

Networks by turning the classical Sybil attack mechanism

into an effective defense mechanism. Legitimate nodes use

virtual identities to communicate and periodically change

their virtual identity to increase the uncertainty for attackers

observing the network. To preserve communication among

legitimate nodes, the network layer is modified by introduc-

ing a mechanism for mapping virtual identities to real iden-

tities, and a protocol for propagating updates of a node’s

virtual identity to all legitimate nodes.

By reconfiguring a system, it is possible to increase the

overall security level it provides. Reconfiguration can be ei-

ther reactive – i.e., the system is reconfigured in response to

a detected or perceived threat or new security requirements

– or proactive – the system is periodically reconfigured to

limit the amount of time each configuration is exposed to

malicious observers. Additionally, reconfiguration should

be performed in a way to minimize its impact on the system

in terms of resource consumption and performance.

In this paper, we propose an MTD framework for re-

configuring resource-constrained devices at different lev-

els, with the reconfiguration granularity chosen at runtime

based on current requirements. Reconfiguration consists in

changing one or more of the system’s parameters. In our

case study focused on WSNs, we identified two main re-

configurable architectural layers:

• Security layer. Security in an embedded network can

be achieved by implementing a proper cryptosystem.

Security layer reconfiguration can be performed by

switching among different cryptosystems that satisfy

specific security requirements while meeting certain

performance and energy consumption constraints.

• Physical layer. In embedded systems, the software

is embedded in the node’s firmware, that is typically

preloaded on internal read-only memory chips (ROM),

in contrast to a general-purpose computer that loads its

programs into random access memory (RAM) at run-

time. Firmware provides the control program of the

device and represents the skeleton where different li-

braries for the implementation of the available cryp-

tosystems and APIs can be plugged and activated via

proper software switches. Nodes can be equipped with

several versions of the firmware in order to perform

physical reconfiguration when needed.

The choice of the reconfiguration level impacts both the

system’s performance and the provided level of security.

From the performance point of view, changing the firmware

of all the nodes in the network or a subset of them is much

23

more expensive – in terms of latency and power consump-

tion – than changing the cryptosystem, whose reconfigura-

tion could be handled in software. On the other side, by

changing the entire application running on a node, it be-

comes harder for an attacker to exploit software vulnerabil-

ities and gain complete control of the node.

At the security layer, the cryptosystem itself is designed

to cope with a specific set of attacks and provides an in-

trinsic level of security, depending on the cryptographic

scheme, the algorithm, the length of the keys, etc. Recon-

figuration of the cryptosystem can increase the level of se-

curity in two ways, that is by switching to a cryptosystem

that covers a larger set of attacks (e.g., to cope with some

detected or perceived threats), or by selecting an equiva-

lent cryptosystem that uses different parameters. Given a

certain fixed configuration, the more an attacker is able to

observe, the more he will be able to infer information about

the system. By continuously changing the system’s config-

uration, the attacker will be presented with different views

of the system over time, and will have to restart the recon-

naissance effort multiple times in order to identify a viable

exploit.

In the remainder of this paper, we will discuss the

methodology adopted to evaluate the level of security pro-

vided by a system configuration, and how to increase it us-

ing a reconfiguration approach.

Once the admissible configurations have been identified,

the selection of the new configuration is performed by a

security-driven scheduler. The scheduler can be either a

centralized entity making decisions on the global network

configuration, or a decentralized component, independently

deployed on each network node, making local reconfigura-

tion decisions. In a centralized approach, a central entity

triggers a configuration update based on some events (e.g.,

timer expiration, detected security threat) and transmits its

decision to all the nodes that are involved. In a decentralized
approach, each node is able to schedule, independently from

other nodes, when to update its own configuration. Commu-

nication among legitimate nodes is preserved adopting ad-

ditional mechanisms, described in details in the following

section.

Each configuration provides a certain level of security,

which depends on the implemented cryptosystem (crypto-

graphic scheme, algorithms, and keys) and is characterized

by an intrinsic value that quantifies the effort an attacker

needs to break it [5, 6]. Indeed, the longer a system con-

figuration is exposed to malicious observers, the more the

actual level of security decreases. For this reason, the se-

curity level is a monotonically decreasing function, with its

maximum corresponding to the intrinsic security level asso-

ciated with the specific implemented cryptosystem.

