
An SLA-based Approach to Manage Sensor
Networks as-a-Service

Valentina Casola∗, Alessandra De Benedictis∗, Massimiliano Rak†, Giuseppe Aversano‡ and Umberto Villano‡
∗Department of Electrical Engineering and Information Technology

University of Naples Federico II
Naples, Italy

Email:{casolav,alessandra.debenedictis}@unina.it
†Second University of Naples

Aversa, Italy
Email: massimiliano.rak@unina2.it
‡Department of Engineering

University of Sannio
Benevento, Italy

Email: {villano,giuseppe.aversano}@unisannio.it

Abstract—The integration of sensing infrastructures into the
Cloud gives a number of advantages in providing sensor data as a
service over the Internet. Many solutions are now available in the
literature, and most of them focus on modeling sensor networks as
part of the infrastructure to be offered as a service (IaaS), directly
managed by means of the Cloud tools that provide resource
virtualization. We propose a different approach: sensor networks
are modeled as providers that offer their resources to a Cloud
application that runs independently from Cloud providers. Being
offered as a Service, any user can negotiate with the provider
his desired requirements in terms of operational parameters
and non-functional features (i.e. security, dependability, . . . ). In
particular, we propose a SLA-based approach for the specification
and management of usage term guarantees related to the access
and configuration of private sensor networks. To this end, a Cloud
Sensing Brokering Platform is designed to illustrate the innovative
way to integrate Cloud and Sensor Networks.

I. INTRODUCTION

A sensor network consists of a group of embedded devices
provided with a communication infrastructure, intended to
monitor and record environmental parameters. Sensor networks
are widely adopted in several application domains, including
industrial automation, video surveillance, traffic monitoring,
air traffic control, disaster management, etc.

In order to promote sensor networks’ accessibility and
interoperability, the Open Group Consortium has recently
defined the Sensor Web Enablement (SWE) Architecture [15],
a framework of open standards for exploiting Web-connected
sensors and sensor systems. The aim of SWE is that of
providing web accessible sensor networks and archived sensor
data that can be discovered and accessed using standard pro-
tocols and application program interfaces (APIs). By adopting
this framework, it is possible to quickly discover sensors
having the desired requirements (location, observable parame-
ters, quality, ability to task), obtain information about sensors
and observations in a standard encoding, and task sensors,
when possible, according to specific needs. These concepts
have been taken a step further by the adoption of the Cloud
paradigm: several research and industrial efforts have been

recently focused on the development of Cloud-based sensing
infrastructures, that integrate large-scale sensor networks with
sensing applications and Cloud computing infrastructures. The
integration of sensors into the Cloud enables users to easily
collect, access, process, visualize, archive, share and search
large amounts of sensor data from different applications and
supports complete sensor data life cycle from data collection
to the back-end decision support system.

While several solutions exist to remotely access distributed
sensor networks and provide interoperability among different
monitoring systems, the usability of real-world sensor net-
works is still limited. Indeed, there is a lack of general and
efficient approaches for dynamically providing guarantees to
both users and network owners about the way such networks
are used, in terms of regulations on the access to sensed data by
multiple external users, and the possibility of partially config-
uring these networks (e.g. installation of custom applications).

The deployment and management of sensor networks
devoted to monitor specific processes or phenomena (e.g.
volcanic or seismic activities) in fact, are typically exclusively
performed by the sensor network’s owner, that usually does
not allow external users to freely configure and task them
– differently from what happens for most of the existing
sensor network testbeds made available by several univer-
sities and research centers for the evaluation of protocols
and algorithms. The usability of such networks could be
maximized by introducing proper mechanisms to dynamically
request and obtain guarantees about the usage terms of a target
sensor network. Each user could explicitly negotiate, with the
network’s owner, several parameters such as the exclusivity of
usage of the network for a certain interval of time, the features
of the monitoring application to install on sensors, or even the
physical topology to deploy. On the other side, the network’s
owner could ask for the fulfillment of some requirements such
as the level of authorization of the users or the guarantees
on the disclosure of sensed data. Moreover, given a physical
location and a set of phenomena of interest, there could be
several sensor networks deployed for their monitoring, owned



by different providers with different policies and features. In
this scenario, it would be desirable to have the possibility of
selecting the provider that best meets the user’s requests, for
example in terms of flexibility or performance.