As illustrated in Figure 1, using reconfiguration, we

can prevent the security level from falling below a certain

L1

L2

L3

T0 T1 T2 t

Security
level

C1 C2 C3

C1 C2 C3

reconf reconf

Figure 1. Reconfigurations and security level

threshold, and periodically reset it to the intrinsic value as-

sociated with a new configuration. Dually speaking, we

avoid that the probability of successfully completing an at-

tack increases beyond a certain threshold. In fact, such

probability depends on the considered type of attack and is

usually represented by a monotonically increasing function:

the longer an attacker can try to exploit a system, the higher

the success probability is. It is easy to demonstrate that, by

introducing reconfiguration, we can break the monotonic-

ity, such that the probability of successfully completing an

attack actually decreases every time the system is reconfig-

ured.

Theorem 1 Let [0, T] be an observation interval, and let
n ∈ N be an integer greater than or equal to 2, representing
the number of reconfigurations in [0, T]. Then the following
inequality holds.

Pr (success ([0, T], n)) ≤ Pr (success ([0, T], 0)) (1)

where Pr (success (I, x)) denotes the probability that the
attacker is successful within the temporal interval I if x re-
configurations are performed during the same interval.

The proof of Theorem 1 is quite straightforward, but we

omit it for reasons of space.

3 WSN Reconfiguration: a Case Study

A WSN is an embedded network composed of a base

station – able to perform multi-node data fusion and com-

plex application logic, and often provided with a consistent

source of energy – and several motes, which merely per-

form local processing on sensed data. Nodes communicate

by exchanging messages over a radio channel: the base sta-

tion sends queries to motes in order to sample physical vari-

ables (e.g., humidity), whereas motes simply reply to these

queries by sending unicast messages to the base station.

24

Security is a fundamental concern in WSNs, as they

are widely adopted in several critical application domains.

Nevertheless, because of their peculiar features – con-

strained processing and storage capabilities, limited battery

life, highly dynamic topology and mobility, frequent fail-

ures – providing security is not a straightforward task. The

introduction of security mechanisms has a strong impact on

performance and resource consumption, that often represent

a limiting factor. For this reason, although the adoption of

a complex cryptosystem (e.g., based on public key primi-

tives) for all network activities could be desirable from a

security point of view, it is not feasible in practice. The pro-

posed reconfiguration approach is able to overcome these

concerns, as it allows to maintain an acceptable level of se-

curity in the network by leveraging not only the intrinsic

features of the adopted cryptosystems, but also other fea-

tures, such as the physical configuration and the application

interfaces, other than the reconfiguration mechanism itself.

This way, the use of simpler cryptosystems for short periods

of time can be preferable to the adoption of a single strong

but computation-intensive cryptosystem.

In this discussion, we refer to TinyOS, the most com-

monly adopted operating system for WSNs. TinyOS ap-

plications and the OS itself are built by connecting com-

ponents that represent functional building blocks, such as

communication protocols, device drivers, or data analy-

sis modules. During the default compilation process of

TinyOS, these building blocks are converted into a mono-

lithic, static binary, to enable code optimization and ensure

a small memory footprint. This means that the OS and its

applications’ executables lack modularity, and it is not pos-

sible to dynamically replace a single component at runtime.

Security mechanisms could be implemented either as inde-

pendent TinyOS components or as different static libraries

wired in the same component, whose functions are invoked

by applications to ensure security requirements. Reconfig-

uration of both the security layer and the application in-

terfaces could be easily achieved by including the imple-

mentation of all the available solutions into the firmware

installed on the device, and activating the desired config-

uration through software switches and ad hoc protocols.

Firmware reconfiguration can be performed by adopting

node reprogramming techniques, that will be illustrated in

details later. Two innovative approaches to reconfiguration

are presented in the following subsections, along with some

implementation details.

3.1 Security Layer Reconfiguration

Assume that, in order to enforce security, queries are

signed by the base station for authentication purposes, and

reply messages are encrypted for ensuring confidentiality

and integrity. The security layer performing these op-

Monitoring
Application Base Station Mote

Init CRYPTO(1)

....