The described features can be faced through the adoption
of the Cloud computing paradigm applied to sensor networks.
As we will outline in the next sections, at the state of the art a
lot of solutions exist in this direction, and most of them focus
on modeling sensor networks as part of the infrastructure to
be offered as a service. For this reason, sensor networks are
usually directly managed by means of the Cloud tools that
provide resource virtualization. In this paper, we propose a
different approach: sensor networks are modeled as providers
that offer their resources to a Cloud application, which runs
independently from Cloud providers (as providers technology
and software). Such application acts as a third party, by
offering services to both sensor network providers, that share
their networks to a larger user community, and customers, that
are able to access a large variety of different sensor networks,
being able to search among them and negotiate the features
they need.

We propose a SLA-based approach for the specification
and management of usage term guarantees related to the
access and configuration of private sensor networks, where
such guarantees are seen from the point of view of both end-
users and network owners. A service-level agreement (SLA)
is a part of a contract that formally defines the agreement
between two or more parties about the service that is to be
delivered. In the considered scenario, sensor networks’ owners
offer to clients a service represented by the access to their
network: proper SLAs can be defined including functional
and non-functional requirements, regarding both the physical
configuration of sensor networks and several general aspects
such as desired/provided performance, security and reliability.
We introduce a Cloud infrastructure for the negotiation of the
service guarantee terms, which aggregates different network
providers offering the access to their private sensor networks
to clients having specific requirements. Network providers
register themselves with a Cloud Sensing Brokering Platform,
that will be used as a broker by end-users to find the best
matching between her requirements/guarantees and those of
each network provider.

The paper is organized as follows: Section II presents some
related works about sensors and Cloud, while in Section III we
discuss the adopted approach and the services offered by the
proposed infrastructure. Section IV presents the architecture of
the Cloud Sensing Brokering Platform and, finally, Section V
illustrates the whole approach referring to a WSN case study.

II. RELATED WORK

The integration of sensing infrastructures into the Cloud
gives the advantage of providing sensor data or sensor events
as a service over the Internet. In [4], the authors survey some
typical applications of Sensor Networks using Cloud comput-
ing as backbone. In these applications, the combination of
WSNs with Cloud makes it easy to share and analyze real time
sensor data on-the-fly, exploiting the virtually unlimited com-
putational and storage capabilities of the Cloud infrastructure.
In transport monitoring for example, sensors are used to control

traffic lights or detect vehicles and estimate their speed, in or-
der to build a global traffic picture. Data available from sensors
is acquired and transmitted for central fusion and processing:
this requires storage of data and huge computational cycles,
as well as the capability of analysis and prediction of data to
generate events. These tasks can be accomplished by means
of the integration with the Cloud computing infrastructure.
In the military field, Cloud computing may be a solution to
the problem of providing a secure infrastructure to protect
data collected from military applications, needing a top level
security that is not guaranteed using normal Internet connec-
tivity. Finally, in Weather Forecasting, each weather station
is equipped with sensors to sense various parameters such as
wind speed/direction, relative humidity, temperature (air, water
and soil), barometric pressure, precipitation, soil moisture,
ambient light (visibility), sky cover and solar radiation. The
data collected from these sensors is huge in size and is difficult
to maintain using the traditional database approaches. Such
data could be processed according to the complicated weather
forecast equations, by proper supercomputers accessible within
the Cloud infrastructure.

Several research papers and industrial applications have
been proposed dealing with sensors and Cloud, identifying
two main different approaches. On the one hand, some authors
consider sensing and actuation resources in the same way that
computing and storage resources are in more traditional Cloud
stacks: abstracted, virtualized, and grouped in Clouds [17],
[12], [13]. On the other hand, other solutions consider sensors
involved in the Cloud exclusively as simple endpoints.

According to the first approach, Sheng et al. proposed in
[17] to leverage the Cloud computing model to provide various
sensing services using mobile phones, and introduced the
concept of Sensing as a Service (S2aaS). In a S2aaS Cloud,
multiple sensing servers can be deployed to handle sensing
requests from different locations. When a Cloud user initiates
a sensing request through an online form, the request will be
forwarded to a sensing server which will then push the request
to a subset of mobile phones that are in the area of interest.
The sensing task will be fulfilled by these mobile phones, and
sensed data will then be collected by the server, stored in the
database and returned to the requester. A mobile phone user
can be not only a Cloud (service) user who can request sensing
services from the Cloud, but also a service provider who fulfills
sensing tasks according to sensing requests from other Cloud
users.