Init CRYPTO(N)

Valid cryptosystem
selection (CRYPTO(i)) Query

Digital signature (i)
(Signed Query , i)

Signature
Verification (i)

Sampling

Data
Encryption (j) (Encrypted Message , j)

Decryption (j)
Query Results Valid cryptosystem

Selection (CRYPTO(w))

Sampling

Data
Encryption (w)

Decryption (w)
Query Results

Valid cryptosystem
selection (CRYPTO(j))

 (Encrypted Message , w)

Figure 2. Security protocol reconfiguration

erations can be designed to implement different crypto-

graphic protocols, depending on the required security level

and available resources. The basic idea of the proposed

approach is to dynamically change the security layer, by

switching between two or more different implementations.

We assume that each node is provided with a pool of differ-

ent cryptosystem implementations, which are identified by

a unique ID.

To give a concrete example, we refer to the two cryp-

tosystems presented in [4], based respectively on Ellip-

tic Curve Cryptography (WM-ECC libraries) and Identity-

based cryptographic techniques (TinyPairing libraries).

WM-ECC [17] provides key agreement algorithms and dig-

ital signature that can be used to authenticate packets in the

sensor network. It provides support for all the ECC oper-

ations and we used it to implement a hybrid cryptosystem

[4] based on a public key function for ensuring authentica-

tion of the base station, and on a key agreement protocol

for establishing a symmetric key, to be used for encryp-

tion/decryption of data packets sent by the motes. Tiny-

Pairing [19] is an open-source pairing-based cryptographic

library for wireless sensors, providing an interesting solu-

tion to the key management problem, that still represents an

open issue in WSN security research.

In the simplest scenario, each node can decide indepen-

dently when to update, and an identifier of the cryptosystem

used to encrypt a message is encoded in the message itself,

so that each receiving node, sharing the same reconfigura-

tion strategy, is able to properly handle it.

25

Figure 2 illustrates a typical scenario for security proto-

col reconfiguration. In the INIT phase, the base station and

the motes agree on the parameters of N different cryptosys-

tems. The details of the initialization phase depend on the

specific cryptosystems (the parameters can be public points

for an ECC based cryptosystem, or system parameters for

an identity based [4]). Initialization should be performed

in a secure environment, either in the pre-deployment phase

or later. After initializing the N available cryptosystems,

each node can independently choose the valid cryptosystem

to adopt for performing cryptographic operations in the cur-

rent validity interval. In particular, the base station choses

the cryptosystem it will use to digitally sign the outgoing

queries and ensure authentication (CRYPTO(i) in figure).

Any mote receiving the query message will use the cryp-

tosystem whose ID is included in the message itself to ver-

ify the signature. Similarly, after verifying the signature,

any mote encrypts data using the locally selected cryptosys-

tem (CRYPTO(j) and CRYPTO(w) in figure), and the base

station will use the ID included in the reply messages to

decrypt them.

As illustrated in Figure 2, the parameters of the N cryp-

tosystems (i.e., the cryptographic keys) could be either

preloaded on all network nodes in the INIT phase, or dy-

namically determined in each reconfiguration phase accord-

ing to available key agreement mechanisms. All the crypto-

graphic keys can be stored in each node for the entire life-

time of the network, and they can be used as master keys for

generating new keys. The main advantages of this solution

relate to improved overall performance. In fact, there is no

latency to swap from a cryptosystem to another and we do

not need to stop the monitoring application during the re-

configuration; even battery consumption is not affected by

this solution.

As for the security of this strategy, an attacker who is

aware of the message format may try to manipulate some

fields of query and data packets, such as those coding the

cryptosystem ID and its parameters, so that nodes are no

longer able to communicate. As for query messages, their

payload is signed with the base station’s private key, so that,

if any field is altered during transmission, the signature ver-

ification at mote’s side will not succeed, and the message

will be discarded. This aspect of the protocol could be ex-

ploited to execute a denial of service attack, with motes not

able to verify the authenticity of queries and thus refusing

to provide the required data. To detect this type of attack, a

timeout is set by the base station every time a query is sent.

If no reply is received before the timer expires, the query is

sent again to cope with possible message losses. If no reply

is received after a few attempts, an alert is raised. The cryp-

tosystem ID is also encoded in each response message, as it

is necessary to decrypt the message. An attacker could alter

it as messages are not authenticated, but then the base sta-

tion will not be able to decrypt them, and will discard them.

This situation may cause the loss of some response mes-

sages. However, as a typical sensor network is composed of

many redundant motes, this situation is not critical.

3.2 Physical Layer Reconfiguration

Several existing approaches for sensor network repro-

gramming perform a full-image replacement, consisting in

completely replacing the image of the application running

on a node. Deluge [11] is a reliable data dissemination pro-

tocol for propagating large data objects (larger than a node’s

memory) from one or more source nodes to many other

nodes over a multi-hop network. As Dutta et al. pointed out

in [7], this approach is unsafe and too battery-consuming.

We implemented a different approach to remotely reconfig-

ure each node in the network. We decoupled the reconfigu-

ration mechanisms from the components to enforce the new

configuration according to a scheduling policy.

To this aim, we designed a reconfiguration application

by augmenting several components of the Deluge frame-

work. In particular, we implemented new reconfiguration

functionalities to enable a single node to swap to a new

image that was previously preloaded on its storage. The

reconfiguration application is defined by wiring new com-

ponents specifically designed to manage external reconfigu-

ration commands, and components designed to manage the

images loaded on the node storage. The proposed recon-

figuration application consists of three main components,

namely (i) a bootloader component, (ii) a reprogramming

component, and (iii) a management component.

The bootloader component is a persistent layer in the

architecture, which can enforce the chosen reconfiguration

mechanisms. This component is intended for TinyOS and

it provides needed functionalities to program the node with

an already stored program image. The parameters passed to

this component are specified in the external command and

indicate the location of the binary in the external flash mem-

ory to program the node’s microcontroller. When repro-

gramming is requested, the bootloader will erase the pro-

gram flash and write the new binary to it. On completion, it

jumps to the first instruction of the new application.

The reprogramming component is the core of the recon-
figuration application. In our implementation, it accepts

commands from the base station, but can be extended to

implement a decentralized reconfiguration approach. This

component is built by connecting two primary subcompo-

nents: the ReProg and the StorageManager. The ReProg

component is an extension of the NetProg component of

Deluge T2. It handles a reprogramming request from the

network by providing a dedicated API to initialize a recon-

figuration process. When a node wants to perform a recon-

figuration, it only has to invoke this API by specifying the

26

name of the new binary in the flash memory to load. Subse-

quently, the ReProg sets the environment variables needed

by the bootloader component and reboots the node. The

StorageManager component deals with image name resolu-

tion, mapping names of program images to their respective

physical addresses in the external flash memory.

The management component has a master (base station)

and a mote side. It is used to initialize the mote and de-

ploy different images. Usually this operation is done in

a secure environment and it is accessible only during the

initialization. The master-side management component has

been derived from the tos-deluge application of the Deluge

T2 Framework, and it is called mote-manager. This compo-

nent allows to inject one or more images into the mote by

writing directly into nodes’ external flash memory volumes.

It is also possible to erase a volume and ping the status of a

mote to get information about already injected images.

Finally, the reconfiguration application runs on a work-

station connected to the base station, which implements the

reprogramming scheduler. As discussed in the next section,

the reprogramming frequency and the new configuration to

load can be chosen to balance overhead and attack proba-

bility.

The proposed solution introduces considerable advan-

tages in terms of security and overall performance with re-

spect to WSN reprogramming approaches based on code

dissemination. In fact, the reconfiguration time is now not

dependent on the image size and the network topology as

the images are not sent over the network but preloaded via

a serial interface. Furthermore, this approach avoids any

security risk in the dissemination and reduces the battery

consumption as the messages sent are simply commands to

swap from an image to another one. The swapping latency

is considerably reduced, too. We experimented a reduc-

tion of one order of magnitude with respect to the original

Deluge approach: from 50 seconds to send a 40Kb image

implementing a monitoring application secured with WM-

ECC, to about 6 seconds to perform the swap. The only

drawback is that we need to stop the monitoring application

and any query being executed in order to swap to another

cryptosystem. However, any approach based on full image

replacement presents similar issues. Furthermore, due to

storage limitations, we can only preload a limited number

of images on board.