Mitton et al. introduced in [13] the concept of Sensing
and Actuation as a Service (SAaaS), and proposed a Cloud
of Things (CoT), that provides services by abstracting, virtu-
alizing, and managing things according to the needs and the
requirements specified by users, negotiated and agreed to by
the parties through specific SLA agreements/procedures.

Yuriyama et al. proposed in [12] the Sensor-Cloud infras-
tructure, for managing physical sensors on IT infrastructures.
The Sensor-Cloud Infrastructure virtualizes a physical sensor
as a virtual sensor in the Cloud infrastructure, so that dynam-
ically grouped virtual sensors can be automatic provisioned
when the users need them.

The remaining part of the existing work follows the second
approach, according to which sensing platforms are only



considered as endpoints for the generation of data, that are
then processed by means of the Cloud resources. Indeed, this
approach is more suited when considering classical sensor
networks, that are actually deployed in many scenarios and
are composed of very simple devices, only provided of limited
sense and forward capabilities. Moreover, sensor networks
have several peculiar features that heavily differentiate them
from other systems: firstly, the validity of data generated by
a sensor network depends on the physical location of sensor
nodes and on the observation time and, secondly, a sensor node
cannot be virtualized as other computing resources typically
are in a Cloud context, since each node must be physically
dedicated to a single task at each time.

The IoTCloud project [11] consists of an open source
middleware for Internet of Things (IoT) applications. The
IoTCloud is a Cloud based controller for distributed Sensor
Grids, which supports an extensible set of sensor-types and
large numbers of geographically distributed smart objects.
The framework is composed of an IoTCloud Controller for
managing the other system components and providing SOAP
Web Services for sensor registration, discovery, subscription
and control, a Message Broker, that handles the low level
details of message routing, sensors and Clients, that subscribe
to (consume) sensor data for some application specific purpose.
Interoperability is achieved by having sensors and clients
interact with the IoTCloud through a set of standards-based
SOAP Web Services.

Finally, among industrial applications, MicroStrains
SensorCloudTM[2] is a sensor data storage, visualization and
remote management platform, that leverages Cloud computing
technologies to provide data scalability, rapid visualization,
and user programmable analysis. Core SensorCloud provides
a virtually unlimited data storage for collecting and preserving
long-term sensor data streams, offers time series visualization
and graphing tool to allow viewers to navigate through
massive amounts of data, and allows users to quickly develop
and deploy data processing and analysis applications that live
alongside their data in the Cloud. Moreover, it allows users
to create custom alerts for monitoring events of interest.

III. SENSOR NETWORK SLA-NEGOTIATION

In this paper, we propose an SLA-based approach for the
specification and management of usage term guarantees related
to the access and configuration of private sensor networks
offered, through a Cloud infrastructure, by different network
providers to multiple end-users. This can be achieved by means
of a negotiation process that involves the SLAs defined by
each of the interacting parties. Our proposal is motivated by
the need, in real-world monitoring systems, of specifying a set
of requirements that must be satisfied by both end-users and
network providers, in order to come to an agreement on the
terms of usage of a specific sensor network.

In order to aggregate multiple network providers to give the
users a wider offer, we introduce a Cloud Sensing Brokering
Platform (SBP). The SBP is a third party platform that acts
both as a broker for the end-users, by helping them in
selecting the network providers that best meet their requests,
and as a registrar for the network providers, by registering
all available monitoring systems and exposing their features

to users. Besides managing the accounting phase, the SBP is
also in charge of performing the negotiation process among
users and network providers on their behalf, while the resulting
contract is signed by the two parties. A different approach, that
we will not consider in this paper, would see the SBP as the
interface between users and providers in all phases of their
interaction, with the SBP taking on all the responsibility for
the agreements.

It is worth noting that the SBP we propose is a cloud-
provider that is independent from the platform, it can be
run as a cloud application consuming resources of any IaaS
cloud provider. This is a clear difference with all the existing
solutions, that mix Cloud and sensor solutions, and they
are typically offered as a whole Infrastructure as a Service
Provider, that own and manage sensors as resources and offer
them as a service.

As previously said, the agreement between end-users and
network providers about the terms of usage of offered sensor
networks is formally defined in a SLA. The SLA Lifecycle as
described by the TeleManagement Forum [10] can be split up
in six different phases:

1) development of service and service templates,
2) discovery and negotiation of an SLA,
3) service provisioning and deployment,
4) execution of the service,
5) assessment and corrective actions during execution

(parallel phase to execution of the service), and
6) termination and decommission of the service.