We can now consider possible attacks aimed at under-

mining this reconfiguration mechanism. An attacker may

try to replay control packets sent by the base station and

containing a reconfiguration command, in order to control

communication or simply perform a denial of service attack

by forcing motes to continuously swap images. This risk

can be prevented by introducing a sequence number for re-

configuration commands.

Cryptosystem key lenght (bits) time (ms) max attack time (ms)
WM ECC sk 80 0.001251 1.5123E+21
WM ECC rc5 160 0.001221 1.7845E+45
TinyPairing 208 13.019531 5.3560E+63

Table 1. Characteristics of cryptosystems

4 MTD evaluation

In order to evaluate the effectiveness of security-driven

reconfiguration – even under adverse conditions – we as-

sume that an attacker is able to understand when the adopted

cryptosystem changes and what type of cryptosystem is

used at each time (e.g., by observing control messages sent

over the network by the base station in the node reconfigu-

ration strategy, or control flags found in data packets in the

protocol reconfiguration strategy).

Many types of cryptographic attacks can be considered.

In our case, an attacker can only observe encrypted packets

traveling on the network and containing information about

sensed data, and can perform a brute force attack on cap-

tured packets by systematically testing every possible key

for the current (known) cryptosystem – assuming he is able

to determine when the attack is successful. In the worst
case (for the defender), the attacker knows the encryption

algorithm and the key length associated with the algorithm,

therefore he can systematically try all possible keys of that

length. In the intermediate case, the attacker knows the en-

cryption algorithm but does not know the key length associ-

ated with it, thus he systematically tries all possible keys for

a given set of key lengths. In the best case, the attacker does

not know anything about the adopted cryptosystem, thus he

tries all possible keys for a given set of key lengths and a

given set of cryptosystems.

We evaluated our approach with respect to the cryptosys-

tems described in [4], whose characteristics are summa-

rized in Table 1. The reported execution times (third col-

umn) refer to the execution of the decryption operation on

TelosB devices, equipped with a 4.15 MHz MSP430 micro-

controller, a CC2420 radio chip, a 10 kB internal RAM, and

a 48 kB program flash memory.

It is important to point out that attack times resulting

from our simulations are significantly high due to the na-

ture of the attacks we considered. In practice, attacks may

be more sophisticated and efficient than brute force attacks.

However, this does not affect the validity of the proposed

MTD approach as we are interested in illustrating how the

probability of successfully completing an attack decreases,

compared to a static configuration scenario.

We carried out our simulations considering both worst

and intermediate cases, and analyzed the cumulative distri-

bution function (cdf) of the attack time. In both cases, we

simulated an attacker sequentially exploring the key space.

27

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1.E+00 1.E+10 1.E+20 1.E+30 1.E+40 1.E+50 1.E+60

At
ta

ck
 p

ro
ba

bi
lit

y
(%

)

Attack time (milliseconds)

T = 2.68e+21 ms T = 1.34e+21 ms T = 3.35e+20 ms

Figure 3. Worst case attack time cdf

0%

20%

40%

60%

80%

3.E+19 2.E+20 4.E+20 6.E+20 8.E+20

At
ta

ck
 p

ro
ba

bi
lit

y
(%

)

Validity Interval (milliseconds)

t = 5.35e+45 ms t = 2.68e+21 ms t = 1.34e+21 ms t = 5.36e+19 ms

Figure 4. Probability of successful attack

Figure 3 shows the attack time’s cdf in the worst case:

as expected, when reducing the length of the validity inter-

val – with validity intervals larger than the maximum at-

tack time of the weakest cryptosystem – the attack time in-

creases, with the percentage of successful attacks reducing

dramatically. The same behavior is highlighted in Figure 4,

which shows how the probability of completing a success-

ful attack within a time t varies as the length of the validity

interval changes: as soon as the validity interval drops be-

low the maximum attack time of the weakest cryptosystem,

the rate at which probability decreases becomes higher.

Similar results can be obtained when reconfiguration is

performed by selecting an equivalent cryptosystem that uses

different parameters (i.e different keys). Figure 5(a) shows

the attack time’s cdf in the worst case when reconfiguration

is performed by switching among three cryptosystems that

implement the WM-ECC library with the Skipjack cipher,

but have different keys. When reducing the validity interval,

the probability of successfully completing an attack signifi-

cantly decrease as the intrinsic security level is restored ev-

ery time a new key is adopted. For comparison purposes,

Figure 5(b) shows the attack time’s cdf when three different

cryptosystems are used. As expected, increased diversity

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1.E+00 1.E+10 1.E+20 1.E+30 1.E+40 1.E+50 1.E+60

At
ta

ck
 p

ro
ba

bi
lit

y
(%

)

Attack time (milliseconds)

T = 1.34e+21 ms T = 3.35e+20 ms T = 8.37e+19 ms

(a) Same cryptosystem with different keys

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1.E+00 1.E+10 1.E+20 1.E+30 1.E+40 1.E+50 1.E+60

At
ta

ck
 p

ro
ba

bi
lit

y
(%

)

Attack time (milliseconds)

T = 1�34e+21 ms T = 3�35e+20 ms T = 8�37e+19 ms

(b) Three different cryptosystems

Figure 5. Worst case attack time cdf

Cryptosystem key len (bits) time(ms)
WM ECC sk [80] [0.001251]
WM ECC rc5 [120,160] [0.001120,0.001221]
TinyPairing [180,208] [11.023211,13.019531]

Table 2. Key lengths set

results in a lower probability of attack.

Figure 6 compares the attack time’s cdf for the interme-

diate and the worst cases, under the assumption that the at-

tacker performs a brute force attack using the set of key

lengths in Table 2. The validity interval of 5,36E+45 mil-

liseconds is long enough to break both WM ECC sk and

WM ECC rc5. As shown, the attacker’s success probabil-

ity is smaller in the intermediate case. Clearly, when the at-

tacker’s uncertainty about the used cryptosystem is higher,

more key lengths will be tested, making the proposed ap-

proach even more effective.

5 Conclusions

In this paper, we have proposed an MTD approach for

protecting resource-constrained distribute devices. The pro-

posed approach is based on fine-grained reconfiguration at

28

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1.E+00 1.E+08 1.E+16 1.E+24 1.E+32 1.E+40 1.E+48 1.E+56 1.E+64

At
ta

ck
 p

ro
ba

bi
lit

y
(%

)

Attack Time (milliseconds)

worst case intermediate case

T = 5.36e+45 ms

Figure 6. Worst case vs. intermediate case

different architectural layers. Changing configuration or

system parameters to augment security is an intuitive princi-

ple, but there is still a lack of metrics to evaluate the security

level of a system and quantify the benefits of reconfigura-

tion. We have introduced two innovative MTD mechanisms

to reconfigure the network, and experimentally showed that

the proposed mechanisms are effective in increasing the

complexity for the attacker to successfully complete an at-

tack. In the near future, we plan to work on different ways

to extend and generalize this approach. Indeed, we are al-

ready working on a formal model of reconfiguration. Fur-

thermore, we plan to define mechanisms to automatically

enforce reconfiguration strategies based on external events

or on the system’s state.

References

[1] M. Albanese, A. D. Benedictis, S. Jajodia, and K. Sun. A

moving target defense mechanism for manets based on iden-

tity virtualization. In Proceedings of the First IEEE Confer-
ence on Communications and Network Security (CNS 2013),
Washington, DC, USA, October 2013.

[2] S. Antonatos, P. Akritidis, E. P. Markatos, and K. G.

Anagnostakis. Defending against hitlist worms using net-

work address space randomization. Computer Networks,

51(12):3471–3490, August 2007.
[3] M. Atighetchi, P. Pal, F. Webber, and C. Jones. Adaptive

use of network-centric mechanisms in cyber-defense. In

Proceedings of the Sixth IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing (ISORC
2003), pages 183–192, May 2003.