In this section we illustrate the discovery of the network
providers that satisfy users’ requirements, and the negotiation
with those candidates to reach an agreement (the SLA) on the
service requested and ultimately provided. We also refer to
the generation of SLA Templates to make requests and to the
execution of services.

Fig. 1. Network provider registration process

Figures 1 and 2 illustrate the sequence diagrams related
respectively to the registration of network providers and users



Fig. 2. End-users registration process

Fig. 3. Job submission process

at the SBP. Each network provider registers its services with
the SBP in order to make them available to end-users. Before
that, a negotiation process must be carried out between the
network provider and the SBP to come to an agreement on
the service guarantees provided by the platform to the network
provider (e.g. the platform ensures that all communications
will be encrypted). Negotiation is performed according to the
WS-Agreement specification [5]: the initiator sends a request
for an offer (called Bid) to the service provider, that sends
back an offer to be agreed upon. In order to start negotia-
tion, a network provider retrieves the SBP SLA Template
from the SBP, containing all the terms that can be agreed
upon, and builds a request according to its format. At the
end of the negotiation, that can include several phases, a
network registration SLA is prepared by the SBP and
signed by both parties.

After the agreement has been signed, the network provider

can register its services by submitting a Sensing Service
Description (SSD), that is a description of the offered services
in terms of the features of the exposed sensor network. A
service can be offered according to different configurations
or quality levels, corresponding to different SLA Templates
created by the network provider. All templates are retrieved
by the SBP, that stores them into a WSN SLA Template
Repository.

As for user registration, shown in Figure 2, there is no need
to negotiate the services offered by the SBP: the two parties
simply sign a user registration SLA prepared by the SBP,
and after that the user retrieves a SLA U Template (a union
Template) from the SBP, including all the terms that can be
negotiated and have been specified by all the registered WSN
providers in their SLA Templates. This template is then used
by the user for submitting its service requests.

Figure 3 shows the process of discovery and negotiation
of services offered by network providers. When a user wants
to search for a network that meets her needs, she will first
register with the SBP following the process previously de-
scribed. After that, the user will build a request containing her
own operational requirements about network functional and
non functional parameters, by filling the SLA U Template
the has previously retrieved. Upon receiving the user’s re-
quest, the SBP searches for a match between users’ requests
and providers’ offers and selects potential candidate services
among the available configurations described by the SLA
templates in its WSN Template Repository. The user selects
one of the candidate services and starts a negotiation process,
that is actually performed by the SBP on her behalf. The SBP
creates a job SLA specifying all service terms based on the
user’s request, and asks the end-user and the network provider
to sign it. This SLA contains also a description of the actual
invocation of the requested service (e.g. sampling frequency,
allocation time etc.), and can thus be considered as a job
descriptor. After the negotiation, the user can finally access
the selected network, by submitting her jobs to the SBP, that
in turn forwards them to the network provider. Similarly, job
results are sent back to the user by passing through the SBP.

Based on the previous discussion, we can summarize the
services offered to network providers and end-users as follows:

• Services offered to network providers
◦ GET SBP SLA TEMPLATE: get the

SLA TEMPLATE containing all the possible
features that can be negotiated with the SBP

◦ REGISTRATION: the network provider reg-
isters its services with the SBP by signing a
network registration SLA

◦ MONITORING: the SBP generates statistics
on network usage

• Services offered to end-users
◦ REGISTRATION: the user registers at the SBP

by signing a user registration SLA
◦ GET U TEMPLATE: the user retrieves the

SLA U Template containing all the possi-
ble features that can be negotiated with the
network providers

◦ REQUEST: the user submits a service request
to the SBP containing her functional and non



functional requirements and obtains a list of
candidate services

◦ SELECT NET: the user selects a sensor net-
work to connect to from the list of candidate
services

◦ SUBMIT JOB: the user submits her jobs to
the selected network

Moreover, the SBP offers some additional services, such as
a support service to create SLAs, a service for users and
requests monitoring, logging, alerting on the network status,
maintenance requests etc.

IV. PROPOSED ARCHITECTURE FOR SLA NEGOTIATION
AND MANAGEMENT

As previously discussed, our goal is to design a framework
for the aggregation of different sensor providers that offer
the access to their private sensor networks to external users
having specific requirements. This is achieved by means of
the introduction of proper SLAs, defining the usage terms
guarantees related to such networks. In this section, we present
the architecture of the proposed Cloud Sensing Brokering
Platform, the Cloud application that has been developed for the
management and negotiation of SLAs. As such architecture is
based upon the mOSAIC framework, we are going to give an
overview of it in the following subsection, before discussing
the details about the architecture components in Section IV-B.

A. mOSAIC: Development of Cloud Applications

mOSAIC [14], [9] is a framework that provides an API
to develop cloud applications, which are thereafter executed
in a leased environment provisioned and controlled by the
mOSAIC run-time. Hence, the target user for the mOSAIC
solution is the application developer (mOSAIC user). In mO-
SAIC, a cloud application is structured as a set of components
running on cloud resources (i.e., on resources leased by a cloud
provider) and able to communicate with each other. Cloud
applications are often provided in the form of Software-as-
a-Service, and can also be accessed/used by other users than
the mOSAIC developer (i.e., by final users). In this case, the
mOSAIC user acts as service provider for final users.

A mOSAIC application is built up as a collection of
interconnected mOSAIC components. Components may be (i)
core components, i.e., predefined helper tools offered by the
mOSAIC platform for performing common tasks, (ii) COTS
(commercial off-the-shelf) solutions embedded in a mOSAIC
component, or (iii) cloudlets.

Fig. 4. mOSAIC components

Basic mOSAIC components, and the symbols used to rep-
resent them, are depicted in Figure 4. Queues and Key-Value
Stores provide support for inter-component communication

and storage of data. Queue servers in particular are based on
standard protocols (AMQP) and technologies (RabbitMQ) and
allow queue-based communications among other components:
each queue server is able to manage one or more queues and
mOSAIC components can be registered both as publishers and
consumers upon such queues. Key-value Stores instead, use
standard technologies (such as Riak) to allow non-relational
storage and retrieval of data from other components.
Cloudlets are the programmable components that encapsulate
the core logic of the specific application. The mOSAIC API,
through which cloudlets are described, promotes an event-
driven programming style, which results in an asynchronous
execution model that allows higher scalability. Cloudlets are
executed in special containers and are able to self-scale and to
interact with any kind of cloud resource. Connection between
cloudlets and other components is accomplished by means of
proper connectors.

A cloud application is described as a whole in a file named
Application Descriptor, which lists all the application compo-
nents (cloudlets), the cloud resources (queues and key-value
stores) and the details of their interconnections. A mOSAIC
developer has the role both of developing new components
and of writing application descriptors that connect them. All
the mOSAIC components run on a dedicated virtual machine,
named mOS (mOSAIC Operating System), which is based on
a minimal Linux distribution. The mOS is enriched with a spe-
cial mOSAIC component, the Platform Manager, which makes
it possible to manage a set of virtual machines hosting the mOS
as a virtual cluster, on which the mOSAIC components are
independently managed. It is possible to increase or to decrease
the number of virtual machines dedicated to the mOSAIC
Application, which will scale in and out automatically.

B. The Sensing Brokering Platform architecture

The overall architecture of the proposed framework is
presented in Figure 5: the SBP is made of different inter-
connected components that, together, implement the services
described in the previous section. The Negotiation cloudlet is
the core component of the architecture, aimed at managing the
whole process of agreement negotiation and job submission on
behalf of users. It collects users’ requests and providers’ offers
through the micro-http gateway mhttpgw, and properly invokes
the other components to perform the specific requested tasks
(i.e. registration, SLA management, network selection etc.).

As shown in the figure, several key-value store components
have been deployed, in order to provide storage facilities
to the stateless cloudlets. The NP SLA KV, User SLA KV
and Job SLA KV components are used to store agreements
related respectively to the registration of network providers, the
registration of users and the negotiation about job submissions.
These agreements are stored along with an information about
their current state and can be accessed in an associative
way. References to the correspondence between keys and
agreements’ IDs are contained in additional key-value store
servers (respectively, the NP keys, User keys and Job keys
components) for search purposes.

The state of each agreement is updated by means of
proper Change State messages, generated by the Negotiation
cloudlet and sent to the NP SLA store, User SLA store and
Job SLA store cloudlets during the negotiation process.



Fig. 5. SBP architecture

The Templates KV key-value store contains all SLA tem-
plates involved in the different negotiations, that is those used
during the registration phase and the WSN Templates gener-
ated by network providers to describe the offered services.