[4] V. Casola, A. D. Benedictis, A. Drago, and N. Mazzocca.

Analysis and comparison of security protocols in wireless

sensor networks. In Proceedings of the 30th IEEE Sympo-
sium on Reliable Distributed Systems Workshops (SRDSW
2011), pages 52–56, Madrid, Spain, October 2011.

[5] V. Casola, A. Mazzeo, N. Mazzocca, and V. Vittorini. A

policy-based methodology for security evaluation: A secu-

rity metric for public key infrastructures. Journal of Com-
puter Security, 15(2):197–229, April 2007.

[6] V. Casola, R. Preziosi, M. Rak, and L. Troiano. A reference

model for security level evaluation: Policy and fuzzy tech-

niques. Journal of Universal Computer Science, 11(1):150–

174, 2005.
[7] P. K. Dutta, J. W. Hui, D. C. Chu, and D. E. Culler. Securing

the deluge network programming system. In Proceedings of
the Fifth International Conference on Information Process-
ing in Sensor Networks (IPSN 2006), pages 326–333, April

2006.
[8] D. Evans, A. Nguyen-Tuong, and J. C. Knight. Moving Tar-

get Defense: Creating Asymmetric Uncertainty for Cyber
Threats, chapter Effectiveness of Moving Target Defenses,

pages 29–48. Springer, 2011.
[9] Executive Office of the President, National Science and

Technology Council. Trustworthy cyberspace: Strategic

plan for the federal cybersecurity research and development

program. http://www.whitehouse.gov/, December 2011.
[10] S. Forrest, A. Somayaji, and D. H. Ackley. Building diverse

computer systems. In Proceedings of the 6th Workshop on
Hot Topics in Operating Systems (HotOS-VI), pages 67–72,

1997.
[11] J. W. Hui and D. Culler. The dynamic behavior of a data dis-

semination protocol for network programming at scale. In

Proceedings of the 2nd International Conference on Embed-
ded Networked Sensor Systems (SenSys 2004), pages 81–94,

Baltimore, MD, USA, 2004.
[12] T. Jackson, B. Salamat, A. Homescu, K. Manivannan,

G. Wagner, A. Gal, S. Brunthaler, C. Wimmer, and M. Franz.

Moving Target Defense: Creating Asymmetric Uncertainty
for Cyber Threats, chapter Compiler-Generated Software

Diversity, pages 77–98. Springer, 2011.
[13] S. Jajodia, A. K. Ghosh, V. S. Subrahmanian, V. Swarup,

C. Wang, and X. S. Wang, editors. Moving Target Defense
II: Application of Game Theory and Adversarial Modeling,

volume 100 of Advances in Information Security. Springer,

1st edition, 2013.
[14] S. Jajodia, A. K. Ghosh, V. Swarup, C. Wang, and X. S.

Wang, editors. Moving Target Defense: Creating Asymmet-
ric Uncertainty for Cyber Threats, volume 54 of Advances
in Information Security. Springer, 1st edition, 2011.

[15] D. Kewley, R. Fink, J. Lowry, and M. Dean. Dynamic ap-

proaches to thwart adversary intelligence gathering. In Pro-
ceedings of the DARPA Information Survivability Confer-
ence & Exposition (DISCEX 2011), volume 1, pages 176–

185, Anaheim, CA, USA, June 2011.
[16] P. K. Manadhata and J. M. Wing. An attack surface metric.

IEEE Transactions on Software Engineering, 37(3):371–

386, May 2011.
[17] H. Wang, B. Sheng, C. Tan, and Q. Li. WM-ECC: An el-

liptic curve cryptography suite on sensor motes. Technical

Report WMCS-2007-11, College of William and Mary, Oc-

tober 2007.
[18] Q. Wang, Y. Zhu, and L. Cheng. Reprogramming wireless

sensor networks: Challenges and approaches. IEEE Net-
works, 20(3):48–55, May 2006.

[19] X. Xiong, D. S. Wong, , and X. Deng. TinyPairing: A

fast and lightweight pairing-based cryptographic library for

wireless sensor networks. In Proceedings of the IEEE Wire-
less Communications and Networking Conference (WCNC
2010), April 2010.

29