During the registration phase, network providers retrieve
the SBP SLA Template, stored in the Templates KV key-
value store, and start negotiation with the SBP. At the end of
such negotiation, a network SLA is signed by both parties
and stored by the NP SLA store cloudlet into the NP SLA KV.
Also, the Negotiation cloudlet adds an entry to its NP-list KV
to keep track of the new registered provider. Meantime, the
state of the negotiation process is updated within the Nego-
tiation State server, that can be accessed by the negotiation
initiator to check for its completion. Once the registration is
complete, the network provider submits its WSN templates to
the SBP, that will store them into the Templates KV server.

The user registration, as previously said, does not include
a real negotiation with the SBP: the user simply retrieves a
user SLA template from the SBP (contained in the Tem-
plates KV server) and signs it, and this agreement is then
stored into the User SLA KV. Afterwards, the user retrieves
the SLA U Template, that is generated by the Negotiation
cloudlet by merging all the parameters that have been specified
by registered network providers in their templates.

When the user wants to submit a job to one of the available
sensor networks, she prepares a request according to the
SLA U Template and sends it to the SBP through the mhttpgw

interface. This request is received by the Negotiation cloudlet,
that retrieves all network IDs contained in its NP-list KV and
passes them, together with the user’s ID and the request itself,
to the Look-up cloudlet.

The Look-up cloudlet accesses the NP SLA KV and the
User SLA KV to retrieve the user SLA and all network
providers’ SLAs, in order to search for the best match between
the request and all the offers. The state of the look-up process
is stored and updated in the Look-up State server, to give
a feedback to the user. Once the process is completed, the
resulting matching SLAs are stored into the Look-up results
KV key-value store and retrieved by the user, that will select
one of the candidates. After that, the user starts the negotiation
process, that is handled by the Negotiation cloudlet. The
resulting job SLA is signed and stored by the Job SLA store
cloudlet into the Job SLA KV.

At the end of negotiation, an event is generated by the
Negotiation cloudlet toward the Scheduler component, that
manages the scheduling of jobs over time. All job events are
stored in an Event Collection key-value store, sorted based on
the job delays (corresponding to the job activation time). When
a job is scheduled, the Job Start cloudlet will take care of it
by forwarding job requests to the selected network provider.
In order to give a feedbacjk to the user, the state of the job is
stored and updated in the Job State server.



V. CASE STUDY

In this section, we present a case study aimed at demon-
strating the possible parameters that can be negotiated about
the usage of a sensor network offered by a network provider.
We will refer to some sensor networks that we deployed in
previous experiments to protect critical infrastructures [7] and
in our laboratories [6], [8]. We have a testbed with 8 sensors,
grouped by 2 networks of 4 sensors each: the first network is
made of TelosB nodes [3] and measures temperature, humidity
and GPS coordinates, while the second network is made of Mi-
caZ nodes [1] and measures acceleration and GPS coordinates.
Note that micaZ boards have usually better performance than
TelosB. For each network, a gateway board linked to a PC
communicates via a WiFi connection with the control room.

Each network can implement different security mecha-
nisms to protect the communication among nodes, depend-
ing on the required security level and available resources.
Sensor providers can provide two different cryptosystems
based respectively on Elliptic Curve Cryptography (WM-
ECC libraries) and Identity-based cryptographic techniques
(TinyPairing libraries). WM-ECC [16] provides support for
all the ECC operations and can be used to implement key
agreement and digital signature algorithms, that can be adopted
to authenticate packets in the sensor network. We used the
WM-ECC library in a previous work [6] to implement a hybrid
cryptosystem based on a public key function for ensuring
authentication of the base station, and on a key agreement
protocol for establishing a symmetric key, to be used for
encryption/decryption of data packets sent by the motes. Tiny-
Pairing [18] is an open-source pairing-based cryptographic
library for wireless sensors, providing an interesting solution
to the key management problem, that still represents an open
issue in WSN security research.

Each network provider creates and submits to the SBP
several SLA Templates that correspond to the different offered
services. Service offers advertised in SLA templates typically
refer to non-functional requirements, related for example to
the provided security and performance levels. In our case, even
some functional requirements could be subject to negotiation,
such as for example the required sampling frequency or the
time interval in which the network should be assigned to
the user. Following the proposed approach, the two network
providers register at the SBP, providing the different templates.
Registration results in signing SLAs, represented in the WS-
Agreement format, containing the network description and
rules about data acquisition (such as the availability period).
For the sake of brevity, we report a brief textual description of
the SLA content, in terms of the included parameters, instead
of the (verbose) XML code:

• NET1-SLA template1.SLA11: SECURITY {wm-
ecc}, JOB {minimum sample period = 100 ms,
telosb hw, temperature and pressure sensors, available
within 7 days}

• NET1-SLA template2.SLA12: SECURITY {no
security}, JOB {minimum sample period = 20 ms,
telosB hw, temperature and pressure sensors, available
within 7 days}

• NET2-SLA template1.SLA21: SECURITY
{tinypairing}, JOB {minimum sample period =
30 ms, micaZ hw, accelx and accely sensors,
available within 15 days}

• NET2-SLA template2.SLA22: SECURITY {wm-
ecc}, JOB {minimum sample period = 15 ms, micaZ
hw, accelx and accely sensors, available within 15
days}

Assume a user wants to submit a request containing the
following operative/functional requirements and security re-
quirements:

SECURITY{tinypairing} JOB{sample period=50ms, accelx and
accely sensors, start monitoring tomorrow at 12:00 for 3 days}.

The lookup operation performed by the SBP does not find
any matching service, as no one of the available templates
fulfills the user’s requests: the request is then rejected, and the
negotiation process is re-iterated. Assume that later on the user
provides a new request, containing the following requirements:

SECURITY{tinypairing} JOB{sample period=50ms, accelx and
accely sensors, start monitoring start monitoring within 15 days
and for 3 days}.

The request is now compliant to one of the provided
services, and the negotiator identifies NET2 as the target
network the user will send its jobs to. At the end of such
negotiation process, a new SLA will be signed (the job SLA),
which summarizes the features the user has requested and
accepted and locks the resources on the network provider in
order to grant the user that his experiments will be correctly
carried on.

The code in Listing 1 illustrates the Ws-Agreement SLA
signed. Note how in the different sections the global informa-
tions are contained, like the expiration date, the target network
Provider and the template adopted for the job.

Listing 1. The Job Service Level Agreement (pieces)
[..]

<wsag:Name>SensCloud Provider SLA</
wsag:Name>

<wsag:Context>
<wsag:AgreementInitiator>End User</

wsag:AgreementInitiator>
<wsag:AgreementResponder>

Cloudplatform</
wsag:AgreementResponder>

<wsag:ServiceProvider>NET2 Sensor
Provider </wsag:ServiceProvider>

<wsag:ExpirationTime>19/7/2013</
wsag:ExpirationTime>

<wsag:TemplateId>JobSLA-NET2</
wsag:TemplateId>

</wsag:Context>
[...]
<AppConfiguration>
[...]
<security>
<technique>timypairing</technique>

</security>
[...]
<requiredObservations> //App configuration

parameters
<observation>



<PhysicalQuantity>accelx</
PhysicalQuantity>
<code>obsv1</code> //SensorML

coded value
<sampleFrequency>50ms</

sampleFrequency>
<observationTime>3 days</

observationTime>
</observation>

<observation>
<PhysicalQuantity>accely</

PhysicalQuantity>
<code>obsv1</code> //SensorML

coded value
<sampleFrequency>50ms</

sampleFrequency>
<observationTime>3 days</

observationTime>
</observation>

[...]

The negotiated parameters are contained in the AppCon-
figuration section. They are not expressed by means of Ws-
Agreement tags, but they are encapsulated in a ServiceDescrip-
tionTerm (not reported in the listing for brevity’s sake) that
contains a custom description derived from the SensorML
and Observation&Measurements languages [15], describing
the structure of the sensor network and the operational features.
Data reported in such description terms enable the Sensor
Provider to start the application on the network without ad-
ditional effort from user.
To conclude, the proposed prototype showed the feasibility
of the approach and proposes an innovative way to integrate
Cloud and Sensor Networks, maintaining the grants that are
typical of hardware-based systems, like sensor networks are,
even involving the Cloud, that typically introduces additional
software layers that make the system less controllable.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we proposed a Cloud Sensing Brokering Plat-
form dedicated to management of Cloud sensors, which runs as
a Cloud Application consuming resources (i.e. virtual machines
and storages) from different Cloud providers. Such platform is
able to dynamically manage and offer to multiple customers
different sensor networks made available by existing Sensor
Providers. These providers own dedicated infrastructures and
are interested in offering them to external users, under specific
service guarantees.

The platform was implemented using an innovative Cloud
development paradigm, resulting from the mOSAIC Project.
The proposed platform has to face contradictory needs from
customers, typically researchers with clear constraints on
how their measurement campaign should be carried on, and
providers, owners of sensor networks that aim at offering their
sensor infrastructure, but have fixed constraints on how they
can be shared or deployed.

In order to cope with these issues our platform adopts
a SLA-based approach: all interactions among customers,
network providers ad the Cloud Brokering Platform take place
through negotiation of SLAs, reporting the individual needs of
each different actor. The platform uses signed SLAs even to
represent the single jobs that reserve the sensor networks for

the users, offering a fine grained control over the status of the
activities.

In future work we aim at improving the platform features,
with a more powerful user management, explicit management
of security both for controlling customers access and for the
security of data produced. Moreover, we have the plan of
performing a detailed analysis on the performance of the
proposed platform, outlining possible bottlenecks and perfor-
mance issues.

REFERENCES

[1] Micaz datasheet.
[2] Microstrains sensorcloudTM.
[3] Telosb datasheet.
[4] A. Alamri, W. S. Ansari, M. M. Hassan, M. S. Hossain, A. Alelaiwi, and

M. A. Hossain. A survey on sensor-cloud: Architecture, applications,
and approaches. International Journal of Distributed Sensor Networks,
2013, 2013.

[5] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, T. Nakata,
J. Pruyne, J. Rofrano, S. Tuecke, and M. Xu. Web Services Agreement
Specification (WS-Agreement).

[6] V. Casola, A. De Benedictis, A. Drago, and N. Mazzocca. Analysis
and comparison of security protocols in wireless sensor networks. In
Reliable Distributed Systems Workshops (SRDSW), 2011 30th IEEE
Symposium on, pages 52–56. IEEE, 2011.

[7] V. Casola, A. De Benedictis, A. Drago, and N. Mazzocca. SeNsiM-SEC:
secure sensor networks integration to monitor rail freight transport. In
International Journal of System of System Engineering, 2013.

[8] V. Casola, A. De Benedictis, A. Mazzeo, and N. Mazzocca. Sensim-sec:
security in heterogeneous sensor networks. In Network and Information
Systems Security (SAR-SSI), 2011 Conference on, pages 1–8. IEEE,
2011.

[9] C. Craciun, M. Neagul, I. Lazcanotegui, M. Rak, and D. Petcu. Building
an Interoperability API for Sky Computing. In The Second International
Workshop on Cloud Computing Interoperability and Services, pages
405–406. IEEE, 2011.

[10] TeleManagement Forum. 2005.
[11] G.C. Fox, S. Kamburugamuve, and R.D. Hartman. Architecture and

measured characteristics of a cloud based internet of things. In
Collaboration Technologies and Systems (CTS), 2012 International
Conference on, pages 6–12, 2012.

[12] Y. Madoka and K. Takayuki. Sensor-cloud infrastructure - physical
sensor management with virtualized sensors on cloud computing. 2012
15th International Conference on Network-Based Information Systems,
0:1–8, 2010.

[13] N. Mitton, S. Papavassiliou, A. Puliafito, and K. Trivedi. Combining
cloud and sensors in a smart city environment. EURASIP Journal on
Wireless Communications and Networking, 2012(1):247, 2012.

[14] D. Petcu, C. Craciun, and M. Rak. Towards a Cross Platform Cloud
API - Components for Cloud Federation. In CLOSER, pages 166–169,
2011.

[15] C. Reed, M. Botts, J. Davidson, and G. Percivall. Ogc sensor web
enablement: overview and high level architecture. In Autotestcon, 2007
IEEE, pages 372–380, 2007.

[16] H. Wang, B. Sheng, C. Tan, and Q. Li. WM-ECC: An elliptic curve
cryptography suite on sensor motes. Technical Report WMCS-2007-11,
College of William and Mary, October 2007.

[17] S. Xiang, X. Xuejie, T. Jian, and X. Guoliang. Sensing as a service: A
cloud computing system for mobile phone sensing. In Sensors, 2012
IEEE, pages 1–4, 2012.

[18] X. Xiong, D. S. Wong, and Deng. X. TinyPairing: A fast and lightweight
pairing-based cryptographic library for wireless sensor networks. In
Proceedings of the IEEE Wireless Communications and Networking
Conference (WCNC 2010), April 2010.


